JP2018013321A - Dry method and drying furnace for roughened aluminum foil - Google Patents

Dry method and drying furnace for roughened aluminum foil Download PDF

Info

Publication number
JP2018013321A
JP2018013321A JP2016154050A JP2016154050A JP2018013321A JP 2018013321 A JP2018013321 A JP 2018013321A JP 2016154050 A JP2016154050 A JP 2016154050A JP 2016154050 A JP2016154050 A JP 2016154050A JP 2018013321 A JP2018013321 A JP 2018013321A
Authority
JP
Japan
Prior art keywords
aluminum foil
drying
water
furnace
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016154050A
Other languages
Japanese (ja)
Other versions
JP6775186B2 (en
Inventor
幸久 黒田
Yukihisa Kuroda
幸久 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermic Co Ltd
Original Assignee
Thermic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermic Co Ltd filed Critical Thermic Co Ltd
Priority to JP2016154050A priority Critical patent/JP6775186B2/en
Publication of JP2018013321A publication Critical patent/JP2018013321A/en
Application granted granted Critical
Publication of JP6775186B2 publication Critical patent/JP6775186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a treatment time, regarding a drying furnace used for dryness of a roughened aluminum foil using in an aluminum electrolytic capacitor.SOLUTION: A dry furnace comprises: a pretreatment mechanism having a structure configured to cause a far-infrared heater to heat and evaporate washing water adhering to an aluminum foil surface, and discharge to the outside steam generated by heating; and a body mechanism configured to heat an aluminum foil with an air heating system. The dry furnace is configured to dry an erosion part where after the surface of the aluminum foil is dried by the pretreatment mechanism, the aluminum foil is roughened by the body mechanism, to prevent temperature reduction of the aluminum foil due to evaporation heat of washing water, thereby shortening a drying time of the aluminum foil.SELECTED DRAWING: Figure 2

Description

本発明は、アルミ電解コンデンサー等の製造に用いられ、表面に粗面化処理が施された後、水洗いされるアルミ箔に付着した洗浄水の乾燥方法及び乾燥炉に関する。  The present invention relates to a method and a drying furnace for drying cleaning water attached to an aluminum foil that is used for manufacturing an aluminum electrolytic capacitor or the like and subjected to a surface roughening treatment and then washed with water.

従来の乾燥装置は、粗面化処理を施したアルミ箔に付着した電解液を洗浄した後、アルミ箔を乾燥装置に移送し、電気炉、ガス炉、温風炉等によりアルミ箔を加熱してアルミ箔表面に付着する洗浄水及び粗面化処理により生じたアルミ箔表面の浸食部に残存する洗浄水の乾燥を共におこなうものであった(例えば、下記特許文献参照)。このように、アルミ箔の温度を上昇させ乾燥させる方式を、本明細書では空気加熱方式と呼ぶ。  In the conventional drying device, after washing the electrolytic solution adhering to the roughened aluminum foil, the aluminum foil is transferred to the drying device, and the aluminum foil is heated by an electric furnace, gas furnace, hot air furnace, etc. The cleaning water adhering to the surface of the aluminum foil and the cleaning water remaining in the erosion part of the surface of the aluminum foil generated by the roughening treatment are both dried (see, for example, the following patent document). In this specification, the method of raising the temperature of the aluminum foil and drying it is called an air heating method in this specification.

先行技術文献には粗面化処理を施したアルミ箔の乾燥に遠赤外線を用いる記載がない。There is no description in the prior art documents that far infrared rays are used for drying the roughened aluminum foil.

特開平10−223491号公報Japanese Patent Laid-Open No. 10-223491

しかしながら、水洗後のアルミ箔は、表面全体を覆うように水が付着している状態である。従来の乾燥炉による空気加熱方式では、アルミ箔表面に付着する水の蒸発熱でアルミ箔の温度が低下するため、アルミ箔が乾燥に必要な温度に達するまでに長時間の加熱を必要としていた。  However, the aluminum foil after washing is in a state where water adheres so as to cover the entire surface. In the conventional air heating method using a drying furnace, the temperature of the aluminum foil decreases due to the heat of evaporation of water adhering to the surface of the aluminum foil, so it took a long time for the aluminum foil to reach the temperature required for drying. .

また、蒸発した水分が炉内に留まるため、長期間の炉の運転によって水分による炉の汚損が発生していた。  In addition, since the evaporated water stays in the furnace, the furnace is contaminated by moisture during long-term operation of the furnace.

本発明に係る乾燥方法は、アルミ電解コンデンサー等の製造において、粗面化処理を施したアルミ箔の表面に付着した洗浄水を乾燥するために、遠赤外線によってアルミ箔表面に付着した洗浄水を直接加熱し洗浄水を蒸発させる第一の工程と、第一の工程に引き続き、粗面化処理を施したアルミ箔の浸食部に残存する洗浄水を空気加熱方式により乾燥させる第二の工程とを有するアルミ箔の乾燥方法である。  In the production of an aluminum electrolytic capacitor or the like, the drying method according to the present invention uses cleaning water adhered to the surface of the aluminum foil by far infrared rays in order to dry the cleaning water adhered to the surface of the aluminum foil that has been subjected to the roughening treatment. A first step of directly heating and evaporating the cleaning water; and a second step of drying the cleaning water remaining in the eroded portion of the aluminum foil subjected to the roughening treatment by an air heating method following the first step. A method for drying an aluminum foil having

また、本発明に係る乾燥炉は、前記第一の工程において用いられる乾燥炉において、遠赤外線ヒータを有する。この遠赤外線ヒータによって、水の最大吸収波長である3μm近傍の波長の輻射を生ぜしめ、これにより、アルミ箔表面に付着した洗浄水を、アルミ箔からの熱伝導ではなく、直接加熱することを可能にする。  Moreover, the drying furnace which concerns on this invention is a drying furnace used in said 1st process, and has a far-infrared heater. This far-infrared heater generates radiation with a wavelength in the vicinity of 3 μm, which is the maximum absorption wavelength of water, so that the cleaning water adhering to the surface of the aluminum foil can be directly heated rather than heat conduction from the aluminum foil. to enable.

好ましくは、本発明に係る乾燥炉は洗浄水を直接加熱することによって発生する水蒸気を炉外部に排出する構造を有する。  Preferably, the drying furnace according to the present invention has a structure for discharging water vapor generated by directly heating the cleaning water to the outside of the furnace.

本発明によれば、上記第一の工程でアルミ箔の表面に存在する比較的多量の洗浄水を直接加熱することにより効率良く蒸発除去させ、その後上記第二の工程にアルミ箔を移送してアルミ箔の浸食部を、アルミ箔自体の温度を上昇させることにより乾燥する。そのため、上記第二の工程において表面に存在する洗浄水の蒸発熱によりアルミ箔の温度が低下することなく必要温度を得ることが可能となり、乾燥処理時間を短縮することができる。  According to the present invention, a relatively large amount of cleaning water present on the surface of the aluminum foil in the first step is directly evaporated and removed by evaporation, and then the aluminum foil is transferred to the second step. The eroded portion of the aluminum foil is dried by increasing the temperature of the aluminum foil itself. Therefore, the required temperature can be obtained without lowering the temperature of the aluminum foil due to the evaporation heat of the cleaning water present on the surface in the second step, and the drying process time can be shortened.

アルミ電解コンデンサー化成処理用乾燥炉の説明図(上面図)。Explanatory drawing (top view) of the drying furnace for aluminum electrolytic capacitor chemical conversion treatment. アルミ電解コンデンサー化成処理用乾燥炉の説明図(側部断面図)Explanatory drawing of a drying furnace for chemical conversion treatment of aluminum electrolytic capacitors (side sectional view) アルミ箔浸食部の説明図。Explanatory drawing of an aluminum foil erosion part.

以下、本発明の実施例を図面を用いて説明する。本実施例においては、空気加熱方式による乾燥炉(上記第二の工程)の直前に、遠赤外線ヒータを有する前処理機構(上記第一の工程)を接続することで、本発明の機能を実現するものである。  Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the function of the present invention is realized by connecting a pre-processing mechanism (the first step) having a far-infrared heater immediately before the drying furnace by the air heating method (the second step). To do.

図1ないし図3において、1はアルミ箔であり、アルミ純度99.99%、幅500mm、厚み0.2mmでロール状に巻いてあり、表面に粗面化処理が施されている。  1 to 3, reference numeral 1 denotes an aluminum foil, which is rolled in a roll shape with an aluminum purity of 99.99%, a width of 500 mm, and a thickness of 0.2 mm, and has a surface roughened.

粗面化処理をおこなったアルミ箔1は陽酸化被膜処理が施されアルミ箔1に絶縁薄膜を形成させている。 図3はこのような処理後のアルミ箔1の断面を模式的に表したアルミ箔浸食部の説明図であり、アルミ箔1表面には微細な浸食部8が多数形成されている。  The aluminum foil 1 subjected to the roughening treatment is subjected to a positive oxide film treatment to form an insulating thin film on the aluminum foil 1. FIG. 3 is an explanatory view of an aluminum foil erosion portion schematically showing a cross section of the aluminum foil 1 after such treatment, and many fine erosion portions 8 are formed on the surface of the aluminum foil 1.

図1、図2において、ロールから巻き戻されたアルミ箔1は、洗浄水6により表面及び浸食部8に存在する陽酸化被膜処理液が除去される。  In FIG. 1 and FIG. 2, the aluminum foil 1 unwound from the roll is cleaned of the surface of the surface and the erosion unit 8 by the cleaning water 6.

洗浄水6により付着した陽酸化被膜処理液が除去されたアルミ箔1は、前処理機構4に移送され、遠赤外線ヒータ5によりアルミ箔1の表面に付着した洗浄水を加熱して乾燥する。 使用する遠赤外線ヒータ5の輻射波長は、洗浄水6の最大吸収波長である3μm近辺であることが望ましい。  The aluminum foil 1 from which the oxidization coating solution adhering to the cleaning water 6 has been removed is transferred to the pretreatment mechanism 4, and the cleaning water adhering to the surface of the aluminum foil 1 is heated and dried by the far infrared heater 5. The radiation wavelength of the far-infrared heater 5 to be used is desirably around 3 μm, which is the maximum absorption wavelength of the cleaning water 6.

ここで、その根拠を説明する。渡辺敦夫、清水賢による論文、“食品工業における電磁波の知用(1)”(化学技術誌MOL、pp120−128、昭和63年2月)には、水の赤外線吸収波長依存性が記載されている。これは、水の吸収波長に関し、水層の厚さ変化による吸収波長の変化が記述されているものである。これによれば、波長3μmを中心とし±0.2μmでの吸収率が高く、これに対応する温度は、“ウィーンの変位側”(黒体からの輻射のピークの波長が温度に反比例する法則)より
λm=(3±0.2)μm=2.896/(T±273)より
T=632℃≦T≦761℃が求められる。
よって使用する発熱体の温度は、この温度範囲内またはこの近傍であることが望ましく、更に遠赤外線ヒータの発熱温度と消費電力が比例することから電力消費量が少なくなる、632℃近傍に遠赤外線ヒータの発熱温度を設定することが望ましい。
Here, the grounds will be described. In the paper by Ikuo Watanabe and Ken Shimizu, “Use of electromagnetic waves in the food industry (1)” (Chemical Technology Journal, MOL, pp120-128, February 1988), the infrared absorption wavelength dependence of water is described. Yes. This describes the change in the absorption wavelength due to the change in the thickness of the water layer with respect to the absorption wavelength of water. According to this, the absorptance is high at ± 0.2 μm centered on a wavelength of 3 μm, and the temperature corresponding to this is the “Vienna displacement side” (a law in which the wavelength of the peak of radiation from a black body is inversely proportional to the temperature. ) From λm = (3 ± 0.2) μm = 2.896 / (T ± 273), T = 632 ° C. ≦ T ≦ 761 ° C. is obtained.
Therefore, the temperature of the heating element to be used is preferably within this temperature range or in the vicinity thereof, and further, since the heat generation temperature of the far-infrared heater and the power consumption are proportional, the power consumption is reduced. It is desirable to set the heating temperature of the heater.

本実施例では旭電熱製作所製遠赤外線ヒータ:石英管(定格127V/1.2KW)をアルミ箔1の送り方向に対し直角に交わる方向に上部1本、下部2本の計3本用い、遠赤外線ヒータ表面温度は630℃となるように設定した。前処理機構4の内部温度は300℃、アルミ箔1の表面温度は400℃である。  In this embodiment, a far-infrared heater manufactured by Asahi Denshi Seisakusho Co., Ltd .: a quartz tube (rated 127 V / 1.2 kW) is used with a total of three, one upper part and two lower parts in a direction perpendicular to the feeding direction of the aluminum foil 1. The infrared heater surface temperature was set to 630 ° C. The internal temperature of the pretreatment mechanism 4 is 300 ° C., and the surface temperature of the aluminum foil 1 is 400 ° C.

このような構成によれば、アルミ箔1の表面に付着した洗浄水を直接加熱して蒸発・乾燥するため、前処理機構4はその内部温度を高温に保つ必要がない。したがって、本来ならば内部温度低下の原因となる水蒸気の排出口7を設けることが可能となる。  According to such a configuration, the cleaning water adhering to the surface of the aluminum foil 1 is directly heated to evaporate and dry, so that the pretreatment mechanism 4 does not need to maintain its internal temperature at a high temperature. Accordingly, it is possible to provide the water vapor outlet 7 that would otherwise cause a decrease in internal temperature.

本実施例では、排出口7は前処理機構4の上面に形成し、アルミ箔1の送り方向に対し直角方向に長さ500mm、幅20mmのスリット状とした。これにより、アルミ箔1の表面に付着した洗浄水を加熱した際に発生する水蒸気は、排出口7から効果的に排出される。  In this embodiment, the discharge port 7 is formed on the upper surface of the pretreatment mechanism 4 and has a slit shape having a length of 500 mm and a width of 20 mm in a direction perpendicular to the feeding direction of the aluminum foil 1. Thereby, water vapor generated when the cleaning water adhering to the surface of the aluminum foil 1 is heated is effectively discharged from the discharge port 7.

アルミ箔1の表面を乾燥した後、アルミ箔1を本体機構2に移送して、粗面化処理により生じた浸食部8の乾燥をおこなう。  After the surface of the aluminum foil 1 is dried, the aluminum foil 1 is transferred to the main body mechanism 2 to dry the erosion part 8 generated by the roughening treatment.

本体機構2は、シーズヒータ3を用いて、空気加熱方式でアルミ箔1を加熱して、本体機構2の内部温度を570℃とし、アルミ箔1の浸食部8に残存する洗浄液を蒸発させ乾燥する。本体機構2内部の加熱には富岡産業株式会社製シーズヒータ:インコロイ800(定格127V/750W)を使用し、アルミ箔1の送り方向に対して直角となる方向に上下9本ずつ、計18本使用した。シーズヒータの温度は800℃に設定した。  The main body mechanism 2 uses the sheathed heater 3 to heat the aluminum foil 1 by an air heating method so that the internal temperature of the main body mechanism 2 is 570 ° C., and evaporates the cleaning liquid remaining in the eroded portion 8 of the aluminum foil 1 to dry it. To do. Tomioka Sangyo Co., Ltd.'s sheathed heater: Incoloy 800 (rated 127V / 750W) is used for heating inside the main body mechanism 2, and a total of 18 pieces, 9 in the vertical direction and perpendicular to the feed direction of the aluminum foil 1, are provided. used. The temperature of the sheathed heater was set to 800 ° C.

本実施例ではアルミ箔1の表面に付着した洗浄水は前処理機構4により予め乾燥させる。そのため、本体機構2でアルミ箔1を加熱する際、従来例でのようにアルミ箔1の表面に付着する洗浄水が蒸発する際の蒸発熱による温度低下が生じない。したがって、必要な温度を維持することが容易に可能となり、アルミ箔1の乾燥時間の短縮を図ることができる。  In this embodiment, the cleaning water adhering to the surface of the aluminum foil 1 is dried in advance by the pretreatment mechanism 4. Therefore, when the aluminum foil 1 is heated by the main body mechanism 2, there is no temperature drop due to evaporation heat when the cleaning water adhering to the surface of the aluminum foil 1 evaporates as in the conventional example. Therefore, it is possible to easily maintain the required temperature, and the drying time of the aluminum foil 1 can be shortened.

本実施例の乾燥炉では、従来のアルミ箔1の移送速度1.0m/minを、2.0m/minに上昇させることが可能となり、単位長あたりの使用電力を20%減少させることが可能となる。  In the drying furnace of the present embodiment, the transfer speed of the conventional aluminum foil 1 can be increased to 2.0 m / min, and the power consumption per unit length can be reduced by 20%. It becomes.

また、本実施例では前処理機構4において排出口7により水蒸気が排出されているので、長期間の運転においても本体機構2の内部が水分で汚損されることがない。  Further, in the present embodiment, since the water vapor is discharged from the discharge port 7 in the pretreatment mechanism 4, the inside of the main body mechanism 2 is not contaminated with moisture even during long-term operation.

なお、排出口7の形状としては、上述したスリット状以外でも、連続する複数の開口部からなるものであっても良い。  In addition, as a shape of the discharge port 7, it may be composed of a plurality of continuous openings other than the slit shape described above.

また、本体機構2と前処理機構4は、一体となった構造であっても、分離された構造であっても良い。  Further, the main body mechanism 2 and the pretreatment mechanism 4 may be an integrated structure or a separated structure.

1 アルミ箔、 2 本体機構、 3 シーズヒータ、 4 前処理機構
5 遠赤外線ヒータ、 6 洗浄水、 7 排出口、 8 浸食部
DESCRIPTION OF SYMBOLS 1 Aluminum foil, 2 Main body mechanism, 3 Seeds heater, 4 Pretreatment mechanism 5 Far-infrared heater, 6 Washing water, 7 Outlet, 8 Erosion part

Claims (3)

アルミ電解コンデンサーに用いられる粗面化処理を施したアルミ箔を水洗後乾燥させるための乾燥炉であり、アルミ箔の表面全体に付着した洗浄水を、水の最大吸収波長に近似する輻射波長を有する遠赤外線によって加熱して蒸発させる遠赤外線ヒータを有する乾燥炉。  This is a drying furnace that dries the aluminum foil that has been subjected to the roughening treatment used for aluminum electrolytic capacitors and then dries it. The cleaning water that adheres to the entire surface of the aluminum foil has a radiation wavelength that approximates the maximum absorption wavelength of water. A drying furnace having a far-infrared heater that heats and evaporates with a far-infrared ray. 請求項1において、アルミ箔の表面に付着した洗浄水の蒸発によって生じた水蒸気を炉外に排出する構造を有する乾燥炉。  The drying furnace according to claim 1, wherein water vapor generated by evaporation of cleaning water attached to the surface of the aluminum foil is discharged outside the furnace. アルミ電解コンデンサーに用いられる粗面化処理を施したアルミ箔を洗浄水で洗浄した後、アルミ箔表面に付着した洗浄水を水の最大吸収波長に近似する輻射波長を有する遠赤外線ヒータにより直接加熱して蒸発させる第一の乾燥工程と、第一の乾燥工程を経たアルミ箔を空気乾燥方式により加熱してアルミ箔の粗面化処理により生じた浸食部内の洗浄水を蒸発させる第二の工程とを有するアルミ箔の乾燥方法。  After cleaning the roughened aluminum foil used for aluminum electrolytic capacitors with washing water, the washing water adhering to the surface of the aluminum foil is directly heated by a far-infrared heater having a radiation wavelength that approximates the maximum absorption wavelength of water. The first drying step to evaporate and the second step to evaporate the cleaning water in the erosion part generated by the roughening treatment of the aluminum foil by heating the aluminum foil that has undergone the first drying step by the air drying method A method for drying an aluminum foil.
JP2016154050A 2016-07-19 2016-07-19 Drying method and drying furnace for roughened aluminum foil Active JP6775186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154050A JP6775186B2 (en) 2016-07-19 2016-07-19 Drying method and drying furnace for roughened aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154050A JP6775186B2 (en) 2016-07-19 2016-07-19 Drying method and drying furnace for roughened aluminum foil

Publications (2)

Publication Number Publication Date
JP2018013321A true JP2018013321A (en) 2018-01-25
JP6775186B2 JP6775186B2 (en) 2020-10-28

Family

ID=61020200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154050A Active JP6775186B2 (en) 2016-07-19 2016-07-19 Drying method and drying furnace for roughened aluminum foil

Country Status (1)

Country Link
JP (1) JP6775186B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992994A (en) * 2022-05-25 2022-09-02 黄山天马铝业有限公司 Surface coating and drying device for aluminum foil production
CN115787022A (en) * 2022-10-25 2023-03-14 江苏荣生电子有限公司 Formation device for processing electrode foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579098U (en) * 1980-05-30 1982-01-18
JPH01116094U (en) * 1988-01-30 1989-08-04
JP2000329463A (en) * 1999-05-14 2000-11-30 Konica Corp Method and equipment for drying coat
JP2016040496A (en) * 2014-08-12 2016-03-24 日本碍子株式会社 Infrared ray processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579098U (en) * 1980-05-30 1982-01-18
JPH01116094U (en) * 1988-01-30 1989-08-04
JP2000329463A (en) * 1999-05-14 2000-11-30 Konica Corp Method and equipment for drying coat
JP2016040496A (en) * 2014-08-12 2016-03-24 日本碍子株式会社 Infrared ray processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992994A (en) * 2022-05-25 2022-09-02 黄山天马铝业有限公司 Surface coating and drying device for aluminum foil production
CN114992994B (en) * 2022-05-25 2024-03-29 黄山天马铝业有限公司 Aluminum foil production is with scribbling drying device
CN115787022A (en) * 2022-10-25 2023-03-14 江苏荣生电子有限公司 Formation device for processing electrode foil

Also Published As

Publication number Publication date
JP6775186B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
KR100955540B1 (en) heat generation sheet and fabrication method thereof
JP2018013321A (en) Dry method and drying furnace for roughened aluminum foil
JP2007227831A (en) Method and apparatus of manufacturing electrode for electrochemical element
JP3650741B2 (en) Radiation device, method of use of the device and method for treating a surface
JP6274661B2 (en) Drying equipment
CN105972570B (en) Steam generator and steaming plant
CN104451556B (en) The manufacture method of radiant type evaporation heater and the radiant type evaporation heater
JP2007155310A (en) Heat conductive assembly for water heater and manufacturing method of heat conductive assembly
JP5378677B2 (en) Ceramic heater
JP6865945B2 (en) heater
EP2239365B1 (en) Trough mangle and method for heating same
Surtaev et al. Characteristics of boiling heat transfer on hydrophilic surface with SiO2 coating
TWI739985B (en) Surface drying apparatus for sheet-like non-osmotic substrate and printing apparatus and printing method therefor
JP2012241922A (en) Batch type coating film drying furnace
CN102017788A (en) Heating-element unit, and heating device
CN208525902U (en) Quenching oil drying device
KR101765471B1 (en) Superheated steam generating apparatus for manufacturing process of secondary cell
CN108684083A (en) A kind of combined device for homogenous heating
KR101108037B1 (en) Heater assembly for Clothes Drier
KR20200019359A (en) Hair dryer using planar heater
KR101110718B1 (en) Hot Plate
CN108571878A (en) A kind of adjustable carpet drying unit of temperature
US20230040167A1 (en) Method for performing heat treatment on membrane electrode assembly
WO2018000497A1 (en) Vapour generator and vapour device
JP2008039348A (en) Microwave dryer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6775186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150