JP2018013259A - Refrigerant flow divider and refrigeration system using the same - Google Patents

Refrigerant flow divider and refrigeration system using the same Download PDF

Info

Publication number
JP2018013259A
JP2018013259A JP2016141444A JP2016141444A JP2018013259A JP 2018013259 A JP2018013259 A JP 2018013259A JP 2016141444 A JP2016141444 A JP 2016141444A JP 2016141444 A JP2016141444 A JP 2016141444A JP 2018013259 A JP2018013259 A JP 2018013259A
Authority
JP
Japan
Prior art keywords
refrigerant
shell
flow
cylindrical body
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016141444A
Other languages
Japanese (ja)
Other versions
JP6667070B2 (en
Inventor
富之 野間
Tomiyuki Noma
富之 野間
乙彦 舛谷
Otohiko Masutani
乙彦 舛谷
憲昭 山本
Kensho Yamamoto
憲昭 山本
優 塩谷
Masaru Shiotani
優 塩谷
十倉 聡
Satoshi Tokura
聡 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016141444A priority Critical patent/JP6667070B2/en
Publication of JP2018013259A publication Critical patent/JP2018013259A/en
Application granted granted Critical
Publication of JP6667070B2 publication Critical patent/JP6667070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow divider capable of dividing a flow as designed while uniformizing a gas-liquid ratio by eliminating an influence of bending at a refrigerant inlet portion, and a refrigeration system using the same.SOLUTION: A refrigerant flow divider includes: a flow dividing body 11 having a refrigerant collision part 20 on an upstream side of a plurality of flow dividing passages 16; and a refrigerant passage forming member 12 for guiding a refrigerant via a bent part at the refrigerant collision part of the flow dividing body. At the bent part of a refrigerant passage of the refrigerant passage forming member, a refrigerant reversion passage part 15 is provided for changing the direction of the flow of the refrigerant from a refrigerant inflow port 14 for a plurality of times and then for guiding it to the refrigerant collision part of the flow dividing body. Thereby, the gas-liquid two-phase refrigerant which has flowed in a shell from the refrigerant inflow port changes the collision and direction at the refrigerant reversion passage part and the flow is bent, so that a receiving influence of an inertia force can be eliminated. Therefore, while uniformizing a gas-liquid ratio of the refrigerant, the gas-liquid can be dispersed and mixed by colliding it to the collision part of the flow dividing body in the same manner as the conventional one, and it can be divided into each divided flow passage as designed.SELECTED DRAWING: Figure 7

Description

本発明は冷媒を分流する冷媒分流器およびそれを用いた空調機器や冷凍機等の冷凍システムに関するものである。   The present invention relates to a refrigerant flow divider for diverting refrigerant and a refrigeration system such as an air conditioner and a refrigerator using the same.

一般に空調機器や冷凍機等の冷凍システムは、熱交換器の熱交換効率によってシステムとしての性能や省エネ性が大きく左右される。   In general, in a refrigeration system such as an air conditioner or a refrigerator, the system performance and energy saving are greatly affected by the heat exchange efficiency of the heat exchanger.

この冷凍システムに用いる熱交換器は、熱交換効率の向上および小型化のため、伝熱管の細径化が進み、それに伴い冷媒経路数も増加しており、その熱交換効率は増加した冷媒経路にいかに設計通り、例えば均一に冷媒を分流させて供給できるかにかかっている。   The heat exchanger used in this refrigeration system has a reduced heat transfer tube diameter in order to improve heat exchange efficiency and downsizing, and the number of refrigerant paths has increased accordingly, and the heat exchange efficiency has increased. However, it depends on how the refrigerant can be divided and supplied uniformly, for example, as designed.

この熱交換器の伝熱管に冷媒を分流するものが冷媒分流器であるが、この冷媒分流器の分流性能、すなわち偏流させることなく設計通り(例えば均等)に分流、換言すると気液二相冷媒の気液比率をどれだけ均一化しつつ設計通り(例えば均等)に分流させることができるかが冷凍システムの性能や省エネ性に大きな影響を与えることになる。   A refrigerant divider is a component that divides the refrigerant into the heat transfer tube of this heat exchanger. However, the refrigerant diverter, that is, a diverted flow as designed (for example, evenly) without deviation, that is, a gas-liquid two-phase refrigerant. How much the gas-liquid ratio is made uniform and can be divided as designed (for example, evenly) greatly affects the performance and energy saving of the refrigeration system.

そのため、最近では冷媒分流器内に冷媒衝突部を設け、冷媒分流器内で気液二相の冷媒を衝突拡散させて気液比率を均一化しつつ各冷媒経路に均等に冷媒を分流させるものが提案されている(例えば、特許文献1参照)。   For this reason, recently, a refrigerant collision part is provided in the refrigerant flow divider, and the gas-liquid two-phase refrigerant is collided and diffused in the refrigerant flow divider to equalize the gas-liquid ratio and distribute the refrigerant equally to each refrigerant path. It has been proposed (see, for example, Patent Document 1).

図11(a)(b)は上記特許文献1記載の冷媒分流器を示し、この冷媒分流器は分流器本体101内に内部部材102を設け、この内部部材102の冷媒流入口103と対向する部分に冷媒衝突部104を設けるとともに、分流器本体101の内周面との間に冷媒通路105を形成している。そして、冷媒流入パイプ103から流入した冷媒を前記冷媒衝突部104に衝突させて気液を混合拡散し、内部部材102外周面の冷媒通路105を通して各流出路106へと分流するようになっている。   11 (a) and 11 (b) show the refrigerant flow divider described in the above-mentioned Patent Document 1. This refrigerant flow divider is provided with an internal member 102 in the flow divider main body 101 and faces the refrigerant inlet 103 of the internal member 102. A refrigerant collision part 104 is provided in the part, and a refrigerant passage 105 is formed between the inner peripheral surface of the flow divider main body 101. Then, the refrigerant flowing in from the refrigerant inflow pipe 103 collides with the refrigerant collision portion 104 to mix and diffuse the gas and liquid, and divert to each outflow passage 106 through the refrigerant passage 105 on the outer peripheral surface of the internal member 102. .

特開2007−192414号公報JP 2007-192414 A

上記従来の冷媒分流器は、冷媒を冷媒衝突部104に衝突させるので、冷媒中の気液が混合拡散しその比率を均一化させて各流路へと設計通り、例えば均等に分流できる。しかも狭い冷媒通路105を通して冷媒を分流するので、流速が遅くなって重力の影響を受けやすい小流量時でもその影響を受けることなく分流できる、という利点がある。   The conventional refrigerant flow divider causes the refrigerant to collide with the refrigerant collision unit 104, so that the gas-liquid in the refrigerant is mixed and diffused, and the ratio thereof is made uniform, and can be evenly divided into each flow path as designed, for example. In addition, since the refrigerant is diverted through the narrow refrigerant passage 105, there is an advantage that the flow can be diverted without being influenced even at a small flow rate that is slow to be affected by gravity and easily affected by gravity.

しかしながら、上記構成の冷媒分流器は、冷媒流入口103に接続するパイプを冷媒分流器の入口部分で曲げて設置すると設計通りに分流させることができず偏流が残る、という課題があった。   However, the refrigerant flow divider configured as described above has a problem that if a pipe connected to the refrigerant flow inlet 103 is bent at the inlet portion of the refrigerant flow divider, the flow cannot be divided as designed, and a drift remains.

すなわち、冷媒流入口103に接続するパイプを入口部分で曲げると、この屈曲部分で冷媒に慣性力が働き、この慣性力が気液二相冷媒の液体側に強く作用するので、液体と気体とが偏った形で冷媒衝突部104に衝突し、衝突によって多少気液が混合するものの、偏りが残ったまま各分流出路106へと分流して、偏流となるのであった。そのため、冷
媒分流器を熱交換器へ設置する際、冷媒流入口103に接続するパイプは直線状とするなどの規制を受け、設置自由度が低く、パイプを屈曲させてコンパクトに設置することができない等の結果を招来していた。
That is, if the pipe connected to the refrigerant inlet 103 is bent at the inlet portion, an inertial force acts on the refrigerant at the bent portion, and this inertial force acts strongly on the liquid side of the gas-liquid two-phase refrigerant. However, the gas collides with the refrigerant collision part 104 and the gas and liquid are mixed to some extent due to the collision. Therefore, when installing the refrigerant flow divider to the heat exchanger, the pipe connected to the refrigerant inlet 103 is subject to restrictions such as being straight, and the installation flexibility is low, and the pipe can be bent and installed compactly. Inviting results such as inability.

このパイプ屈曲による偏流現象は冷媒の流れが低速時、すなわち、小流量時に生じやすいのであるが、冷媒流入口103に接続するパイプを曲げなければ生じないので、前記した重力の影響を排除するほどには問題となっておらず、冷媒入口部分での冷媒流れの曲りによる慣性力で生じる偏流を防止することは問題視されていなかった。   This uneven flow phenomenon due to the bending of the pipe is likely to occur when the flow of the refrigerant is low speed, that is, when the flow rate is small, but it does not occur unless the pipe connected to the refrigerant inlet 103 is bent. However, it has not been regarded as a problem to prevent the drift caused by the inertial force due to the bending of the refrigerant flow at the refrigerant inlet.

しかしながら、最近の冷凍システム、特に空調機器は、高密度設計による小型化及び環境対策面から省エネ性が強く要望されており、冷媒分流器の設置自由度を上げて機器のコンパクト化を可能とするとともに、冷媒流れが低速時、すなわち、小流量時における熱効率も高めて省エネ性を一段と高いレベルまで向上させることが強く要望されており、この冷媒流れの曲りによる慣性力で生じる偏流を防止することは新たな課題となりつつある。   However, recent refrigeration systems, especially air-conditioning equipment, are strongly demanded to save energy from the viewpoint of miniaturization by high-density design and environmental measures, enabling the equipment to be more compact by increasing the degree of freedom in installing the refrigerant flow divider. At the same time, there is a strong demand to improve the energy efficiency to a higher level by increasing the thermal efficiency when the refrigerant flow is low speed, that is, at a small flow rate, and to prevent drift caused by inertial force due to the bending of the refrigerant flow. Is becoming a new challenge.

本発明はこのような点に鑑みてなしたもので、冷媒入口部分での曲げの影響を解消して気液の比率を均一化しつつ設計通りに分流できる冷媒分流器とそれを用いた冷凍システムの提供を目的としたものである。   The present invention has been made in view of the above points, and a refrigerant flow distributor capable of diverting as designed while eliminating the influence of bending at the refrigerant inlet portion and making the gas-liquid ratio uniform, and a refrigeration system using the same It is intended to provide.

本発明は、上記目的を達成するため、複数の分流路の上流側に冷媒衝突部を設けた分流体と、前記分流体の冷媒衝突部に曲がり部を介して冷媒を導く冷媒通路形成部材とを備え、前記冷媒通路形成部材の冷媒通路の曲がり部には冷媒流入口からの冷媒の流れの向きを複数回変えた後に前記分流体の冷媒衝突部へと案内する冷媒反転通路部を設けた構成としてある。   In order to achieve the above-mentioned object, the present invention provides a fluid separation part provided with a refrigerant collision part on the upstream side of a plurality of flow dividing channels, and a refrigerant passage forming member that guides the refrigerant to the refrigerant collision part of the fluid separation part via a bent part. And a refrigerant reversing passage portion for guiding the refrigerant flow from the refrigerant inlet to the refrigerant collision portion after changing the direction of the refrigerant flow a plurality of times at the bent portion of the refrigerant passage forming member. As a configuration.

これにより、冷媒流入口から流入した気液二相の冷媒は分流体側へと曲がる部分の冷媒反転通路部で通路壁面への衝突と混合拡散を繰り返しながら分流体側へと向きを変えるので、流れが曲がることで受ける慣性力の影響を解消し気液比率を均一化することができる。よって、冷媒の気液比率を均一化して偏流を防止しつつ従来と同様分流体の冷媒衝突部に衝突させて気液を拡散混合し各分流路へと設計通りに分流させることができ、しかも熱交換器等へも制約を受けることなくコンパクトに設置することが可能となる。   As a result, the gas-liquid two-phase refrigerant flowing in from the refrigerant inflow port changes its direction to the separation fluid side while repeating collision and mixing diffusion on the passage wall surface in the refrigerant inversion passage portion of the portion that bends to the separation fluid side. It is possible to eliminate the influence of the inertial force received by the bending of the flow and make the gas-liquid ratio uniform. Therefore, it is possible to make the gas-liquid ratio of the refrigerant uniform and prevent drift, colliding with the refrigerant collision part of the split fluid as before, diffusing and mixing the gas and liquid, and diverting to each branch channel as designed, It is possible to install the heat exchanger in a compact manner without being restricted.

本発明は、上記した構成により、冷媒入口部分で流れを曲げることで生じる慣性力の影響を解消して冷媒の気液比率の均一性を保持しつつ複数の分流路へと設計通りに分流することができ、熱交換器の熱交換効率を上げて冷凍システムの省エネ化を推進できるとともに、熱交換器等へも制約を受けることなくコンパクトに設置することできて冷凍システムのコンパクト化も同時に達成できる。   With the above-described configuration, the present invention eliminates the influence of inertia force generated by bending the flow at the refrigerant inlet portion, and diverts to a plurality of branch channels as designed while maintaining the uniformity of the gas-liquid ratio of the refrigerant. It is possible to increase the heat exchange efficiency of the heat exchanger and promote energy saving of the refrigeration system, and it can be installed compactly without any restrictions on the heat exchanger etc., and the refrigeration system can be made compact at the same time it can.

本発明の実施の形態1における空調機器の冷凍サイクル図Refrigeration cycle diagram of air-conditioning equipment in Embodiment 1 of the present invention 同空調機器の熱交換器への冷媒分流器の接続状態を示す説明図Explanatory drawing which shows the connection state of the refrigerant | coolant shunt to the heat exchanger of the air conditioning equipment 同冷媒分流器の斜視図Perspective view of the refrigerant flow divider 同冷媒分流器のシェル及び筒状体を切断して示す断面図Sectional drawing which cut | disconnects and shows the shell and cylindrical body of the refrigerant | coolant flow divider 同冷媒分流器の分解斜視図Exploded perspective view of the refrigerant flow divider 同冷媒分流器の平面図Plan view of the refrigerant flow divider 同冷媒分流器を示す図6のA−A断面図AA sectional view of FIG. 6 showing the refrigerant flow divider (a)(b)(c)同冷媒分流器の作用を説明するための説明図(A) (b) (c) Explanatory drawing for demonstrating the effect | action of the refrigerant | coolant flow divider (a)(b)同冷媒分流器の作用を説明するための説明図(A) (b) Explanatory drawing for demonstrating the effect | action of the refrigerant | coolant flow divider (a)(b)(c)本発明の実施の形態2における冷媒分流器を示す断面図(A) (b) (c) Sectional drawing which shows the refrigerant | coolant flow divider in Embodiment 2 of this invention. (a)従来の冷媒分流器の平面図、(b)同(a)のB−B断面図(A) Plan view of conventional refrigerant flow divider, (b) BB cross-sectional view of (a).

第1の発明の冷媒分流器は、複数の分流路の上流側に冷媒衝突部を設けた分流体と、前記分流体の冷媒衝突部に曲がり部を介して冷媒を導く冷媒通路形成部材とを備え、前記冷媒通路形成部材の冷媒通路の曲がり部には冷媒流入口からの冷媒の流れの向きを複数回変えた後に前記分流体の冷媒衝突部へと案内する冷媒反転通路部を設けた構成としてある。   According to a first aspect of the present invention, there is provided a refrigerant flow divider comprising: a branch fluid provided with a refrigerant collision portion upstream of a plurality of flow dividing channels; and a refrigerant passage forming member that guides the refrigerant to the refrigerant collision portion of the divided fluid through a bent portion. And a refrigerant reversing passage portion for guiding the refrigerant flow from the refrigerant inlet to the refrigerant collision portion after changing the direction of the refrigerant flow a plurality of times at a bent portion of the refrigerant passage of the refrigerant passage forming member. It is as.

これにより、冷媒流入口から流入した気液二相の冷媒は分流体側へと曲がる部分の冷媒反転通路部で通路壁面への衝突と混合拡散を繰り返しながら分流体側へと向きを変えるので、流れが曲がることで受ける慣性力の影響を解消し気液比率を均一化することができる。よって、冷媒の気液比率を均一化して偏流を防止しつつ従来と同様分流体の冷媒衝突部に衝突させて気液を更に拡散混合し各分流路へと設計通りに分流させることができるとともに、熱交換器等へも制約を受けることなくコンパクトに設置することが可能となる。これにより、冷凍システムの省エネ化とコンパクト化を同時に達成することができる。   As a result, the gas-liquid two-phase refrigerant flowing in from the refrigerant inflow port changes its direction to the separation fluid side while repeating collision and mixing diffusion on the passage wall surface in the refrigerant inversion passage portion of the portion that bends to the separation fluid side. It is possible to eliminate the influence of the inertial force received by the bending of the flow and make the gas-liquid ratio uniform. Therefore, while making the gas-liquid ratio of the refrigerant uniform and preventing drift, it is possible to collide with the refrigerant colliding part of the separated fluid as in the conventional case to further diffuse and mix the gas and liquid and to divert to each divided flow channel as designed. In addition, the heat exchanger and the like can be installed compactly without being restricted. Thereby, energy saving and compactness of the refrigeration system can be achieved at the same time.

第2の発明の冷媒分流器は、複数の分流路の上流側に冷媒衝突部を設けた分流体と、前記分流体の冷媒衝突部に冷媒を導く筒状体と、前記筒状体に冷媒を導く有底筒状のシェルとを備え、前記有底筒状のシェルにはシェルの軸線と交差する方向に冷媒流入口を設けるとともに、前記冷媒流入口に対向するシェル内部に前記筒状体もしくは変流体を位置させて当該筒状体もしくは変流体と前記シェルとで前記冷媒流入口からの冷媒の流れの向きを複数回変えた後に前記分流体の冷媒衝突部へと案内する冷媒反転通路部を形成した構成としてある。   According to a second aspect of the present invention, there is provided a refrigerant flow divider including a fluid separating portion provided with a refrigerant collision portion upstream of a plurality of flow dividing channels, a cylindrical body that guides the refrigerant to the refrigerant collision portion of the divided fluid, and a refrigerant in the cylindrical body. The bottomed cylindrical shell is provided with a refrigerant inlet in a direction intersecting the axis of the shell, and the cylindrical body is disposed inside the shell facing the refrigerant inlet. Alternatively, a refrigerant reversing passage that positions the variable fluid and guides it to the refrigerant collision portion of the separated fluid after changing the direction of the flow of the refrigerant from the refrigerant inlet by the cylindrical body or the variable fluid and the shell a plurality of times. It is the structure which formed the part.

これにより、第1の発明と同様、分流体側へと曲がる部分の冷媒反転通路部で通路壁面への衝突と混合拡散を繰り返しながらUターンする等して筒状体内を分流体側へと向きを変えて流れるので、流れが曲がることで受ける慣性力の影響を解消し気液比率を均一化することができる。よって、冷媒の気液比率を均一化して偏流を防止しつつ従来と同様分流体の冷媒衝突部に衝突させて気液を拡散混合し各分流路へと設計通りに分流させることができるとともに、熱交換器等へも制約を受けることなくコンパクトに設置することが可能となる。これにより、冷凍システムの省エネ化とコンパクト化を大きく推進することができる。   Thus, as in the first aspect of the invention, the cylindrical body is directed toward the fluid separation side by making a U-turn while repeatedly colliding with the passage wall surface and mixing and diffusing in the refrigerant reversing passage portion that bends toward the fluid separation side. Therefore, it is possible to eliminate the influence of the inertial force received by bending the flow and to make the gas-liquid ratio uniform. Therefore, while making the gas-liquid ratio of the refrigerant uniform and preventing uneven flow, it is possible to collide with the refrigerant collision part of the separated fluid as before and to diffuse and mix the gas and liquid and to divert to each branch channel as designed, It is possible to install the heat exchanger in a compact manner without being restricted. This can greatly promote energy saving and compactness of the refrigeration system.

第3の発明は、複数の分流路の上流側に冷媒衝突部を設けた分流体と、前記分流体に装着した有底筒状のシェルとを備え、前記有底筒状のシェルにはシェルの軸線と交差する方向に冷媒流入口を設けるとともに、前記シェル内には前記分流体の冷媒衝突部から前記冷媒流入口と対向する部分まで位置して端部を開口し前記冷媒流入口からの冷媒を分流体の冷媒衝突部へと案内する筒状体を設けた構成としてある。   According to a third aspect of the present invention, there is provided a separation fluid provided with a refrigerant collision portion on the upstream side of a plurality of distribution channels, and a bottomed cylindrical shell attached to the separation fluid, and the bottomed cylindrical shell includes a shell. A refrigerant inlet is provided in a direction crossing the axis of the refrigerant, and an end is opened in the shell from the refrigerant collision portion of the separated fluid to a portion facing the refrigerant inlet, and the refrigerant inlet from the refrigerant inlet. A cylindrical body for guiding the refrigerant to the refrigerant collision part of the separated fluid is provided.

これにより、冷媒流入口からシェル内に流入した気液二相の冷媒は冷媒流入口からシェル内に入ると同時に分流体側へと曲がって流れるのであるが、この部分には筒状体が位置していて前記気液二相の冷媒は筒状体の外周面に衝突し筒状体の開口部分で流れの向きを変えて筒状体を通ることで冷媒の流れが直線的になり、真っ直ぐに分流体へと流れるので、従来の冷媒流れが曲がることで受ける慣性力の影響を解消し、気液の混合拡散を促進して気液比率を均一化することができる。つまり、冷媒の気液比率を均一化して偏流を防止しつつ従来と同様分流体の衝突部に衝突させて気液を拡散混合し各分流路へと設計通りに分流させることができる。そして更に、熱交換器等へも制約を受けることなくコンパクトに設置することが可能となる。さらに加えて、上記慣性力の影響を解消する構成は筒状体
とシェルを組み合わせるという極めて簡単な構成で形成することができ、しかも、その筒状体及びシェルは穿孔や絞り加工等の特別な加工を施すことなく単純な筒形状のもので良く、安価に提供することができる。これにより、冷凍システムの省エネ化とコンパクト化を達成できるのはもちろん、コストアップを抑制しつつ前記した省エネ化とコンパクト化を実現した冷凍システムを提供することができる。
As a result, the gas-liquid two-phase refrigerant that has flowed into the shell from the refrigerant inlet enters the shell through the refrigerant inlet, and at the same time bends and flows to the fluid side. The gas-liquid two-phase refrigerant collides with the outer peripheral surface of the cylindrical body, changes the flow direction at the opening of the cylindrical body, passes through the cylindrical body, and the refrigerant flow becomes straight and straight. Therefore, the influence of the inertial force received by bending the conventional refrigerant flow can be eliminated, and the gas-liquid ratio can be made uniform by promoting the gas-liquid mixing and diffusion. That is, it is possible to make the gas-liquid ratio of the refrigerant uniform and prevent the drift, and collide with the colliding part of the fluid separation as in the conventional case to diffuse and mix the gas and liquid, and to divert to each flow channel as designed. In addition, the heat exchanger can be installed compactly without any restrictions. In addition, the structure that eliminates the influence of the inertial force can be formed with a very simple structure in which a cylindrical body and a shell are combined, and the cylindrical body and the shell are specially used for drilling or drawing. A simple cylindrical shape may be used without processing, and it can be provided at low cost. Thereby, not only can the refrigeration system be energy-saving and compact, but also a refrigeration system that realizes the above-mentioned energy saving and compactness while suppressing an increase in cost can be provided.

第4の発明の冷媒分流器は、第2または第3の発明の冷媒分流器において、前記筒状体は冷媒流入口から分流体の衝突部に至る経路中で最も流路断面積が小さくなるように設定してある。   A refrigerant flow divider according to a fourth aspect of the present invention is the refrigerant flow divider according to the second or third aspect, wherein the cylindrical body has the smallest flow path cross-sectional area in the path from the refrigerant inlet to the collision portion of the divided fluid. It is set as follows.

これにより冷媒流入口から流入した冷媒は分流体の衝突部に衝突する時点での流速を最も早いものとすることができるので、衝突部への衝突による気液拡散混合効果を高めることができ、冷媒の気液比率の均一化をより一層向上させて各分流路へと設計通りに分流させることができる。   As a result, the refrigerant flowing from the refrigerant inflow port can have the fastest flow velocity at the time of colliding with the colliding portion of the separated fluid, so that the gas-liquid diffusion mixing effect due to the collision with the colliding portion can be enhanced, It is possible to further improve the homogenization of the gas-liquid ratio of the refrigerant and divert it to each branch channel as designed.

第5の発明の冷媒分流器は、第2〜第4の発明の冷媒分流器において、前記有底筒状のシェル内に設けた筒状体はその筒状外周面が冷媒流入口と対向していてその筒状端面が開口し、この開口端から前記シェルの底までの間隙dを前記筒状体の内径Dの1/4以上(d>D/4)とした構成としてある。   The refrigerant flow divider of the fifth invention is the refrigerant flow divider of the second to fourth inventions, wherein the cylindrical outer surface of the cylindrical body provided in the bottomed cylindrical shell faces the refrigerant inlet. Further, the cylindrical end face is opened, and the gap d from the open end to the bottom of the shell is set to 1/4 or more (d> D / 4) of the inner diameter D of the cylindrical body.

これにより、冷媒流入口から流入した冷媒はシェル内から筒状体内に入る開口端部分で圧損を増加することなく流れを曲げて筒状体内へと流れることができ、従来の流れが曲がることで受ける慣性力の影響を圧損増加させることなく解消し、冷媒の気液比率を均一化して各分流路へと設計通りに分流させることができる。   As a result, the refrigerant flowing in from the refrigerant inlet can be bent into the cylindrical body without increasing the pressure loss at the opening end portion that enters the cylindrical body from the shell, and the conventional flow is bent. The influence of the inertial force received can be eliminated without increasing the pressure loss, the gas-liquid ratio of the refrigerant can be made uniform, and the flow can be diverted to each branch channel as designed.

第6の発明の冷媒分流器は、第2〜第5の発明の冷媒分流器において、前記有底筒状のシェル内に設けた筒状体は冷媒流入口と対向する側の筒状端面が開口し、この開口端から前記シェルに設けた冷媒流入口の入口上端との間隙dを3mm以上(d>3mm)とした構成としてある。   The refrigerant flow divider of the sixth invention is the refrigerant flow divider of the second to fifth inventions, wherein the cylindrical body provided in the bottomed cylindrical shell has a cylindrical end surface on the side facing the refrigerant inlet. The gap d between the opening end and the inlet upper end of the refrigerant inlet provided in the shell is 3 mm or more (d> 3 mm).

これにより、シェル内の筒状体が製造バラツキ等で傾いてシェル底面と開口端との間の間隙が左右方向で異なって筒状体の開口端から筒状体内にUターンして流れる冷媒の流速が異なるような事態が生じてもその流速差は微々たるものに抑制することができ、流速差による偏流を抑制しつつ気液比率を均一化して各分流路へと設計通りに分流させることができる。   As a result, the cylindrical body in the shell is inclined due to manufacturing variation and the gap between the shell bottom surface and the open end is different in the left-right direction, and the refrigerant flowing in a U-turn from the open end of the cylindrical body into the cylindrical body Even if a situation where the flow velocities are different, the difference in the flow velocities can be suppressed to a minute one, and the gas-liquid ratio can be made uniform while diverting the flow due to the difference in flow velocities, so that the flow is divided into each flow path as designed. Can do.

第7の発明の冷媒分流器は、第2〜第6の発明の冷媒分流器において、前記有底筒状のシェル内に設けた筒状体はその筒状外周面が冷媒流入口と対向していてその筒状端面が開口し、この開口端とシェルに設けた冷媒流入口の入口下端との寸法をd2とすると、d2>0とした構成としてある。   The refrigerant flow divider of the seventh invention is the refrigerant flow divider of the second to sixth inventions, wherein the cylindrical outer surface of the cylindrical body provided in the bottomed cylindrical shell faces the refrigerant inlet. The cylindrical end face is open, and d2> 0 when the dimension between the open end and the inlet lower end of the refrigerant inlet provided in the shell is d2.

これにより、冷媒流入口よりシェル内に流入した冷媒は、そのすべてが筒状体に衝突し、かつ、Uターンして筒状体の開口端側へと向きを変えてから筒状体内へと流れるので、冷媒の流れが曲がる部分に位置する筒状体による気液二相冷媒の混合拡散効果は冷媒入口から流れ込む冷媒のすべてに働くことになり、従来の流れが曲がることで受ける慣性力の影響をより一層効果的に解消して冷媒の気液比率を均一化しつつ各分流路へと設計通りに分流させることができる。   As a result, all of the refrigerant that has flowed into the shell from the refrigerant inlet collides with the cylindrical body, and after making a U-turn and changing the direction toward the opening end side of the cylindrical body, the refrigerant enters the cylindrical body. Because the refrigerant flows, the mixing and diffusion effect of the gas-liquid two-phase refrigerant by the cylindrical body located at the part where the refrigerant flow bends works on all the refrigerant flowing from the refrigerant inlet, and the inertial force received by bending the conventional flow is The influence can be eliminated more effectively, and the gas-liquid ratio of the refrigerant can be made uniform, and the flow can be diverted to the respective diversion channels as designed.

第8の発明は冷凍システムであり、この冷凍システムは冷凍サイクルを構成する熱交換器に前記第1〜第7のいずれかに記載の冷媒分流器を組み込んだものである。   An eighth invention is a refrigeration system, and this refrigeration system is a heat exchanger constituting a refrigeration cycle, in which the refrigerant flow divider according to any one of the first to seventh aspects is incorporated.

これにより、この冷凍システムは、冷媒分流器によって冷媒の気液比率を均一化しつつ熱交換器の各伝熱管へと設計通りに冷媒を分流させてその熱交換効率を向上させ、かつ、コンパクトな形で熱交換器に組み込むことができ、冷凍システムの省エネ性向上とコンパクト化を同時に達成することができる。   As a result, this refrigeration system improves the heat exchange efficiency by distributing the refrigerant as designed to each heat transfer tube of the heat exchanger while making the gas-liquid ratio of the refrigerant uniform by the refrigerant flow divider, and is compact. It can be incorporated in the heat exchanger in the form, and energy saving improvement and downsizing of the refrigeration system can be achieved at the same time.

以下、本発明の実施の形態について空調機器とそれに組み込んだ冷媒分流器を例にしてその図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example an air conditioner and a refrigerant flow divider incorporated therein. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は冷凍システムの一例として示す空調機器の冷凍サイクル図、図2はその熱交換器への冷媒分流器の接続状態を示す説明図である。
(Embodiment 1)
FIG. 1 is a refrigeration cycle diagram of an air conditioner shown as an example of a refrigeration system, and FIG. 2 is an explanatory diagram showing a connection state of a refrigerant flow divider to the heat exchanger.

図1、図2において、本実施の形態に係る空調機器は、冷媒回路で互いに連結した室内機1と室外機2を備えている。室内機1には、室内熱交換器3と、室内ファン4が設けてあり、室外機2には、圧縮機5と、減圧器6と、室外熱交換器7と、室外ファン8が設けてある。   1 and 2, the air conditioner according to the present embodiment includes an indoor unit 1 and an outdoor unit 2 connected to each other by a refrigerant circuit. The indoor unit 1 includes an indoor heat exchanger 3 and an indoor fan 4, and the outdoor unit 2 includes a compressor 5, a decompressor 6, an outdoor heat exchanger 7, and an outdoor fan 8. is there.

また、圧縮機5と、室内熱交換器3と、減圧器6と、室外熱交換器7を冷媒回路で順次連結してヒートポンプ式冷凍サイクルを構成している。なお、減圧器6としては、電磁式膨張弁あるいはキャピラリーチューブが使用され、前者を使用する場合は、減圧器6を膨張弁と称する場合がある。   Further, the compressor 5, the indoor heat exchanger 3, the decompressor 6, and the outdoor heat exchanger 7 are sequentially connected by a refrigerant circuit to constitute a heat pump refrigeration cycle. As the decompressor 6, an electromagnetic expansion valve or a capillary tube is used. When the former is used, the decompressor 6 may be referred to as an expansion valve.

冷媒は図1の矢印で示すように、圧縮機5により圧縮され高圧高温の蒸気状態で吐出される。この圧縮機5から吐出された冷媒は、室外熱交換器7に流入し、その中で熱を放出し高圧中温の液体に変化する。その後、冷媒液は減圧器6を通過し低圧低温の気液二相状態となった後、冷媒分流器10により分流され室内熱交換器3に送られる。分流された気液二相状態の冷媒は、室内熱交換器3内で周囲から熱を奪い低圧低温の蒸気状態となって、室内熱交換器3の出口で合流し、再び圧縮機5に吸入されサイクルを繰り返す。   As shown by the arrows in FIG. 1, the refrigerant is compressed by the compressor 5 and discharged in a high-pressure and high-temperature vapor state. The refrigerant discharged from the compressor 5 flows into the outdoor heat exchanger 7, releases heat therein, and changes into a high-pressure medium-temperature liquid. Thereafter, the refrigerant liquid passes through the decompressor 6 and enters a low-pressure and low-temperature gas-liquid two-phase state, and then is divided by the refrigerant flow divider 10 and sent to the indoor heat exchanger 3. The separated refrigerant in the gas-liquid two-phase state takes heat from the surroundings in the indoor heat exchanger 3 to become a low-pressure and low-temperature vapor state, merges at the outlet of the indoor heat exchanger 3, and is sucked into the compressor 5 again. Repeat the cycle.

上記冷媒分流器10は、図2に示すように、室内熱交換器3の細分化された各伝熱管9に冷媒を供給するように接続してあり、この例では6本に分流する構成としてある。   As shown in FIG. 2, the refrigerant flow divider 10 is connected so as to supply refrigerant to each of the heat transfer tubes 9 subdivided in the indoor heat exchanger 3, and in this example, the refrigerant flow divider 10 is divided into six lines. is there.

次に、上記冷媒分流器10の構成について図3〜図9を用いて説明する。図3は冷媒分流器の斜視図、図4は同冷媒分流器のシェル及び筒状体を切断して示す断面図、図5は同冷媒分流器の分解斜視図、図6は同冷媒分流器の平面図、図7は同冷媒分流器を示す図6のA−A断面図、図8(a)(b)(c)は同冷媒分流器の作用を説明するための説明図、図9(a)(b)は同冷媒分流器の作用を説明するための説明図である。   Next, the configuration of the refrigerant flow divider 10 will be described with reference to FIGS. 3 is a perspective view of the refrigerant flow divider, FIG. 4 is a cross-sectional view of the refrigerant flow divider cut away from a shell and a cylindrical body, FIG. 5 is an exploded perspective view of the refrigerant flow divider, and FIG. 6 is the refrigerant flow divider. FIG. 7 is a cross-sectional view taken along the line AA of FIG. 6 showing the refrigerant flow divider. FIGS. 8A, 8B, and 8C are explanatory views for explaining the operation of the refrigerant flow divider. (A) (b) is explanatory drawing for demonstrating the effect | action of the same refrigerant | coolant flow divider.

図3〜図9において、冷媒分流器10は、冷媒を分流する分流体11と、この分流体11に曲がり部を介して冷気を導く冷媒通路形成部材12とからなり、前記冷媒通路形成部材12の冷媒通路の曲がり部には冷媒流入口14からの冷媒が衝突して前記分流体11とは反対向きに流れを変えた後Uターンして前記分流体11へと更に向きを変えて流れる冷媒反転通路部15を形成した構成としてある。   3 to 9, the refrigerant flow divider 10 includes a divided fluid 11 that divides the refrigerant, and a refrigerant passage forming member 12 that guides cold air to the divided fluid 11 through a bent portion. Refrigerant flowing from the refrigerant inlet 14 collides with the bent portion of the refrigerant passage and changes its flow in the opposite direction to the separated fluid 11, then makes a U-turn and further changes its direction to the separated fluid 11. The reverse passage portion 15 is formed.

分流体11は冷媒流れ方向の最も下流側に位置する部品で、複数の分流路16を設けた本体部17の上流側に分流空間18を介して筒部19が設けてあり、分流空間18の前記筒部19と対向する面は冷媒を前記各分流路16に分流させる冷媒衝突部20としてある。この冷媒衝突部20は、この例では断面円錐形状として各分流路16に均等に冷媒を分
流するように構成してあるが、その分流割合は必要に応じて異ならせることもでき、設計した通りの割合で冷媒を分流させる機能を持つ部分である。
The diversion fluid 11 is a component located on the most downstream side in the refrigerant flow direction, and a cylindrical portion 19 is provided via a diversion space 18 on the upstream side of the main body portion 17 provided with a plurality of diversion channels 16. The surface facing the cylindrical portion 19 is a refrigerant collision portion 20 that diverts the refrigerant to each of the diversion channels 16. In this example, the refrigerant collision portion 20 has a conical cross section and is configured to evenly distribute the refrigerant to each of the diversion channels 16. However, the diversion ratio can be varied as necessary, as designed. This part has the function of diverting the refrigerant at a rate of.

なお、各分流路の分流比を変えるには、分流路のそれぞれの穴径を異ならせることで容易に実施することができる。   It should be noted that changing the diversion ratio of each diversion channel can be easily performed by changing the diameters of the respective diversion channels.

冷媒通路形成部材12は、前記分流体11の本体部17外周に装着した有底筒状のシェル21と、前記分流体11の筒部19に接続して前記シェル21内に位置させた筒状体22とで構成してあり、このシェル21と筒状体22との組み合わせによって冷媒流入口14から分流体11に至るまでの冷媒通路の曲がり部分に冷媒反転通路部15を形成している。   The refrigerant passage forming member 12 includes a bottomed cylindrical shell 21 attached to the outer periphery of the main body portion 17 of the separation fluid 11, and a cylindrical shape connected to the cylindrical portion 19 of the separation fluid 11 and positioned in the shell 21. The combination of the shell 21 and the cylindrical body 22 forms the refrigerant reversing passage portion 15 at the bent portion of the refrigerant passage from the refrigerant inlet 14 to the separated fluid 11.

詳述すると、シェル21は前記分流体11の上流側に設けてある部品で、有底筒状に形成してその開口部分を前記分流体11の本体部17に嵌合させて装着してある。そして、このシェル21にはシェル21の軸線と交差する方向に冷媒流入口14が形成してあり、冷媒入口管23が設けてある。   More specifically, the shell 21 is a part provided on the upstream side of the separation fluid 11, is formed in a bottomed cylindrical shape, and its opening is fitted to the main body portion 17 of the separation fluid 11. . The shell 21 is formed with a refrigerant inlet 14 in a direction crossing the axis of the shell 21, and a refrigerant inlet pipe 23 is provided.

また、筒状体22は前記分流体11の筒部19に接続した状態でシェル21内のシェル底面に向け配置してあり、分流体11とは反対側(以下説明の簡略化のため下方と称する)の端部は前記冷媒流入口14より下方まで突出する形としてその筒状外周面を冷媒流入口14と対向させ、当該冷媒流入口14よりも下方で開口24させてある。   Further, the cylindrical body 22 is disposed toward the shell bottom surface in the shell 21 in a state where it is connected to the cylindrical portion 19 of the separation fluid 11, and is opposite to the separation fluid 11 (below, for the sake of simplicity, The cylindrical outer peripheral surface is opposed to the refrigerant inlet 14 and has an opening 24 below the refrigerant inlet 14 so as to protrude downward from the refrigerant inlet 14.

これにより、筒状体22の下部と前記シェル21との間に冷媒をUターンさせて前記分流体11へと導く冷媒反転通路部15が形成され、冷媒流入口14からの冷気が筒状体22の開口24を介して分流体11に向って流れが曲がり、分流体の冷媒衝突部20に向って流れることになる。   As a result, a refrigerant reversal passage portion 15 is formed between the lower portion of the cylindrical body 22 and the shell 21 to make a U-turn of the refrigerant and lead it to the separation fluid 11, and the cold air from the refrigerant inlet 14 is transferred to the cylindrical body. The flow bends toward the separation fluid 11 through the opening 24 of the 22, and flows toward the refrigerant collision portion 20 of the separation fluid.

上記のように構成した冷媒分流管について、以下その作用効果について説明する。   About the refrigerant | coolant shunt tube comprised as mentioned above, the effect is demonstrated below.

冷媒流入口14からシェル21内に流入した気液二相の冷媒は図7の矢印aで示すように筒状体22下部の筒状外周面に衝突し、筒状体外周面とシェル内周面との間に分散するとともに、矢印bで示すようにシェル底面側に向きを変えて流れる。そして、シェル21の底面に衝突し、更に矢印cで示すようにUターンして分流体11側へと向きを変え、筒状体22のシェル底面側開口24から筒状体22内へと流れる。筒状体22内に流れた冷媒は矢印eで示すように分流体11側に向って流れその冷媒衝突部20に衝突し、分散拡散されて各分流路16へと分流し、室内熱交換器3の各伝熱管9へと流れていく。   The gas-liquid two-phase refrigerant flowing into the shell 21 from the refrigerant inlet 14 collides with the cylindrical outer peripheral surface of the lower portion of the cylindrical body 22 as shown by an arrow a in FIG. While being dispersed between the two surfaces, the flow is changed to the shell bottom surface side as indicated by an arrow b. Then, it collides with the bottom surface of the shell 21, further makes a U-turn as shown by an arrow c, changes the direction to the separation fluid 11 side, and flows from the shell bottom surface side opening 24 of the cylindrical body 22 into the cylindrical body 22. . The refrigerant that has flowed into the cylindrical body 22 flows toward the branch fluid 11 as shown by an arrow e, collides with the coolant collision portion 20, is dispersed and diffused, and is divided into each branch channel 16, and the indoor heat exchanger 3 to each heat transfer tube 9.

以上のように、この冷媒分流器10は、冷媒流入口14から分流体11側へと流れが曲がる部分に筒状体22が位置していて冷媒反転通路部15を形成しているので、この冷媒反転通路部15で冷媒流入口14からシェル21内に流入した気液二相の冷媒が筒状体22の外周面に衝突し、更にシェル底面へ衝突しながらUターンする。このように冷媒が衝突しながらUターンして向きを変えるので、冷媒流入口14から分流体11側へと流れが曲がることで生じる慣性力の影響を解消することができる。しかも、上記冷媒が筒状体22の外周面に衝突し、更にシェル底面へ衝突しながらUターンすることによって気液の混合拡散を促進し、その気液比率を均一化し偏流を防止することができる。   As described above, in the refrigerant distributor 10, the cylindrical body 22 is located at the portion where the flow bends from the refrigerant inlet 14 toward the branch fluid 11, and the refrigerant inversion passage portion 15 is formed. The gas-liquid two-phase refrigerant that has flowed into the shell 21 from the refrigerant inlet 14 in the refrigerant reversing passage portion 15 collides with the outer peripheral surface of the cylindrical body 22, and further makes a U-turn while colliding with the shell bottom surface. Thus, since the refrigerant makes a U-turn and changes its direction while colliding, it is possible to eliminate the influence of the inertial force generated by the flow being bent from the refrigerant inlet 14 toward the separation fluid 11. Moreover, the refrigerant collides with the outer peripheral surface of the cylindrical body 22 and further makes a U-turn while colliding with the bottom of the shell, thereby promoting gas-liquid mixing and diffusion, making the gas-liquid ratio uniform and preventing drift. it can.

特にこの実施の形態で示すように構成すれば、前記筒状体22の外周面に衝突して向きを変える冷媒は筒状体22外周のシェル21内に拡散して膨張減速しつつ筒状体22の開口24の円周方向全域から筒状体22内へとUターンするので、効果的に気液の拡散混合を促進して気液比率を均一化し偏流を防止することができる。   In particular, when configured as shown in this embodiment, the refrigerant that collides with the outer peripheral surface of the cylindrical body 22 and changes its direction diffuses into the shell 21 on the outer periphery of the cylindrical body 22 and expands and decelerates. Since the U-turn is made from the entire circumferential direction of the opening 24 of the 22 into the cylindrical body 22, it is possible to effectively promote the diffusion and mixing of the gas and liquid to make the gas-liquid ratio uniform and prevent the drift.

また、上記のようにして冷媒流入口14から分流体11側への曲がり部分での慣性力の影響を解消して気液比率を均一化した冷媒は、筒状体22内を分流体11に向って流れる際に筒状体22内で整流作用が働き更に気液比率の均一化を促進することができる。   In addition, the refrigerant in which the gas-liquid ratio is made uniform by eliminating the influence of the inertial force at the bent portion from the refrigerant inlet 14 to the separation fluid 11 side as described above is converted into the separation fluid 11 in the cylindrical body 22. When flowing in the opposite direction, a rectifying action works in the cylindrical body 22 and further promotes a uniform gas-liquid ratio.

そして、上記筒状体22内の冷媒は分流体11の冷媒衝突部20に衝突して更に気液の拡散混合が促進され、各分流路16へと分流する。   Then, the refrigerant in the cylindrical body 22 collides with the refrigerant collision portion 20 of the separation fluid 11, further promotes gas-liquid diffusion mixing, and is divided into the respective distribution channels 16.

その結果、この冷媒分流器10を具備する室内熱交換器3を搭載した冷凍システムは、冷媒分流器10によって冷媒の気液比率を均一化して偏流を防止しつつ室内熱交換器3の各伝熱管9へと設計通りに分流させてその熱交換効率を向上させ、かつ、コンパクトな室内熱交換器3とすることができ、空調機器の省エネ性向上とコンパクト化を同時に達成することができる。   As a result, the refrigeration system equipped with the indoor heat exchanger 3 equipped with the refrigerant flow divider 10 equalizes the gas-liquid ratio of the refrigerant by the refrigerant flow divider 10 to prevent uneven flow, and each transfer of the indoor heat exchanger 3. It is possible to divert to the heat pipe 9 as designed to improve the heat exchange efficiency, and to make the compact indoor heat exchanger 3, thereby improving the energy saving and downsizing of the air conditioner at the same time.

ここで、上記シェル21内に設けた筒状体22は、図9の(a)で示すようにその下部外周面が少なくとも冷媒流入口14の一部と対向(d1>0)、好ましくは冷媒流入口14の50%以上と対向しておればよいが、同図(b)に示すように冷媒流入口14のすべてと対向(d2>0)するようにしておくのが好ましい。   Here, the cylindrical body 22 provided in the shell 21 has a lower outer peripheral surface facing at least a part of the refrigerant inlet 14 (d1> 0) as shown in FIG. It is sufficient to face 50% or more of the inlet 14, but it is preferable to face all of the refrigerant inlets 14 (d 2> 0) as shown in FIG.

このようにすることによって、冷媒流入口14よりシェル21内に流入した冷媒は、そのすべてが筒状体22の外周面に衝突し、かつ、筒状体22の開口24端側へと向きを変えUターンして筒状体22内へと流れる。したがって、冷媒の流れが曲がる部分に位置する筒状体22による気液二相冷媒の混合拡散効果は、冷媒流入口14から流れ込む冷媒のすべてに働くことになり、流れが曲がることで受ける慣性力の影響をより一層効果的に解消して冷媒の気液比率を均一化しつつ各分流路へと設計通りに分流させることができる。   In this way, all of the refrigerant that has flowed into the shell 21 from the refrigerant inlet 14 collides with the outer peripheral surface of the cylindrical body 22 and is directed toward the opening 24 end side of the cylindrical body 22. It makes a U-turn and flows into the cylindrical body 22. Therefore, the mixing / diffusion effect of the gas-liquid two-phase refrigerant by the cylindrical body 22 located at the portion where the refrigerant flow is bent acts on all of the refrigerant flowing from the refrigerant inlet 14, and the inertial force received by the bent flow. The effects of the above can be more effectively eliminated, and the gas-liquid ratio of the refrigerant can be made uniform, and the flow can be divided into the respective flow paths as designed.

また、上記冷媒分流器10の筒状体22は、冷媒流入口14から分流体11の冷媒衝突部20に至る経路中で最も流路断面積が小さくなるように設定しておくのが好ましい。   Moreover, it is preferable that the cylindrical body 22 of the refrigerant flow distributor 10 is set so that the cross-sectional area of the flow path is the smallest in the path from the refrigerant inlet 14 to the refrigerant collision portion 20 of the divided fluid 11.

このようにすることによって、分流体11の冷媒衝突部20に衝突する時点での冷媒流速を経路中で最も早いものとすることができて、冷媒衝突部20への衝突による気液拡散混合効果を高めることができる。したがって、冷媒の気液比率の均一化をより一層向上させて各分流路16へと分流させることができる。   By doing in this way, the refrigerant | coolant flow velocity at the time of colliding with the refrigerant | coolant collision part 20 of the separation fluid 11 can be made the fastest in a path | route, and the gas-liquid diffusion mixing effect by the collision to the refrigerant | coolant collision part 20 is achieved. Can be increased. Therefore, it is possible to further improve the homogenization of the gas-liquid ratio of the refrigerant and divert it to each branch flow path 16.

また、上記有底筒状のシェル21内に設けた筒状体22は、図8に示すように、その内径をD、筒状体22の開口24端から前記シェル21の底面までの間隙をdとすると、間隙dを前記筒状体22の内径Dの1/4以上(d>D/4)とすれば、冷媒反転通路部15で圧損を増大させることなく冷媒流が曲がることで受ける慣性力の影響を解消し、冷媒の気液比率を均一化して各分流路16へと分流させることができ、好適である。   Further, as shown in FIG. 8, the cylindrical body 22 provided in the bottomed cylindrical shell 21 has an inner diameter D and a gap from the opening 24 end of the cylindrical body 22 to the bottom surface of the shell 21. Assuming d, if the gap d is ¼ or more of the inner diameter D of the cylindrical body 22 (d> D / 4), the refrigerant flow is received by bending the refrigerant flow without increasing the pressure loss in the refrigerant reversing passage portion 15. It is preferable that the influence of the inertia force can be eliminated, the gas-liquid ratio of the refrigerant can be made uniform, and the refrigerant can be diverted to the respective diversion channels 16.

すなわち、上記のように構成すると、シェル21内から筒状体22内に入る間隙d部分の流路面積S2(Ddπ)は筒状体22の断面積S1((D/2)2π)よりも大きなものとすることができ、冷媒反転通路部15を形成する筒状体22の開口24端部分でその圧損を増加させることなく流れを曲げて筒状体22内へと流れることができる。したがって、この冷媒分流器10は圧損増加を抑制しつつ冷媒流が曲がることで受ける慣性力の影響を解消し、冷媒の気液比率を均一化して各分流路16へと分流させることができる。 That is, when configured as described above, the flow path area S2 (Ddπ) of the gap d portion that enters the cylindrical body 22 from the shell 21 is obtained from the cross-sectional area S1 ((D / 2) 2 π) of the cylindrical body 22. The flow can be bent and flowed into the cylindrical body 22 without increasing the pressure loss at the end portion of the opening 24 of the cylindrical body 22 forming the refrigerant reversing passage portion 15. Therefore, the refrigerant flow divider 10 can eliminate the influence of the inertial force received by bending the refrigerant flow while suppressing an increase in pressure loss, and can make the gas-liquid ratio of the refrigerant uniform and divert it to each branch flow path 16.

なお、上記冷媒分流器10は、有底筒状のシェル21内に設けた筒状体22がシェル21に対し傾斜すると筒状体22の開口24とシェル底面との間で形成する流路断面積が円周方向で分布が生じることになって筒状体22内で偏流が生じる可能性がある。   In addition, the refrigerant flow divider 10 is configured to cut off a flow path formed between the opening 24 of the cylindrical body 22 and the shell bottom surface when the cylindrical body 22 provided in the bottomed cylindrical shell 21 is inclined with respect to the shell 21. There is a possibility that drift occurs in the cylindrical body 22 because the area is distributed in the circumferential direction.

従って、上記有底筒状のシェル21内に設けた筒状体22の開口24端から前記シェル21の底面までの間隙dを3mm以上(d>3mm)としておくことが好ましい。   Therefore, it is preferable that the gap d from the end of the opening 24 of the cylindrical body 22 provided in the bottomed cylindrical shell 21 to the bottom surface of the shell 21 is 3 mm or more (d> 3 mm).

これによって、図8(c)に示すように製造バラツキ等で筒状体22がシェル21内で傾いてシェル底面と開口端との間の間隙dがdh、dlのようになって筒状体22内に流れる冷媒の流速が異なるような事態が生じてもその相対差を少なくすることができて流速差を微々たるものに抑制できる。よって、筒状体22の傾きで生じる流速差による偏流をも防止しつつ気液比率を均一化して各分流路へと分流させることができる。   As a result, as shown in FIG. 8 (c), the cylindrical body 22 is inclined in the shell 21 due to manufacturing variations or the like, and the gap d between the bottom surface of the shell and the open end becomes dh and dl. Even if a situation in which the flow rate of the refrigerant flowing in the tank 22 is different occurs, the relative difference can be reduced, and the flow rate difference can be suppressed to a minute one. Therefore, it is possible to make the gas-liquid ratio uniform and divert the flow into the respective diversion channels while preventing the drift due to the flow velocity difference caused by the inclination of the cylindrical body 22.

下記表1は2分5厘の直管(外径5/16インチ)を筒状体22として用いた場合の筒状体22の開口24とシェル底面との間の間隙dと定格冷房能力比(熱交換器の設計能力を100%とした場合の比)との関係を示す。定格冷房能力比が95%以上であれば可と見做せるのでこれを可否判断の閾値としている。   Table 1 below shows the clearance d between the opening 24 of the cylindrical body 22 and the shell bottom surface and the rated cooling capacity ratio when a straight tube (outer diameter 5/16 inch) of 2/5 is used as the cylindrical body 22 (Ratio when the heat exchanger design capacity is 100%). Since it can be considered that the rated cooling capacity ratio is 95% or more, this is set as a threshold value for determining availability.

Figure 2018013259
Figure 2018013259

この表1から明らかなように、dを3mm以上としておけば定格冷房能力比95%以上とすることができ、筒状体22の傾きで生じる流速差による偏流影響をも抑制しつつ気液比率を均一化して各分流路16へと分流させることが可能となる。   As is apparent from Table 1, if d is set to 3 mm or more, the rated cooling capacity ratio can be 95% or more, and the gas-liquid ratio can be suppressed while suppressing the drift effect due to the flow velocity difference caused by the inclination of the cylindrical body 22. Can be made uniform and divided into the respective diversion channels 16.

以上のように、この実施の形態1で示す冷媒分流器10は、冷媒曲がり部で生じる慣性力の影響を解消して冷媒の気液比率の均一性を保持しつつ複数の分流路へと分流することができるが、その効果は有底筒状のシェル21と直管からなる筒状体22を組み合わせるだけで得ることができ、しかも上記シェル21や筒状体22は後述する他の例のように穿孔や絞り加工等の特別な加工を施す必要がなくて単純な筒形状のもので良く、生産性が高く安価に提供することができる。したがって、冷凍システムの省エネ化とコンパクト化をほとんどコストアップさせることなく実現することができ、冷凍システムに搭載したときの経済的産業的効果は大なるものがある。   As described above, the refrigerant distributor 10 shown in the first embodiment diverts into a plurality of diversion channels while eliminating the influence of the inertial force generated in the refrigerant bending portion and maintaining the uniformity of the gas-liquid ratio of the refrigerant. However, the effect can be obtained only by combining the bottomed cylindrical shell 21 and the cylindrical body 22 made of a straight tube, and the shell 21 and the cylindrical body 22 are other examples described later. Thus, it is not necessary to perform special processing such as drilling or drawing, and a simple cylindrical shape may be used, which can provide high productivity and low cost. Therefore, energy saving and compactness of the refrigeration system can be realized with almost no increase in cost, and there are significant economic and industrial effects when mounted on the refrigeration system.

(実施の形態2)
図10(a)(b)(c)は冷媒通路形成部材12の冷媒通路の曲がり部に設ける冷媒反転通路部15の他の構成例を示す。
(Embodiment 2)
FIGS. 10A, 10 </ b> B, and 10 </ b> C show another configuration example of the refrigerant reversing passage portion 15 provided at the bent portion of the refrigerant passage of the refrigerant passage forming member 12.

(a)は実施の形態1で示した筒状体22を有底筒状の直管とし、冷媒流入口14よりも下方部分に多数の透孔25を設けて冷媒流入口14から分流体11に至る冷媒の曲がり部分に冷媒反転通路部15を形成したものである。   (A) uses the cylindrical body 22 shown in Embodiment 1 as a bottomed cylindrical straight pipe, and provides a large number of through holes 25 below the refrigerant inlet 14 to separate the fluid 11 from the refrigerant inlet 14. The refrigerant reversing passage 15 is formed at the bent portion of the refrigerant.

また、(b)はシェル21を分流体11ではなく筒状体22に接続固定したもので、シェル21の上部を絞り加工或いは板体溶接等によって塞ぎ、この上面26を貫通するように筒状体22を設けて構成してあり、冷媒反転通路部15は実施の形態1のものと同様の形で構成してある。   (B) shows the shell 21 connected and fixed to the cylindrical body 22 instead of the separation fluid 11, and the upper portion of the shell 21 is closed by drawing or plate welding and the like so as to penetrate the upper surface 26. The body 22 is provided, and the refrigerant reversing passage portion 15 is configured in the same manner as in the first embodiment.

さらに、(c)はシェル21を筒状体22に接続固定するとともに、冷媒流入口14と対向する部分に下方を開放した変流体27を設けて冷媒反転通路部15を形成したものである。   Further, (c) shows that the shell 21 is connected and fixed to the cylindrical body 22, and the refrigerant reversal passage portion 15 is formed by providing a variable fluid 27 having a lower opening at a portion facing the refrigerant inlet 14.

上記いずれのものも前記実施の形態1と同様に冷媒曲がり部の慣性力による偏流を防止し気液比率を均一化して冷媒を分流することができる。   In any of the above, similarly to the first embodiment, it is possible to prevent the drift due to the inertial force of the bent portion of the refrigerant, to equalize the gas-liquid ratio, and to divert the refrigerant.

以上、本発明に係る冷媒分流器及びそれを用いた冷凍システムについて、上記実施の形態を用いて説明したが、本発明は、これに限定されるものではない。つまり、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきであり、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The refrigerant flow divider and the refrigeration system using the same according to the present invention have been described using the above embodiment, but the present invention is not limited to this. That is, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive, and the scope of the present invention is indicated by the scope of the claims, not the above description, It is intended that all modifications within the meaning and scope equivalent to the terms of the claims are included.

以上説明したように本発明は、冷媒入口部分で冷媒流れが曲がることで生じる慣性力の影響を解消して冷媒の気液比率の均一性を保持しつつ複数の分流路へと設計通りに分流することができ、かつ、熱交換器等へも制約を受けることなくコンパクトに設置することでき、冷凍システムの省エネ化とコンパクト化を同時に達成できる。よって、家庭用、業務用等いずれの冷凍システムであっても広く適用することができる。   As described above, the present invention eliminates the influence of the inertial force generated by the bending of the refrigerant flow at the refrigerant inlet portion and maintains the uniformity of the gas-liquid ratio of the refrigerant as designed to divert to a plurality of branch channels. In addition, the heat exchanger can be installed compactly without any restrictions, and energy saving and compactness of the refrigeration system can be achieved at the same time. Therefore, it can be widely applied to any refrigeration system such as home use and business use.

1 室内機
2 室外機
3 室内熱交換器
4 室内ファン
5 圧縮機
6 減圧器
7 室外熱交換器
8 室外ファン
9 伝熱管
10 冷媒分流器
11 分流体
12 冷媒通路形成部材
14 冷媒流入口
15 冷媒反転通路部
16 分流路
17 本体部
18 分流空間
19 筒部
20 冷媒衝突部
21 シェル
22 筒状体
23 冷媒入口管
24 開口
25 透孔
26 上面
27 変流体
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Outdoor unit 3 Indoor heat exchanger 4 Indoor fan 5 Compressor 6 Decompressor 7 Outdoor heat exchanger 8 Outdoor fan 9 Heat transfer pipe 10 Refrigerant flow divider 11 Divided fluid 12 Refrigerant passage formation member 14 Refrigerant inflow port 15 Refrigerant inversion Passage part 16 Dividing flow path 17 Body part 18 Dividing space 19 Tube part 20 Refrigerant collision part 21 Shell 22 Cylindrical body 23 Refrigerant inlet pipe 24 Opening 25 Through hole 26 Upper surface 27 Variable fluid

Claims (8)

複数の分流路の上流側に冷媒衝突部を設けた分流体と、前記分流体の冷媒衝突部に曲がり部を介して冷媒を導く冷媒通路形成部材とを備え、前記冷媒通路形成部材の冷媒通路の曲がり部には冷媒流入口からの冷媒の流れの向きを複数回変えた後に前記分流体の冷媒衝突部へと案内する冷媒反転通路部を設けた冷媒分流器。 And a refrigerant passage forming member that guides the refrigerant to the refrigerant collision portion of the divided fluid through a bent portion, the refrigerant passage of the refrigerant passage forming member. The refrigerant flow divider is provided with a refrigerant reversing passage portion that guides to the refrigerant collision portion of the separated fluid after changing the direction of the refrigerant flow from the refrigerant inlet a plurality of times at the bent portion. 複数の分流路の上流側に冷媒衝突部を設けた分流体と、前記分流体の冷媒衝突部に冷媒を導く筒状体と、前記筒状体に冷媒を導く有底筒状のシェルとを備え、前記有底筒状のシェルにはシェルの軸線と交差する方向に冷媒流入口を設けるとともに、前記冷媒流入口に対向する部分に前記筒状体もしくは変流体を位置させて当該筒状体もしくは変流体と前記シェルとで前記冷媒流入口からの冷媒の流れの向きを複数回変えた後に前記分流体の冷媒衝突部へと案内する冷媒反転通路部を形成した冷媒分流器。 A fluid separation part provided with a refrigerant collision part on the upstream side of the plurality of flow dividing channels, a cylindrical body that guides the refrigerant to the refrigerant collision part of the fluid separation, and a bottomed cylindrical shell that guides the refrigerant to the cylindrical body The bottomed cylindrical shell is provided with a refrigerant inlet in a direction intersecting the axis of the shell, and the cylindrical body or the variable fluid is positioned at a portion facing the refrigerant inlet. Alternatively, a refrigerant flow divider in which a refrigerant reversal passage portion is formed that guides to the refrigerant collision portion of the divided fluid after changing the flow direction of the refrigerant from the refrigerant inlet by a plurality of times by the variable fluid and the shell. 複数の分流路の上流側に冷媒衝突部を設けた分流体と、前記分流体に装着した有底筒状のシェルとを備え、前記有底筒状のシェルにはシェルの軸線と交差する方向に冷媒流入口を設けるとともに、前記シェル内には前記分流体の冷媒衝突部から前記冷媒流入口と対向する部分まで位置して端部を開口し前記冷媒流入口からの冷媒を分流体の冷媒衝突部へと案内する筒状体を設けた冷媒分流器。 A split fluid provided with a refrigerant collision portion on the upstream side of the plurality of flow dividing channels, and a bottomed cylindrical shell attached to the split fluid, wherein the bottomed cylindrical shell intersects the axis of the shell A refrigerant inlet is provided in the shell, and the end portion of the shell is located from the refrigerant collision portion of the divided fluid to a portion facing the refrigerant inlet, and an end portion is opened, and the refrigerant from the refrigerant inlet is separated into the refrigerant. A refrigerant flow divider provided with a cylindrical body that guides to a collision part. 筒状体は冷媒流入口から分流体の衝突部に至る経路中で最も流路断面積が小さくなるように設定した請求項2または3記載の冷媒分流器。 The refrigerant distributor according to claim 2 or 3, wherein the cylindrical body is set such that a cross-sectional area of the flow path is the smallest in a path from the refrigerant inlet to the collision portion of the divided fluid. 有底筒状のシェル内に設けた筒状体はその筒状外周面が冷媒流入口と対向していてその筒状端面が開口し、この開口端から前記シェルの底までの間隙dを前記筒状体の内径Dの1/4以上(d>D/4)とした請求項2〜4のいずれか1項記載の冷媒分流器。 The cylindrical body provided in the bottomed cylindrical shell has a cylindrical outer peripheral surface facing the refrigerant inlet and an opening at the cylindrical end surface. A gap d from the opening end to the bottom of the shell is defined as the cylindrical body. The refrigerant shunt according to any one of claims 2 to 4, wherein the inner diameter D of the cylindrical body is ¼ or more (d> D / 4). 有底筒状のシェル内に設けた筒状体は冷媒流入口と対向する側の筒状端面が開口し、この開口端から前記シェルに設けた冷媒流入口の入口上端との間隙d1を3mm以上(d1>3mm)とした請求項2〜5のいずれか1項記載の冷媒分流器。 The cylindrical body provided in the bottomed cylindrical shell has an open cylindrical end surface facing the refrigerant inlet, and a gap d1 between the opening end and the inlet upper end of the refrigerant inlet provided in the shell is 3 mm. The refrigerant shunt according to any one of claims 2 to 5, which is (d1> 3mm). 有底筒状のシェル内に設けた筒状体はその筒状外周面が冷気流入口と対向していてその筒状端面が開口し、この開口端とシェルに設けた冷媒流入口の入口下端との寸法をd2とすると、d2>0とした請求項2〜6のいずれか1項記載の冷媒分流器。 The cylindrical body provided in the bottomed cylindrical shell has a cylindrical outer peripheral surface facing the cold air flow inlet and an open cylindrical end surface, and the lower end of the inlet of the refrigerant inlet provided in the open end and the shell. The refrigerant shunt according to any one of claims 2 to 6, wherein d2> 0, where d2 is a dimension. 冷凍サイクルを構成する熱交換器に請求項1〜7のいずれか1項に記載の冷媒分流器を組み込んだ冷凍システム。 A refrigeration system in which the refrigerant shunt according to any one of claims 1 to 7 is incorporated in a heat exchanger constituting a refrigeration cycle.
JP2016141444A 2016-07-19 2016-07-19 Refrigerant flow divider and refrigeration system using the same Expired - Fee Related JP6667070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141444A JP6667070B2 (en) 2016-07-19 2016-07-19 Refrigerant flow divider and refrigeration system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141444A JP6667070B2 (en) 2016-07-19 2016-07-19 Refrigerant flow divider and refrigeration system using the same

Publications (2)

Publication Number Publication Date
JP2018013259A true JP2018013259A (en) 2018-01-25
JP6667070B2 JP6667070B2 (en) 2020-03-18

Family

ID=61019217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141444A Expired - Fee Related JP6667070B2 (en) 2016-07-19 2016-07-19 Refrigerant flow divider and refrigeration system using the same

Country Status (1)

Country Link
JP (1) JP6667070B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210514A (en) * 2020-03-03 2022-10-18 日本空调系统股份有限公司 Refrigerant flow divider

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244260A (en) * 1988-03-23 1989-09-28 Technol Res Assoc Super Heat Pump Energ Accum Syst Gas-liquid two-phase fluid distributor
JPH03113251A (en) * 1989-09-28 1991-05-14 Mitsubishi Electric Corp Gas/liquid two phase fluid distributor
JP2010139113A (en) * 2008-12-10 2010-06-24 Mitsubishi Electric Corp Heat exchanger and air conditioning refrigerating device
JP2011033281A (en) * 2009-08-03 2011-02-17 Daikin Industries Ltd Refrigerant flow divider and refrigerant circuit including the same
WO2015087530A1 (en) * 2013-12-13 2015-06-18 日本電気株式会社 Refrigerant distribution device and cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244260A (en) * 1988-03-23 1989-09-28 Technol Res Assoc Super Heat Pump Energ Accum Syst Gas-liquid two-phase fluid distributor
JPH03113251A (en) * 1989-09-28 1991-05-14 Mitsubishi Electric Corp Gas/liquid two phase fluid distributor
JP2010139113A (en) * 2008-12-10 2010-06-24 Mitsubishi Electric Corp Heat exchanger and air conditioning refrigerating device
JP2011033281A (en) * 2009-08-03 2011-02-17 Daikin Industries Ltd Refrigerant flow divider and refrigerant circuit including the same
WO2015087530A1 (en) * 2013-12-13 2015-06-18 日本電気株式会社 Refrigerant distribution device and cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210514A (en) * 2020-03-03 2022-10-18 日本空调系统股份有限公司 Refrigerant flow divider
CN115210514B (en) * 2020-03-03 2024-05-03 日本空调系统股份有限公司 Refrigerant flow divider

Also Published As

Publication number Publication date
JP6667070B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
US10060685B2 (en) Laminated header, heat exchanger, and air-conditioning apparatus
JP6104893B2 (en) Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method
JP2013148309A (en) Coolant distributor and refrigeration cycle device including the same
JP6138263B2 (en) Laminated header, heat exchanger, and air conditioner
WO2018173356A1 (en) Heat exchanger and air conditioner using same
JP2013137193A5 (en)
JP6138264B2 (en) Laminated header, heat exchanger, and air conditioner
JPWO2019058540A1 (en) Refrigerant distributor and air conditioner
JP2018169062A (en) Air conditioner
JP2014081149A (en) Refrigerant distributor and refrigeration cycle device including the same
JP2016014504A (en) Heat exchanger, and refrigeration cycle device with the same
JP2021124226A (en) Microchannel heat exchanger and air conditioner
US10670348B2 (en) Heat exchanger
JP6667070B2 (en) Refrigerant flow divider and refrigeration system using the same
JPWO2014061104A1 (en) Throttle device and refrigeration cycle device
JP2009092305A (en) Refrigerant flow divider
JP2003214727A (en) Fluid distributor and air conditioner with the same
WO2014155816A1 (en) Expansion valve and cooling cycle device using same
JP4879306B2 (en) Distributor and heat pump device
JP5193630B2 (en) Heat exchanger
US10041712B2 (en) Refrigerant distributor and refrigeration cycle device equipped with the refrigerant distributor
JP2013050221A (en) Refrigerant distributor and heat pump apparatus using the same
JP5045252B2 (en) Air conditioner
JP2009180444A (en) Coolant distributor
JP5189386B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6667070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees