JP2018012860A - Method and facility for removing impurities in organic solvent - Google Patents

Method and facility for removing impurities in organic solvent Download PDF

Info

Publication number
JP2018012860A
JP2018012860A JP2016143115A JP2016143115A JP2018012860A JP 2018012860 A JP2018012860 A JP 2018012860A JP 2016143115 A JP2016143115 A JP 2016143115A JP 2016143115 A JP2016143115 A JP 2016143115A JP 2018012860 A JP2018012860 A JP 2018012860A
Authority
JP
Japan
Prior art keywords
organic solvent
liquid
tank
neutralization
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016143115A
Other languages
Japanese (ja)
Other versions
JP6614055B2 (en
Inventor
正寛 新宮
Masahiro Shingu
正寛 新宮
二郎 早田
Jiro Hayata
二郎 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016143115A priority Critical patent/JP6614055B2/en
Publication of JP2018012860A publication Critical patent/JP2018012860A/en
Application granted granted Critical
Publication of JP6614055B2 publication Critical patent/JP6614055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method and a facility for removing impurities in an organic solvent capable of efficiently and stably separating the organic solvent and the impurities.SOLUTION: There is provided a method for removing impurities in an organic solvent, which comprises: a neutralization step of supplying an organic solvent and a neutralizer to a neutralization tank 11: an oil-water separation step of oil-water separating a liquid discharged from the neutralization step into a heavy liquid and a light liquid; an acid dissolution step of supplying the heavy liquid and an acidic aqueous solution to a dissolution tank 13; and a step of temporarily storing an overflow liquid from the dissolution tank 13 in a relay tank 14 and then feeding the overflow liquid to the neutralization tank 11 with a pump 16, wherein the pump 16 is intermittently operated. The overflow liquid is hardly separated into an organic solvent and water and only a water component can be suppressed from being fed to the neutralization tank. Thus, the phase separability in oil-water separation is increased, enables efficient and stable separation of the organic solvent and impurities.SELECTED DRAWING: Figure 4

Description

本発明は、有機溶媒中の不純物除去方法および不純物除去設備に関する。さらに詳しくは、溶媒抽出に用いられる有機溶媒に含まれる不純物を除去する不純物除去方法および不純物除去設備に関する。   The present invention relates to an impurity removal method and an impurity removal facility in an organic solvent. More specifically, the present invention relates to an impurity removal method and an impurity removal facility for removing impurities contained in an organic solvent used for solvent extraction.

硫化物から目的金属を回収する湿式製錬プロセスでは、原料であるニッケルマットやニッケル・コバルト混合硫化物(MS:ミックスサルファイド)を塩素浸出し、得られた浸出液から不純物を除去する浄液工程などを経て、電解工程で電気ニッケルや電気コバルトを回収する。   In the hydrometallurgical process that recovers the target metal from the sulfide, the nickel matte and nickel-cobalt mixed sulfide (MS: mixed sulfide), which is the raw material, are leached with chlorine, and the liquid purification process removes impurities from the obtained leachate. After that, nickel and cobalt are recovered in the electrolysis process.

図1に示すように、浸出工程から得られた浸出液は、セメンテーション工程において銅が除去され、脱鉄工程において鉄やヒ素などの不純物が除去された後、コバルト溶媒抽出工程に送られる。コバルト溶媒抽出工程では、溶媒抽出によりニッケルとコバルトとを分離し、塩化ニッケル溶液(NiCl2)と塩化コバルト溶液(CoCl2)とを得る。塩化ニッケル溶液は、さらに不純物が除去され高純度となってニッケル電解工程に送られる。ニッケル電解工程では電解採取により電気ニッケルが製造される。一方、塩化コバルト溶液は、さらに不純物が除去され高純度となってコバルト電解工程に送られる。コバルト電解工程では電解採取により電気コバルトが製造される。 As shown in FIG. 1, the leachate obtained from the leaching step is sent to the cobalt solvent extraction step after removing copper in the cementation step and removing impurities such as iron and arsenic in the deironing step. In the cobalt solvent extraction step, nickel and cobalt are separated by solvent extraction to obtain a nickel chloride solution (NiCl 2 ) and a cobalt chloride solution (CoCl 2 ). Impurities are further removed from the nickel chloride solution to obtain a high purity, which is sent to the nickel electrolysis process. In the nickel electrolysis process, electric nickel is produced by electrowinning. On the other hand, the cobalt chloride solution is further purified by removing impurities and sent to the cobalt electrolysis process. In the cobalt electrolysis process, electrolytic cobalt is produced by electrowinning.

図2にコバルト溶媒抽出工程の詳細を示す。なお、図2において破線は有機相の流れを意味し、実線は水相の流れを意味する。コバルト溶媒抽出工程には抽出始液として脱鉄工程の処理後液が供給される。抽出始液は、まず抽出段に供給され、有機相にコバルトが抽出される。抽出後の水相は塩化ニッケル溶液として後工程に送られる。抽出段の有機相は洗浄段に送られ、塩化コバルト溶液で有機溶媒に微量に含まれる塩化ニッケルを除去した後、逆抽出段に送られる。逆抽出段では、希塩酸などの酸性水溶液を用いて有機溶媒に抽出されたコバルトを水相側に逆抽出し、塩化コバルト溶液を生成する。生成された塩化コバルト溶液は後工程に送られる。   FIG. 2 shows details of the cobalt solvent extraction step. In FIG. 2, the broken line means the flow of the organic phase, and the solid line means the flow of the aqueous phase. In the cobalt solvent extraction step, a solution after the deironing step is supplied as an extraction starting solution. The extraction starting liquid is first supplied to the extraction stage, and cobalt is extracted into the organic phase. The aqueous phase after extraction is sent to the subsequent process as a nickel chloride solution. The organic phase of the extraction stage is sent to the washing stage, and after removing nickel chloride contained in a trace amount in the organic solvent with a cobalt chloride solution, it is sent to the back extraction stage. In the back extraction stage, cobalt extracted in an organic solvent using an acidic aqueous solution such as dilute hydrochloric acid is back extracted to the aqueous phase side to produce a cobalt chloride solution. The produced cobalt chloride solution is sent to a subsequent process.

抽出段ではコバルトとともに不純物である亜鉛、鉄、銅なども有機相に抽出される。コバルトは逆抽出段で水相に逆抽出されるが、不純物は逆抽出されずに有機溶媒中に残る。有機溶媒の不純物濃度が上昇すると、抽出段におけるコバルトの抽出量が減少したり、塩化ニッケル溶液や塩化コバルト溶液に不純物が溶出したりするという問題が生じる。そこで、逆抽出後の有機溶媒は脱亜鉛工程に送られ、亜鉛、鉄、銅などの不純物が除去される。   In the extraction stage, impurities such as zinc, iron and copper are extracted into the organic phase together with cobalt. Cobalt is back extracted into the aqueous phase in the back extraction stage, but the impurities remain in the organic solvent without being back extracted. When the impurity concentration of the organic solvent increases, there arises a problem that the amount of cobalt extracted in the extraction stage decreases or impurities are eluted in the nickel chloride solution or the cobalt chloride solution. Therefore, the organic solvent after back extraction is sent to a dezincing step to remove impurities such as zinc, iron and copper.

脱亜鉛工程では、逆抽出後の有機溶媒の一部を抜き出し、そこに中和剤を添加して中和することで、有機溶媒中の不純物を中和澱物とする(中和工程)。つぎに、中和工程から排出された液をデカンターにより重液(中和澱物を含む水相)と軽液(中和澱物を含まない有機相)とに分離する(例えば、特許文献1)。軽液は、不純物が除去された有機溶媒として活性化工程に送られ、酸性水溶液を添加された後、抽出段に繰り返される。   In the dezincing step, a part of the organic solvent after the back extraction is extracted, and a neutralizing agent is added thereto for neutralization, thereby making the impurities in the organic solvent neutralized starch (neutralization step). Next, the liquid discharged from the neutralization step is separated into a heavy liquid (an aqueous phase containing neutralized starch) and a light liquid (an organic phase containing no neutralized starch) by a decanter (for example, Patent Document 1). ). The light liquid is sent to the activation step as an organic solvent from which impurities have been removed, and after an acidic aqueous solution is added, it is repeated in the extraction stage.

重液には微量の有機溶媒が含まれている。また、重液に含まれる中和澱物には有機溶媒が取り込まれている。そのため、重液に酸性水溶液を添加して中和澱物を溶解することで有機溶媒を回収する。有機溶媒には溶解された金属元素の一部が担持されている。有機溶媒を中和工程に繰り返すことで有機溶媒の再利用と金属元素の回収を行う。   The heavy liquid contains a trace amount of organic solvent. In addition, an organic solvent is incorporated in the neutralized starch contained in the heavy liquid. Therefore, the organic solvent is recovered by adding an acidic aqueous solution to the heavy liquid to dissolve the neutralized starch. A part of the dissolved metal element is supported on the organic solvent. By repeating the organic solvent in the neutralization step, the organic solvent is reused and the metal element is recovered.

脱亜鉛工程においてデカンターを連続操業させると、重液への有機溶媒のリークおよび軽液への中和澱物のリークが徐々に増加し、分相性が低下して分離不良が生じる場合がある。そうすると、有機溶媒と不純物とを効率よく分離できなくなるという問題がある。   When the decanter is continuously operated in the dezincing step, the leakage of the organic solvent into the heavy liquid and the leakage of the neutralized starch into the light liquid are gradually increased, and the phase separation may be lowered, resulting in poor separation. If it does so, there exists a problem that an organic solvent and an impurity cannot be isolate | separated efficiently.

特開2010−196162号公報JP 2010-196162 A

本発明は上記事情に鑑み、有機溶媒と不純物とを効率よく、しかも安定的に分離できる有機溶媒中の不純物除去方法および不純物除去設備を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an impurity removal method and an impurity removal facility in an organic solvent that can efficiently and stably separate an organic solvent and impurities.

第1発明の有機溶媒中の不純物除去方法は、中和槽に不純物を含む有機溶媒と、中和剤とを供給して、中和澱物を生成する中和工程と、前記中和工程から排出された液を、前記中和澱物を含む重液と、軽液とに油水分離する油水分離工程と、溶解槽に前記重液と酸性水溶液とを供給して、前記中和澱物を溶解する酸溶解工程と、前記溶解槽のオーバーフロー液を中継槽に一時貯留した後、ポンプで前記中和槽に送液する工程と、を備え、前記ポンプを間欠的に動作させることを特徴とする。
第2発明の有機溶媒中の不純物除去設備は、不純物を含む有機溶媒と、中和剤とが供給され、中和澱物を生成する中和槽と、前記中和槽から排出された液を、前記中和澱物を含む重液と、軽液とに油水分離する油水分離装置と、前記重液と酸性水溶液とが供給され、前記中和澱物を溶解する溶解槽と、前記溶解槽のオーバーフロー液を一時貯留する中継槽と、前記オーバーフロー液を前記中継槽から前記中和槽に送液するポンプと、を備え、前記ポンプは間欠的に動作することを特徴とする。
The method for removing impurities in an organic solvent according to the first aspect of the present invention includes: a neutralization step of supplying an organic solvent containing impurities to a neutralization tank; and a neutralizing agent to produce a neutralized starch; An oil-water separation step of separating the discharged liquid into a heavy liquid containing the neutralized starch and a light liquid, and supplying the heavy liquid and the acidic aqueous solution to a dissolution tank; An acid dissolving step for dissolving, and a step of temporarily storing the overflow liquid in the dissolving tank in a relay tank, and then feeding the solution to the neutralizing tank with a pump, wherein the pump is operated intermittently. To do.
The impurity removal equipment in the organic solvent of the second invention is provided with an organic solvent containing impurities and a neutralizing agent, and a neutralization tank for producing a neutralized starch, and a liquid discharged from the neutralization tank. , An oil / water separator that separates oil into water into a heavy liquid containing the neutralized starch and a light liquid, a dissolution tank in which the heavy liquid and the acidic aqueous solution are supplied and dissolves the neutralized starch, and the dissolution tank A relay tank for temporarily storing the overflow liquid, and a pump for feeding the overflow liquid from the relay tank to the neutralization tank, wherein the pump operates intermittently.

本発明によれば、ポンプが間欠的に動作するので、オーバーフロー液が有機溶媒と水とに分離しにくく、水成分のみが中和槽に送液されることを抑制できる。そのため、油水分離における分相性がよくなり、有機溶媒と不純物とを効率よく、しかも安定的に分離できる。   According to the present invention, since the pump operates intermittently, it is difficult for the overflow liquid to be separated into the organic solvent and water, and only the water component can be prevented from being fed to the neutralization tank. Therefore, the phase separation in oil / water separation is improved, and the organic solvent and impurities can be separated efficiently and stably.

湿式製錬プロセスの全体工程図である。It is a whole process figure of a hydrometallurgical process. コバルト溶媒抽出工程の詳細工程図である。It is a detailed process drawing of a cobalt solvent extraction process. 脱亜鉛工程の詳細工程図である。It is a detailed process drawing of a dezincification process. 不純物除去設備の説明図である。It is explanatory drawing of an impurity removal installation.

つぎに、本発明の実施形態を図面に基づき説明する。
前述のごとく、湿式製錬プロセスのコバルト溶媒抽出工程には、逆抽出後の有機溶媒に含まれる亜鉛、鉄、銅などの不純物を除去するために脱亜鉛工程が設けられている。本発明の一実施形態に係る有機溶媒中の不純物除去方法および不純物除去設備は、このような脱亜鉛工程に好ましく適用される。
Next, an embodiment of the present invention will be described with reference to the drawings.
As described above, the cobalt solvent extraction step of the hydrometallurgical process is provided with a dezincification step in order to remove impurities such as zinc, iron, and copper contained in the organic solvent after back extraction. The impurity removal method and impurity removal equipment in an organic solvent according to an embodiment of the present invention are preferably applied to such a dezincing step.

ここで、有機溶媒は特に限定されないが、ニッケルとコバルトとを分離する溶媒抽出法では、有機抽出剤として、Cyanex272に代表される燐酸エステル系酸性抽出剤や、TNOA(Tri-n-octylamine)、TIOA(Tri-i-octylamine)などに代表されるアミン系抽出剤が用いられる。一般的には、液中の金属イオンおよび塩化物イオン濃度が高い塩化物水溶液の場合には、アミン系抽出剤が好ましく用いられる。また、アミン系抽出剤として、ニッケルとコバルトとの選択性に優れる3級アミンを用いる場合には、必要により芳香族炭化水素または脂肪族炭化水素からなる希釈剤が混合される。   Here, the organic solvent is not particularly limited, but in the solvent extraction method for separating nickel and cobalt, as the organic extractant, a phosphate ester-based acidic extractant represented by Cyanex272, TNOA (Tri-n-octylamine), An amine extractant typified by TIOA (Tri-i-octylamine) is used. In general, in the case of a chloride aqueous solution having a high concentration of metal ions and chloride ions in the liquid, an amine-based extractant is preferably used. Further, when a tertiary amine having excellent selectivity between nickel and cobalt is used as the amine-based extractant, a diluent composed of an aromatic hydrocarbon or an aliphatic hydrocarbon is mixed as necessary.

図3に、脱亜鉛工程の詳細工程を示す。なお、図3において破線は有機相の流れを意味し、実線は水相の流れを意味する。
逆抽出後の有機溶媒は中和工程に送られる。逆抽出後有機溶媒には亜鉛、鉄、銅などの不純物が含まれている。中和工程では、不純物を含む有機溶媒に中和剤を添加して中和することで、有機溶媒中の不純物から中和澱物を生成する。ここで、中和剤は特に限定されないが、水酸化ナトリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液などのアルカリ水溶液が用いられ、好ましくは水酸化ナトリウム水溶液が用いられる。
In FIG. 3, the detailed process of a dezincing process is shown. In FIG. 3, the broken line means the flow of the organic phase, and the solid line means the flow of the aqueous phase.
The organic solvent after back extraction is sent to the neutralization step. The organic solvent after back extraction contains impurities such as zinc, iron and copper. In the neutralization step, a neutralized starch is generated from the impurities in the organic solvent by adding a neutralizing agent to the organic solvent containing the impurities and neutralizing the neutralized agent. Here, the neutralizing agent is not particularly limited, but an alkaline aqueous solution such as an aqueous sodium hydroxide solution, an aqueous calcium hydroxide solution, or an aqueous sodium carbonate solution is used, and an aqueous sodium hydroxide solution is preferably used.

中和工程から排出された液は油水分離工程に送られる。油水分離工程では、中和工程から排出された液を重液と軽液とに油水分離する。ここで、重液とは中和澱物を含む水相であり、軽液とは中和澱物を含まない有機相である。なお、重液には微量の有機溶媒が含まれている。   The liquid discharged from the neutralization step is sent to the oil / water separation step. In the oil / water separation step, the liquid discharged from the neutralization step is separated into heavy and light liquids. Here, the heavy liquid is an aqueous phase containing a neutralized starch, and the light liquid is an organic phase containing no neutralized starch. The heavy liquid contains a trace amount of organic solvent.

油水分離工程から排出された軽液は、不純物が除去された有機溶媒として活性化工程に送られ、酸性水溶液を添加された後、抽出段に繰り返される(図2参照)。   The light liquid discharged from the oil / water separation step is sent to the activation step as an organic solvent from which impurities have been removed, and after being added with an acidic aqueous solution, it is repeated in the extraction stage (see FIG. 2).

油水分離工程から排出された重液は酸溶解工程に送られる。酸溶解工程では、重液に酸性水溶液を添加することで重液に含まれる中和澱物を溶解する。ここで、重液のpHは1.0以下に調整される。酸性水溶液は特に限定されないが、塩酸などが用いられる。   The heavy liquid discharged from the oil / water separation step is sent to the acid dissolution step. In the acid dissolving step, the neutralized starch contained in the heavy liquid is dissolved by adding an acidic aqueous solution to the heavy liquid. Here, the pH of the heavy liquid is adjusted to 1.0 or less. Although acidic aqueous solution is not specifically limited, Hydrochloric acid etc. are used.

酸溶解工程からはオーバーフロー液と水相とが排出される。オーバーフロー液には有機溶媒成分と水成分とが含まれている。オーバーフロー液に含まれる有機溶媒成分には、溶解された金属元素の一部が担持されている。オーバーフロー液を中和工程に繰り返すことで、有機溶媒の再利用と金属元素の回収が行われる。一方、酸溶解工程から排出された水相は排水処理される。
脱亜鉛工程では、以上の処理により有機溶媒中の不純物を中和澱物として除去する。
Overflow liquid and aqueous phase are discharged from the acid dissolution step. The overflow liquid contains an organic solvent component and a water component. A part of the dissolved metal element is supported on the organic solvent component contained in the overflow liquid. By repeating the overflow liquid in the neutralization step, the organic solvent is reused and the metal element is recovered. On the other hand, the aqueous phase discharged from the acid dissolving step is treated for drainage.
In the dezincing step, impurities in the organic solvent are removed as neutralized starch by the above treatment.

つぎに、図4に基づき不純物除去設備1を説明する。
不純物除去設備1は、中和槽11、油水分離装置12、溶解槽13、中継槽14を備えている。
Next, the impurity removal equipment 1 will be described with reference to FIG.
The impurity removal equipment 1 includes a neutralization tank 11, an oil / water separator 12, a dissolution tank 13, and a relay tank 14.

中和槽11には、不純物を含む有機溶媒(逆抽出後有機溶媒)と、中和剤とが供給される。中和槽11において、有機溶媒中の不純物から中和澱物を生成する中和工程が行われる。中和槽11から排出された液は油水分離装置12に供給され、重液と軽液とに油水分離される。   The neutralization tank 11 is supplied with an organic solvent containing impurities (an organic solvent after back extraction) and a neutralizing agent. In the neutralization tank 11, the neutralization process which produces | generates a neutralized starch from the impurity in an organic solvent is performed. The liquid discharged from the neutralization tank 11 is supplied to the oil / water separator 12 and separated into heavy and light liquids.

油水分離装置12としてデカンターやセトラーなどが用いられる。連続操業が可能であることからデカンターが好ましく用いられる。デカンターとしては、例えばスクリュデカンタ型遠心分離機が挙げられる。スクリュデカンタ型遠心分離機は、一端が円錐形に形成された外筒と、外筒の内部において外筒と同軸に設けられたスクリューとからなる。外筒とスクリューが同方向に高速回転することで、外筒の内部に供給された有機溶媒を遠心力により重液と軽液とに分離させる。また、外筒とスクリューは回転速度に差があり、外筒よりもスクリューの回転速度を遅くすることで重液をスクリューで掻き取り、重液と軽液とを別々に排出することができる。   A decanter, a settler or the like is used as the oil / water separator 12. A decanter is preferably used because continuous operation is possible. An example of the decanter is a screw decanter type centrifuge. The screw decanter centrifuge includes an outer cylinder having one end formed in a conical shape and a screw provided coaxially with the outer cylinder inside the outer cylinder. By rotating the outer cylinder and the screw at a high speed in the same direction, the organic solvent supplied into the outer cylinder is separated into a heavy liquid and a light liquid by centrifugal force. Further, the outer cylinder and the screw have a difference in rotational speed, and the heavy liquid is scraped with the screw by making the rotational speed of the screw slower than that of the outer cylinder, and the heavy liquid and the light liquid can be discharged separately.

溶解槽13には、油水分離装置12から排出された重液と、酸性水溶液とが供給される。溶解槽13において、重液に含まれる中和澱物を溶解する酸溶解工程が行われる。前述のごとく、重液には微量の有機溶媒が含まれている。また、中和澱物を溶解することで、中和澱物に取り込まれていた有機溶媒が溶出する。重液を溶解槽13で静置することで、重液に含まれる有機溶媒が液面に浮上する。溶解槽13内の重液は、そのほとんどが水相Wであり、水相Wの上に若干量の有機相Oが存在する状態である。   The dissolution tank 13 is supplied with the heavy liquid discharged from the oil / water separator 12 and the acidic aqueous solution. In the dissolution tank 13, an acid dissolution step for dissolving the neutralized starch contained in the heavy liquid is performed. As described above, the heavy liquid contains a trace amount of organic solvent. Moreover, the organic solvent taken in the neutralized starch elutes by dissolving the neutralized starch. By allowing the heavy liquid to stand still in the dissolution tank 13, the organic solvent contained in the heavy liquid floats on the liquid surface. Most of the heavy liquid in the dissolution tank 13 is the water phase W, and a slight amount of the organic phase O exists on the water phase W.

溶解槽13の底部付近には排出配管が設けられており、水相Wが排出される。また、溶解槽13にはオーバーフロー樋15が設けられている。溶解槽13からオーバーフローしたオーバーフロー液はオーバーフロー樋15を介して中継槽14に供給される。ここで、溶解槽13の液位は、有機相Oの全量がオーバーフローするように設定されている。すなわち、有機相Oと水相Wとの界面は、オーバーフローする液位より上方に設定されている。そのため、オーバーフロー液には有機溶媒成分と水成分とが含まれる。   A discharge pipe is provided near the bottom of the dissolution tank 13, and the aqueous phase W is discharged. The dissolution tank 13 is provided with an overflow tank 15. The overflow liquid overflowing from the dissolution tank 13 is supplied to the relay tank 14 via the overflow tank 15. Here, the liquid level of the dissolution tank 13 is set so that the total amount of the organic phase O overflows. That is, the interface between the organic phase O and the aqueous phase W is set above the liquid level that overflows. Therefore, the overflow liquid contains an organic solvent component and a water component.

溶解槽13のオーバーフロー液は中継槽14に一時貯留される。中継槽14には、開口端が中継槽14の底部付近に配置された底抜きパイプが設けられている。底抜きパイプはポンプ16の吸引側に接続されている、ポンプ16の吐出側は配管を介して中和槽11に接続されている。ポンプ16の動作により、オーバーフロー液を中継槽14から中和槽11に送液できる。   The overflow liquid in the dissolution tank 13 is temporarily stored in the relay tank 14. The relay tank 14 is provided with a bottom pipe whose opening end is disposed near the bottom of the relay tank 14. The bottom pipe is connected to the suction side of the pump 16, and the discharge side of the pump 16 is connected to the neutralization tank 11 via a pipe. By the operation of the pump 16, the overflow liquid can be sent from the relay tank 14 to the neutralization tank 11.

ところで、上記不純物除去設備1で実操業を行うと、油水分離装置12の分相性が不安定になり、操業中に突然油水分離装置12の処理能力が低下することがある。この点について本願発明者は、中和槽11に供給されるオーバーフロー液の水成分が多くなるタイミングで、油水分離装置12の分相性が低下するという知見を得た。   By the way, when an actual operation is performed with the impurity removal facility 1, the phase separation of the oil / water separator 12 becomes unstable, and the processing capacity of the oil / water separator 12 may suddenly decrease during the operation. In this regard, the inventor of the present application has found that the phase separation of the oil / water separator 12 decreases at the timing when the water component of the overflow liquid supplied to the neutralization tank 11 increases.

実操業では、中和槽11への有機溶媒の供給量は一定ではなく、変動する。有機溶媒の供給量が少ない場合には、油水分離装置12に供給される液量が低下し、油水分離装置12の分相性が高くなり、重液に混入する有機溶媒の量が非常に少なくなる。そうすると、溶解槽13のオーバーフロー液には水成分が多く含まれ、有機溶媒成分が非常に少なくなる。場合によっては、中和槽11に供給されるオーバーフロー液のほとんどが水成分となる。このタイミングで油水分離装置12の分相性が低下する。   In actual operation, the supply amount of the organic solvent to the neutralization tank 11 is not constant but varies. When the supply amount of the organic solvent is small, the amount of the liquid supplied to the oil / water separator 12 is lowered, the phase separation property of the oil / water separator 12 is increased, and the amount of the organic solvent mixed in the heavy liquid becomes very small. . If it does so, the overflow liquid of the dissolution tank 13 will contain many water components, and an organic solvent component will become very few. In some cases, most of the overflow liquid supplied to the neutralization tank 11 becomes a water component. At this timing, the phase separation of the oil / water separator 12 decreases.

油水分離装置12の分相性が低下し、重液に混入する有機溶媒の量が多くなると、オーバーフロー液に含まれる有機溶媒成分が多くなる。そうすると、中和槽11に繰り返される有機溶媒の量が多くなり、今度は油水分離装置12の分相性が高くなる。以上を繰り返すことで、油水分離装置12の分相性が不安定になる。   When the phase separation property of the oil / water separator 12 decreases and the amount of the organic solvent mixed in the heavy liquid increases, the organic solvent component contained in the overflow liquid increases. If it does so, the quantity of the organic solvent repeated to the neutralization tank 11 will increase, and the phase separation property of the oil-water separator 12 will become high this time. By repeating the above, the phase separation of the oil / water separator 12 becomes unstable.

本願発明者は、中和槽11に水が供給される影響を以下の試験により確認した。
まず、ビーカーに、逆抽出後有機溶媒と、溶解槽13から得られた水相とを、9:1の割合で混合した。この混合液に中和剤を添加して中和した後に、遠心分離(500rpm、1分間)を行い、中和澱物の沈降状態を確認した。その結果、中和澱物の高さは全体の約90%であった。
The inventor of the present application confirmed the effect of supplying water to the neutralization tank 11 by the following test.
First, the organic solvent after back extraction and the aqueous phase obtained from the dissolution tank 13 were mixed in a beaker at a ratio of 9: 1. The mixture was neutralized by adding a neutralizing agent, and then centrifuged (500 rpm, 1 minute) to confirm the sedimentation state of the neutralized starch. As a result, the height of the neutralized starch was about 90% of the whole.

つぎに、ビーカーに、逆抽出後有機溶媒と、溶解槽13から得られた有機相とを、9:1の割合で混合した。この混合液に中和剤を添加して中和した後に、遠心分離(500rpm、1分間)を行い、中和澱物の沈降状態を確認した。その結果、中和澱物の高さは全体の約60%であった。   Next, the organic solvent after back extraction and the organic phase obtained from the dissolution tank 13 were mixed in a beaker at a ratio of 9: 1. The mixture was neutralized by adding a neutralizing agent, and then centrifuged (500 rpm, 1 minute) to confirm the sedimentation state of the neutralized starch. As a result, the height of the neutralized starch was about 60% of the whole.

以上より、逆抽出後有機溶媒に水相を混合すると、中和澱物が沈降しにくくなることが確認された。中和剤を添加した後の状態を確認すると、水相を混合したものは色が薄く、有機相を混合したものは色が濃かった。このことから、水相を混合した場合、中和澱物の粒径が小さくなり、沈降しにくくなると推測される。このことから、中和槽11に供給されるオーバーフロー液の水成分の割合が高いと、油水分離装置12の分相性が低くなることが確認された。   From the above, it was confirmed that when the aqueous phase was mixed with the organic solvent after back extraction, the neutralized starch was less likely to settle. When the state after adding the neutralizing agent was confirmed, the color mixed with the aqueous phase was light and the color mixed with the organic phase was dark. From this, it is presumed that when the aqueous phase is mixed, the particle size of the neutralized starch becomes small and it is difficult to settle. From this, it was confirmed that when the proportion of the water component of the overflow liquid supplied to the neutralization tank 11 is high, the phase separation of the oil / water separator 12 is lowered.

本実施形態はオーバーフロー液を送液するポンプ16を間欠的に動作させるところに特徴を有する。すなわち、ポンプ16のON/OFFを所定の周期で繰り返す。
オーバーフロー液は中継槽14に流入する際の衝撃で、有機溶媒成分と水成分とが混合される。そのまま静置すると有機溶媒と水とに分離するが、ポンプ16を間欠的に動作させることで、オーバーフロー液に流れが生じ、有機溶媒と水とに分離しにくくなる。その結果、常に有機溶媒成分と水成分とが混合された状態で中和槽11に供給され、水成分のみが中和槽11に送液されることを抑制できる。その結果、油水分離における分相性がよくなり、有機溶媒と不純物とを効率よく、しかも安定的に分離できる。
The present embodiment is characterized in that the pump 16 for feeding the overflow liquid is operated intermittently. That is, ON / OFF of the pump 16 is repeated at a predetermined cycle.
The overflow liquid is mixed with the organic solvent component and the water component by an impact when flowing into the relay tank 14. If it is left as it is, it is separated into an organic solvent and water. However, when the pump 16 is operated intermittently, a flow occurs in the overflow liquid and it is difficult to separate the organic solvent and water. As a result, it is possible to suppress that the organic solvent component and the water component are always mixed and supplied to the neutralization tank 11 and only the water component is fed to the neutralization tank 11. As a result, phase separation in oil / water separation is improved, and organic solvent and impurities can be separated efficiently and stably.

ポンプ16をON/OFFする周期は、有機溶媒成分と水成分とが混合された状態で中和槽11に供給されるように設定すればよい。中和槽11に供給される逆抽出後有機溶媒の流量を測定し、その流量に基づきポンプ16をON/OFFする周期を設定してもよい。   What is necessary is just to set the period which turns ON / OFF the pump 16 so that the organic solvent component and the water component may be supplied to the neutralization tank 11 in the mixed state. The flow rate of the organic solvent after back extraction supplied to the neutralization tank 11 may be measured, and a cycle for turning on / off the pump 16 may be set based on the flow rate.

(実施例1)
図4に示す不純物除去設備1を用いてコバルト溶媒抽出工程の逆抽出後有機溶媒から不純物を除去する操業を行った。ポンプ16のON/OFFを5分間隔で切り換えた。
その結果、3ヶ月間の操業において、油水分離装置12の不具合が発生することなく、連続的に操業が可能であった。定期点検のほかに操業を停止する必要がなかったので、操業効率が向上した。また、操業中に処理液量を増加させたところ、最高で45L/分とすることができた。
Example 1
An operation for removing impurities from the organic solvent after back extraction in the cobalt solvent extraction step was performed using the impurity removal equipment 1 shown in FIG. The pump 16 was switched on / off at intervals of 5 minutes.
As a result, in the operation for three months, it was possible to operate continuously without causing the malfunction of the oil / water separator 12. There was no need to stop the operation in addition to the regular inspection, which improved operational efficiency. Further, when the amount of the treatment liquid was increased during the operation, the maximum could be 45 L / min.

(比較例1)
実施例1において、ポンプ16を常にONの状態とした。
その結果、操業開始から1ヶ月後に、油水分離装置12の重液の排出口が中和澱物で閉塞し、メンテナンスが必要となった。定期点検をまたずに操業を停止する必要があったので、操業効率が低下した。また、操業中に処理液量を増加させたところ、最高で23L/分とすることができた。
(Comparative Example 1)
In Example 1, the pump 16 was always turned on.
As a result, one month after the start of operation, the heavy liquid discharge port of the oil-water separator 12 was clogged with neutralized starch, requiring maintenance. Since it was necessary to stop the operation without going through regular inspections, the operation efficiency decreased. Further, when the amount of the treatment liquid was increased during operation, the maximum could be 23 L / min.

1 不純物除去設備
11 中和槽
12 油水分離装置
13 溶解槽
14 中継槽
15 オーバーフロー樋
16 ポンプ
DESCRIPTION OF SYMBOLS 1 Impurity removal equipment 11 Neutralization tank 12 Oil-water separator 13 Dissolution tank 14 Relay tank 15 Overflow tank 16 Pump

Claims (2)

中和槽に不純物を含む有機溶媒と、中和剤とを供給して、中和澱物を生成する中和工程と、
前記中和工程から排出された液を、前記中和澱物を含む重液と、軽液とに油水分離する油水分離工程と、
溶解槽に前記重液と酸性水溶液とを供給して、前記中和澱物を溶解する酸溶解工程と、
前記溶解槽のオーバーフロー液を中継槽に一時貯留した後、ポンプで前記中和槽に送液する工程と、を備え、
前記ポンプを間欠的に動作させる
ことを特徴とする有機溶媒中の不純物除去方法。
A neutralization step of supplying an organic solvent containing impurities to the neutralization tank and a neutralizing agent to produce a neutralized starch;
An oil-water separation step of separating the liquid discharged from the neutralization step into a heavy liquid containing the neutralized starch and a light liquid;
Supplying the heavy liquid and the acidic aqueous solution to a dissolution tank, and dissolving the neutralized starch;
A step of temporarily storing the overflow liquid of the dissolution tank in the relay tank and then feeding the solution to the neutralization tank with a pump;
A method for removing impurities in an organic solvent, wherein the pump is operated intermittently.
不純物を含む有機溶媒と、中和剤とが供給され、中和澱物を生成する中和槽と、
前記中和槽から排出された液を、前記中和澱物を含む重液と、軽液とに油水分離する油水分離装置と、
前記重液と酸性水溶液とが供給され、前記中和澱物を溶解する溶解槽と、
前記溶解槽のオーバーフロー液を一時貯留する中継槽と、
前記オーバーフロー液を前記中継槽から前記中和槽に送液するポンプと、を備え、
前記ポンプは間欠的に動作する
ことを特徴とする有機溶媒中の不純物除去設備。
An organic solvent containing impurities and a neutralizing agent, and a neutralization tank for producing a neutralized starch;
An oil-water separator that separates the liquid discharged from the neutralization tank into a heavy liquid containing the neutralized starch and a light liquid;
A dissolving tank in which the heavy liquid and the acidic aqueous solution are supplied to dissolve the neutralized starch;
A relay tank for temporarily storing the overflow liquid of the dissolution tank;
A pump for feeding the overflow liquid from the relay tank to the neutralization tank,
The apparatus for removing impurities in an organic solvent, wherein the pump operates intermittently.
JP2016143115A 2016-07-21 2016-07-21 Method and apparatus for removing impurities in organic solvent Active JP6614055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016143115A JP6614055B2 (en) 2016-07-21 2016-07-21 Method and apparatus for removing impurities in organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143115A JP6614055B2 (en) 2016-07-21 2016-07-21 Method and apparatus for removing impurities in organic solvent

Publications (2)

Publication Number Publication Date
JP2018012860A true JP2018012860A (en) 2018-01-25
JP6614055B2 JP6614055B2 (en) 2019-12-04

Family

ID=61019162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143115A Active JP6614055B2 (en) 2016-07-21 2016-07-21 Method and apparatus for removing impurities in organic solvent

Country Status (1)

Country Link
JP (1) JP6614055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196528A (en) * 2018-05-11 2019-11-14 住友金属鉱山株式会社 Manufacturing method of cobalt chloride solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196528A (en) * 2018-05-11 2019-11-14 住友金属鉱山株式会社 Manufacturing method of cobalt chloride solution
JP7119551B2 (en) 2018-05-11 2022-08-17 住友金属鉱山株式会社 Method for producing aqueous solution of cobalt chloride

Also Published As

Publication number Publication date
JP6614055B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
CA2943483C (en) Copper removal method for aqueous nickel chloride solution
JP6156781B2 (en) Method for producing cobalt chloride aqueous solution
RU2685835C2 (en) Extraction method
JP6260342B2 (en) Method for removing impurities in organic solvents
JP6614055B2 (en) Method and apparatus for removing impurities in organic solvent
US10590510B2 (en) Method for recovering precious metal
JP5375631B2 (en) Method for removing metal elements from organic phase
JP7047492B2 (en) Method for removing lead compound and method for recovering selenium or tellurium having it
JP2015061951A (en) Solid-liquid separation treatment method and hydrometallurgical method of nickel oxide ore
JP6217449B2 (en) Method for removing impurities in organic solvents
JP6142819B2 (en) Impurity removal method and impurity removal equipment in organic solvent
CN106396164A (en) Industrial acidic wastewater treatment process
JP6604255B2 (en) Method for removing impurities in organic solvents
JP6988435B2 (en) How to remove droplets of the aqueous phase contained in the organic phase
JP2008106348A (en) Method of separating and recovering zinc
JP6512152B2 (en) Method of removing impurities in organic solvent
KR19980702743A (en) Ammonia Metal Solution Recirculation Method
JP6922588B2 (en) Method of removing droplets of aqueous phase contained in organic phase
JP6418143B2 (en) Repulping apparatus and repulping method
JP6340980B2 (en) Purification method of cobalt chloride solution
KR101516756B1 (en) Metal recovery system and method from waste water including indium
JP6551550B2 (en) Extraction method of rare earth metal ions in plating solution
JP2015528854A5 (en)
JP2021059758A (en) Method of removing droplet of aqueous phase included in organic phase, and production method for cobalt chloride solution
JP2008512569A (en) Formation of zinc drugs from treatment tributaries.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6614055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150