JP2018012153A - Optical component manufacturing method and polishing method - Google Patents

Optical component manufacturing method and polishing method Download PDF

Info

Publication number
JP2018012153A
JP2018012153A JP2016142549A JP2016142549A JP2018012153A JP 2018012153 A JP2018012153 A JP 2018012153A JP 2016142549 A JP2016142549 A JP 2016142549A JP 2016142549 A JP2016142549 A JP 2016142549A JP 2018012153 A JP2018012153 A JP 2018012153A
Authority
JP
Japan
Prior art keywords
optical component
polishing
polished
dummy member
polishing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016142549A
Other languages
Japanese (ja)
Inventor
和紀 蒲山
Kazunori Kabayama
和紀 蒲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2016142549A priority Critical patent/JP2018012153A/en
Publication of JP2018012153A publication Critical patent/JP2018012153A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical component manufacturing method capable of forming a plain surface having a high surface smoothness, and a polishing method.SOLUTION: A dummy member 12 formed of a material having a hardness identical to that of an optical component 10 is arranged so as to clamp the optical part 10 at least along one arbitrary direction and so that the end portion of the dummy member 12 is higher than the height position of a polished surface P1, and the polished surface P1 of the optical component 10 is polished together with the end portion of the dummy member 12.SELECTED DRAWING: Figure 2

Description

本発明は、光学部品の製造方法及び研磨方法に関する。   The present invention relates to an optical component manufacturing method and a polishing method.

従来から、光を制御するために、レンズ、プリズム、ミラー、ビームスプリッタ、アイソレータ等の様々な光学部品が用いられている。例えば、光のビーム形状や光の進行方向を制御するために、レンズ、プリズム、或いはミラーが単独で又は組み合わせて用いられ、光を分岐或いは合波させるためにビームスプリッタが用いられ、光の進行方向を一方向に制限するためにアイソレータが用いられる。   Conventionally, various optical components such as a lens, a prism, a mirror, a beam splitter, and an isolator are used to control light. For example, a lens, a prism, or a mirror is used alone or in combination to control the light beam shape and the light traveling direction, and a beam splitter is used to branch or multiplex the light. Isolators are used to limit the direction to one direction.

このような光学部品は、光が入射される面、光が射出される面、或いは光が反射される面が平面とされているものが多い。例えば、レンズの一種である平凸レンズは、光が入射される面及び光が射出される面の何れか一方が平面とされており、プリズムの一種である三角プリズム及びビームスプリッタは、光が入射される面、光が射出される面、及び光が反射される面の全てが平面とされている。また、アイソレータは、光が入射される面及び光が射出される面が平行な平面とされている。このような平面は、例えば光学部品を研磨することによって形成される。   Many of such optical components have a flat surface on which light is incident, a surface on which light is emitted, or a surface on which light is reflected. For example, a plano-convex lens, which is a kind of lens, has either a plane on which light is incident or a plane on which light is emitted, and a triangular prism or beam splitter, which is a kind of prism, receives light. All of the surface on which light is emitted, the surface from which light is emitted, and the surface from which light is reflected are flat surfaces. The isolator has a plane in which the surface on which light is incident and the surface on which light is emitted are parallel to each other. Such a plane is formed, for example, by polishing an optical component.

以下の特許文献1には、研磨対象物であるロッドが接着固定される円筒台と、円筒台が固定されて基板に対する角度が調整可能に構成された修正板とを備える研磨装置を用い、基板に対する修正板の角度を調整してロッドの傾きを調整した状態でロッドの端面を研磨する方法が開示されている。以下の特許文献2には、研磨対象物である透明体を平板状の治具に取り付け、治具に取り付けられた透明体の端面を研磨盤上で研磨する方法が開示されている。以下の特許文献3には、光学部品の研磨に係るものではないが、ダミーウェハの間に試料ウェハを積層した状態で設け、ダミーウェハで試料ウェハを挟持した被研磨体を研磨する方法が開示されている。   The following Patent Document 1 uses a polishing apparatus including a cylindrical base to which a rod, which is a polishing object, is bonded and fixed, and a correction plate that is configured so that the angle with respect to the substrate can be adjusted by fixing the cylindrical base. A method of polishing the end face of the rod in a state where the inclination of the rod is adjusted by adjusting the angle of the correction plate with respect to is disclosed. Patent Document 2 below discloses a method in which a transparent body, which is an object to be polished, is attached to a flat jig, and the end surface of the transparent body attached to the jig is polished on a polishing board. Patent Document 3 below discloses a method that is not related to polishing of an optical component, but is provided in a state in which a sample wafer is laminated between dummy wafers, and the object to be polished having the sample wafer sandwiched between the dummy wafers is polished. Yes.

特開平3−55157号公報JP-A-3-55157 特開平9−136251号公報Japanese Patent Laid-Open No. 9-136251 特開2010−153614号公報JP 2010-153614 A

ところで、光学部品の平面には、高い平坦性が求められることが多い。例えば、ファイバレーザ装置において、出力光の戻り光が装置に与える悪影響を防止するために設けられるアイソレータには、出力光のビーム品質の劣化を防止するために、光が入射される面及び光が射出される面の双方に高い平坦性が求められる。尚、上記のアイソレータ以外の光学部品も、例えばビーム形状の変化等を防止するために、高い平坦性が求められる。   By the way, high flatness is often required for the plane of the optical component. For example, in a fiber laser device, an isolator provided to prevent adverse effects of the return light of the output light on the device has a light incident surface and light in order to prevent deterioration of the beam quality of the output light. High flatness is required for both of the surfaces to be ejected. Note that optical components other than the above-described isolator are also required to have high flatness in order to prevent, for example, changes in beam shape.

上述した特許文献1,2に開示された研磨方法を用いて光学部品を研磨する場合には、光学部品の研磨面が研磨盤に押し当てられることによって生ずる研磨盤の変形(研磨面の周囲部分の変形)による圧力が研磨面に付加されるため、研磨面の外周部分の研磨圧力が中心部分の研磨圧力に比べて高くなる。これにより、研磨面の中心部分に比べて外周部分が削られすぎてしまい、必要となる高い平坦性を有する平面を形成することは困難であるという問題がある。   When polishing an optical component using the polishing method disclosed in Patent Documents 1 and 2 described above, deformation of the polishing plate caused by the polishing surface of the optical component being pressed against the polishing plate (a peripheral portion of the polishing surface) Therefore, the polishing pressure at the outer peripheral portion of the polishing surface becomes higher than the polishing pressure at the central portion. As a result, the outer peripheral portion is excessively cut compared to the central portion of the polishing surface, and there is a problem that it is difficult to form a required flat surface having high flatness.

上述した特許文献3に開示された研磨方法では、積層された試料ウェハがダミーウェハで挟持された状態で研磨されることから、試料ウェハの面だれ発生を防止できると考えられる。しかしながら、上述した特許文献3に開示された研磨方法では、試料ウェハの研磨面とダミーウェハの研磨面とを同一の高さ位置に揃えている。ここで、試料ウェハおよびダミーウェハを上記の通りに揃えてセッティングする事は、両者の研磨面の平坦度が異なる事、試料ウェハの側面の角度がダミー部材に対してわずかにずれている事などの理由により、現実的には高精度な高さ位置合わせを必要とする為、困難であると考えられる。したがって、上記の研磨方法では高い平坦性を有する平面を形成することが比較的困難であると考えられる。   In the polishing method disclosed in Patent Document 3 described above, since the laminated sample wafers are polished in a state of being sandwiched between dummy wafers, it is considered that occurrence of sagging of the sample wafer can be prevented. However, in the polishing method disclosed in Patent Document 3 described above, the polishing surface of the sample wafer and the polishing surface of the dummy wafer are aligned at the same height position. Here, setting the sample wafer and dummy wafer as described above means that the flatness of the polished surfaces of the two is different, the angle of the side surface of the sample wafer is slightly deviated from the dummy member, etc. For the reason, it is considered difficult because it requires a highly accurate height alignment. Therefore, it is considered that it is relatively difficult to form a flat surface having high flatness by the above polishing method.

本発明は上記事情に鑑みてなされたものであり、高い平坦性を有する平面を形成することが可能な光学部品の製造方法及び研磨方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing an optical component and a polishing method capable of forming a plane having high flatness.

上記課題を解決するために、本発明の光学部品の製造方法は、少なくとも1つの平面を有する光学部品(10、20)を製造する光学部品の製造方法であって、前記光学部品の材料と同じ硬さを有する材料で形成されたダミー部材(12、22)を、少なくとも任意の一方向に沿って前記光学部品を挟むように、且つ前記ダミー部材の端部が研磨面(P1、P2)の高さ位置よりも高くなるように配置する第1工程と、前記光学部品の前記研磨面を前記ダミー部材の端部とともに予め規定された高さ位置に到達するまで研磨する第2工程と、を有する。
また、本発明の光学部品の製造方法は、前記光学部品が、前記研磨面を保持部材(11、21)の一端(E1、E11〜E14)から突出させた状態で前記保持部材に保持され、前記ダミー部材が、前記保持部材の一端から突出した前記研磨面を挟むように前記保持部材の一端に取り付けられる。
或いは、本発明の光学部品の製造方法は、前記光学部品が、ロッド形状の部品であり、一端部の研磨面を保持部材(11、21)の一端から突出させるとともに、他端部の研磨面を前記保持部材の他端から突出させた状態で前記保持部材に保持され、前記ダミー部材が、前記保持部材の一端から突出した前記研磨面を挟むように前記保持部材の一端に取り付けられるとともに、前記保持部材の他端から突出した前記研磨面を挟むように前記保持部材の他端に取り付けられる。
また、本発明の光学部品の製造方法は、前記ダミー部材が、前記研磨面の全周を隙間なく4方向から取り囲むよう、少なくとも4つの部材(22a〜22d)を組み合わせてなる。
また、本発明の光学部品の製造方法は、前記光学部品が、前記研磨面に平行な第1方向(D1)に複数配列されており、前記保持部材の前記第1方向の長さが、少なくとも前記第1方向における前記光学部品の全長よりも長く設定されている。
また、本発明の光学部品の製造方法は、前記光学部品が、前記第1方向に加えて、前記研磨面に平行であって前記第1方向に交差する第2方向(D2)にも配列されている。
本発明の研磨方法は、研磨対象物(10、20)の研磨面(P1、P2)を研磨する研磨方法であって、前記研磨対象物の材料と同じ硬さを有する材料で形成されたダミー部材(12、22)を、少なくとも任意の一方向に沿って前記研磨対象物を挟むように、且つ前記ダミー部材の端部が前記研磨面の高さ位置よりも高くなるように配置する第1工程と、前記研磨対象物の前記研磨面を前記ダミー部材の端部とともに予め規定された高さ位置に到達するまで研磨する第2工程と、を有する。
In order to solve the above problems, an optical component manufacturing method of the present invention is an optical component manufacturing method for manufacturing an optical component (10, 20) having at least one plane, which is the same as the material of the optical component. A dummy member (12, 22) formed of a material having hardness is disposed so that the optical component is sandwiched along at least one arbitrary direction, and an end of the dummy member is a polishing surface (P1, P2). A first step of placing the optical component so as to be higher than a height position, and a second step of polishing the polishing surface of the optical component together with an end of the dummy member until reaching a predetermined height position. Have.
Further, in the optical component manufacturing method of the present invention, the optical component is held by the holding member in a state where the polished surface is protruded from one end (E1, E11 to E14) of the holding member (11, 21). The dummy member is attached to one end of the holding member so as to sandwich the polishing surface protruding from one end of the holding member.
Alternatively, in the method of manufacturing an optical component according to the present invention, the optical component is a rod-shaped component, and the polishing surface at one end protrudes from one end of the holding member (11, 21) and the polishing surface at the other end. Is held by the holding member in a state protruding from the other end of the holding member, and the dummy member is attached to one end of the holding member so as to sandwich the polishing surface protruding from one end of the holding member, It is attached to the other end of the holding member so as to sandwich the polishing surface protruding from the other end of the holding member.
Moreover, the manufacturing method of the optical component of this invention combines at least 4 member (22a-22d) so that the said dummy member may surround the perimeter of the said grinding | polishing surface from 4 directions without gap.
In the optical component manufacturing method of the present invention, a plurality of the optical components are arranged in a first direction (D1) parallel to the polishing surface, and the length of the holding member in the first direction is at least It is set longer than the total length of the optical component in the first direction.
In the optical component manufacturing method of the present invention, in addition to the first direction, the optical component is arranged in a second direction (D2) that is parallel to the polishing surface and intersects the first direction. ing.
The polishing method of the present invention is a polishing method for polishing the polishing surfaces (P1, P2) of the polishing objects (10, 20), and is a dummy formed of a material having the same hardness as the material of the polishing object. First members (12, 22) are arranged so that the object to be polished is sandwiched along at least one arbitrary direction and the end of the dummy member is higher than the height position of the polishing surface. And a second step of polishing the polishing surface of the object to be polished together with the end of the dummy member until reaching a predetermined height position.

本発明によれば、研磨対象物の材料と同じ硬さを有する材料で形成されたダミー部材を、少なくとも任意の一方向に沿って光学部品を挟むように、且つダミー部材の端部が研磨面の高さ位置よりも高くなるように配置し、研磨対象物の研磨面をダミー部材の端部とともに予め規定された高さ位置に到達するまで研磨するようにしており、研磨面の研磨圧力を研磨面の全体に亘ってほぼ一定にすることができるため、従来よりも容易に高い平坦性を有する平面を形成することが可能であるという効果がある。   According to the present invention, a dummy member made of a material having the same hardness as the material of the object to be polished is arranged so that the optical component is sandwiched along at least one arbitrary direction, and the end of the dummy member is a polishing surface. The polishing surface of the polishing object is polished together with the end of the dummy member until it reaches a predetermined height position, and the polishing pressure of the polishing surface is set to be higher than the height position of Since it can be made substantially constant over the entire polishing surface, there is an effect that it is possible to form a flat surface having higher flatness more easily than in the past.

本発明の第1実施形態による光学部品の製造方法及び研磨方法の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the manufacturing method and polishing method of the optical component by 1st Embodiment of this invention. 本発明の第1実施形態で用いられる被研磨体を示す斜視図である。It is a perspective view which shows the to-be-polished body used in 1st Embodiment of this invention. 本発明の第1実施形態による光学部品の製造方法及び研磨方法を説明するための図である。It is a figure for demonstrating the manufacturing method and polishing method of the optical component by 1st Embodiment of this invention. 本発明の第1実施形態において研磨が進んだ状態を示す断面図である。It is sectional drawing which shows the state which grinding | polishing advanced in 1st Embodiment of this invention. 本発明の第1実施形態における被研磨体の第1変形例を示す斜視図である。It is a perspective view which shows the 1st modification of the to-be-polished body in 1st Embodiment of this invention. 本発明の第1実施形態における被研磨体の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the to-be-polished body in 1st Embodiment of this invention. 本発明の第2実施形態による光学部品の製造方法及び研磨方法の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the manufacturing method and polishing method of the optical component by 2nd Embodiment of this invention. 本発明の第2実施形態で用いられる被研磨体を示す平面図である。It is a top view which shows the to-be-polished body used in 2nd Embodiment of this invention. 本発明の第2実施形態による光学部品の製造方法及び研磨方法を説明するための図である。It is a figure for demonstrating the manufacturing method and polishing method of the optical component by 2nd Embodiment of this invention. 本発明の第2実施形態における被研磨体の第1変形例を示す平面図である。It is a top view which shows the 1st modification of the to-be-polished body in 2nd Embodiment of this invention. 本発明の第2実施形態における被研磨体の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the to-be-polished body in 2nd Embodiment of this invention.

以下、図面を参照して本発明の実施形態による光学部品の製造方法及び研磨方法について詳細に説明する。以下では、ロッド形状である光学部品(例えば、アイソレータ等)を製造する場合を例に挙げて説明する。尚、以下で参照する図面では、理解を容易にするために、必要に応じて各部材の寸法を適宜変えて図示している。   Hereinafter, a method for manufacturing an optical component and a polishing method according to an embodiment of the present invention will be described in detail with reference to the drawings. Below, the case where the optical component (for example, isolator etc.) which is a rod shape is manufactured is mentioned as an example, and is explained. In the drawings referred to below, the dimensions of each member are appropriately changed as necessary for easy understanding.

〔第1実施形態〕
図1は、本発明の第1実施形態による光学部品の製造方法及び研磨方法の概要を示す断面図である。図1に示す通り、本実施形態では、研磨対象物である光学部品10が設けられた被研磨体1を研磨盤PBに接触させ、被研磨体1と研磨盤PBとを相対移動させて被研磨体1を研磨することで、高い平坦性を有する平面が形成された光学部品10の製造を行うものである。
[First Embodiment]
FIG. 1 is a cross-sectional view showing an outline of a method for manufacturing an optical component and a polishing method according to a first embodiment of the present invention. As shown in FIG. 1, in the present embodiment, the object to be polished 1 provided with the optical component 10 that is the object to be polished is brought into contact with the polishing plate PB, and the object to be polished 1 and the polishing plate PB are moved relative to each other. By polishing the polishing body 1, the optical component 10 on which a flat surface having high flatness is formed is manufactured.

図2は、本発明の第1実施形態で用いられる被研磨体を示す斜視図である。尚、図1は、図2(a)に示されている被研磨体1の上面を研磨盤PBに接触させた状態におけるA−A線断面矢視図である。図1,2に示す通り、被研磨体1は、光学部品10、スペーサ11(保持部材)、及びダミー部材12を備える。   FIG. 2 is a perspective view showing an object to be polished used in the first embodiment of the present invention. 1 is a cross-sectional view taken along line AA in a state where the upper surface of the object 1 shown in FIG. 2A is in contact with the polishing board PB. As shown in FIGS. 1 and 2, the object to be polished 1 includes an optical component 10, a spacer 11 (holding member), and a dummy member 12.

光学部品10は、任意の光学結晶によって形成された四角柱形状(ロッド形状)の部材である。例えば、光学部品10がアイソレータである場合には、光学部品10は、Tb(Sc,Lu)Al12結晶(TSLAG結晶)、TbGa12結晶(TGG結晶)等を用いて形成される。この光学部品10は、例えば、底面の一辺の長さ(縦及び横の長さ)が数〜十数[mm]程度であり、高さが10〜50[mm]程度の大きさである。 The optical component 10 is a quadrangular prism-shaped (rod-shaped) member formed of an arbitrary optical crystal. For example, when the optical component 10 is an isolator, the optical component 10 uses a Tb 3 (Sc, Lu) 2 Al 3 O 12 crystal (TSLAG crystal), a Tb 3 Ga 5 O 12 crystal (TGG crystal), or the like. Formed. For example, the length of one side (vertical and horizontal length) of the bottom surface of the optical component 10 is about several to several tens [mm], and the height is about 10 to 50 [mm].

スペーサ11は、例えばガラスによって形成された四角環形状の部材であり、光学部品10及びダミー部材12を保持するためのものである。このスペーサ11の中央部には、光学部品10の底面(横断面)の形状及び寸法とほぼ同じ形状及び寸法を有する挿通孔H1(図1参照)が形成されており、この挿通孔H1に光学部品10を挿通することが可能になっている。また、スペーサ11の高さは、光学部品10の高さよりも予め規定された分だけ低く設定されている。   The spacer 11 is a square ring-shaped member made of, for example, glass, and is used for holding the optical component 10 and the dummy member 12. An insertion hole H1 (see FIG. 1) having substantially the same shape and dimensions as the shape and dimensions of the bottom surface (transverse section) of the optical component 10 is formed in the central portion of the spacer 11, and an optical hole is formed in the insertion hole H1. The component 10 can be inserted. The height of the spacer 11 is set lower than the height of the optical component 10 by a predetermined amount.

ダミー部材12は、光学部品10の材料と同じ硬さを有する材料で形成された四角環形状の部材であり、光学部品10に高い平坦性を有する平面を形成するために用いられるものである。ここで、本明細書において、「同じ硬さ」とは、ダミー部材12のビッカース硬さと光学部品10のビッカース硬さとが同値であることに限定されず、ダミー部材12のビッカース硬さが光学部品のビッカース硬さの85〜100%であることも含まれる趣旨である。このダミー部材12の中央部には、スペーサ11と同様に、光学部品10の底面(横断面)の形状及び寸法とほぼ同じ形状及び寸法を有する挿通孔H2が形成されており、この挿通孔H2に光学部品10を挿通することが可能になっている。   The dummy member 12 is a quadrangular ring-shaped member made of a material having the same hardness as the material of the optical component 10 and is used to form a flat surface having high flatness on the optical component 10. Here, in the present specification, the “same hardness” is not limited to the fact that the Vickers hardness of the dummy member 12 and the Vickers hardness of the optical component 10 are equal, and the Vickers hardness of the dummy member 12 is equal to the optical component. It is also included that it is 85 to 100% of the Vickers hardness. Similar to the spacer 11, an insertion hole H2 having substantially the same shape and dimensions as the shape and dimensions of the bottom surface (transverse section) of the optical component 10 is formed at the center of the dummy member 12, and this insertion hole H2 is formed. It is possible to insert the optical component 10 into the optical disc 10.

ダミー部材12は、光学部品10の長手方向に対する全側面を隙間無く取り囲むようスペーサ11の一端E1(図1参照)に接着されて取り付けられる。このダミー部材12の厚みは、図2(a)に示す通り、スペーサ11の一端E1に取り付けられた状態で、その上端T1の高さ位置が光学部品10の研磨面P1の高さ位置よりも高くなるように設定される。或いは、図2(b)に示す通り、スペーサ11の一端E1に取り付けられた状態で、その上端T1の高さ位置が光学部品10の研磨面P1の高さ位置と同一となるように設定される。尚、ダミー部材12の厚みは、少なくとも研磨面P1が研磨される厚み以上に設定される。   The dummy member 12 is attached and attached to one end E1 (see FIG. 1) of the spacer 11 so as to surround the entire side surface of the optical component 10 in the longitudinal direction without any gap. As shown in FIG. 2A, the thickness of the dummy member 12 is such that the height position of the upper end T1 is higher than the height position of the polishing surface P1 of the optical component 10 when attached to one end E1 of the spacer 11. Set to be higher. Alternatively, as shown in FIG. 2 (b), the height position of the upper end T1 is set to be the same as the height position of the polishing surface P1 of the optical component 10 in a state where the spacer 11 is attached to the one end E1. The Note that the thickness of the dummy member 12 is set to be equal to or greater than the thickness at which the polishing surface P1 is polished.

図3は、本発明の第1実施形態による光学部品の製造方法及び研磨方法を説明するための図である。まず、図3(a)に示す通り、研磨対象物である光学部品10をスペーサ11の中央部に形成された挿通孔H1に挿通させる。光学部品10の研磨面P1とは反対側の面B1の高さ位置を、スペーサ11の他端E2の高さ位置と同じになるまで光学部品10をスペーサ11に挿通させると、図3(b)に示す通り、光学部品10は、研磨面P1がスペーサ11の一端E1から突出した状態でスペーサ11に保持される。尚、接着剤を用いて、挿通孔H1に挿通された光学部品10をスペーサ11に接着しても良い。   FIG. 3 is a view for explaining the method of manufacturing and polishing the optical component according to the first embodiment of the present invention. First, as shown in FIG. 3A, the optical component 10 that is an object to be polished is inserted through the insertion hole H <b> 1 formed in the central portion of the spacer 11. When the optical component 10 is inserted through the spacer 11 until the height position of the surface B1 opposite to the polishing surface P1 of the optical component 10 is the same as the height position of the other end E2 of the spacer 11, FIG. ), The optical component 10 is held by the spacer 11 with the polishing surface P1 protruding from one end E1 of the spacer 11. The optical component 10 inserted through the insertion hole H1 may be bonded to the spacer 11 using an adhesive.

次に、光学部品10の研磨面P1が突出しているスペーサ11の一端E1にダミー部材12を接着して取り付ける。このとき、スペーサ11の一端E1から突出している光学部品10の部位が、ダミー部材12の中央部に形成された挿通孔H2(図1参照)に挿通される。このため、ダミー部材12は、図3(c)に示す通り、光学部品10の長手方向に対する全側面を隙間無く取り囲み、且つその上端T1の高さ位置が研磨面P1の高さ位置よりも高くなるように配置される(第1工程)。このようにして、図1,2を用いて説明した被研磨体1が形成される。   Next, the dummy member 12 is attached and attached to one end E1 of the spacer 11 from which the polishing surface P1 of the optical component 10 protrudes. At this time, the portion of the optical component 10 protruding from the one end E1 of the spacer 11 is inserted into an insertion hole H2 (see FIG. 1) formed in the central portion of the dummy member 12. For this reason, as shown in FIG. 3C, the dummy member 12 surrounds the entire side surface of the optical component 10 in the longitudinal direction without any gap, and the height position of the upper end T1 is higher than the height position of the polishing surface P1. It arrange | positions so that it may become (1st process). In this way, the object to be polished 1 described with reference to FIGS.

被研磨体1が形成されると、図3(d)に示す通り、スペーサ11の他端E2(ダミー部材12が取り付けられた側とは反対の端部)を上側にして、ダミー部材12の上端T1が研磨盤PBに接触するように被研磨体1を配置させ、被研磨体1と研磨盤PBとを相対移動させて被研磨体1を研磨する。被研磨体1を研磨する場合には、例えば図3(d)に示す通り、研磨盤PBの中心部からずれた部分に被研磨体1を接触させ、研磨盤PBを平面視で時計回りに回転させつつ、被研磨体1も研磨盤PBとは別に(独立させて)平面視で時計回りに回転させる。尚、被研磨体1及び研磨盤PBの回転速度は、例えば数十〜百[rpm]程度である。   When the object to be polished 1 is formed, as shown in FIG. 3 (d), the other end E2 of the spacer 11 (the end opposite to the side on which the dummy member 12 is attached) faces upward, The object to be polished 1 is arranged so that the upper end T1 is in contact with the polishing disk PB, and the object to be polished 1 is polished by relatively moving the object to be polished 1 and the polishing disk PB. When polishing the object 1, for example, as shown in FIG. 3D, the object 1 is brought into contact with a portion shifted from the center of the polishing disk PB, and the polishing disk PB is rotated clockwise in plan view. While being rotated, the object to be polished 1 is also rotated clockwise in a plan view separately from (independently from) the polishing plate PB. In addition, the rotational speed of the to-be-polished body 1 and the polishing board PB is, for example, about several tens to one hundred [rpm].

図3(c)に例示する被研磨体1は、ダミー部材12の上端T1の高さ位置が、研磨面P1の高さ位置よりも高くなるように配置されている。このため、研磨が開始された時点では、ダミー部材12のみが研磨され、光学部品10の研磨面P1が研磨されない状態である。被研磨体1の研磨が進み、ダミー部材12と光学部品10の研磨面P1とが面一になると、光学部品10の研磨面P1がダミー部材12の端部とともに研磨される状態になる(第2工程)。尚、ダミー部材12の端部には、面状のもの(端面)や先が凸状のものが含まれる。この状態が予め規定された時間まで継続されると、被研磨体1の研磨が完了する。尚、被研磨体1の研磨が完了すると、光学部品10は被研磨体1から取り外される。   The object to be polished 1 illustrated in FIG. 3C is arranged so that the height position of the upper end T1 of the dummy member 12 is higher than the height position of the polishing surface P1. For this reason, when polishing is started, only the dummy member 12 is polished, and the polishing surface P1 of the optical component 10 is not polished. When the polishing of the object 1 progresses and the dummy member 12 and the polishing surface P1 of the optical component 10 are flush with each other, the polishing surface P1 of the optical component 10 is polished together with the end of the dummy member 12 (first step). 2 steps). Note that the end portion of the dummy member 12 includes a planar one (end surface) and a tip having a convex shape. When this state continues until a predetermined time, the polishing of the object 1 is completed. When the polishing of the object 1 is completed, the optical component 10 is removed from the object 1.

被研磨体1を研磨している間は、以下の2つの原因の少なくとも1つの原因によって被研磨面の外周部分の研磨圧力が中心部分の研磨圧力に比べて高くなる。尚、研磨圧力とは、研磨盤PBと研磨面P1との接触した面(外周部分の場合)及び研磨盤PBとダミー部材12の上端T1の面との接触した面(中心部分の場合)に掛かる圧力である。
第1原因:被研磨体1が研磨盤PBに押し当てられることによって、被研磨体1の外周部分が変形した研磨盤PBの面に沿って変形することにより、その変形した分だけ被研磨体1に掛かる圧力が増す。
第2原因:研磨液に含まれている研磨材が研磨盤PBの回転によって外側に散在することによって、この散在した研磨材の分だけ被研磨体1に掛かる圧力が増す。
While the workpiece 1 is being polished, the polishing pressure at the outer peripheral portion of the surface to be polished is higher than the polishing pressure at the central portion due to at least one of the following two causes. The polishing pressure refers to the surface (in the case of the outer peripheral portion) in contact with the polishing plate PB and the polishing surface P1 and the surface in contact with the surface of the polishing plate PB and the upper end T1 of the dummy member 12 (in the case of the central portion). It is the applied pressure.
First cause: When the object to be polished 1 is pressed against the polishing disk PB, the outer peripheral portion of the object to be polished 1 is deformed along the deformed surface of the polishing disk PB, and the object to be polished is deformed by the amount of deformation. The pressure on 1 increases.
Second cause: The polishing material contained in the polishing liquid is scattered to the outside by the rotation of the polishing disk PB, so that the pressure applied to the object 1 is increased by the amount of the scattered polishing material.

ここで、被研磨体1では、光学部品10の長手方向に対する全側面が、光学部品10と同じ硬さを有する材料によって形成されたダミー部材12によって隙間無く取り囲まれていることから、ダミー部材12の研磨圧力が研磨面P1の研磨圧力よりも高くなるものの、研磨面P1の研磨圧力は、研磨面P1の全体に亘ってほぼ一定になる。   Here, in the to-be-polished body 1, since all the side surfaces with respect to the longitudinal direction of the optical component 10 are surrounded by the dummy member 12 formed of a material having the same hardness as that of the optical component 10, there are no gaps. However, the polishing pressure of the polishing surface P1 is substantially constant over the entire polishing surface P1.

このため、図4に示す通り、研磨面P1の周囲に配置されたダミー部材12に掛かる研磨圧力が、研磨面P1に掛かる研磨圧力に比べて高くなるため、ダミー部材12の上端T1の面が、研磨面P1よりも削られて平坦性が悪化するものの、研磨面P1に掛かる研磨圧力がダミー部材12に掛かる研磨圧力に比べて低くなるため、研磨面P1内においては、ほぼ均一に削られることとなる。従って、相対的に多く削られる箇所がダミー部材12のみに限定されることになるため、被研磨体1については従来のように想定以上に多く削られることを抑制できる。図4は、本発明の第1実施形態において研磨が進んだ状態を示す断面図である。このように、本実施形態では、光学部品10の研磨面P1がほぼ均一に削られるため、従来よりも平坦性の高い面を有する光学部品10を製造することが可能である。   For this reason, as shown in FIG. 4, since the polishing pressure applied to the dummy member 12 disposed around the polishing surface P1 is higher than the polishing pressure applied to the polishing surface P1, the surface of the upper end T1 of the dummy member 12 is Although the polishing surface P1 is scraped down and the flatness is deteriorated, the polishing pressure applied to the polishing surface P1 is lower than the polishing pressure applied to the dummy member 12, so that the polishing surface P1 is cut almost uniformly. It will be. Therefore, since a portion to be cut relatively much is limited to only the dummy member 12, it is possible to suppress the workpiece 1 from being cut more than expected as in the past. FIG. 4 is a cross-sectional view showing a state where polishing has progressed in the first embodiment of the present invention. As described above, in this embodiment, since the polishing surface P1 of the optical component 10 is scraped almost uniformly, it is possible to manufacture the optical component 10 having a surface with higher flatness than the conventional one.

また、本実施形態では、従来と異なり、光学部品10の研磨面P1とダミー部材12の端面との高精度な高さ位置合わせを必要としないため、光学部品10およびダミー部材12のセッティングが容易となる事から、光学部品10を容易に製造することが可能である。また、本実施形態では、スペーサ11を用いて光学部品10を把持しており、更にスペーサ11の先端にダミー部材12を取り付けている。このため、ダミー部材12で光学部品10を直接把持している場合と比べてダミー部材12の交換を容易に行うことができるため、光学部品10の製造効率がより一層向上する。   Further, in the present embodiment, unlike the conventional case, since the high-precision height alignment between the polishing surface P1 of the optical component 10 and the end surface of the dummy member 12 is not required, the setting of the optical component 10 and the dummy member 12 is easy. Therefore, the optical component 10 can be easily manufactured. In this embodiment, the optical component 10 is held using the spacer 11, and the dummy member 12 is attached to the tip of the spacer 11. For this reason, since the dummy member 12 can be easily replaced as compared with the case where the optical component 10 is directly held by the dummy member 12, the manufacturing efficiency of the optical component 10 is further improved.

〈第1変形例〉
図5は、本発明の第1実施形態における被研磨体の第1変形例を示す斜視図である。上述した実施形態では、光学部品10が四角柱形状である場合を例に挙げて説明したが、図5に示す通り、円柱形状(ロッド形状)の光学部品10を製造することも可能である。但し、光学部品10の長手方向に対する全側面を、光学部品10と同じ硬さを有する材料によって形成されたダミー部材12によって隙間無く取り囲む必要があることから、図5に示す通り、中央部に円形形状の挿通孔が形成されたスペーサ11及びダミー部材12を用いる必要がある。尚、円柱形状(ロッド形状)以外に、三角柱形状等の多角柱形状の光学部品10を製造することも可能である。
<First Modification>
FIG. 5 is a perspective view showing a first modification of the object to be polished in the first embodiment of the present invention. In the embodiment described above, the case where the optical component 10 has a quadrangular prism shape has been described as an example. However, as illustrated in FIG. 5, it is also possible to manufacture a cylindrical (rod-shaped) optical component 10. However, since all the side surfaces of the optical component 10 in the longitudinal direction need to be surrounded without a gap by the dummy member 12 formed of a material having the same hardness as the optical component 10, as shown in FIG. It is necessary to use the spacer 11 and the dummy member 12 in which the shape insertion hole is formed. In addition to the cylindrical shape (rod shape), it is also possible to manufacture the optical component 10 having a polygonal column shape such as a triangular column shape.

〈第2変形例〉
図6は、本発明の第1実施形態における被研磨体の第2変形例を示す断面図である。上述した実施形態では、スペーサ11の一端E1にのみダミー部材12が設けられていたが、スペーサ11の両端(即ち、一端E1及び他端E2)にダミー部材12を設けることも可能である。このような被研磨体1を用い、スペーサ11の一端E1を下側にして研磨した後に、スペーサ11の他端E2を下側にして研磨することで、光学部品10の両端部を研磨することが可能となる。これにより、光学部品10の両端部を容易に研磨することが可能になるため、光学部品10の製造効率がより一層向上する。但し、本変形例では、光学部品10の両端部が研磨面P1となることから、光学部品10の両端部をスペーサ11の両端からそれぞれ突出した状態にする必要がある。
<Second modification>
FIG. 6 is a cross-sectional view showing a second modification of the object to be polished in the first embodiment of the present invention. In the embodiment described above, the dummy member 12 is provided only at one end E1 of the spacer 11. However, it is also possible to provide the dummy member 12 at both ends (that is, one end E1 and the other end E2) of the spacer 11. Using such an object 1 to polish, both ends of the optical component 10 are polished by polishing with the one end E1 of the spacer 11 facing down and then polishing with the other end E2 of the spacer 11 facing down. Is possible. Thereby, both ends of the optical component 10 can be easily polished, so that the manufacturing efficiency of the optical component 10 is further improved. However, in this modified example, since both ends of the optical component 10 become the polishing surface P1, it is necessary to make both ends of the optical component 10 project from both ends of the spacer 11, respectively.

〔第2実施形態〕
図7は、本発明の第2実施形態による光学部品の製造方法及び研磨方法の概要を示す断面図である。図7に示す通り、本実施形態では、研磨対象物である複数の光学部品20が設けられた被研磨体2を研磨盤PBに接触させ、被研磨体2と研磨盤PBとを相対移動させて被研磨体2を研磨することで、高い平坦性を有する平面が形成された複数の光学部品20の製造を一度に行うものである。
[Second Embodiment]
FIG. 7 is a cross-sectional view illustrating an outline of a method for manufacturing an optical component and a polishing method according to a second embodiment of the present invention. As shown in FIG. 7, in the present embodiment, the object to be polished 2 provided with a plurality of optical components 20 that are objects to be polished is brought into contact with the polishing disk PB, and the object to be polished 2 and the polishing disk PB are moved relative to each other. By polishing the object to be polished 2, a plurality of optical components 20 on which a flat surface having high flatness is formed are manufactured at a time.

図8は、本発明の第2実施形態で用いられる被研磨体を示す平面図である。尚、図7は、図8に示されている被研磨体2の面(上面)を研磨盤PBに接触させた状態におけるB−B線断面矢視図である。図7,8に示す通り、被研磨体2は、複数の光学部品20、スペーサ21(保持部材)、及びダミー部材22を備える。   FIG. 8 is a plan view showing an object to be polished used in the second embodiment of the present invention. 7 is a cross-sectional view taken along line BB in a state where the surface (upper surface) of the object to be polished 2 shown in FIG. 8 is in contact with the polishing board PB. As shown in FIGS. 7 and 8, the object to be polished 2 includes a plurality of optical components 20, spacers 21 (holding members), and dummy members 22.

光学部品20は、図1〜6に示す光学部品10と同様に、任意の光学結晶によって形成された四角柱形状の部材であり、例えば、底面の一辺の長さ(縦及び横の長さ)が数〜十数[mm]程度であり、高さが10〜50[mm]程度の大きさである。この光学部品20は、図8中の配列方向D1(第1方向)に沿って隙間無く直線状に配列される。尚、本実施形態では、被研磨体2に設けられる光学部品20の数が「10」である場合について説明するが、光学部品20の数は任意である(1つであってもよいし、複数であっても良い)。   The optical component 20 is a quadrangular prism-shaped member formed of an arbitrary optical crystal, similar to the optical component 10 shown in FIGS. 1 to 6, for example, the length of one side (vertical and horizontal lengths) of the bottom surface. Is about several to several tens [mm], and the height is about 10 to 50 [mm]. The optical components 20 are linearly arranged without a gap along the arrangement direction D1 (first direction) in FIG. In the present embodiment, the case where the number of optical components 20 provided on the object to be polished 2 is “10” will be described. However, the number of optical components 20 is arbitrary (one may be used, May be multiple).

スペーサ21は、図1〜6に示すスペーサ11と同様に、光学部品20及びダミー部材22を保持するためのものである。このスペーサ21は、例えばガラスによって形成された直方体形状の4つのスペーサ部材21a〜21dが組み合わされてなるものである。スペーサ部材21a,21bは、配列方向D1に配列された光学部品20を、配列方向D1とは直交する直交方向D2(第2方向:平面視において第1方向に交差する方向)に挟むように配置され、スペーサ部材21c,21dは、配列方向D1に配列された光学部品20を、配列方向D1に挟むように配置される。   The spacer 21 is for holding the optical component 20 and the dummy member 22 similarly to the spacer 11 shown in FIGS. The spacer 21 is formed by combining four rectangular parallelepiped spacer members 21a to 21d made of glass, for example. The spacer members 21a and 21b are arranged so as to sandwich the optical components 20 arranged in the arrangement direction D1 in an orthogonal direction D2 orthogonal to the arrangement direction D1 (second direction: a direction intersecting the first direction in plan view). The spacer members 21c and 21d are arranged so as to sandwich the optical component 20 arranged in the arrangement direction D1 in the arrangement direction D1.

スペーサ部材21a,21bは、配列方向D1の長さが光学部品20の全長(配列方向D1に沿って隙間無く直線状に配列された光学部品20の配列方向D1における長さ)より長く設定されており、直交方向D2の長さが光学部品20の直交方向D2の長さの3倍程度に設定されている。また、スペーサ部材21a,21bは、図1〜6に示すスペーサ11と同様に、高さが光学部品20の高さよりも予め規定された分だけ低く設定されている。   The spacer members 21a and 21b are set such that the length in the arrangement direction D1 is longer than the entire length of the optical component 20 (the length in the arrangement direction D1 of the optical components 20 arranged linearly along the arrangement direction D1 with no gap). The length in the orthogonal direction D2 is set to about three times the length of the optical component 20 in the orthogonal direction D2. Further, the spacer members 21 a and 21 b are set to have a height lower than the height of the optical component 20 by a predetermined amount, like the spacer 11 shown in FIGS.

スペーサ部材21c,21dは、直交方向D2の長さが光学部品20の直交方向D2の長さとほぼ同じ長さに設定されており、配列方向D1の長さが、配列方向D1におけるスペーサ部材21a,21bの長さから光学部品20の全長を減じた長さの半分の長さに設定されている。また、スペーサ部材21c,21dは、スペーサ部材21a,21bの高さと同じ高さに設定されている。   The spacer members 21c and 21d have the length in the orthogonal direction D2 set to be substantially the same as the length in the orthogonal direction D2 of the optical component 20, and the length in the arrangement direction D1 is the spacer member 21a, The length is set to half the length obtained by subtracting the total length of the optical component 20 from the length of 21b. The spacer members 21c and 21d are set to the same height as the spacer members 21a and 21b.

ダミー部材22は、図1〜6に示すダミー部材12と同様に、光学部品20に高い平坦性を有する平面を形成するために用いられるものである。このダミー部材22は、配列方向D1に配列された光学部品20の研磨面P2の周囲に、研磨面P2全体の全周を隙間無く取り囲むようスペーサ21に取り付けられる。具体的に、ダミー部材22は、光学部品20の材料と同じ硬さを有する材料で形成された平板状の4つの部材22a〜22dからなる。このように、本実施形態では、光学部品20の研磨面P2の全周を隙間無く4方からダミー部材22で把持しているので、従来起こっていた光学部品の4方端部側で起こり得る面だれを抑制でき、従来よりも平坦性の高い面を有する光学部品20を製造することが可能となる。   The dummy member 22 is used to form a flat surface having high flatness on the optical component 20 in the same manner as the dummy member 12 shown in FIGS. The dummy member 22 is attached to the spacer 21 around the polishing surface P2 of the optical component 20 arranged in the arrangement direction D1 so as to surround the entire circumference of the entire polishing surface P2 without a gap. Specifically, the dummy member 22 includes four plate-like members 22 a to 22 d formed of a material having the same hardness as the material of the optical component 20. As described above, in this embodiment, since the entire circumference of the polishing surface P2 of the optical component 20 is gripped by the dummy member 22 from four sides without any gap, this can occur on the four-side end side of the optical component that has conventionally occurred. It is possible to suppress the sagging and to manufacture the optical component 20 having a surface with higher flatness than the conventional one.

部材22a,22bは、配列方向D1に配列された光学部品20を直交方向D2に挟むようにスペーサ部材21a,21bの一端E11,E12にそれぞれ接着されて取り付けられる。また、部材22c,22dは、配列方向D1に配列された光学部品20を配列方向D1に挟むようにスペーサ部材21c,21dの一端E13,E14にそれぞれ接着されて取り付けられる。   The members 22a and 22b are attached and attached to the ends E11 and E12 of the spacer members 21a and 21b so that the optical components 20 arranged in the arrangement direction D1 are sandwiched in the orthogonal direction D2. The members 22c and 22d are attached and attached to one ends E13 and E14 of the spacer members 21c and 21d so that the optical components 20 arranged in the arrangement direction D1 are sandwiched in the arrangement direction D1.

部材22a,22bは、配列方向D1の長さが少なくとも光学部品20の全長より長く設定されており、直交方向D2の長さが光学部品20の直交方向D2の長さの2〜3倍程度に設定されている。これにより、左端と右端の被研磨体2の角をより確実に部材22a,22bで覆うことが可能になり、左端と右端の被研磨体2の角にかかる圧力が低下し、研磨ダレが抑制される。   The members 22a and 22b are set such that the length in the arrangement direction D1 is at least longer than the total length of the optical component 20, and the length in the orthogonal direction D2 is about 2 to 3 times the length of the optical component 20 in the orthogonal direction D2. Is set. As a result, the corners of the object to be polished 2 at the left end and the right end can be more reliably covered with the members 22a and 22b, the pressure applied to the corners of the object to be polished 2 at the left end and the right end is reduced, and polishing sagging is suppressed. Is done.

部材22c,22dは、直交方向D2の長さが光学部品20の直交方向D2の長さとほぼ同じ長さに設定されており、配列方向D1の長さが、少なくとも配列方向D1における光学部品20の長さの2〜3倍程度に設定されている。また、部材22a〜22dの高さは、図1〜6に示すダミー部材12と同様に、スペーサ21に取り付けられた状態で、その上端の高さ位置が光学部品20の研磨面P2の高さ位置よりも高くなるように、又は研磨面P2の高さ位置と同一となるように設定される。尚、部材22a〜22dの厚みは、少なくとも研磨面P2が研磨される厚み以上に設定される。   The members 22c and 22d are set so that the length in the orthogonal direction D2 is substantially the same as the length in the orthogonal direction D2 of the optical component 20, and the length in the arrangement direction D1 is at least that of the optical component 20 in the arrangement direction D1. It is set to about 2 to 3 times the length. Further, the height of the members 22a to 22d is the height of the polishing surface P2 of the optical component 20 when the height of the upper end of the members 22a to 22d is attached to the spacer 21 as in the dummy member 12 shown in FIGS. It is set to be higher than the position or to be the same as the height position of the polishing surface P2. The thicknesses of the members 22a to 22d are set to be equal to or greater than the thickness at which the polishing surface P2 is polished.

図9は、本発明の第2実施形態による光学部品の製造方法及び研磨方法を説明するための図である。まず、図9(a)に示す通り、研磨対象物である複数の光学部品20を配列方向D1に沿って隙間無く直線状に配列する。このとき、光学部品20の底面(横断面)の形状が長方形形状である場合には、例えば長辺が直交方向D2に沿うように光学部品20の向きを揃える。尚、長辺が配列方向D1に沿うように光学部品20の向きを揃えても良い。   FIG. 9 is a diagram for explaining an optical component manufacturing method and a polishing method according to the second embodiment of the present invention. First, as shown in FIG. 9A, a plurality of optical components 20 that are objects to be polished are arranged linearly with no gap along the arrangement direction D1. At this time, when the shape of the bottom surface (transverse section) of the optical component 20 is rectangular, for example, the orientation of the optical component 20 is aligned so that the long side is along the orthogonal direction D2. The orientation of the optical component 20 may be aligned so that the long side is along the arrangement direction D1.

次に、図9(a)に示す通り、配列方向D1に配列された光学部品20を直交方向D2に挟むようにスペーサ部材21a,21bを配置するとともに、配列方向D1に配列された光学部品20を配列方向D1に挟むようにスペーサ部材21c,21dを配置する。これにより、図9(b)に示す通り、全ての光学部品20は、その研磨面P2がスペーサ21をなすスペーサ部材21a〜21dの一端E11〜E14から突出した状態でスペーサ21に保持される。尚、スペーサ部材21a〜21dの側面に接着剤を塗布し、スペーサ部材21a〜21dと光学部品20とを接着するとともに、スペーサ部材21a〜21d同士を接着しても良い。   Next, as shown in FIG. 9A, the spacer members 21a and 21b are disposed so as to sandwich the optical component 20 arranged in the arrangement direction D1 in the orthogonal direction D2, and the optical component 20 arranged in the arrangement direction D1. The spacer members 21c and 21d are arranged so as to be sandwiched in the arrangement direction D1. Accordingly, as shown in FIG. 9B, all the optical components 20 are held by the spacers 21 in a state where the polished surface P <b> 2 protrudes from one ends E <b> 11 to E <b> 14 of the spacer members 21 a to 21 d that form the spacers 21. Note that an adhesive may be applied to the side surfaces of the spacer members 21a to 21d to bond the spacer members 21a to 21d and the optical component 20, and the spacer members 21a to 21d may be bonded to each other.

続いて、図9(b)に示す通り、光学部品20の研磨面P2が突出しているスペーサ21の一端(スペーサ21をなすスペーサ部材21a〜21dの一端E11〜E14)にダミー部材22を取り付ける。具体的には、配列方向D1に配列された光学部品20を直交方向D2に挟むように、ダミー部材22をなす部材22a,22bを、スペーサ部材21a,21bの一端E11,E12にそれぞれ接着して取り付ける。また、配列方向D1に配列された光学部品20を配列方向D1に挟むように、ダミー部材22をなす部材22c,22dを、スペーサ部材21c,21dの一端E13,E14にそれぞれ接着して取り付ける。   Subsequently, as shown in FIG. 9B, the dummy member 22 is attached to one end of the spacer 21 from which the polishing surface P2 of the optical component 20 protrudes (one end E11 to E14 of the spacer members 21a to 21d forming the spacer 21). Specifically, the members 22a and 22b forming the dummy member 22 are bonded to the one ends E11 and E12 of the spacer members 21a and 21b so that the optical components 20 arranged in the arrangement direction D1 are sandwiched in the orthogonal direction D2. Install. Further, the members 22c and 22d constituting the dummy member 22 are attached to the one ends E13 and E14 of the spacer members 21c and 21d so that the optical components 20 arranged in the arrangement direction D1 are sandwiched in the arrangement direction D1.

これにより、ダミー部材22(部材22a〜22d)は、図9(c)に示す通り、スペーサ21(スペーサ部材21a〜21d)の一端から突出した研磨面P2全体の全周を隙間無く取り囲み、且つその上端T11の高さ位置が研磨面P2の高さ位置よりも高くなるように配置される(第1工程)。このようにして、図7,8を用いて説明した被研磨体2が形成される。   Thereby, as shown in FIG. 9C, the dummy member 22 (members 22a to 22d) surrounds the entire circumference of the entire polishing surface P2 protruding from one end of the spacer 21 (spacer members 21a to 21d) without gaps, and It arrange | positions so that the height position of the upper end T11 may become higher than the height position of the grinding | polishing surface P2 (1st process). In this way, the object to be polished 2 described with reference to FIGS. 7 and 8 is formed.

被研磨体2が形成されると、第1実施形態と同様に、スペーサ21の他端(ダミー部材22が取り付けられた側とは反対の端部)を上側にして被研磨体2を研磨盤PBに接触させ、被研磨体2と研磨盤PBとを相対移動させて被研磨体2を研磨する(図7参照)。本実施形態においても、研磨が開始された時点では、ダミー部材22のみが研磨されて光学部品20の研磨面P2が研磨されないが、被研磨体2の研磨が進むと、光学部品20の研磨面P2がダミー部材22の端部とともに研磨される状態になる(第2工程)。この状態が予め規定された時間継続されると、被研磨体2の研磨が完了する。尚、被研磨体2の研磨が完了すると、光学部品20は被研磨体2から取り外される。   When the object to be polished 2 is formed, as in the first embodiment, the object to be polished 2 is polished with the other end of the spacer 21 (the end opposite to the side on which the dummy member 22 is attached) facing upward. The object to be polished 2 is brought into contact with the PB, and the object to be polished 2 and the polishing disk PB are relatively moved to polish the object to be polished 2 (see FIG. 7). Also in this embodiment, when the polishing is started, only the dummy member 22 is polished and the polishing surface P2 of the optical component 20 is not polished. However, when the polishing of the object 2 progresses, the polishing surface of the optical component 20 is advanced. P2 is polished together with the end of the dummy member 22 (second step). When this state continues for a predetermined time, the polishing of the object to be polished 2 is completed. When the polishing of the object to be polished 2 is completed, the optical component 20 is removed from the object to be polished 2.

本実施形態における被研磨体2は、複数の光学部品20の研磨面P2全体の全周が、光学部品20と同じ硬さを有する材料によって形成されたダミー部材22によって隙間無く取り囲まれている。これにより、光学部品20の研磨面P2の各々に加わる研磨圧力をほぼ一定することができ、光学部品20の研磨面P2の各々がほぼ均一に削られるため、高い平坦性を有する平面が形成された複数の光学部品20を一度に製造することが可能である。従って、複数の光学部品20を容易に研磨することが可能となるため、複数の光学部品20の製造効率がより一層向上する。   In the present embodiment, the entire periphery of the entire polishing surface P2 of the plurality of optical components 20 is surrounded by the dummy member 22 formed of a material having the same hardness as the optical component 20 without any gap. As a result, the polishing pressure applied to each of the polishing surfaces P2 of the optical component 20 can be made substantially constant, and each of the polishing surfaces P2 of the optical component 20 is scraped almost uniformly, so that a plane having high flatness is formed. A plurality of optical components 20 can be manufactured at a time. Accordingly, the plurality of optical components 20 can be easily polished, so that the manufacturing efficiency of the plurality of optical components 20 is further improved.

〈第1変形例〉
図10は、本発明の第2実施形態における被研磨体の第1変形例を示す平面図である。上述した実施形態では、複数の光学部品20が配列方向D1に沿って隙間無く直線状に配列される例を挙げて説明したが、図10に示す通り、配列方向D1に加えて直交方向D2に光学部品20を配列しても良い。尚、図10では、配列方向D1に沿って隙間無く直線状に配列された10個の光学部品20(第1列の光学部品20)と、配列方向D1に沿って隙間無く直線状に配列された10個の光学部品20(第2列の光学部品20)とが、直交方向D2に隙間無く配列されている。
<First Modification>
FIG. 10 is a plan view showing a first modification of the object to be polished in the second embodiment of the present invention. In the above-described embodiment, the example in which the plurality of optical components 20 are linearly arranged without a gap along the arrangement direction D1 has been described. However, as shown in FIG. 10, in the orthogonal direction D2 in addition to the arrangement direction D1. The optical components 20 may be arranged. In FIG. 10, ten optical components 20 (first row optical components 20) arranged in a straight line with no gap along the arrangement direction D1 and a straight line with no gap along the arrangement direction D1. Ten optical components 20 (second row optical components 20) are arranged in the orthogonal direction D2 without any gaps.

但し、光学部品20の研磨面P2の全周を、光学部品20と同じ硬さを有する材料によって形成されたダミー部材22によって隙間無く取り囲む必要があることから、図10に示す通り、直交方向D2の長さが、2つ分の光学部品20の直交方向D2の長さとほぼ同じ長さに設定されたスペーサ部材21c,21d及び部材22c,22dを用いる必要がある。尚、直交方向D2への配列数は、3以上であっても良い。本変形例では、配列方向D1のみならず直交方向D2に配列された複数の光学部品20を容易に研磨することが可能となるため、配列方向D1および直交方向D2に配列された複数の光学部品20の製造効率がより一層向上する。   However, since the entire circumference of the polishing surface P2 of the optical component 20 needs to be surrounded without a gap by the dummy member 22 formed of a material having the same hardness as the optical component 20, as shown in FIG. 10, the orthogonal direction D2 It is necessary to use the spacer members 21c and 21d and the members 22c and 22d whose length is substantially the same as the length of the two optical components 20 in the orthogonal direction D2. The number of arrangements in the orthogonal direction D2 may be three or more. In this modification, it is possible to easily polish the plurality of optical components 20 arranged not only in the arrangement direction D1 but also in the orthogonal direction D2. Therefore, the plurality of optical components arranged in the arrangement direction D1 and the orthogonal direction D2. The production efficiency of 20 is further improved.

〈第2変形例〉
図11は、本発明の第2実施形態における被研磨体の第2変形例を示す断面図である。上述した実施形態では、スペーサ21の一端(スペーサ21をなすスペーサ部材21a〜21dの一端E11〜E14)にのみダミー部材22が設けられていたが、スペーサ21の両端にダミー部材22を設けることも可能である。このような被研磨体2を用い、スペーサ21の一端を下側にして研磨した後に、スペーサ21の他端を下側にして研磨することで、光学部品20の両端部を研磨することが可能となる。これにより、光学部品10の両端部を容易に研磨することが可能になるため、光学部品10の製造効率がより一層向上する。但し、本変形例では、光学部品20の両端部が研磨面P2となることから、第1実施形態の第2変形例と同様に、光学部品20の両端部をスペーサ21の両端からそれぞれ突出した状態にする必要がある。
<Second modification>
FIG. 11: is sectional drawing which shows the 2nd modification of the to-be-polished body in 2nd Embodiment of this invention. In the embodiment described above, the dummy member 22 is provided only at one end of the spacer 21 (one end E11 to E14 of the spacer members 21a to 21d forming the spacer 21). However, the dummy member 22 may be provided at both ends of the spacer 21. Is possible. It is possible to polish both ends of the optical component 20 by using such an object to be polished 2 and polishing with one end of the spacer 21 facing down and then polishing with the other end of the spacer 21 facing down. It becomes. Thereby, both ends of the optical component 10 can be easily polished, so that the manufacturing efficiency of the optical component 10 is further improved. However, in the present modification, both end portions of the optical component 20 become the polishing surface P2, so that both end portions of the optical component 20 protrude from both ends of the spacer 21, respectively, as in the second modification example of the first embodiment. It needs to be in a state.

本出願の発明者は、上述した第2実施形態による研磨方法を用いて実際に光学結晶を研磨し、研磨された平面の面精度(反射波面精度)を測定した。研磨した光学結晶は、TSLAG結晶である。第1実施形態又は第2実施形態による研磨方法によって研磨された平面の面精度は、0.08λであった。尚、λ=633[nm]である。これに対し、ダミー部材を用いない従来の方法で研磨された平面の面精度は、0.51λであった。この結果から、第1実施形態又は第2実施形態による研磨方法を用いることで、極めて高い平坦性を有する平面を形成できることが確認できた。   The inventors of the present application actually polished the optical crystal using the polishing method according to the second embodiment described above, and measured the surface accuracy (reflected wavefront accuracy) of the polished plane. The polished optical crystal is a TSLAG crystal. The surface accuracy of the flat surface polished by the polishing method according to the first embodiment or the second embodiment was 0.08λ. Note that λ = 633 [nm]. On the other hand, the surface accuracy of the flat surface polished by the conventional method using no dummy member was 0.51λ. From this result, it was confirmed that a plane having extremely high flatness can be formed by using the polishing method according to the first embodiment or the second embodiment.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、ロッド形状の光学部品を製造する例について説明したが、本発明は、少なくとも1つの平面を有する任意の光学部品(例えば、レンズ、プリズム、ミラー、ビームスプリッタ、アイソレータ等)を製造することが可能である。更に、本発明は、光学部品の製造に限定されることはなく、高い平坦度が要求される研磨対象物の研磨に適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is not restrict | limited to the said embodiment, It can change freely within the scope of the present invention. For example, in the above-described embodiment, an example of manufacturing a rod-shaped optical component has been described. However, the present invention is an arbitrary optical component having at least one plane (for example, a lens, a prism, a mirror, a beam splitter, an isolator, etc.). Can be manufactured. Furthermore, the present invention is not limited to the production of optical components, and can be applied to polishing of an object to be polished that requires high flatness.

また、上述した第1実施形態では、スペーサ11及びダミー部材12の各々が1つの部材である場合を例に挙げて説明したが、これらスペーサ11及びダミー部材12も、第2実施形態のスペーサ21及びダミー部材22と同様に、複数の部材からなるものであっても良い。また、上述した第2実施形態では、スペーサ21が4つのスペーサ部材21a〜21dからなり、ダミー部材22が4つの部材22aから22dからなる例について説明したが、スペーサ21をなすスペーサ部材の数及びダミー部材22をなす部材の数は任意である。   In the first embodiment, the case where each of the spacer 11 and the dummy member 12 is a single member has been described as an example. However, the spacer 11 and the dummy member 12 are also the spacer 21 of the second embodiment. Similarly to the dummy member 22, it may be composed of a plurality of members. Further, in the second embodiment described above, the example in which the spacer 21 includes four spacer members 21a to 21d and the dummy member 22 includes four members 22a to 22d has been described. The number of members constituting the dummy member 22 is arbitrary.

また、上述した第1実施形態では、光学部品10の全側面がダミー部材12によって隙間無く取り囲まれている態様について説明し、上述した第2実施形態では、光学部品20全体の全側面がダミー部材22によって隙間無く取り囲まれている態様について説明した。しかしながら、必要な平坦度が得られるのであれば、光学部品10の全側面、或いは光学部品20全体の全側面がダミー部材によって隙間無く取り囲まれている必要は必ずしも無く、ダミー部材は、少なくとも任意の一方向に沿って光学部品を挟むように配置されていれば良い。例えば、上述した第2実施形態では、ダミー部材22をなす部材22a〜22dのうち、部材22c,22dを省略することも可能である。   Further, in the first embodiment described above, a mode in which all side surfaces of the optical component 10 are surrounded by the dummy member 12 without a gap will be described. In the second embodiment described above, all side surfaces of the entire optical component 20 are dummy members. The aspect surrounded by 22 without a gap has been described. However, as long as the required flatness can be obtained, it is not always necessary that the entire side surface of the optical component 10 or the entire side surface of the optical component 20 is surrounded by the dummy member without any gap. It suffices if the optical parts are arranged along one direction. For example, in the second embodiment described above, among the members 22a to 22d forming the dummy member 22, the members 22c and 22d can be omitted.

10,20…光学部品、11,21…スペーサ、12,22…ダミー部材、21a〜21d…スペーサ部材、22a〜22d…部材、D1…配列方向、D2…直交方向、E1,E11〜E14…一端、P1,P2…研磨面 DESCRIPTION OF SYMBOLS 10,20 ... Optical component, 11, 21 ... Spacer, 12, 22 ... Dummy member, 21a-21d ... Spacer member, 22a-22d ... Member, D1 ... Arrangement direction, D2 ... Orthogonal direction, E1, E11-E14 ... One end , P1, P2 ... Polished surface

Claims (7)

少なくとも1つの平面を有する光学部品を製造する光学部品の製造方法であって、
前記光学部品の材料と同じ硬さを有する材料で形成されたダミー部材を、少なくとも任意の一方向に沿って前記光学部品を挟むように、且つ前記ダミー部材の端部が研磨面の高さ位置よりも高くなるように配置する第1工程と、
前記光学部品の前記研磨面を前記ダミー部材の端部とともに予め規定された高さ位置に到達するまで研磨する第2工程と、
を有する光学部品の製造方法。
An optical component manufacturing method for manufacturing an optical component having at least one plane,
A dummy member formed of a material having the same hardness as the material of the optical component is interposed between the optical component along at least one arbitrary direction, and the end of the dummy member is positioned at the height of the polishing surface. A first step of arranging to be higher than,
A second step of polishing the polishing surface of the optical component together with an end of the dummy member until reaching a predetermined height position;
The manufacturing method of the optical component which has this.
前記光学部品は、前記研磨面を保持部材の一端から突出させた状態で前記保持部材に保持され、
前記ダミー部材は、前記保持部材の一端から突出した前記研磨面を挟むように前記保持部材の一端に取り付けられる、
請求項1記載の光学部品の製造方法。
The optical component is held by the holding member in a state where the polished surface protrudes from one end of the holding member,
The dummy member is attached to one end of the holding member so as to sandwich the polishing surface protruding from one end of the holding member.
The method for manufacturing an optical component according to claim 1.
前記光学部品は、ロッド形状の部品であり、一端部の研磨面を保持部材の一端から突出させるとともに、他端部の研磨面を前記保持部材の他端から突出させた状態で前記保持部材に保持され、
前記ダミー部材は、前記保持部材の一端から突出した前記研磨面を挟むように前記保持部材の一端に取り付けられるとともに、前記保持部材の他端から突出した前記研磨面を挟むように前記保持部材の他端に取り付けられる、
請求項2記載の光学部品の製造方法。
The optical component is a rod-shaped component, and the polishing surface at one end protrudes from one end of the holding member and the polishing surface at the other end protrudes from the other end of the holding member. Retained,
The dummy member is attached to one end of the holding member so as to sandwich the polishing surface protruding from one end of the holding member, and the dummy member of the holding member is sandwiched between the polishing surface protruding from the other end of the holding member. Attached to the other end,
The manufacturing method of the optical component of Claim 2.
前記ダミー部材は、前記研磨面の全周を隙間なく4方向から取り囲むよう、少なくとも4つの部材を組み合わせてなる、請求項2又は請求項3記載の光学部品の製造方法。   4. The method of manufacturing an optical component according to claim 2, wherein the dummy member is a combination of at least four members so as to surround the entire circumference of the polishing surface from four directions without gaps. 前記光学部品は、前記研磨面に平行な第1方向に複数配列されており、
前記保持部材の前記第1方向の長さは、少なくとも前記第1方向における前記光学部品の全長よりも長く設定されている、
請求項2から請求項4の何れか一項に記載の光学部品の製造方法。
A plurality of the optical components are arranged in a first direction parallel to the polishing surface,
The length of the holding member in the first direction is set to be longer than at least the total length of the optical component in the first direction.
The manufacturing method of the optical component as described in any one of Claims 2-4.
前記光学部品は、前記第1方向に加えて、前記研磨面に平行であって前記第1方向に交差する第2方向にも配列されている、請求項5記載の光学部品の製造方法。   6. The method of manufacturing an optical component according to claim 5, wherein the optical component is arranged in a second direction parallel to the polishing surface and intersecting the first direction in addition to the first direction. 研磨対象物の研磨面を研磨する研磨方法であって、
前記研磨対象物の材料と同じ硬さを有する材料で形成されたダミー部材を、少なくとも任意の一方向に沿って前記研磨対象物を挟むように、且つ前記ダミー部材の端部が前記研磨面の高さ位置よりも高くなるように配置する第1工程と、
前記研磨対象物の前記研磨面を前記ダミー部材の端部とともに予め規定された高さ位置に到達するまで研磨する第2工程と、
を有する研磨方法。
A polishing method for polishing a polishing surface of an object to be polished,
A dummy member made of a material having the same hardness as the material of the polishing object is sandwiched between the polishing object along at least one arbitrary direction, and an end of the dummy member is the polishing surface. A first step of placing the first step higher than the height position;
A second step of polishing the polishing surface of the object to be polished together with an end of the dummy member until reaching a predetermined height position;
A polishing method comprising:
JP2016142549A 2016-07-20 2016-07-20 Optical component manufacturing method and polishing method Pending JP2018012153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016142549A JP2018012153A (en) 2016-07-20 2016-07-20 Optical component manufacturing method and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016142549A JP2018012153A (en) 2016-07-20 2016-07-20 Optical component manufacturing method and polishing method

Publications (1)

Publication Number Publication Date
JP2018012153A true JP2018012153A (en) 2018-01-25

Family

ID=61019820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016142549A Pending JP2018012153A (en) 2016-07-20 2016-07-20 Optical component manufacturing method and polishing method

Country Status (1)

Country Link
JP (1) JP2018012153A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136251A (en) * 1995-09-11 1997-05-27 Mitsubishi Materials Corp Device and method for grinding transparent body
JP2003245847A (en) * 2002-02-22 2003-09-02 Kyocera Corp Working method of sapphire wafer and manufacturing method for electronic equipment
JP2007290078A (en) * 2006-04-25 2007-11-08 Tosoh Corp Grinding method of substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136251A (en) * 1995-09-11 1997-05-27 Mitsubishi Materials Corp Device and method for grinding transparent body
JP2003245847A (en) * 2002-02-22 2003-09-02 Kyocera Corp Working method of sapphire wafer and manufacturing method for electronic equipment
JP2007290078A (en) * 2006-04-25 2007-11-08 Tosoh Corp Grinding method of substrate

Similar Documents

Publication Publication Date Title
US20180275384A1 (en) Light-guide device with optical cutoff edge and corresponding production methods
US7692256B2 (en) Method of producing a wafer scale package
KR102336499B1 (en) Pattern structure and method of manufacturing the pattern structure, and liquid crystal display device having metal wire grid polarizer
EP3911983B1 (en) Method of fabricating a symmetric light guide optical element
US20030112510A1 (en) Polarized light beam splitter assembly including embedded wire grid polarizer
US11579437B2 (en) Multi-passage cavity of an optical device for spatial manipulation of luminous radiation
JPH02123321A (en) Manufacture of optical isolator and polarizing element array used for said manufacture and optical module obtained by forming as one body optical isolator obtained by said manufacture
JP4637653B2 (en) Manufacturing method of prism
JP3824541B2 (en) Optical component surface mounting substrate, method of manufacturing the same, and assembly using the same
JP2013216785A (en) Mounting structure for optical component, wavelength-selective device, and method for manufacturing mounting structure for optical device
JP2018012153A (en) Optical component manufacturing method and polishing method
JP2013101244A (en) Optical module
KR20240017159A (en) Fabrication method of optical aperture multiplier with rectangular waveguide
TW201518784A (en) Display device, optical device thereof and manufacturing method of optical device
US20160062132A1 (en) Master wafer, method of manufacturing the same, and method of manufacturing optical device by using the same
JP2008016604A (en) Semiconductor element and its manufacturing method
CN116699781B (en) Processing method of optical glued piece
JP3832827B2 (en) Embedded optical component and embedded optical isolator
KR102413405B1 (en) Manufacturing Method for Exit Pupil Expandable Reflective Waveguide Display
JP4838695B2 (en) Line width measuring device
JP4513647B2 (en) Optical element manufacturing method
JP2000039541A (en) Optical fiber array and its production
JP2585567B2 (en) Composite type retrodirective mirror and method of manufacturing the same
WO2019031563A1 (en) Method for manufacturing optical module
YAMADA et al. 1210 Photoelastic Observation of Thermal Stress in Laser Cleaving of Hard Brittle Materials

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105