JP2018012108A - Press molding method of aluminum resin composite laminated plate - Google Patents

Press molding method of aluminum resin composite laminated plate Download PDF

Info

Publication number
JP2018012108A
JP2018012108A JP2016141018A JP2016141018A JP2018012108A JP 2018012108 A JP2018012108 A JP 2018012108A JP 2016141018 A JP2016141018 A JP 2016141018A JP 2016141018 A JP2016141018 A JP 2016141018A JP 2018012108 A JP2018012108 A JP 2018012108A
Authority
JP
Japan
Prior art keywords
temperature
blank material
aluminum
heating
press molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016141018A
Other languages
Japanese (ja)
Inventor
山本 正博
Masahiro Yamamoto
正博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2016141018A priority Critical patent/JP2018012108A/en
Publication of JP2018012108A publication Critical patent/JP2018012108A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a press molding method of an aluminum resin composite laminated plate capable of molding a square molded article which can improve moldability and has good appearance characteristics.SOLUTION: A press molding method of an aluminum resin composite laminated plate includes a heating step of heating a blank material and a molding step of drawing the heated blank material using a press molding die having a punch and a die, where the heating step includes heating the blank material to a temperature which is equal to or lower than a heat-resistant temperature of a foamed synthetic resin layer and shows a temperature difference between the temperature and the temperature of the heat-resistant temperature of the foamed synthetic resin layer of higher than 10°C and 22°C or lower, and sets a temperature of an inner surface of a concave surface of the square molded article in the blank material to be higher than a temperature of an outer surface to be a convex surface of the square molded article by 3°C or higher.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム板と発泡合成樹脂層とを積層してなるアルミニウム樹脂複合積層板をプレス成形して角型成形品を成形するためのプレス成形方法に関する。   The present invention relates to a press molding method for press-molding an aluminum resin composite laminated plate obtained by laminating an aluminum plate and a foamed synthetic resin layer to form a square molded product.

近年、様々な用途に用いられている板状部材においては、素材の軽量化が大きな課題であり、自動車分野に留まらず鉄道車両、航空機、船舶及びその他輸送機材、家電製品、IT関連部材、及び住宅からビル等の外内壁材までもが軽量化を求められている。一例として、自動車では、車両部品に用いられる鋼板の一部をアルミニウム板や樹脂板、CFRP(炭素繊維強化プラスチック)板に置換することが検討されている。更に、用途によっては軽量性だけでなく、制振性や遮音性、断熱性など付加的性能が求められることが多く、そのような要求に応えるための板材料の一つとして、二枚のアルミニウム板の間に合成樹脂層を挟んで積層したアルミニウム樹脂複合積層板を用いることが提案されている。そして、この種の積層板は、通常、プレス成形によって加工される。   In recent years, in the plate-like member used for various uses, weight reduction of a material is a big subject, and it is not limited to the automobile field, but it is a railway vehicle, an aircraft, a ship and other transportation equipment, a household appliance, an IT related member, and There is a need to reduce the weight of houses and outer wall materials such as buildings. As an example, in an automobile, replacement of a part of a steel plate used for vehicle parts with an aluminum plate, a resin plate, or a CFRP (carbon fiber reinforced plastic) plate has been studied. Furthermore, depending on the application, in addition to light weight, additional performance such as vibration control, sound insulation, and heat insulation is often required. As one of the plate materials to meet such demands, two aluminum It has been proposed to use an aluminum resin composite laminate in which a synthetic resin layer is sandwiched between plates. And this kind of laminated board is normally processed by press molding.

例えば、特許文献1には、二枚のアルミニウム合金板の間に発泡性樹脂層が設けられた積層板が開示されている。また、特許文献2には、特許文献1で挙げられた積層板をヒートインシュレータなど、三次元形状で、かつ熱線遮蔽性に優れた軽量な熱線遮蔽カバーに適用した例が開示されている。さらに、特許文献2には、積層板に対する成形加工の方法としては、張出成形、絞り成形、曲げ成形等のプレス成形や曲げ加工が可能であり、成形加工の後に加熱して樹脂層を発泡させることが記載されている。   For example, Patent Document 1 discloses a laminated plate in which a foamable resin layer is provided between two aluminum alloy plates. Patent Document 2 discloses an example in which the laminated plate described in Patent Document 1 is applied to a lightweight heat ray shielding cover having a three-dimensional shape and excellent heat ray shielding properties, such as a heat insulator. Furthermore, in Patent Document 2, as a method of forming the laminated plate, press forming such as bulging forming, drawing forming, bending forming, and bending can be performed, and the resin layer is foamed by heating after the forming processing. Is described.

また、特許文献3には、熱可塑性樹脂層とアルミニウム材とが積層され、そのアルミニウム材の表層において、表面側に小径が形成された多孔性アルミニウム酸化被膜層が設けられ、素地側にバリア型アルミニウム酸化被膜層が設けられ、アルミニウム材と熱可塑性発泡樹脂層との接合部に、熱可塑性発泡樹脂層と同一成分の非発泡樹脂層が、多孔性アルミニウム酸化被膜層上に、かつその表面から小孔内部に向かって形成されたアルミニウム材/熱可塑性発泡樹脂層の複合材が開示されている。特許文献3には、このような構成とすることにより、密着性と成形性に優れる複合材になると記載されている。   In Patent Document 3, a thermoplastic resin layer and an aluminum material are laminated, and a surface layer of the aluminum material is provided with a porous aluminum oxide film layer having a small diameter on the surface side, and a barrier type on the substrate side. An aluminum oxide film layer is provided, and a non-foamed resin layer of the same component as the thermoplastic foam resin layer is formed on the porous aluminum oxide film layer from the surface thereof at the joint between the aluminum material and the thermoplastic foam resin layer. An aluminum material / thermoplastic foamed resin layer composite formed toward the inside of the small holes is disclosed. Patent Document 3 describes that by adopting such a configuration, a composite material having excellent adhesion and formability is obtained.

また、特許文献4には、プレス成形時に外側となるアルミニウム板に内側となるアルミニウム板よりも高い強度の材料を用い、しかも外側のアルミニウム板厚を内側のアルミニウム板厚と同等若しくは厚くしたアルミニウム及びアルミニウム合金製プレス成型用複合板が開示されている。特許文献4には、外側及び内側のアルミニウム板の強度を相対的に見た場合、外側に高強度材を用い、内側に低強度材を用いるとともに、外側の板厚を内側の板厚と同等若しくは厚くすることで、プレス成形時に割れの発生を防止でき、プレス成形性に優れたアルミニウム製複合板となると記載されている。   In Patent Document 4, aluminum having a higher strength than the inner aluminum plate is used for the outer aluminum plate at the time of press molding, and the outer aluminum plate thickness is equal to or thicker than the inner aluminum plate thickness. An aluminum alloy press-molding composite plate is disclosed. In Patent Document 4, when the strength of the outer and inner aluminum plates is relatively viewed, a high strength material is used on the outer side, a low strength material is used on the inner side, and the outer plate thickness is equal to the inner plate thickness. Alternatively, it is described that, by increasing the thickness, it is possible to prevent the occurrence of cracks during press molding, and an aluminum composite plate having excellent press moldability is obtained.

国際公開第2010/029955号公報International Publication No. 2010/029955 国際公開第2010/029946号公報International Publication No. 2010/029946 特開2012−25145号公報JP 2012-25145 A 特開平4‐43027号公報JP-A-4-43027 特開2013‐116475号公報JP 2013-116475 A 特開2014‐18854号公報JP 2014-18854 A 特開2009‐242240号公報JP 2009-242240 A

ところで、例えば特許文献5〜7に開示されているように、従来から金属単体で形成された金属板を成形する際に、しわや割れ等の発生を防止し、さらには成形後のスプリングバックを低減させるための成形方法が提案されている。ところが、特許文献5〜7と同様の方法により特許文献1〜4に記載されるような複合積層板を成形した場合では、二次元形状あるいは若干の深さの三次元形状の製品にプレス成形する場合は有用であるが、より深く複雑な形状(角型成形品等)に成形すると、アルミニウム板材の表面に微細な凹凸を含む肌荒れやしわ、割れ等の発生を防止することができず、外観不良を引きおこすことが問題となっている。また、特許文献4に記載されている複合積層板としても、難易度の高い三次元形状を成形する際には、割れ等の発生を防止することが難しく、安定した成形を行うことができない。特に車両の外板に用いられる複合板の場合は、肌荒れ等のない良好な表面であることが求められ、さらなる改善が望まれる。また特許文献1又は2のように成形後に芯材樹脂を発泡させることによって成形性を確保しようとする試みもあるが、成形後の樹脂発泡において積層板寸法の変化や歪みが生じやすく、他部品との組立て時の障害になるおそれが大きい。   By the way, as disclosed in, for example, Patent Documents 5 to 7, when forming a metal plate conventionally formed of a single metal, generation of wrinkles and cracks is prevented, and further, a spring back after forming is prevented. A molding method for reducing the number has been proposed. However, when a composite laminate as described in Patent Documents 1 to 4 is formed by the same method as Patent Documents 5 to 7, it is press-molded into a two-dimensional product or a three-dimensional product with a slight depth. It is useful in some cases, but if it is molded into a deeper and more complex shape (such as a square-shaped molded product), the surface of the aluminum sheet cannot prevent rough skin, wrinkles, cracks, etc. It is a problem to cause defects. Moreover, even if it forms the highly difficult three-dimensional shape as a composite laminated board described in patent document 4, it is difficult to prevent generation | occurrence | production of a crack etc. and cannot perform stable shaping | molding. In particular, in the case of a composite plate used for an outer plate of a vehicle, it is required to have a good surface without rough skin, and further improvement is desired. In addition, there is an attempt to ensure moldability by foaming the core resin after molding as in Patent Document 1 or 2, but it is easy to cause changes in the dimensions of the laminate and distortion in the resin foam after molding. There is a high risk of becoming an obstacle during assembly.

本発明は、このような事情に鑑みてなされたもので、アルミニウム樹脂複合積層板を用いた角型成形品をプレス成形によって製造する際の成形性を向上でき、良好な外観特性を有する角型成形品を成形できるアルミニウム樹脂複合積層板のプレス成形方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can improve the formability when producing a square molded product using an aluminum resin composite laminate by press molding, and has a good appearance characteristic. It aims at providing the press molding method of the aluminum resin composite laminated board which can shape | mold a molded article.

本発明のアルミニウム樹脂複合積層板のプレス成形方法は、発泡合成樹脂層の両面にアルミニウム板材が接合されてなるアルミニウム樹脂複合積層板からなるブランク材を有底矩形の角型成形品に絞り成形するためのプレス成形方法であって、前記ブランク材を加熱する加熱工程と、加熱された前記ブランク材にパンチとダイとを備えるプレス成形金型を用いて絞り成形を施す成形工程とを備え、前記加熱工程において、前記ブランク材を前記発泡合成樹脂層の耐熱温度よりも低い温度で、かつ該発泡合成樹脂層の耐熱温度との温度差を10℃を超えて22℃以下とする温度に加熱しておくとともに、前記ブランク材のうちの前記角型成形品の凸面となる予定の外面の温度よりも、前記角型成形品の凹面となる予定の内面の温度を3℃以上高い温度に加熱しておく。   In the press molding method of an aluminum resin composite laminate of the present invention, a blank material made of an aluminum resin composite laminate obtained by bonding an aluminum plate to both sides of a foamed synthetic resin layer is drawn into a rectangular rectangular shaped product with a bottom. A heating process for heating the blank material, and a molding process for performing drawing using a press molding die provided with a punch and a die on the heated blank material, In the heating step, the blank material is heated to a temperature lower than the heat resistant temperature of the foamed synthetic resin layer and a temperature difference from the heat resistant temperature of the foamed synthetic resin layer to more than 10 ° C and not more than 22 ° C. In addition, the temperature of the inner surface of the blank material to be the concave surface of the square-shaped molded product is higher by 3 ° C. than the temperature of the outer surface of the blank-shaped molded product to be the convex surface. Keep heated to a temperature.

アルミニウム樹脂複合積層板は、金属単体で形成された金属板を成形する場合に比べて、絞り成形を施すことが非常に難しい。つまり、発泡合成樹脂とアルミニウムとで適正な成形条件が異なることから、芯材である発泡合成樹脂により形成される発泡合成樹脂層と、その両面に配置されるアルミニウム板材との変形量の差によってアルミニウム板材の表面に微細な凹凸を含む肌荒れやしわ、割れ等が発生することで、外観不良を引き起こしやすい。また、成形される角型成形品の凸面側と凹面側との変形量の差によっても、アルミニウム板材の表面に生じる外観不良の発生を助長するおそれがある。このため、発泡合成樹脂層の両面にアルミニウム板材が積層された三層からなるアルミニウム樹脂複合積層板においては、これらの材料毎の成形条件や変形量を考慮して成形を行わなければならず、工程が煩雑になっている。
この点、本発明のプレス成形方法においては、アルミニウム樹脂複合積層板のブランク材に対し、芯材である発泡合成樹脂が溶出しない耐熱温度付近まで加熱することにより、安定した温間成形を行えるとともに、ブランク材の外面と内面との温度差を3℃以上設けて、外面と内面とに変形能差を設けることにより、その外面と内面との変形量(成形量)の差により角型成形品の表面にしわやしわによる割れが生じることを防止できる。このようにブランク材の温度を制御することにより、アルミニウム樹脂複合積層板を用いた角型成形品をプレス成形によって製造する際の成形性を向上できるので、良好な外観特性を有する深い形状の角型成形品を製造できる。
なお、ブランク材の温度と発泡合成樹脂の耐熱温度との温度差を10℃以下とすると発泡合成樹脂層の発泡合成樹脂が溶出するおそれがある。また、22℃を超える温度差とした場合は、発泡合成樹脂層が変形しにくく、温間成形の効果が十分に得られないことで、成形性が低下する。また、ブランク材の外面と内面との温度差が3℃未満では、変形能差を付与することができず、しわ等の発生を防止できない。なお、外面と内面との温度差は、12℃以下とすることが望ましい。外面と内面との温度差が12℃を超える場合は、温度差が大き過ぎて、特に外面側の変形能が劣り、成形が困難となる。また、内面側の熱が外面側に急激に奪われることにより、内外面の温度が安定しにくい。
The aluminum resin composite laminated plate is very difficult to be drawn compared to the case of forming a metal plate formed of a single metal. In other words, since the appropriate molding conditions differ between the foamed synthetic resin and aluminum, the difference in deformation amount between the foamed synthetic resin layer formed of the foamed synthetic resin that is the core material and the aluminum plate disposed on both surfaces thereof. Appearance defects are likely to occur due to the occurrence of rough skin, wrinkles, cracks, etc. including fine irregularities on the surface of the aluminum plate. Further, the difference in deformation amount between the convex surface side and the concave surface side of the square-shaped molded product to be molded may promote the appearance defect that occurs on the surface of the aluminum plate. For this reason, in the aluminum resin composite laminate composed of three layers in which the aluminum plate material is laminated on both surfaces of the foamed synthetic resin layer, it must be molded in consideration of the molding conditions and the amount of deformation for each of these materials, The process is complicated.
In this regard, in the press molding method of the present invention, the blank material of the aluminum resin composite laminate can be heated to a temperature near the heat-resistant temperature at which the foamed synthetic resin as the core does not elute, thereby enabling stable warm molding. By providing a temperature difference of 3 ° C. or more between the outer surface and the inner surface of the blank material and providing a deformability difference between the outer surface and the inner surface, a square-shaped molded product is obtained due to the difference in deformation (molding amount) between the outer surface and the inner surface. It can prevent that the crack of wrinkles and wrinkles arises on the surface. By controlling the temperature of the blank material in this way, it is possible to improve the formability when manufacturing a square-shaped product using an aluminum resin composite laminate by press molding, so that a deep corner having good appearance characteristics can be obtained. Molded products can be manufactured.
If the temperature difference between the temperature of the blank material and the heat resistant temperature of the foamed synthetic resin is 10 ° C. or less, the foamed synthetic resin of the foamed synthetic resin layer may be eluted. Moreover, when it is set as the temperature difference over 22 degreeC, a foaming synthetic resin layer cannot change easily, and a moldability falls because the effect of warm shaping | molding is not fully acquired. In addition, when the temperature difference between the outer surface and the inner surface of the blank is less than 3 ° C., it is not possible to impart a deformability difference and prevent generation of wrinkles and the like. The temperature difference between the outer surface and the inner surface is desirably 12 ° C. or less. When the temperature difference between the outer surface and the inner surface exceeds 12 ° C., the temperature difference is too large, particularly the deformability on the outer surface side is inferior, and molding becomes difficult. In addition, since the heat on the inner surface side is abruptly taken to the outer surface side, the temperature on the inner and outer surfaces is difficult to stabilize.

本発明のアルミニウム樹脂複合積層板のプレス成形方法の前記成形工程において、前記ダイの温度を、前記ブランク材の温度よりも5℃以上20℃以下の範囲内で低い温度に加熱しておくとよい。   In the molding step of the press molding method for the aluminum resin composite laminate of the present invention, the temperature of the die may be heated to a temperature lower than the temperature of the blank material within a range of 5 ° C to 20 ° C. .

プレス成形金型のうち、少なくともブランク材の外面と接するダイを、ブランク材の温度に近い温度に加熱しておくことで、ブランク材の温度低下を防止でき、安定した温間成形を行うことができる。また、プレス成形金型の温度を、ブランク材の温度よりも5℃以上20℃以下の範囲内で低い温度としておくことで、ブランク材の外面と内面との温度差を維持したまま成形できる。   Of the press molding dies, at least the die that contacts the outer surface of the blank material is heated to a temperature close to the temperature of the blank material, so that the temperature drop of the blank material can be prevented and stable warm forming can be performed. it can. Moreover, it can shape | mold, maintaining the temperature difference of the outer surface of a blank material, and an inner surface by setting the temperature of a press-molding die to the temperature lower within the range of 5 degreeC or more and 20 degrees C or less than the temperature of a blank material.

本発明のアルミニウム樹脂複合積層板のプレス成形方法において、前記加熱工程は、一対の熱伝達板を用いて行われ、前記一対の熱伝達板の各熱伝達板をそれぞれ別々の加熱手段により加熱しておき、前記一対の熱伝達板の間に前記ブランク材の前記外面及び前記内面を挟むことにより、各熱伝達板を介して前記ブランク材の前記外面及び前記内面のそれぞれの加熱を行うとよい。   In the press molding method of the aluminum resin composite laminate of the present invention, the heating step is performed using a pair of heat transfer plates, and each heat transfer plate of the pair of heat transfer plates is heated by separate heating means. It is good to heat each of the outer surface and the inner surface of the blank material through each heat transfer plate by sandwiching the outer surface and the inner surface of the blank material between the pair of heat transfer plates.

一対の熱伝達板の間にブランク材を挟んで、ブランク材の外面と内面とに各熱伝達板を接触させて加熱することにより、ブランク材の内面と外面とを、それぞれが接する熱伝達板により面方向に速やかに加熱できる。そして、ブランク材の内面と外面とを各熱伝達板の温度に合わせて均一に温度差を有した温度に加熱できるので、ブランク材の内面と外面との温度差を小さくしながらも、芯材である発泡合成樹脂が溶出しない耐熱温度付近まで加熱した高温域での温度制御を実現でき、安定した温間成形を行うことができる。   A blank material is sandwiched between a pair of heat transfer plates, and each heat transfer plate is brought into contact with the outer surface and the inner surface of the blank material and heated, so that the inner surface and the outer surface of the blank material are brought into contact with each other by the heat transfer plates in contact with each other. Quick heating in the direction. And since the inner surface and the outer surface of the blank material can be heated to a temperature having a uniform temperature difference according to the temperature of each heat transfer plate, the core material can be reduced while reducing the temperature difference between the inner surface and the outer surface of the blank material. It is possible to realize temperature control in a high temperature range where the foamed synthetic resin is heated to near the heat-resistant temperature where it does not elute, and stable warm molding can be performed.

また、前記熱伝達板は、アルミニウム材で形成されているとよい。
アルミニウムは、アルミニウム以外の材料と比較して加熱温度が安定しやすく、熱伝達板をアルミニウム材で形成することで、ブランク材の内面と外面の温度コントロールが容易となる。
The heat transfer plate may be formed of an aluminum material.
Aluminum is more stable in heating temperature than materials other than aluminum, and the temperature of the inner and outer surfaces of the blank can be easily controlled by forming the heat transfer plate with an aluminum material.

そして、前記加熱手段は、遠赤外線ヒータであるとよい。
遠赤外線ヒータは、急速加熱が可能であり、温度保持性能の安定性に優れるため、加熱手段に遠赤外線ヒータを用いることで、ブランク材の外面と内面とを速やかに加熱できる。
The heating means may be a far infrared heater.
The far-infrared heater is capable of rapid heating and is excellent in stability of the temperature holding performance. Therefore, by using the far-infrared heater as the heating means, the outer surface and the inner surface of the blank can be quickly heated.

本発明のアルミニウム樹脂複合積層板のプレス成形方法において、前記ブランク材に、前記発泡合成樹脂層の発泡倍率が1.5倍以上10倍以下で、かつ、板厚が1mm以上10mm以下とされるアルミニウム樹脂複合積層板を用いるとよい。   In the press molding method of the aluminum resin composite laminate of the present invention, the blank synthetic material layer has a foaming ratio of 1.5 to 10 times and a plate thickness of 1 to 10 mm. An aluminum resin composite laminate may be used.

発泡倍率が1.5倍未満で、板厚が1mm未満の発泡合成樹脂層では、ブランク材の外内面間の遮熱性が低下するため、外面と内面との温度差をつけることが難しくなる。一方で、発泡倍率が10倍を超え、板厚が10mmを超える発泡合成樹脂層では、均一な加工性が低下する。また、発泡倍率が10倍を超えると均一安定な発泡状態が得られなくなり、アルミニウム樹脂複合積層板の加工において局部変形による割れ、しわなどの不具合を引き起こしやすくなる。   In the foamed synthetic resin layer having a foaming ratio of less than 1.5 times and a plate thickness of less than 1 mm, the heat shielding property between the outer and inner surfaces of the blank material is lowered, so that it is difficult to provide a temperature difference between the outer surface and the inner surface. On the other hand, in a foamed synthetic resin layer having an expansion ratio exceeding 10 times and a plate thickness exceeding 10 mm, uniform workability is lowered. In addition, when the expansion ratio exceeds 10 times, a uniform and stable foamed state cannot be obtained, and problems such as cracks and wrinkles due to local deformation are likely to occur in the processing of the aluminum resin composite laminate.

本発明によれば、芯材である発泡合成樹脂が溶出しない耐熱温度付近の高温域まで加熱しながらも、ブランク材の外面と内面との変形量を考慮した温度差を設けて、ブランク材に安定した温間成形を施すことができるので、角型成形品をプレス成形によって製造する際の成形性を向上でき、良好な外観特性を有する深い形状の角型成形品を製造できる。   According to the present invention, the blank material is provided with a temperature difference that takes into account the amount of deformation between the outer surface and the inner surface of the blank material while heating to a high temperature region near the heat-resistant temperature where the foamed synthetic resin as the core material does not elute. Since stable warm forming can be performed, it is possible to improve moldability when a square shaped product is produced by press molding, and it is possible to produce a deep shaped square shaped product having good appearance characteristics.

本発明の第1実施形態のプレス成形方法のフローチャートである。It is a flowchart of the press molding method of 1st Embodiment of this invention. 第1実施形態のプレス成形方法の加熱工程に用いられる加熱装置の模式断面図である。It is a schematic cross section of the heating apparatus used for the heating process of the press molding method of 1st Embodiment. 第1実施形態のプレス成形方法の成形工程に用いられるプレス成形金型の模式斜視図である。It is a model perspective view of the press molding die used for the forming process of the press forming method of the first embodiment. 本発明に用いられるアルミニウム樹脂複合積層板の要部断面図である。It is principal part sectional drawing of the aluminum resin composite laminated board used for this invention. 本発明で成形される角型成形品の例を示す斜視図である。It is a perspective view which shows the example of the square shape molded article shape | molded by this invention. 本発明の第2実施形態のプレス成形方法のフローチャートである。It is a flowchart of the press molding method of 2nd Embodiment of this invention. 第2実施形態のプレス成形方法の第一成形工程に用いられるプレス成形金型の模式斜視図である。It is a model perspective view of the press molding die used for the 1st formation process of the press molding method of a 2nd embodiment. 第2実施形態のプレス成形方法の第二加熱工程に用いられる加熱装置の模式断面図である。It is a schematic cross section of the heating apparatus used for the 2nd heating process of the press molding method of 2nd Embodiment. 第2実施形態のプレス成形方法の第二成形工程に用いられるプレス成形金型の模式斜視図である。It is a model perspective view of the press molding die used for the 2nd shaping | molding process of the press molding method of 2nd Embodiment. 本発明で成形される角型成形品の中間成形品の例を示す斜視図である。It is a perspective view which shows the example of the intermediate molded product of the square shape molded product shape | molded by this invention.

以下、本発明に係るアルミニウム樹脂複合積層板のプレス成形方法の実施形態を説明する。
本発明の第1実施形態のアルミニウム樹脂複合積層板のプレス成形方法により成形される角型成形品60は、図5に示すように、有底で全体が矩形状に形成され、一方を開放した箱状成形品とされるものである。具体的には、角型成形品60は、矩形状の底部61の上に複数の角部62とこれら角部62間を連結する側面部63とが形成された、有底角筒等の筒状成形品であり、その一方、(外面側)が凸面となり、他方(内面側)が凹面となっている。
Hereinafter, an embodiment of a press molding method for an aluminum resin composite laminate according to the present invention will be described.
As shown in FIG. 5, the square molded product 60 molded by the press molding method of the aluminum resin composite laminate of the first embodiment of the present invention has a bottomed shape and is formed in a rectangular shape, and one is opened. It is a box-shaped molded product. Specifically, the square molded product 60 is a tube such as a bottomed square tube in which a plurality of corner portions 62 and a side surface portion 63 that connects the corner portions 62 are formed on a rectangular bottom portion 61. One (outer surface side) is a convex surface and the other (inner surface side) is a concave surface.

[アルミニウム樹脂複合積層板の構造]
本発明に用いられるアルミニウム樹脂複合積層板10は、図4に模式的に示したように、発泡合成樹脂層13の両面に、アルミニウム板材11,12が積層状態で接合された構成である。そして、角型成形品60における凸面60aとなる予定のアルミニウム板材11の表面を外面10a、角型成形品60における凹面60bとなる予定のアルミニウム板材12の表面を内面10bとする。
[Structure of aluminum resin composite laminate]
As schematically shown in FIG. 4, the aluminum resin composite laminated plate 10 used in the present invention has a configuration in which aluminum plate materials 11 and 12 are joined to both surfaces of a foamed synthetic resin layer 13 in a laminated state. The surface of the aluminum plate 11 that is to be the convex surface 60a in the square molded product 60 is the outer surface 10a, and the surface of the aluminum plate 12 that is to be the concave surface 60b in the square molded product 60 is the inner surface 10b.

外面側のアルミニウム板材11、内面側のアルミニウム板材12の種類は、特に限定されるものではないが、アルミニウム樹脂複合積層板10をより深く成形するために、外面側のアルミニウム板材11の機械的特性(引張強さ、耐力等)を内面側のアルミニウム板材12より大きいものとするとよい。   The types of the aluminum plate 11 on the outer surface side and the aluminum plate 12 on the inner surface side are not particularly limited, but in order to form the aluminum resin composite laminate 10 deeper, the mechanical properties of the aluminum plate 11 on the outer surface side. (Tensile strength, yield strength, etc.) may be larger than the aluminum plate 12 on the inner surface side.

各アルミニウム板材11,12の板厚も、特に限定されるものではないが、アルミニウム樹脂複合積層板10に、所望の強度、剛性を持たせることが可能な板厚とすることが好ましい。そのためには、アルミニウム樹脂複合積層板10の板厚を2mm以上10mm以下とし、両面のアルミニウム板材11,12の板厚を、0.1mm以上4mm以下とするとよく、内面10b側のアルミニウム板材12が、外面10a側のアルミニウム板材11よりも薄いとよい。   The thickness of each of the aluminum plate members 11 and 12 is not particularly limited, but it is preferable that the aluminum resin composite laminated plate 10 have a thickness that can give desired strength and rigidity. For this purpose, the thickness of the aluminum resin composite laminate 10 is preferably 2 mm or more and 10 mm or less, and the thickness of the aluminum plates 11 and 12 on both sides is preferably 0.1 mm or more and 4 mm or less. The aluminum plate 11 on the outer surface 10a side is preferably thinner.

なお、以上のようなアルミニウム板材11,12は、常法による半連続鋳造、均質化処理、熱間圧延、冷間圧延、また必要に応じ中間焼鈍を施すことにより所望の板厚、金属組織および機械的性質の板材を製造することができる。また冷間圧延素材として連続鋳造圧延のような溶湯圧延法を用いることもできる。   In addition, the aluminum plate materials 11 and 12 as described above are obtained by performing a semi-continuous casting, a homogenization process, a hot rolling, a cold rolling, and an intermediate annealing as required by performing a conventional method. A plate having mechanical properties can be produced. Moreover, the molten metal rolling method like continuous casting rolling can also be used as a cold rolling raw material.

一方、発泡合成樹脂層13は、耐熱温度が100℃以上200℃以下の範囲の熱可塑性樹脂であり、具体的には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリカーボネート(PC)、ポリエチレンテレフタラート(PET)、ポリ塩化ビニリデン(PVDC)、ポリブチレンテレフタラート(PBT)、ポリフッ化ビニリデン(PVDF)、ポリアミド(PA6、PA12等)、ポリエーテルイミド(PEI)、ポリスルホン(PSF)、ポリクロロトリフルオロエチレン(PCTFE)のいずれかを用いることができる。
例えば、発泡合成樹脂層13がポリプロピレンの場合は、その融点は170℃付近であって、耐熱温度が140℃前後である。また、荷重たわみ温度は77℃前後であり、後述するように、アルミニウム樹脂複合積層板10は、この荷重たわみ温度以上の温度でプレス成形される。
On the other hand, the foamed synthetic resin layer 13 is a thermoplastic resin having a heat resistant temperature in the range of 100 ° C. or higher and 200 ° C. or lower. Specifically, polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyethylene terephthalate. (PET), polyvinylidene chloride (PVDC), polybutylene terephthalate (PBT), polyvinylidene fluoride (PVDF), polyamide (PA6, PA12, etc.), polyetherimide (PEI), polysulfone (PSF), polychlorotrifluoro Any of ethylene (PCTFE) can be used.
For example, when the foamed synthetic resin layer 13 is polypropylene, the melting point is around 170 ° C. and the heat resistant temperature is around 140 ° C. The deflection temperature under load is around 77 ° C., and the aluminum resin composite laminate 10 is press-molded at a temperature equal to or higher than the deflection temperature under load as will be described later.

ここで、樹脂の耐熱温度、荷重たわみ温度は、樹脂試験片を一定の温度中に所定時間置き、その時の外観変化や力学的特性の低下の有無で判定する。
JIS(日本工業規格)においては、プラスチック−荷重たわみ温度の求め方(JIS K 7191)に規定された試験方法(A法、フラットワイズ)により得られる温度であり、発泡合成樹脂層13を形成する発泡合成樹脂が一定の荷重を受けた際に変形する温度(熱変形温度ともいう)のことを表している。例えば温度範囲が110〜180℃で時間が2時間での判定となる。この条件下で、耐熱温度は、樹脂容器等の製品が力を受けない状態で変質変形することなくその機能を維持できる温度であり、荷重たわみ温度は、樹脂容器等の製品がある力を受けた状態で変形を起こす温度となる。ポリプロピレンの場合、上記の各温度となり、その関係は耐熱温度>荷重たわみ温度になっている。
Here, the heat-resistant temperature of the resin and the deflection temperature under load are determined based on whether or not the resin test piece is placed in a certain temperature for a predetermined time and the appearance changes or the mechanical characteristics are deteriorated at that time.
In JIS (Japanese Industrial Standard), it is a temperature obtained by a test method (Method A, flatwise) defined in Plastics-How to obtain deflection temperature under load (JIS K 7191), and forms a foamed synthetic resin layer 13. It represents the temperature at which the foamed synthetic resin deforms when it receives a certain load (also referred to as heat deformation temperature). For example, it is determined that the temperature range is 110 to 180 ° C. and the time is 2 hours. Under this condition, the heat-resistant temperature is a temperature at which the product can be maintained without being deformed and deformed in a state where the product such as the resin container is not subjected to force, and the deflection temperature under load is a force that the product such as the resin container receives. It becomes the temperature which causes deformation in the state. In the case of polypropylene, the temperatures are as described above, and the relationship is such that the heat resistance temperature> the deflection temperature under load.

また、発泡合成樹脂層13は、板厚が1mm以上10mm以下のフィルム状又は板状に形成され、遮音性、遮熱性を付与するために、発泡倍率が1.5倍以上10倍以下のものが用いられる。発泡倍率が1.5倍未満では制振性、遮音性、断熱性の面で不十分であり、逆に10倍を超えると均一安定な発泡状態が得られなくなり、アルミニウム樹脂複合積層板の加工において局部変形による割れ、しわなどの不具合を引き起こす。
発泡合成樹脂層13とアルミニウム板材11,12とは接着により接合することがよく、この場合、接着剤は、芯材である発泡合成樹脂層13の材質と同系樹脂の主成分を選定することが好ましく、発泡合成樹脂層13がポリプロピレンの場合、ポリプロピレンが主成分の接着剤等が好適である。
The foamed synthetic resin layer 13 is formed in a film shape or plate shape having a plate thickness of 1 mm or more and 10 mm or less, and has an expansion ratio of 1.5 times or more and 10 times or less in order to provide sound insulation and heat insulation. Is used. If the expansion ratio is less than 1.5 times, it is insufficient in terms of vibration damping, sound insulation, and heat insulation. Conversely, if the expansion ratio exceeds 10 times, a uniform and stable foam state cannot be obtained, and processing of an aluminum resin composite laminate Causes problems such as cracks and wrinkles due to local deformation.
The foamed synthetic resin layer 13 and the aluminum plate members 11 and 12 are preferably bonded together, and in this case, the adhesive may be selected from the material of the foamed synthetic resin layer 13 that is the core material and the main component of the same resin. Preferably, when the foamed synthetic resin layer 13 is polypropylene, an adhesive mainly composed of polypropylene is suitable.

そして、この接着剤を発泡合成樹脂層13の両面又はアルミニウム板材11,12の片面に塗布し、両アルミニウム板材11,12の間に発泡合成樹脂層13を挟み、これらをホットプレスやホットロールにより加圧・加熱することにより、発泡合成樹脂層13の両面にアルミニウム板材11,12を一体に積層してアルミニウム樹脂複合積層板を設ける。   And this adhesive agent is apply | coated to both surfaces of the foamed synthetic resin layer 13, or one side of the aluminum board | plate materials 11 and 12, sandwiching the foamed synthetic resin layer 13 between both the aluminum board | plate materials 11 and 12, these are hot-pressed or hot-rolled. By pressurizing and heating, aluminum plate materials 11 and 12 are integrally laminated on both surfaces of the foamed synthetic resin layer 13 to provide an aluminum resin composite laminate.

このように形成したアルミニウム樹脂複合積層板10を適宜の形状のブランク材に打ち抜き、本発明のプレス成形方法により、深さ10mm以上の角型成形品60を製造する。以下、ブランク材にも、アルミニウム樹脂複合積層板と同様の符号10を付して説明を行う。   The aluminum resin composite laminate 10 thus formed is punched into a blank material having an appropriate shape, and a square molded product 60 having a depth of 10 mm or more is manufactured by the press molding method of the present invention. Hereinafter, the blank material will be described with the same reference numeral 10 as that of the aluminum resin composite laminate.

第1実施形態のプレス成形方法は、図1に示すように、加熱工程、成形工程の順に行われる。そして、本実施形態のプレス成形方法の加熱工程では、図2に示す加熱装置20を用い、成形工程では、図3に示すプレス成形金型30を用いる。   As shown in FIG. 1, the press molding method of the first embodiment is performed in the order of a heating step and a molding step. And in the heating process of the press molding method of this embodiment, the heating apparatus 20 shown in FIG. 2 is used, and in the molding process, the press molding die 30 shown in FIG. 3 is used.

加熱装置20は、図2に示すように、一対の熱伝達板21,22と、各熱伝達板21,22を加熱する加熱手段23,24とを有する。本実施形態では、各熱伝達板21,22は、アルミニウム材により平板状に形成されている。また、加熱手段23,24には、遠赤外線ヒータを用いている。
加熱装置20の上側に配置された熱伝達板21は、下面21bがブランク材10の外面10aの加熱面とされており、平面状に形成されている。そして、熱伝達板21の上面21tに加熱手段23が設置されている。一方、加熱装置20の下側に配置された熱伝達板22は、その上面22tがブランク材10の内面10bの加熱面とされ、平面状に形成されている。そして、熱伝達板22の下面22bに加熱手段24が設置されている。
As shown in FIG. 2, the heating device 20 includes a pair of heat transfer plates 21 and 22 and heating means 23 and 24 that heat the heat transfer plates 21 and 22. In the present embodiment, the heat transfer plates 21 and 22 are formed in a flat plate shape from an aluminum material. Further, far infrared heaters are used for the heating means 23 and 24.
The heat transfer plate 21 disposed on the upper side of the heating device 20 has a lower surface 21b that is a heating surface of the outer surface 10a of the blank member 10, and is formed in a flat shape. The heating means 23 is installed on the upper surface 21t of the heat transfer plate 21. On the other hand, the upper surface 22t of the heat transfer plate 22 disposed on the lower side of the heating device 20 is a heating surface of the inner surface 10b of the blank 10 and is formed in a flat shape. A heating unit 24 is installed on the lower surface 22 b of the heat transfer plate 22.

また、各熱伝達板21,22には、温度計測手段(例えば、熱電対タイプの計測器)25A,25Bが埋め込まれて(内蔵されて)おり、それぞれの温度計測手段25A,25Bにより各熱伝達板21,22の温度を計測して、その値に基づき、各加熱手段23,24を制御することにより、上側の熱伝達板21と下側の熱伝達板22とが独立して温度調節可能に設けられている。また、加熱装置20の上側の熱伝達板21は、下側の熱伝達板22に対して上下移動可能に保持されており、上側の熱伝達板21を上下移動することにより、熱伝達板21,22同士の間が開閉可能に設けられている。そして、一対の熱伝達板21,22の間にブランク材10を配置し、外面10a及び内面10bを一対の熱伝達板21,22で挟むことにより、ブランク材10の外面10aと内面10bとを熱伝達板21,22を介して個別に、そして同時に加熱できるようになっている。   Further, temperature measuring means (for example, thermocouple type measuring devices) 25A and 25B are embedded in (incorporated into) each of the heat transfer plates 21 and 22, and each heat measuring means 25A and 25B is provided with each heat. By measuring the temperatures of the transfer plates 21 and 22 and controlling the heating means 23 and 24 based on the measured values, the upper heat transfer plate 21 and the lower heat transfer plate 22 are independently temperature controlled. It is provided as possible. Further, the upper heat transfer plate 21 of the heating device 20 is held so as to be vertically movable with respect to the lower heat transfer plate 22, and by moving the upper heat transfer plate 21 up and down, the heat transfer plate 21. , 22 can be opened and closed. And the blank material 10 is arrange | positioned between a pair of heat-transfer plates 21 and 22, and the outer surface 10a and the inner surface 10b of the blank material 10 are pinched | interposed by a pair of heat-transfer plates 21 and 22 between the outer surface 10a and the inner surface 10b. Heating can be performed individually and simultaneously via the heat transfer plates 21 and 22.

プレス成形金型30は、図3に示すように、成形される角型成形品60の底部61と略同形状の成形角孔31hを有するダイ31と、ダイ31の成形角孔31hと略同形状の貫通角孔32hを有してダイ31表面との間でブランク材10を押さえるブランクホルダー32と、成形角孔31h及び貫通角孔32hに挿通されてブランク材10を絞り成形する、すなわち角型成形品60の底部61を絞ることが可能な角柱状のパンチ33とを備える。   As shown in FIG. 3, the press molding die 30 includes a die 31 having a molding square hole 31 h having substantially the same shape as the bottom 61 of the square molded product 60 to be molded, and a molding square hole 31 h of the die 31. A blank holder 32 that has a shaped through-angle hole 32h and holds the blank material 10 between the surface of the die 31 and a blank material 10 that is inserted into the forming square hole 31h and the through-angle hole 32h to be drawn. And a prismatic punch 33 that can squeeze the bottom 61 of the molded product 60.

ダイ31とブランクホルダー32には、図示は省略するが、成形に先立って予め加熱しておくための複数の棒状のヒータが内蔵されている。また、ダイ31とブランクホルダー32には温度計測手段35A,35Bが内蔵されており、ダイ31とブランクホルダー32とは、それぞれ独立して温度調整が可能に設けられている。温度計測手段35A,35Bには、例えば先端が棒状に形成された熱電対タイプの計測器が用いられる。なお、ダイ31とブランクホルダー32と同様に、パンチ33を加熱しておいてもよい。
また、ダイ31のプレス機本体101との取付面31mには、断熱材102が設けられている。断熱材102により、プレス機本体101にダイ31やブランクホルダー32の熱が伝わることを防止できるので、ダイ31やブランクホルダー32の温度低下を防止できる。
Although not shown, the die 31 and the blank holder 32 incorporate a plurality of rod-shaped heaters for heating in advance prior to molding. The die 31 and the blank holder 32 incorporate temperature measuring means 35A and 35B, and the die 31 and the blank holder 32 are provided so that the temperature can be adjusted independently. For the temperature measuring means 35A, 35B, for example, a thermocouple type measuring instrument having a rod-shaped tip is used. Note that, similarly to the die 31 and the blank holder 32, the punch 33 may be heated.
Further, a heat insulating material 102 is provided on a mounting surface 31 m of the die 31 with the press machine body 101. Since the heat of the die 31 and the blank holder 32 can be prevented from being transmitted to the press machine body 101 by the heat insulating material 102, the temperature drop of the die 31 and the blank holder 32 can be prevented.

なお、図示は省略するが、ブランクホルダー32には、ブランクホルダー32の本体部分を上下移動自在に支持するガイドロッドを挿通するガイド孔が設けられるとともに、ブランクホルダー32を下方に向けて付勢するばね等の弾性部材が設けられる。   Although not shown, the blank holder 32 is provided with a guide hole through which a guide rod for supporting the body portion of the blank holder 32 so as to be movable up and down is provided, and the blank holder 32 is urged downward. An elastic member such as a spring is provided.

[角型成形品のプレス成形方法]
そして、本実施形態のプレス成形方法では、加熱装置20を用いた加熱工程と、プレス成形金型30を用いた成形工程とを経て、ブランク材10に深絞り成形を施し、角型成形品60を製造する。
[Press molding method for square-shaped molded products]
In the press molding method of the present embodiment, the blank material 10 is subjected to deep drawing through a heating process using the heating device 20 and a molding process using the press mold 30, and the square molded product 60. Manufacturing.

[加熱工程]
加熱工程では、ブランク材10を発泡合成樹脂層13の耐熱温度よりも低い温度で、かつ発泡合成樹脂層13の耐熱温度との温度差を10℃を超えて22℃以下とする温度に加熱するとともに、外面10aの温度よりも内面10bの温度を3℃以上高い温度に加熱しておく。なお、外面10aと内面10bとの温度差は、成形性の観点から、12℃以下とすることが望ましい。
加熱工程は、上述したように、図2に示した加熱装置20を用いて行う。加熱装置20の各熱伝達板21,22をそれぞれ別々の加熱手段23,24により加熱して、予め各熱伝達板21,22に温度差を設けてブランク材10の加熱予定温度で加温しておく。そして、加温された一対の熱伝達板21,22の間にブランク材10を配置し、外面10a及び内面10bを一対の熱伝達板21,22で挟むことにより、各熱伝達板21,22を介してブランク材10の外面10a及び内面10bのそれぞれの加熱を行う。すなわち、ブランク材10の外面10aを予め加温された熱伝達板21に接触させることで加熱し、内面10bを熱伝達板22に接触させることで別々に加熱するが、ブランク材10の外面10aと内面10bとを一対の熱伝達板21,22の間に挟むことで、熱伝達板21,22を介して外面10aと内面10bとを同時に加熱することができる。
[Heating process]
In the heating step, the blank material 10 is heated to a temperature lower than the heat resistant temperature of the foamed synthetic resin layer 13 and a temperature difference from the heat resistant temperature of the foamed synthetic resin layer 13 to more than 10 ° C. and not more than 22 ° C. At the same time, the temperature of the inner surface 10b is heated to 3 ° C. or more higher than the temperature of the outer surface 10a. In addition, as for the temperature difference of the outer surface 10a and the inner surface 10b, it is desirable to set it as 12 degrees C or less from a viewpoint of a moldability.
As described above, the heating process is performed using the heating apparatus 20 shown in FIG. Each heat transfer plate 21, 22 of the heating device 20 is heated by separate heating means 23, 24, and a temperature difference is provided in advance in each heat transfer plate 21, 22 and heated at the expected heating temperature of the blank 10. Keep it. And the blank material 10 is arrange | positioned between a pair of heated heat-transfer plates 21 and 22, and each heat-transfer plate 21 and 22 is pinched | interposed by a pair of heat-transfer plates 21 and 22 between the outer surface 10a and the inner surface 10b. Each of the outer surface 10a and the inner surface 10b of the blank material 10 is heated through the above. That is, the outer surface 10a of the blank member 10 is heated by bringing it into contact with the preheated heat transfer plate 21 and heated separately by bringing the inner surface 10b into contact with the heat transfer plate 22, but the outer surface 10a of the blank member 10 is heated. And the inner surface 10b between the pair of heat transfer plates 21 and 22, the outer surface 10a and the inner surface 10b can be heated simultaneously via the heat transfer plates 21 and 22.

このように、一対の熱伝達板21,22の間にブランク材10を挟んで、ブランク材10の外面10aに熱伝達板21を接触させ、内面10bに熱伝達板22を接触させて加熱することにより、ブランク材10の外面10aと内面10bとを、それぞれが接する熱伝達板21,22により面方向に速やかに加熱できる。そして、ブランク材10の外面10aと内面10bとを各熱伝達板21,22の温度に合わせて均一に温度差を有した温度に加熱できるので、ブランク材10の外面10aと内面10bとに3℃以上の小さな温度差を設けて、芯材である発泡合成樹脂が溶出しない耐熱温度付近まで加熱した高温域での温度制御を実現できる。   In this manner, the blank member 10 is sandwiched between the pair of heat transfer plates 21 and 22, the heat transfer plate 21 is brought into contact with the outer surface 10a of the blank member 10, and the heat transfer plate 22 is brought into contact with the inner surface 10b to be heated. Thereby, the outer surface 10a and the inner surface 10b of the blank material 10 can be rapidly heated in the surface direction by the heat transfer plates 21 and 22 that are in contact with each other. And since the outer surface 10a and the inner surface 10b of the blank material 10 can be heated to a temperature having a uniform temperature difference in accordance with the temperature of the heat transfer plates 21 and 22, the outer surface 10a and the inner surface 10b of the blank material 10 have 3 By providing a small temperature difference of not less than 0 ° C., temperature control can be realized in a high temperature range where the foamed synthetic resin as the core material is heated to near the heat-resistant temperature where it does not elute.

[成形工程]
成形工程では、加熱工程において加熱されたブランク材10に、プレス成形金型30を用いて絞り成形を施す。
プレス成形金型30のダイ31とブランクホルダー32は、ブランク材10の成形開始前に、それぞれに設けられた各ヒータ(図示略)を加熱することにより、加熱工程で加熱されたブランク材10の温度よりも5℃以上20℃以下の範囲内で低い温度に加熱して、その温度で加温しておく。そして、図3に示すように、ブランク材10の外周部(周辺部)をダイ31とブランクホルダー32との間で押さえて挟持した状態とし、この状態でブランク材10を下降移動させ、パンチ33をブランクホルダー32の貫通角孔32h及びダイ31の成形角孔31hに挿通し、ダイ31とパンチ33との間でブランク材10に絞り成形を施して、図5に示す角型成形品60を成形する。
[Molding process]
In the molding step, the blank material 10 heated in the heating step is drawn using a press molding die 30.
The die 31 and the blank holder 32 of the press molding die 30 are heated in the heating process by heating respective heaters (not shown) provided before the blank material 10 is formed. It is heated to a temperature lower than the temperature within a range of 5 ° C. to 20 ° C. and heated at that temperature. Then, as shown in FIG. 3, the outer peripheral portion (peripheral portion) of the blank material 10 is pressed and sandwiched between the die 31 and the blank holder 32, and the blank material 10 is moved downward in this state to punch 33. Is inserted into the through-hole 32h of the blank holder 32 and the forming-angle hole 31h of the die 31, and the blank material 10 is drawn between the die 31 and the punch 33, and a square-shaped product 60 shown in FIG. Mold.

この際、ダイ31とブランクホルダー32は予め加温されているので、ブランク材10の外周部をダイ31とブランクホルダー32との間で挟持した際に、ブランク材10の温度低下を防止できる。また、ダイ31及びブランクホルダー32の温度を、ブランク材10の温度に近い温度、すなわちブランク材10の温度よりも5℃以上20℃以下の範囲内で低い温度で加熱しているので、ブランク材10の外面10aと内面10bとの温度差を維持したまま成形できる。   At this time, since the die 31 and the blank holder 32 are preliminarily heated, when the outer peripheral portion of the blank material 10 is sandwiched between the die 31 and the blank holder 32, the temperature drop of the blank material 10 can be prevented. Moreover, since the temperature of the die 31 and the blank holder 32 is heated at a temperature close to the temperature of the blank material 10, that is, within a range of 5 ° C. or more and 20 ° C. or less than the temperature of the blank material 10, the blank material 10 can be molded while maintaining the temperature difference between the outer surface 10a and the inner surface 10b.

このように、成形工程では、芯材である発泡合成樹脂層13の発泡合成樹脂が溶出しない耐熱温度付近まで加熱されており、さらに、ブランク材10の外面10aと内面10bとに温度差を設け、すなわち外面10aと内面10bとに変形能差を設けているので、ブランク材10の成形性を向上でき、安定した温間成形を行うことができる。したがって、しわ等の発生を防止して良好な外観特性を得ながらも、深く成形された角型成形品60を製造できる。
また、ブランク材10には、発泡倍率が1.5倍以上10倍以下で、板厚が1mm以上10mm以下の発泡合成樹脂層13を有するアルミニウム樹脂複合積層板を用いているので、良好な成形性を維持できる。
Thus, in the molding step, the foamed synthetic resin layer 13 that is the core material is heated to near the heat-resistant temperature where the foamed synthetic resin does not elute, and a temperature difference is provided between the outer surface 10a and the inner surface 10b of the blank material 10. That is, since the deformability difference is provided between the outer surface 10a and the inner surface 10b, the formability of the blank material 10 can be improved and stable warm forming can be performed. Therefore, a deeply molded square shaped product 60 can be manufactured while preventing generation of wrinkles and the like and obtaining good appearance characteristics.
In addition, the blank material 10 is made of an aluminum resin composite laminate having a foamed synthetic resin layer 13 having a foaming ratio of 1.5 to 10 times and a plate thickness of 1 to 10 mm. Can maintain sex.

なお、ブランク材10の加熱温度と発泡合成樹脂の耐熱温度との温度差を10℃以下とすると発泡合成樹脂層13の発泡合成樹脂が溶出するおそれがある。また、22℃を超える温度差とした場合は、発泡合成樹脂層13が変形し難くなり、温間成形の効果が十分に得られないことで、成形性が低下する。また、ブランク材10の外面10aと内面10bとの温度差が3℃未満では、外面10aと内面10bとに変形能差を付与することができず、しわ等の発生を防止できない。   Note that if the temperature difference between the heating temperature of the blank 10 and the heat resistant temperature of the foamed synthetic resin is 10 ° C. or less, the foamed synthetic resin of the foamed synthetic resin layer 13 may be eluted. Moreover, when it is set as the temperature difference over 22 degreeC, the foaming synthetic resin layer 13 becomes difficult to deform | transform and a moldability falls because the effect of warm shaping | molding is not fully acquired. In addition, if the temperature difference between the outer surface 10a and the inner surface 10b of the blank 10 is less than 3 ° C., the deformability difference cannot be imparted to the outer surface 10a and the inner surface 10b, and the occurrence of wrinkles and the like cannot be prevented.

また、発泡倍率が1.5倍未満で、板厚が1mm未満の発泡合成樹脂層13では、ブランク材10の外内面間の遮熱性が低下するため、外面10aと内面10bとの温度差をつけることが難しくなる。一方で、発泡倍率が10倍を超え、板厚が10mmを超える発泡合成樹脂層13では、均一な加工性が低下する。また、発泡倍率が10倍を超えると均一安定な発泡状態が得られなくなり、アルミニウム樹脂複合積層板の加工において局部変形による割れ、しわなどの不具合を引き起こしやすくなるため、加工性が低下するからである。   Further, in the foamed synthetic resin layer 13 having a foaming ratio of less than 1.5 times and a plate thickness of less than 1 mm, the heat shielding property between the outer and inner surfaces of the blank material 10 is lowered, so that the temperature difference between the outer surface 10a and the inner surface 10b is increased. It becomes difficult to put on. On the other hand, in the foamed synthetic resin layer 13 having an expansion ratio exceeding 10 times and a plate thickness exceeding 10 mm, uniform workability is lowered. In addition, when the expansion ratio exceeds 10 times, a uniform and stable foam state cannot be obtained, and it becomes easy to cause defects such as cracks and wrinkles due to local deformation in the processing of the aluminum resin composite laminate, so that workability is reduced. is there.

上記の第1実施形態のプレス成形方法では、一度の成形工程により、角型成形品60を成形することとしていたが、複数回の加熱工程と成形工程とを経て、角型成形品60を成形することとしてもよい。
例えば、図6に第2実施形態のプレス成形方法のフロー図を示すように、第一加熱工程、第一成形工程、第二加熱工程、第二加熱工程の順に、加熱工程と成形工程とを交互に2回繰り返すことにより、ブランク材10に段階的に絞り成形を施して、角型成形品60を成形することもできる。この場合、第一加熱工程と第一成形工程とを経て、図7に示す中間成形品50を成形した後、さらに第二加熱工程と第二成形工程とを経て、中間成形品50(本発明でいうブランク材に相当)に絞り加工を施して略角柱形状の最終の角型成形品60(図5)に成形する。
In the press molding method of the first embodiment, the square molded product 60 is molded by a single molding process. However, the square molded product 60 is molded through a plurality of heating processes and molding processes. It is good to do.
For example, as shown in the flowchart of the press molding method of the second embodiment in FIG. 6, the heating process and the molding process are performed in the order of the first heating process, the first molding process, the second heating process, and the second heating process. By repeating twice alternately, the blank material 10 can be drawn in stages to form the square shaped product 60. In this case, after forming the intermediate molded product 50 shown in FIG. 7 through the first heating step and the first molding step, the intermediate molded product 50 (the present invention) is further passed through the second heating step and the second molding step. (Corresponding to the blank material) is drawn to form a final square shaped product 60 (FIG. 5) having a substantially prismatic shape.

具体的には、第一加熱工程では、第1実施形態のプレス成形方法の加熱工程と同じ図1に示す加熱装置20を用いて、平板状のブランク材10を加熱する。そして、第一成形工程では図8に示すプレス成形金型70を用いて、ブランク材10に主として折り曲げ加工を施し、図7示す中間成形品50を成形する。また、第二加熱工程では、図9に示す加熱装置80を用いて、中間成形品50を加熱する。そして、第二成形工程では図10に示すプレス成形金型90を用いて、第二加熱工程で加熱された中間成形品50に絞り加工を施し、最終の角型成形品60を成形する。
このように、第2実施形態のプレス成形方法では、それぞれの成形工程(第一成形工程又は第二成形工程)の前に行われる第一加熱工程又は第二加熱工程により、ブランク材10を所定温度に加熱した後、各成形工程で加工が施される。
Specifically, in the first heating step, the flat blank 10 is heated using the heating device 20 shown in FIG. 1 which is the same as the heating step of the press molding method of the first embodiment. Then, in the first molding step, the blank material 10 is mainly bent using a press molding die 70 shown in FIG. 8 to form an intermediate molded product 50 shown in FIG. In the second heating step, the intermediate molded product 50 is heated using the heating device 80 shown in FIG. Then, in the second molding step, a press molding die 90 shown in FIG. 10 is used to draw the intermediate molded product 50 heated in the second heating step, and the final square molded product 60 is molded.
As described above, in the press molding method of the second embodiment, the blank material 10 is predetermined by the first heating process or the second heating process performed before each molding process (first molding process or second molding process). After heating to temperature, processing is performed in each molding step.

第一加熱工程で用いる加熱装置20は、第1実施形態で用いた加熱装置20と同じものを用いるため、説明を省略する。
第二加熱工程で用いる加熱装置80は、図9に示すように、第一加熱工程で用いる加熱装置20(図2)と同様に、一対の熱伝達板81,82と、各熱伝達板81,82を加熱する加熱手段(本実施形態では、遠赤外線ヒータ)83,84とを有するが、上側の熱伝達板81の下面81bに凸部81d、下側の熱伝達板82に凹部82cが設けられ、第一成形工程において加工された後の中間成形品50を、凸部81dと凹部82cとの間に挟むことで、中間成形品50の外面50aと内面50bとを熱伝達板81,82を介して個別に、そして同時に加熱できるようになっている。
Since the heating device 20 used in the first heating step is the same as the heating device 20 used in the first embodiment, description thereof is omitted.
As shown in FIG. 9, the heating device 80 used in the second heating step is similar to the heating device 20 (FIG. 2) used in the first heating step, and a pair of heat transfer plates 81 and 82 and each heat transfer plate 81. , 82 heating means (far infrared heaters in this embodiment) 83, 84, with a convex portion 81 d on the lower surface 81 b of the upper heat transfer plate 81 and a concave portion 82 c on the lower heat transfer plate 82. The intermediate molded product 50 that is provided and processed in the first molding step is sandwiched between the convex portion 81d and the concave portion 82c, thereby connecting the outer surface 50a and the inner surface 50b of the intermediate molded product 50 to the heat transfer plate 81, 82 can be heated individually and simultaneously.

この第二加熱工程の加熱装置80も、第一加熱工程の加熱装置20と同様に、上側の熱伝達板81が下側の熱伝達板82に対して上下移動可能に保持されている。また、各熱伝達板81,82には、個別の温度計測手段85A,85Bが埋め込まれており、各温度計測手段85A,85Bの値に基づき、各加熱手段83,84を制御することにより、上側の熱伝達板81と下側の熱伝達板82とが独立して温度調節可能に設けられている。   Similarly to the heating device 20 in the first heating step, the heating device 80 in the second heating step is also held so that the upper heat transfer plate 81 can move up and down with respect to the lower heat transfer plate 82. Further, individual temperature measuring means 85A and 85B are embedded in each heat transfer plate 81 and 82, and by controlling each heating means 83 and 84 based on the value of each temperature measuring means 85A and 85B, The upper heat transfer plate 81 and the lower heat transfer plate 82 are provided so that the temperature can be adjusted independently.

第一成形工程で用いるプレス成形金型70は、上型(パンチ)71と下型(ダイ)72とを備え、上型71に凸部71d、下型72に凹部72cが設けられる。凸部71dは、成形面が緩やかなテーパ面に形成されている。凹部72cも、その凸部71dと係合する緩やかなテーパ面を有している。そして、凸部71dと凹部72cとの間に、ブランク材10を配置し、このブランク材10を凸部71dと凹部72cとで折り曲げることで、図7に示した中間成形品50を成形できる。   The press molding die 70 used in the first molding step includes an upper die (punch) 71 and a lower die (die) 72. The upper die 71 is provided with a convex portion 71d and the lower die 72 is provided with a concave portion 72c. The convex portion 71d is formed in a tapered surface with a gentle molding surface. The concave portion 72c also has a gently tapered surface that engages with the convex portion 71d. And the blank material 10 is arrange | positioned between the convex part 71d and the recessed part 72c, and the intermediate molded product 50 shown in FIG. 7 can be shape | molded by bending this blank material 10 with the convex part 71d and the recessed part 72c.

上型71と下型72には、図示は省略するが、これら上型71及び下型72を成形に先立って予め加熱しておくための複数の棒状のヒータが内蔵されている。また、上型71と下型72には、それぞれに温度計測手段75A,75Bが内蔵されており、上型71と下型72とは、独立して温度調整が可能に設けられている。そして、下型72のプレス機本体103との取付面72mには、断熱材104が設けられている。断熱材104により、プレス機本体103に下型72の熱が伝わることを防止でき、上型71及び下型72の温度低下を防止できる。   Although not shown, the upper mold 71 and the lower mold 72 incorporate a plurality of rod-shaped heaters for heating the upper mold 71 and the lower mold 72 in advance prior to molding. Further, the upper mold 71 and the lower mold 72 have temperature measuring means 75A and 75B, respectively, and the upper mold 71 and the lower mold 72 are provided so that the temperature can be adjusted independently. And the heat insulating material 104 is provided in the attachment surface 72m with the press machine main body 103 of the lower mold | type 72. FIG. The heat insulating material 104 can prevent the heat of the lower mold 72 from being transmitted to the press machine main body 103, and can prevent the temperature decrease of the upper mold 71 and the lower mold 72.

一方、図10に示す第二成形工程のプレス成形金型90も、第一成形工程のプレス成形金型70と同様に、上型(パンチ)91と下型(ダイ)92とを備え、上型91の凸部91dと下型92の凹部92cとの間で成形するが、凸部91dの成形面がほぼ垂直に形成され、角型成形品60の底部61と略同形状に設けられている。また、これに合せて凹部92cもほぼ垂直な成形面に形成されており、これら凸部91dと凹部92cとで中間成形品50を絞り加工し、角型成形品60を成形する。また、第一成形工程のプレス成形金型70と同様に、上型91と下型92には、ヒータ(図示略)と温度計測手段95A,95Bとが内蔵されており、上型91と下型92とは、独立して温度調整が可能に設けられている。そして、下型92のプレス機本体105との取付面92mには、断熱材106が設けられている。断熱材106により、プレス機本体105に下型92の熱が伝わることを防止でき、上型91及び下型92の温度低下を防止できる。   On the other hand, the press molding die 90 in the second molding step shown in FIG. 10 also includes an upper die (punch) 91 and a lower die (die) 92, as in the press molding die 70 in the first molding step. Molding is performed between the convex portion 91d of the mold 91 and the concave portion 92c of the lower mold 92, but the molding surface of the convex portion 91d is formed substantially perpendicularly and provided in substantially the same shape as the bottom portion 61 of the square molded product 60. Yes. In accordance with this, the concave portion 92c is also formed on a substantially vertical molding surface, and the intermediate molded product 50 is drawn by the convex portion 91d and the concave portion 92c to form the square shaped product 60. Similarly to the press molding die 70 in the first molding step, the upper die 91 and the lower die 92 incorporate a heater (not shown) and temperature measuring means 95A and 95B. The mold 92 is provided independently of the temperature. A heat insulating material 106 is provided on a mounting surface 92m of the lower die 92 with the press machine main body 105. The heat insulating material 106 can prevent the heat of the lower mold 92 from being transmitted to the press machine main body 105, and can prevent the temperature of the upper mold 91 and the lower mold 92 from being lowered.

[角型成形品のプレス成形方法]
そして、第2実施形態のプレス成形方法では、このように構成される加熱装置20,80を用いた第一加熱工程及び第二加熱工程と、プレス成形金型70,90を用いた第一成形工程及び第二成形工程とを、第一加熱工程、第一成形工程、第二加熱工程、第二加熱工程の順に経て、ブランク材10に絞り成形を施して、角型成形品60を製造する。
[Press molding method for square-shaped molded products]
And in the press molding method of 2nd Embodiment, the 1st shaping | molding using the 1st heating process and the 2nd heating process using the heating apparatuses 20 and 80 comprised in this way, and the press-molding dies 70 and 90 is carried out. Through the steps of the first heating step, the first molding step, the second heating step, and the second heating step, the blank material 10 is subjected to drawing to produce a square molded product 60. .

[第一加熱工程]
第一加熱工程では、ブランク材10を発泡合成樹脂層13の耐熱温度よりも低い温度で、かつ発泡合成樹脂層13の耐熱温度との温度差を10℃を超えて22℃以下とする温度に加熱するとともに、外面10aの温度よりも内面10bの温度を3℃以上高い温度に加熱する。なお、外面10aと内面10bとの温度差は、12℃以下が望ましい。
具体的には、図2に示すように、加熱装置20の各熱伝達板21,22をそれぞれ別々の加熱手段23,24により加熱しておき、これら一対の熱伝達板21,22の間にブランク材10を配置し、外面10a及び内面10bを一対の熱伝達板21,22で挟むことにより、各熱伝達板21,22を介してブランク材10の外面10a及び内面10bのそれぞれの加熱を行う。
[First heating step]
In the first heating step, the blank material 10 is set to a temperature lower than the heat resistant temperature of the foamed synthetic resin layer 13 and the temperature difference from the heat resistant temperature of the foamed synthetic resin layer 13 to more than 10 ° C and not more than 22 ° C. While heating, the temperature of the inner surface 10b is heated to 3 ° C. or higher than the temperature of the outer surface 10a. The temperature difference between the outer surface 10a and the inner surface 10b is desirably 12 ° C. or less.
Specifically, as shown in FIG. 2, each heat transfer plate 21, 22 of the heating device 20 is heated by separate heating means 23, 24, and between these pair of heat transfer plates 21, 22. By placing the blank material 10 and sandwiching the outer surface 10a and the inner surface 10b between the pair of heat transfer plates 21 and 22, the heating of the outer surface 10a and the inner surface 10b of the blank material 10 is performed via the heat transfer plates 21 and 22, respectively. Do.

[第一成形工程]
第一成形工程では、第一加熱工程において加熱されたブランク材10に、プレス成形金型70を用いて絞り成形を施し、最終絞り深さよりも浅い絞り深さ(例えば1/2以上3/4以下の絞り深さ)を有する中間成形品50を成形する。
この際、ブランク材10の成形開始前に、上型71及び下型72に設けられた各ヒータ(図示略)を加熱し、上型71及び下型72の温度を、ブランク材10の温度よりも5℃以上20℃以下の範囲内で低い温度に加熱して、その温度で加温しておく。このように、上型71と下型72とは第一加熱工程で加熱されたブランク材10の温度に近い温度に予め加温されているので、ブランク材10の成形時における温度低下を防止でき、ブランク材10の外面10aと内面10bとの温度差を維持したまま温間成形できる。
[First molding process]
In the first forming step, the blank material 10 heated in the first heating step is subjected to drawing using a press mold 70, and the drawing depth shallower than the final drawing depth (for example, 1/2 or more 3/4). An intermediate molded product 50 having the following drawing depth) is molded.
At this time, each heater (not shown) provided in the upper die 71 and the lower die 72 is heated before the blank material 10 is formed, and the temperature of the upper die 71 and the lower die 72 is set to be higher than the temperature of the blank material 10. Is heated to a low temperature within the range of 5 ° C. or more and 20 ° C. or less, and heated at that temperature. Thus, since the upper mold | type 71 and the lower mold | type 72 are previously heated by the temperature close | similar to the temperature of the blank material 10 heated at the 1st heating process, the temperature fall at the time of shaping | molding of the blank material 10 can be prevented. Further, warm forming can be performed while maintaining the temperature difference between the outer surface 10a and the inner surface 10b of the blank 10.

そして、この加温状態で上型71を下降させると、凸部71dが下型72の凹部72cとの間でブランク材10を挟み込むようにしながら凹部72c内に係合し、その際に、ブランク材10を折り曲げ、中間成形品50が成形される。この中間成形品50は、角型成形品60よりも深さが小さいとともに、図7に示すように、側面部53が上方の開口端に向かうにしたがって広がるようにテーパ状に形成されており、また、角部52の曲率半径も大きく形成される。
この中間成形品50を成形した後、プレス成形金型70から取り外して、第二加熱工程を実施する。
When the upper mold 71 is lowered in this warmed state, the convex portion 71d engages with the concave portion 72c while sandwiching the blank material 10 between the concave portion 72c of the lower mold 72, and at that time, the blank 71 The material 10 is bent, and the intermediate molded product 50 is formed. The intermediate molded product 50 has a smaller depth than the square molded product 60, and as shown in FIG. 7, the intermediate molded product 50 is formed in a tapered shape so that the side surface 53 extends toward the upper opening end. In addition, the radius of curvature of the corner 52 is formed large.
After the intermediate molded product 50 is molded, the intermediate molded product 50 is removed from the press molding die 70, and the second heating step is performed.

[第二加熱工程]
第二加熱工程では、第一加熱工程と同様に、中間成形品50を発泡合成樹脂層13の耐熱温度よりも低い温度で、かつ発泡合成樹脂層13の耐熱温度との温度差を10℃を超えて22℃以下とする温度に加熱するとともに、外面50aの温度よりも内面50bの温度を3℃以上高い温度に加熱する。なお、外面50aと内面50bとの温度差は、12℃以下が望ましい。
具体的には、図9に示すように、加熱装置80の各熱伝達板81,82をそれぞれ別々の加熱手段83,84により加熱しておき、これら一対の熱伝達板81,82の間に中間成形品50を配置し、外面50a及び内面50bを一対の熱伝達板81,82で挟むことにより、各熱伝達板81,82を介して中間成形品50の外面50a及び内面50bのそれぞれの加熱を行う。
[Second heating step]
In the second heating step, similarly to the first heating step, the intermediate molded product 50 is set at a temperature lower than the heat resistant temperature of the foamed synthetic resin layer 13 and the temperature difference between the heat resistant temperature of the foamed synthetic resin layer 13 is 10 ° C. In addition to heating to a temperature exceeding 22 ° C., the temperature of the inner surface 50b is heated to a temperature higher by 3 ° C. than the temperature of the outer surface 50a. The temperature difference between the outer surface 50a and the inner surface 50b is desirably 12 ° C. or less.
Specifically, as shown in FIG. 9, each heat transfer plate 81, 82 of the heating device 80 is heated by separate heating means 83, 84, and between the pair of heat transfer plates 81, 82. The intermediate molded product 50 is arranged, and the outer surface 50a and the inner surface 50b are sandwiched between the pair of heat transfer plates 81 and 82, whereby the outer surface 50a and the inner surface 50b of the intermediate molded product 50 are respectively interposed via the heat transfer plates 81 and 82. Heat.

[第二成形工程]
最後に、第二成形工程において、第二加熱工程で加熱された中間成形品50に、図10に示したプレス成形金型90により絞り加工を施す。
この第二成形工程では、中間成形品50を、上型91の凸部91dと下型92の凹部92cとの間で挟み込むように、中間成形品50の底部51から絞り加工し、底部51と側面部53とがおよそ90°に近い角度になるまで加工して、角部52を第一成形工程よりも大きい曲率で形成する。
[Second molding process]
Finally, in the second molding step, the intermediate molded product 50 heated in the second heating step is subjected to drawing processing by the press molding die 90 shown in FIG.
In this second molding step, the intermediate molded product 50 is drawn from the bottom 51 of the intermediate molded product 50 so as to be sandwiched between the convex portion 91d of the upper die 91 and the concave portion 92c of the lower die 92. Processing is performed until the side surface portion 53 has an angle close to approximately 90 °, and the corner portion 52 is formed with a larger curvature than in the first molding step.

このとき、成形開始前に、上型91及び下型92に設けられた各ヒータ(図示略)を加熱し、上型91及び下型92の温度を、中間成形品50の温度よりも5℃以上20℃以下の範囲内で低い温度に加熱して、その温度で加温しておく。このように、上型91と下型92とは第二加熱工程で加熱された中間成形品50の温度に近い温度に予め加温されているので、成形時における温度低下を防止でき、外面50aと内面50bとの温度差を維持したまま温間成形できる。   At this time, before the start of molding, each heater (not shown) provided in the upper mold 91 and the lower mold 92 is heated, and the temperature of the upper mold 91 and the lower mold 92 is 5 ° C. higher than the temperature of the intermediate molded product 50. It is heated to a low temperature in the range of 20 ° C. or lower and heated at that temperature. Thus, since the upper mold 91 and the lower mold 92 are preheated to a temperature close to the temperature of the intermediate molded product 50 heated in the second heating step, the temperature drop during molding can be prevented, and the outer surface 50a. Can be warm-formed while maintaining the temperature difference between the inner surface 50b and the inner surface 50b.

また、第二成形工程では、成形時にプレス成形金型90の下死点で20秒間以上保持するのが好ましい。この保持時間を確保することで、形状を安定させ、より深い加工を施すことができる。保持時間が20秒未満では、絞り深さを大きくすると、スプリングバックが大きくなって形状を安定させにくい。保持時間が長すぎるのは非効率である。
そして、この第二成形工程により、図7に示す角型成形品(最終成形品)60が成形される。
In the second molding step, it is preferable to hold at the bottom dead center of the press mold 90 for 20 seconds or more during molding. By securing this holding time, the shape can be stabilized and deeper processing can be performed. If the holding time is less than 20 seconds, when the aperture depth is increased, the spring back becomes large and it is difficult to stabilize the shape. It is inefficient that the holding time is too long.
And the square shape molded product (final molded product) 60 shown in FIG. 7 is shape | molded by this 2nd shaping | molding process.

以上説明したように、第2実施形態のプレス成形方法によれば、第一成形工程と第二成形工程とに分けて加工することにより、第一成形工程にて最終の角型成形品60よりも浅い中間成形品50を成形し、この中間成形品50に熱処理工程を施して加工歪みを除去してから、第二成形工程にて角型成形品60を成形できる。このため、一度に連続して深絞り成形する場合に起こりやすい割れやしわ等の発生を回避して、より深い形状の三次元成形品(角型成形品60)を成形することができる。また、このように第一成形工程と第二成形工程とに分けて加工する場合にも、各成形工程前に、ブランク材10の外面10aと内面10b、又は中間成形品50の外面50aと内面50bとに温度差を設けて加熱しておくことで、これら外面と内面とに変形能差が設けられるので、ブランク材10(中間成形品50)の成形性を向上でき、安定した温間成形を行うことができる。したがって、しわ等の発生を防止して良好な外観特性を得ながらも、深く成形された角型成形品60を製造できる。   As described above, according to the press molding method of the second embodiment, the first square forming process 60 is divided into the first molding process and the second molding process. After forming a shallow intermediate molded product 50 and subjecting the intermediate molded product 50 to a heat treatment process to remove processing distortion, the square molded product 60 can be molded in the second molding process. For this reason, it is possible to avoid the occurrence of cracks and wrinkles that are likely to occur when performing deep drawing continuously at a time, and to form a deeper three-dimensional molded product (square shaped product 60). Moreover, also when processing by dividing into a 1st shaping | molding process and a 2nd shaping | molding process in this way, before each shaping | molding process, the outer surface 10a and the inner surface 10b of the blank material 10, or the outer surface 50a and inner surface of the intermediate molded product 50 By providing a temperature difference to 50b and heating, a difference in deformability is provided between the outer surface and the inner surface, so that the formability of the blank material 10 (intermediate molded product 50) can be improved, and stable warm forming It can be performed. Therefore, a deeply molded square shaped product 60 can be manufactured while preventing generation of wrinkles and the like and obtaining good appearance characteristics.

なお、本発明は前記実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、加熱手段に遠赤外線ヒータを用いたが、加熱手段はこれに限定されず、ハロゲンヒータやセラミックヒータ等を用いることができる。
また、プレス成形金型の上型と下型、パンチとダイとの構成は、上記構成に限定されるものではない。例えば、図3に示したプレス成形金型30において、パンチ33を上側に配置し、ダイ31を下側に配置して、天地を逆とした構成をとることも可能である。
In addition, this invention is not limited to the thing of the structure of the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, a far infrared heater is used as the heating unit, but the heating unit is not limited to this, and a halogen heater, a ceramic heater, or the like can be used.
Further, the configurations of the upper mold and the lower mold of the press mold and the punch and the die are not limited to the above-described configurations. For example, in the press molding die 30 shown in FIG. 3, the punch 33 may be disposed on the upper side and the die 31 may be disposed on the lower side so that the top and bottom are reversed.

ブランク材として、引張強さが40MPa、耐力が25MPa、伸びが17.2%で厚み3.5mmのアルミニウム樹脂複合積層板を用いて、第1実施形態のプレス成形方法による加熱工程と成形工程とを経て、底面が98mm×170mm(底面積が16660mm)で深さが30mmの角筒絞り容器(角型成形品)を製造した。外面側アルミニウム板材には、一般的な半連続鋳造、熱間圧延及び冷間圧延(中間焼鈍を含む)を経て5000系合金のH22調質材で形成された引張強さが190MPa、耐力が140MPa、伸びが16%の厚み0.35mmの板材を用い、内面側アルミニウム板材には、外面側アルミニウム板材と同様の方法により1000系合金のH24調質材で形成された引張強さが120MPa、耐力が110MPa、伸びが27%の厚み0.15mmの板材を用いた。また、発泡合成樹脂層は、ポリプロピレン(融点170℃、耐熱温度140℃)を選び、発泡倍率は2.5倍とした。なお、耐熱温度とは、例えば外力を受けない状態で樹脂製品が変形・変質しないでその機能が保てる温度である。また、ポリプロピレンの荷重たわみ温度は、77℃である。また、接着剤には、ポリプロピレンが主成分の接着剤を用いた。なお、ブランク材の機械的特性は、JIS‐Z2241の5号試験片を作製して引張試験を行い、引張強さ、0.2%耐力及び伸びを測定した。 As the blank material, an aluminum resin composite laminate having a tensile strength of 40 MPa, a proof stress of 25 MPa, an elongation of 17.2%, and a thickness of 3.5 mm is used. As a result, a rectangular tube-drawn container (a square molded product) having a bottom surface of 98 mm × 170 mm (bottom area of 16660 mm 2 ) and a depth of 30 mm was manufactured. The outer surface side aluminum plate material has a tensile strength of 190 MPa and a proof stress of 140 MPa formed from a H22 tempered material of 5000 series alloy through general semi-continuous casting, hot rolling and cold rolling (including intermediate annealing). Using a plate material having a thickness of 16% and a thickness of 0.35 mm, the inner surface side aluminum plate material has a tensile strength of 120 MPa and a proof stress formed from a H24 tempered material of 1000 series alloy in the same manner as the outer surface side aluminum plate material. Was a plate material having a thickness of 0.15 mm and an elongation of 27%. For the foamed synthetic resin layer, polypropylene (melting point: 170 ° C., heat resistant temperature: 140 ° C.) was selected, and the expansion ratio was 2.5 times. The heat resistant temperature is, for example, a temperature at which the function of the resin product can be maintained without being deformed or altered in a state where no external force is applied. The deflection temperature under load of polypropylene is 77 ° C. In addition, an adhesive mainly composed of polypropylene was used as the adhesive. As for the mechanical properties of the blank material, a No. 5 test piece of JIS-Z2241 was prepared and subjected to a tensile test, and the tensile strength, 0.2% proof stress and elongation were measured.

本実施例では、図2に表されるように、予め加熱された一対の熱伝達板21,22の間にブランク材10を挟んで、ブランク材10を表1の「加熱ブランク温度」まで加熱した後、ブランク材10をプレス成形金型30(図3)に設置した。また、各熱伝達板21,22の加熱は、表1の「加熱方式」に記載したように、加熱手段23、24として「遠赤外線」ヒータ、又は「ハロゲン」ヒータを用いて行った。
成形工程では、予め表1の「金型温度」に加温されたプレス成形金型30を用いて、ダイ31とパンチ33との間でブランク材10に絞り成形を施して、図5に示すような角筒絞り容器(角型成形品)の成形を行った。「金型温度」は、ダイ31の成形角孔31hの四隅の角部において、その角部の内側表面から10mm外側までの範囲内に、熱電対の先端が配置されるように配置して、その位置の温度を測定した値である。また、「成形開始ブランク温度」は、ブランクホルダー32上にブランク材10を設置し、ブランクホルダー32とダイ31との間でブランク材10の外周部を挟持した状態とし、この状態で、成形開始直前に、放射温度計でブランク材10の外面10aの中央部の温度を測定した値である。そして、ブランク材10の外面10aの温度計測後、直ちにブランク材10を下降移動させ、ダイ31とパンチ33との間でブランク材10に絞り成形を施した。
In this embodiment, as shown in FIG. 2, the blank material 10 is sandwiched between a pair of preheated heat transfer plates 21 and 22, and the blank material 10 is heated to the “heating blank temperature” in Table 1. Then, the blank material 10 was installed in the press molding die 30 (FIG. 3). The heat transfer plates 21 and 22 were heated by using “far-infrared” heaters or “halogen” heaters as the heating means 23 and 24 as described in “Heating method” in Table 1.
In the molding step, the blank material 10 is drawn between the die 31 and the punch 33 using the press molding die 30 preliminarily heated to the “die temperature” shown in Table 1, and shown in FIG. Such a rectangular tube squeezed container (square shaped product) was molded. "Mold temperature" is arranged so that the tip of the thermocouple is arranged in the range from the inner surface of the corner to the outside of 10 mm at the four corners of the forming corner hole 31h of the die 31, This is a value obtained by measuring the temperature at that position. The “molding start blank temperature” is a state in which the blank material 10 is placed on the blank holder 32 and the outer periphery of the blank material 10 is sandwiched between the blank holder 32 and the die 31. It is the value which measured the temperature of the center part of the outer surface 10a of the blank material 10 with the radiation thermometer immediately before. Then, after measuring the temperature of the outer surface 10 a of the blank material 10, the blank material 10 was immediately moved downward, and the blank material 10 was drawn between the die 31 and the punch 33.

そして、このようにして得られた角筒絞り容器について外観を観察し、「割れ」、「しわ」、「肌荒れ」、「樹脂漏れ」の有無について評価した。
各評価については、目視(測定室の天井の白色灯のみ)および手元に白色灯をかざしての目視検査と10倍以上の光学レンズによる検査のいずれでも外観に「割れ」、「しわ」、「肌荒れ」、「樹脂漏れ」が認められない場合を「◎」、目視では観察できないが10倍以上の光学レンズで確認できる場合を「○」、目視では確認できないが10倍未満の光学レンズで確認できる場合を「△」、目視でも確認できる場合を「×」とした。
これらの評価結果を表2に示す。
The appearance of the rectangular tube-drawn container thus obtained was observed, and the presence or absence of “cracking”, “wrinkle”, “skin roughness”, and “resin leakage” was evaluated.
For each evaluation, the appearance is “cracked”, “wrinkle”, “visually visible (white light only on the ceiling of the measurement room), visual inspection with a white light over the hand, and inspection with a 10x optical lens or more. "◎" indicates that no "rough skin" or "resin leakage" is observed, "○" indicates that it cannot be visually observed but can be confirmed with an optical lens of 10 times or more, and cannot be confirmed visually, but is confirmed with an optical lens of less than 10 times The case where it was possible to make it “△” and the case where it could be confirmed visually was made “X”.
These evaluation results are shown in Table 2.

Figure 2018012108
Figure 2018012108

Figure 2018012108
Figure 2018012108

表2からわかるように、実施れのNo.1〜7では、割れ、しわ、肌荒れ、樹脂漏れがほとんどなく、概ね良好な成形を示している。これに対して、比較例のNo.8〜12では、割れ、しわ、肌荒れ、樹脂漏れのいずれかの発生が認められ、十分な成形性が得られず、絞り加工による三次元成形が困難であることがわかる。   As can be seen from Table 2, no. Nos. 1 to 7 show almost good molding with almost no cracks, wrinkles, rough skin, and resin leakage. In contrast, No. of the comparative example. In 8-12, generation | occurrence | production of any one of a crack, a wrinkle, rough skin, and resin leakage is recognized, and it turns out that sufficient moldability is not acquired and three-dimensional shaping | molding by drawing is difficult.

10 アルミニウム樹脂複合積層板(ブランク材)
11,12 アルミニウム板材
13 発泡合成樹脂層
20 加熱装置
21,22 熱伝達板
23,24 加熱手段
25A,25B 温度計測手段
30 プレス成形金型
31 ダイ
32 ブランクホルダー
33 パンチ
35A,35B 温度計測手段
50 中間成形品(ブランク材)
60 角型成形品
70 プレス成形金型
71 上型
72 下型
75A,75B 温度計測手段
80 加熱手段
81,82 熱伝達板
83,84 加熱手段
90 プレス成形金型
91 上型
92 下型
95A,95B 温度計測手段
101,103,105 プレス機本体
102,104,106 断熱材
10 Aluminum resin composite laminate (blank material)
11, 12 Aluminum plate material 13 Foamed synthetic resin layer 20 Heating device 21, 22 Heat transfer plates 23, 24 Heating means 25A, 25B Temperature measuring means 30 Press molding die 31 Die 32 Blank holder 33 Punch 35A, 35B Temperature measuring means 50 Intermediate Molded product (blank material)
60 Square molding 70 Press molding 71 Upper mold 72 Lower mold 75A, 75B Temperature measuring means 80 Heating means 81, 82 Heat transfer plate 83, 84 Heating means 90 Press molding die 91 Upper mold 92 Lower mold 95A, 95B Temperature measuring means 101, 103, 105 Press body 102, 104, 106

Claims (6)

発泡合成樹脂層の両面にアルミニウム板材が接合されてなるアルミニウム樹脂複合積層板からなるブランク材を有底矩形の角型成形品に絞り成形するためのプレス成形方法であって、
前記ブランク材を加熱する加熱工程と、
加熱された前記ブランク材にパンチとダイとを備えるプレス成形金型を用いて絞り成形を施す成形工程とを備え、
前記加熱工程において、前記ブランク材を前記発泡合成樹脂層の耐熱温度よりも低い温度で、かつ該発泡合成樹脂層の耐熱温度との温度差を10℃を超えて22℃以下とする温度に加熱しておくとともに、前記ブランク材のうちの前記角型成形品の凸面となる予定の外面の温度よりも、前記角型成形品の凹面となる予定の内面の温度を3℃以上高い温度に加熱しておくことを特徴とするアルミニウム樹脂複合積層板のプレス成形方法。
A press molding method for drawing a blank material made of an aluminum resin composite laminate in which an aluminum plate material is bonded to both surfaces of a foamed synthetic resin layer into a rectangular rectangular shaped product with a bottom,
A heating step of heating the blank material;
A molding step of drawing the heated blank material using a press mold including a punch and a die, and
In the heating step, the blank material is heated to a temperature lower than the heat resistant temperature of the foamed synthetic resin layer and a temperature difference from the heat resistant temperature of the foamed synthetic resin layer to more than 10 ° C and not more than 22 ° C. In addition, the temperature of the inner surface of the blank material to be the concave surface of the square-shaped molded product is heated to a temperature higher by 3 ° C. or more than the temperature of the outer surface of the blank-shaped molded product to be the convex surface. A method for press-molding an aluminum resin composite laminate, characterized by comprising:
前記成形工程において、
前記ダイの温度を、前記ブランク材の温度よりも5℃以上20℃以下の範囲内で低い温度に加熱しておくことを特徴とする請求項1に記載のアルミニウム樹脂複合積層板のプレス成形方法。
In the molding step,
2. The press molding method for an aluminum resin composite laminate according to claim 1, wherein the temperature of the die is heated to a temperature lower than the temperature of the blank material within a range of 5 ° C. or more and 20 ° C. or less. .
前記加熱工程は、一対の熱伝達板を用いて行われ、
前記一対の熱伝達板の各熱伝達板をそれぞれ別々の加熱手段により加熱しておき、
前記一対の熱伝達板の間に前記ブランク材の前記外面及び前記内面を挟むことにより、各熱伝達板を介して前記ブランク材の前記外面及び前記内面のそれぞれの加熱を行うことを特徴とする請求項1又は2に記載のアルミニウム樹脂複合積層板のプレス成形方法。
The heating step is performed using a pair of heat transfer plates,
Each heat transfer plate of the pair of heat transfer plates is heated by separate heating means,
The heating of each of the outer surface and the inner surface of the blank material is performed via each heat transfer plate by sandwiching the outer surface and the inner surface of the blank material between the pair of heat transfer plates. 3. A press molding method for an aluminum resin composite laminate according to 1 or 2.
前記熱伝達板は、アルミニウム材で形成されていることを特徴とする請求項3に記載のアルミニウム樹脂複合積層板のプレス成形方法。   The said heat-transfer board is formed with the aluminum material, The press molding method of the aluminum resin composite laminated board of Claim 3 characterized by the above-mentioned. 前記加熱手段は、遠赤外線ヒータであることを特徴とする請求項3又は4に記載のアルミニウム樹脂複合積層板のプレス成形方法。   The said heating means is a far-infrared heater, The press molding method of the aluminum resin composite laminated sheet of Claim 3 or 4 characterized by the above-mentioned. 前記ブランク材に、前記発泡合成樹脂層の発泡倍率が1.5倍以上10倍以下で、かつ、板厚が1mm以上10mm以下とされるアルミニウム樹脂複合積層板を用いることを特徴とする請求項1から5のいずれか一項に記載のアルミニウム樹脂複合積層板のプレス成形方法。   The aluminum resin composite laminate having a foaming ratio of the foamed synthetic resin layer of 1.5 to 10 times and a plate thickness of 1 to 10 mm is used as the blank material. The press molding method of the aluminum resin composite laminated sheet as described in any one of 1 to 5.
JP2016141018A 2016-07-19 2016-07-19 Press molding method of aluminum resin composite laminated plate Pending JP2018012108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141018A JP2018012108A (en) 2016-07-19 2016-07-19 Press molding method of aluminum resin composite laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141018A JP2018012108A (en) 2016-07-19 2016-07-19 Press molding method of aluminum resin composite laminated plate

Publications (1)

Publication Number Publication Date
JP2018012108A true JP2018012108A (en) 2018-01-25

Family

ID=61018929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141018A Pending JP2018012108A (en) 2016-07-19 2016-07-19 Press molding method of aluminum resin composite laminated plate

Country Status (1)

Country Link
JP (1) JP2018012108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113878009A (en) * 2020-07-03 2022-01-04 上海飞机制造有限公司 Titanium alloy plate processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113878009A (en) * 2020-07-03 2022-01-04 上海飞机制造有限公司 Titanium alloy plate processing method
CN113878009B (en) * 2020-07-03 2024-05-24 上海飞机制造有限公司 Titanium alloy plate processing method

Similar Documents

Publication Publication Date Title
JP2017222069A (en) Drawing mold of aluminum resin composite laminate, and press molding method
JP2017221957A (en) Bending processing method of aluminum resin composite laminate plate
KR102043343B1 (en) Panel shaped article and its manufacturing method
JP6702004B2 (en) Method and apparatus for manufacturing hot stamped product
JP5952948B1 (en) Aluminum resin composite laminate
JP6401413B1 (en) Method for producing metal-fiber reinforced resin composite molded body
US10876179B2 (en) Method for producing hot-formed components
EP2999588B1 (en) Three-dimensional structural member formed by a sandwich structure with foam core between metallic layers
WO2013061480A1 (en) Hot press molding method, article molded by hot press molding, and mold for hot pressing
JP5266676B2 (en) Warm forming method and molded product produced by the warm forming method
JP2017192972A (en) Blank material for draw molding of aluminum resin composite laminate board and method for manufacturing three-dimensional molded article using the same
JP2017217665A (en) Method for punching aluminum resin composite laminate plate
JP6662128B2 (en) Method and apparatus for manufacturing press-formed product
JP2018012108A (en) Press molding method of aluminum resin composite laminated plate
JP2017185534A (en) Three-dimensional molding method of aluminum resin composite laminate plate
US10500809B2 (en) Thermally insulating planar component with low structural thickness, in particular for lining the functional spaces of a motor vehicle
Maeno et al. Hot stamping of titanium alloy sheets into U shape with concave bottom and joggle using resistance heating
JP2017131997A (en) Manufacturing method for door hinge male and/or female
JP2017185740A (en) Aluminum resin composite laminated plate and method for manufacturing three-dimensional molded article
KR102374065B1 (en) Device for Multi forming
RU2619711C2 (en) Manufacture method of nonwoven composite laminated product with different hardness degree
JP6752412B2 (en) Aluminum resin composite laminate
JP2017217671A (en) Press-molding method of aluminum resin composite laminate plate
JP6603598B2 (en) Mold and press molding method
KR101495042B1 (en) Mold for warm forming