JP2018010521A - Product state prediction device, product state control device, product state prediction method and program - Google Patents

Product state prediction device, product state control device, product state prediction method and program Download PDF

Info

Publication number
JP2018010521A
JP2018010521A JP2016139591A JP2016139591A JP2018010521A JP 2018010521 A JP2018010521 A JP 2018010521A JP 2016139591 A JP2016139591 A JP 2016139591A JP 2016139591 A JP2016139591 A JP 2016139591A JP 2018010521 A JP2018010521 A JP 2018010521A
Authority
JP
Japan
Prior art keywords
state
prediction
product
teacher data
target product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016139591A
Other languages
Japanese (ja)
Other versions
JP6834209B2 (en
Inventor
小林 俊介
Shunsuke Kobayashi
俊介 小林
角谷 泰則
Yasunori Sumiya
泰則 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016139591A priority Critical patent/JP6834209B2/en
Publication of JP2018010521A publication Critical patent/JP2018010521A/en
Application granted granted Critical
Publication of JP6834209B2 publication Critical patent/JP6834209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

PROBLEM TO BE SOLVED: To prevent occurrence of a deviation prediction value when predicting a model error of a product state such as cooling stop temperature of a steel plate.SOLUTION: A spot regression model generation unit 10 extracts achievement data having a manufacturing condition similar to a manufacturing condition of a prediction object material from a database 9 as neighbor teacher data, creates using the neighbor teacher data, a spot weighted regression model obtaining an error (referred as a model error prediction value) of a prediction value such as a cooling stop temperature of a prediction object material calculated based on the temperature prediction model, and calculates the model error prediction value by the spot weighted regression model. In this case, when a manufacturing condition of the prediction object material is in the extrapolation state where the manufacturing condition is out of the range R of the neighbor teacher data, the regression calculation is performed after excluding the manufacturing condition from the neighbor teacher data.SELECTED DRAWING: Figure 1

Description

本発明は、例えば鋼板の冷却工程において、温度予測モデルにより鋼板の冷却停止温度の予測値を算出するのに利用して好適な製品の状態予測装置、製品の状態制御装置、製品の状態予測方法及びプログラムに関する。   The present invention provides a product state predicting device, a product state control device, and a product state predicting method suitable for use in calculating a predicted value of a cooling stop temperature of a steel plate by a temperature prediction model, for example, in a steel plate cooling process. And the program.

製品の製造工程において、製品の状態が所望の状態となるように制御するために、製品の状態の実績値と物理モデルである状態予測モデルによる計算値との誤差を学習し、この誤差を用いて状態予測モデルによる計算値を補正して、所望の状態となるように操作量を決定する手法が用いられている。
例えば鋼板の熱間圧延工程の下流の冷却工程では、所定の温度まで鋼板を冷却することで製品に必要な機械特性を得る。
鋼板の冷却制御は、製品の機械特性に直結し、また、歩留まりに影響を及ぼすため、その精度向上が求められる。冷却制御では、水冷による鋼板の温度変化を伝熱モデル計算により推定し、所望の冷却停止温度となるように、冷却水量や鋼板の搬送速度等を決定する。伝熱モデルは熱流体力学や伝熱工学の知見に則り作成されるが、鋼板の表面性状や設備の経時変化等、モデル化が難しいファクターも多く、伝熱モデルによる制御だけでは冷却停止温度を目標値に精度良く一致させることは困難である。
In order to control the product state to a desired state in the product manufacturing process, the error between the actual value of the product state and the value calculated by the state prediction model, which is a physical model, is learned and used. Thus, a method is used in which an operation amount is determined so as to obtain a desired state by correcting a calculated value by the state prediction model.
For example, in the cooling step downstream of the hot rolling step of the steel plate, the mechanical properties necessary for the product are obtained by cooling the steel plate to a predetermined temperature.
Steel sheet cooling control is directly linked to the mechanical properties of the product and affects the yield, so that improvement in accuracy is required. In the cooling control, the temperature change of the steel sheet due to water cooling is estimated by heat transfer model calculation, and the amount of cooling water, the conveying speed of the steel sheet, and the like are determined so as to achieve a desired cooling stop temperature. The heat transfer model is created based on the knowledge of thermohydrodynamics and heat transfer engineering, but there are many factors that are difficult to model, such as the surface properties of the steel sheet and changes in equipment over time. It is difficult to accurately match the target value.

そこで、冷却停止温度のモデル計算値と実績値との差(モデル誤差)を学習モデルによって予測し、冷却停止温度のモデル計算値を補正する方法が採用されている。
特許文献1には、冷却工程に供する当該厚鋼板について、冷却工程における厚鋼板の温度変化挙動を予測するための厚鋼板の温度予測モデルを用いて、冷却工程における当該厚鋼板の冷却停止温度の予測値を算出する予測値算出工程、スラブ毎に過去の実績データを蓄積したデータベースから、当該厚鋼板と製造条件が類似する厚鋼板の過去の実績データを抽出する抽出工程、前記抽出工程において抽出した前記過去の実績データに基づいて、線形回帰モデル式をたて、当該厚鋼板の冷却停止温度の予測値の誤差を推定する推定工程、前記予測値算出工程において算出した当該厚鋼板の冷却停止温度の予測値と、前記推定工程において推定した当該厚鋼板の冷却停止温度の予測値の誤差とから、前記冷却停止温度の修正値を算出する修正値算出工程、を有することが開示されている。
Therefore, a method of predicting the difference (model error) between the model calculated value of the cooling stop temperature and the actual value using a learning model and correcting the model calculated value of the cooling stop temperature is adopted.
Patent Document 1 discloses a cooling stop temperature of the thick steel plate in the cooling process, using a thick steel plate temperature prediction model for predicting the temperature change behavior of the thick steel plate in the cooling process. Prediction value calculation step for calculating a prediction value, extraction step for extracting past performance data of a steel plate having similar manufacturing conditions to the steel plate from the database in which past performance data is accumulated for each slab, extraction in the extraction step Based on the past actual data, a linear regression model equation is established, and an estimation step for estimating an error in a predicted value of the cooling stop temperature of the thick steel plate, cooling stop of the thick steel plate calculated in the predicted value calculation step Correction value calculation for calculating the correction value of the cooling stop temperature from the predicted value of temperature and the error of the prediction value of the cooling stop temperature of the steel plate estimated in the estimation step Step, it is disclosed that has a.

データベースから実績データを抽出するときに、製造条件の類似の判定は、例えば式(1)の重み付きユークリッド距離関数に基づいて行われる。ここで、xi:=(xi,1,・・・,xi,mTは製造条件、qjは製造条件係数、iは鋼板(製造No)を示す添字(i=0:予測対象材)である。ユークリッド距離diが小さい順に実績データを所定の数だけ抽出する。 When extracting the performance data from the database, the similar determination of the manufacturing condition is performed based on, for example, the weighted Euclidean distance function of Expression (1). Here, x i : = (x i, 1 ,..., X i, m ) T is a manufacturing condition, q j is a manufacturing condition coefficient, i is a subscript indicating a steel plate (manufacturing No) (i = 0: prediction) Target material). A predetermined number of performance data is extracted in ascending order of the Euclidean distance d i .

Figure 2018010521
Figure 2018010521

このようにして抽出される実績データを近傍教師データとして局所回帰モデルを生成する。例えば式(2)、式(3)で表わされる局所重み付き回帰モデルを生成する。ここで、βは回帰パラメータ、yはモデル誤差実績値、y^(^はyの上に付されているものとする)はモデル誤差予測値、nは近傍教師データ数である。また、wiは重み係数である。 A local regression model is generated using the performance data extracted in this way as neighborhood teacher data. For example, a locally weighted regression model represented by the equations (2) and (3) is generated. Here, β is a regression parameter, y is a model error actual value, y ^ (^ is attached on y) is a model error predicted value, and n is the number of neighboring teacher data. W i is a weighting factor.

Figure 2018010521
Figure 2018010521

具体的な手段として、局所重み付き線形重回帰(式(4)、式(5))、局所重み付きPLS(Partial Least Squares)回帰(式(6)〜式(8))が提案されている。   As specific means, linear weighted linear multiple regression (Formula (4), Formula (5)) and local weighted PLS (Partial Least Squares) regression (Formula (6) to Formula (8)) have been proposed. .

Figure 2018010521
Figure 2018010521

Figure 2018010521
Figure 2018010521

局所重み付き線形重回帰は、モデル誤差予測値y^を製造条件xの線形結合で表わし(式(4))、重み付き誤差2乗和を最小化するような係数aregを求める方法である(式(5))。この方法では、製造条件同士に相関がある場合、回帰係数が不安定になる多重共線性の問題がある。
そこで、局所重み付きPLS回帰では、多重共線性が発生しないよう、変数同士の共分散が最大化される潜在変数zを生成する(式(8))。Ctrは行列XTWyyTWXの固有ベクトルからなる行列である。X:=(x1,・・・,xnT、W:=diag(w1,・・・,wn)、y:=(y1,・・・,ynTである。その後、潜在変数zに対して線形重回帰を行うことにより(式(6)、式(7))、多重共線性の問題を回避している。
The local weighted linear multiple regression is a method in which the model error predicted value y is expressed by a linear combination of the manufacturing conditions x (equation (4)) and a coefficient a reg that minimizes the weighted error sum of squares is obtained. (Formula (5)). This method has a problem of multicollinearity in which the regression coefficient becomes unstable when there is a correlation between manufacturing conditions.
Therefore, in the local weighted PLS regression, a latent variable z that maximizes the covariance between variables is generated so as not to cause multicollinearity (formula (8)). C tr is a matrix composed of eigenvectors of the matrix X T Wyy T WX. X: = (x 1 ,..., X n ) T , W: = diag (w 1 ,..., W n ), y: = (y 1 ,..., Y n ) T. Thereafter, linear multiple regression is performed on the latent variable z (Equation (6), Equation (7)) to avoid the problem of multicollinearity.

局所重み付き回帰の手順において、重み係数wiの設定では、例えば式(9)の形が用いられる。αはパラメータであり、正の実数である。 In the procedure of local weighted regression, for example, the form of Equation (9) is used for setting the weighting coefficient w i . α is a parameter and is a positive real number.

Figure 2018010521
Figure 2018010521

特許第5682484号公報Japanese Patent No. 5682484

鉄と鋼, 15, 2509-2514, 1981Iron and steel, 15, 2509-2514, 1981

上述したように局所重み付き回帰モデルを生成してモデル誤差予測値を求める場合に、図8に示すように、モデル誤差実績値に対して大きく外れた値801を予測値として出力することがある(以下、外れ予測値と呼ぶ)。図8は、モデル誤差実績値とモデル誤差予測値との関係を示す図である。このような外れ予測値801が発生したまま冷却停止温度のモデル計算値を補正するのでは、冷却停止温度を高い精度で予測できなくなるおそれがある。   As described above, when a locally weighted regression model is generated to obtain a model error predicted value, a value 801 that deviates significantly from the model error actual value may be output as a predicted value, as shown in FIG. (Hereinafter referred to as outlier predicted value). FIG. 8 is a diagram illustrating a relationship between the model error actual value and the model error predicted value. If the model calculation value of the cooling stop temperature is corrected while such a predicted deviation value 801 is generated, the cooling stop temperature may not be predicted with high accuracy.

本発明は上記のような点に鑑みてなされたものであり、鋼板の冷却停止温度等の製品の状態のモデル誤差を予測するに際して、外れ予測値の発生を抑えられるようにすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to suppress occurrence of a predicted deviation when predicting a model error of a product state such as a cooling stop temperature of a steel plate. To do.

上記の課題を解決するための本発明の要旨は、以下のとおりである。
[1] 製品の製造工程において、状態予測モデルにより製品の状態の予測値を算出する製品の状態予測装置であって、
予測対象製品の状態の予測値を算出する際に、製造条件を含む実績データを蓄積したデータベースから、距離関数に基づいて近傍教師データを抽出する抽出手段と、
前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データの範囲外にあるとき、前記抽出手段で抽出した近傍教師データ及び前記予測対象製品の当該製造条件のうち少なくともいずれか一方を修正する修正手段と、
前記抽出手段で抽出した近傍教師データ或いは前記修正手段で修正した場合はその修正した近傍教師データを用いて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値の誤差を求める回帰モデルを生成し、当該回帰モデル、及び前記予測対象製品の製造条件或いは前記修正手段で修正した場合はその修正した製造条件により当該誤差を計算する計算手段と、
前記計算手段で求めた前記予測対象製品の状態の予測値の誤差に基づいて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値を補正する補正手段とを備えたことを特徴とする製品の状態予測装置。
[2] 前記修正手段は、前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データの範囲外にあるとき、前記抽出手段で抽出した近傍教師データから当該製造条件を除外することを特徴とする[1]に記載の製品の状態予測装置。
[3] 前記修正手段は、前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データに含まれる当該製造条件の最大値よりも大きいとき、前記予測対象製品の当該製造条件を前記近傍教師データの最大値に置き換え、また、前記抽出手段で抽出した近傍教師データに含まれる当該製造条件の最小値よりも小さいとき、前記予測対象製品の当該製造条件を前記近傍教師データの最小値に置き換えることを特徴とする[1]に記載の製品の状態予測装置。
[4] 前記データベースは、実績データとして、製品の状態実績値と前記状態予測モデルを用いて算出した製品の状態の予測値との差を製造条件と紐付けて蓄積し、
前記抽出手段は、前記予測対象製品の製造条件と類似する製造条件を持つ実績データを、前記距離関数に基づいて近傍教師データとして抽出することを特徴とする[1]乃至[3]のいずれか一つに記載の製品の状態予測装置。
[5] 前記製品は鋼板、前記製造工程は冷却工程、前記製品の状態は鋼板の冷却停止温度、前記状態予測モデルは温度予測モデルであることを特徴とする[1]乃至[4]のいずれか一つに記載の製品の状態予測装置。
[6] [1]乃至[4]のいずれか一つに記載の製品の状態予測装置と、
前記補正手段で補正した前記予測対象製品の状態の予測値が、予め前記予測対象製品毎に定められた目標値と一致するように、前記製造工程に用いられる製造設備の操作量を制御する制御手段とを備えたことを特徴とする製品の状態制御装置。
[7] 前記製品は鋼板、前記製造工程は冷却工程、前記製品の状態は鋼板の冷却停止温度、前記状態予測モデルは温度予測モデル、前記操作量は冷却水量及び鋼板の搬送速度のうち少なくともいずれかであることを特徴とする[6]に記載の製品の状態制御装置。
[8] 製品の製造工程において、状態予測モデルを用いて製品の状態の予測値を算出する製品の状態予測方法であって、
予測対象製品の状態の予測値を算出する際に、製造条件を含む実績データを蓄積したデータベースから、距離関数に基づいて近傍教師データを抽出する抽出ステップと、
前記予測対象製品の製造条件が、前記抽出ステップで抽出した近傍教師データの範囲外にあるとき、前記抽出ステップで抽出した近傍教師データ及び前記予測対象製品の当該製造条件のうち少なくともいずれか一方を修正する修正ステップと、
前記抽出ステップで抽出した近傍教師データ或いは前記修正ステップで修正した場合はその修正した近傍教師データを用いて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値の誤差を求める回帰モデルを生成し、当該回帰モデル、及び前記予測対象製品の製造条件或いは前記修正ステップで修正した場合はその修正した製造条件により当該誤差を計算するステップと、
前記計算ステップで求めた前記予測対象製品の状態の予測値の誤差に基づいて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値を補正する補正ステップとを有することを特徴とする製品の状態予測方法。
[9] 製品の製造工程において、状態予測モデルを用いて製品の状態の予測値を算出するためのプログラムであって、
予測対象製品の状態の予測値を算出する際に、製造条件を含む実績データを蓄積したデータベースから、距離関数に基づいて近傍教師データを抽出する抽出手段と、
前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データの範囲外にあるとき、前記抽出手段で抽出した近傍教師データ及び前記予測対象製品の当該製造条件のうち少なくともいずれか一方を修正する修正手段と、
前記抽出手段で抽出した近傍教師データ或いは前記修正手段で修正した場合はその修正した近傍教師データを用いて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値の誤差を求める回帰モデルを生成し、当該回帰モデル、及び前記予測対象製品の製造条件或いは前記修正手段で修正した場合はその修正した製造条件により当該誤差を計算する計算手段と、
前記計算手段で求めた前記予測対象製品の状態の予測値の誤差に基づいて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値を補正する補正手段としてコンピュータを機能させるためのプログラム。
The gist of the present invention for solving the above problems is as follows.
[1] In a product manufacturing process, a product state prediction apparatus that calculates a predicted value of a product state by a state prediction model,
An extraction means for extracting neighborhood teacher data based on a distance function from a database in which performance data including manufacturing conditions is accumulated when calculating a predicted value of a state of a prediction target product;
When the manufacturing condition of the prediction target product is outside the range of the vicinity teacher data extracted by the extraction unit, at least one of the vicinity teacher data extracted by the extraction unit and the manufacturing condition of the prediction target product is Correction means to correct;
Regression model for obtaining an error in the predicted value of the state of the prediction target product calculated by the state prediction model using the vicinity teacher data extracted by the extraction unit or the corrected vicinity teacher data when corrected by the correction unit And calculating means for calculating the error according to the regression model and the manufacturing condition of the prediction target product or the corrected manufacturing condition when corrected by the correcting means,
Correction means for correcting the predicted value of the state of the prediction target product calculated by the state prediction model based on the error of the predicted value of the state of the prediction target product obtained by the calculation means; Product state prediction device.
[2] The correction unit excludes the manufacturing condition from the neighborhood teacher data extracted by the extraction unit when the production condition of the prediction target product is outside the range of the neighborhood teacher data extracted by the extraction unit. The product state prediction apparatus according to [1], characterized by:
[3] When the manufacturing condition of the prediction target product is larger than the maximum value of the manufacturing condition included in the proximity teacher data extracted by the extraction means, the correction unit sets the manufacturing condition of the prediction target product as the value. When it is smaller than the minimum value of the manufacturing conditions included in the proximity teacher data extracted by the extracting means, the manufacturing condition of the prediction target product is replaced with the minimum value of the proximity teacher data. The product state prediction apparatus according to [1], wherein
[4] The database stores, as actual data, the difference between the actual product state value and the predicted product state value calculated using the state prediction model in association with manufacturing conditions,
Any one of [1] to [3], wherein the extraction unit extracts performance data having manufacturing conditions similar to the manufacturing conditions of the prediction target product as neighborhood teacher data based on the distance function. The product state prediction apparatus according to one of the above.
[5] Any one of [1] to [4], wherein the product is a steel plate, the manufacturing process is a cooling step, the state of the product is a cooling stop temperature of the steel plate, and the state prediction model is a temperature prediction model. The product state prediction apparatus according to claim 1.
[6] The product state prediction apparatus according to any one of [1] to [4];
Control for controlling the operation amount of the manufacturing equipment used in the manufacturing process so that the predicted value of the state of the prediction target product corrected by the correction means matches the target value previously determined for each prediction target product And a product state control device.
[7] The product is a steel plate, the manufacturing process is a cooling step, the state of the product is a cooling stop temperature of the steel plate, the state prediction model is a temperature prediction model, and the operation amount is at least one of a cooling water amount and a steel plate conveyance speed. [6] The product state control device according to [6].
[8] A product state prediction method for calculating a predicted value of a product state using a state prediction model in a product manufacturing process,
When calculating the predicted value of the state of the prediction target product, an extraction step of extracting neighborhood teacher data based on a distance function from a database in which performance data including manufacturing conditions is accumulated;
When the manufacturing condition of the prediction target product is outside the range of the vicinity teacher data extracted in the extraction step, at least one of the vicinity teacher data extracted in the extraction step and the manufacturing condition of the prediction target product Correction steps to correct;
Regression model for obtaining an error in the predicted value of the state of the prediction target product calculated by the state prediction model using the vicinity teacher data extracted in the extraction step or the corrected vicinity teacher data when corrected in the correction step Generating the error and calculating the error according to the corrected manufacturing condition when the correction model is corrected in the manufacturing condition of the prediction target product or the correction step;
A correction step of correcting the predicted value of the state of the prediction target product calculated by the state prediction model based on the error of the predicted value of the state of the prediction target product obtained in the calculation step. Product state prediction method.
[9] A program for calculating a predicted value of a product state using a state prediction model in a product manufacturing process,
An extraction means for extracting neighborhood teacher data based on a distance function from a database in which performance data including manufacturing conditions is accumulated when calculating a predicted value of a state of a prediction target product;
When the manufacturing condition of the prediction target product is outside the range of the vicinity teacher data extracted by the extraction unit, at least one of the vicinity teacher data extracted by the extraction unit and the manufacturing condition of the prediction target product is Correction means to correct;
Regression model for obtaining an error in the predicted value of the state of the prediction target product calculated by the state prediction model using the vicinity teacher data extracted by the extraction unit or the corrected vicinity teacher data when corrected by the correction unit And calculating means for calculating the error according to the regression model and the manufacturing condition of the prediction target product or the corrected manufacturing condition when corrected by the correcting means,
A program for causing a computer to function as correction means for correcting the predicted value of the state of the prediction target product calculated by the state prediction model based on the error of the predicted value of the state of the prediction target product obtained by the calculation means .

本発明によれば、鋼板の冷却停止温度等の製品の状態のモデル誤差を予測するに際して、予測対象製品の製造条件が近傍教師データの範囲外にあるとき、近傍教師データ及び予測対象製品の当該製造条件のうち少なくともいずれか一方を修正することにより、外れ予測値の発生を抑えることができる。   According to the present invention, when predicting the model error of the product state such as the cooling stop temperature of the steel sheet, when the manufacturing condition of the prediction target product is outside the range of the vicinity teacher data, the vicinity teacher data and the prediction target product By correcting at least one of the manufacturing conditions, it is possible to suppress the occurrence of a predicted deviation value.

冷却制御システムの構成例を示す図である。It is a figure which shows the structural example of a cooling control system. 局所回帰モデル生成部の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a local regression model production | generation part. 製造条件とモデル誤差実測値/予測値との関係を示す図である。It is a figure which shows the relationship between manufacturing conditions and a model error actual value / predicted value. 第1の実施形態における近傍教師データの修正処理を示すフローチャートである。It is a flowchart which shows the correction process of the vicinity teacher data in 1st Embodiment. 第2の実施形態における予測対象材の製造条件の修正処理を示すフローチャートである。It is a flowchart which shows the correction process of the manufacturing conditions of the prediction object material in 2nd Embodiment. 数値実験のための機能構成を示す図である。It is a figure which shows the function structure for a numerical experiment. 発明法におけるモデル誤差実績値とモデル誤差予測値との関係を示す図である。It is a figure which shows the relationship between the model error track record value and model error prediction value in the invention method. 比較法におけるモデル誤差実績値とモデル誤差予測値との関係を示す図である。It is a figure which shows the relationship between the model error actual value and model error prediction value in a comparison method.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。各実施形態では、本発明を冷却工程における鋼板の冷却停止温度の予測及び制御に適用した例を述べる。
(第1の実施形態)
図1は、冷却設備を含む冷却制御システムの構成例を示す図である。
冷却設備では、搬送テーブル3により鋼板1が搬送され、冷却ノズル2から水を噴射して鋼板1を冷却する。
冷却ノズル2は、冷却プロセスコンピュータ5から出力される指示値に基づいて、冷却水量を制御する。冷却水量の制御方式としては、流量弁開度調節、ノズルON/OFF制御等、一般的な冷却水量の制御方式が適用可能である。
また、搬送テーブル3は、冷却プロセスコンピュータ5から出力される指示値に基づいて、鋼板の搬送速度を制御する。鋼板の搬送速度の制御方式としては、モータドライバによる制御等、一般的な搬送速度制御方式が適用可能である。
冷却設備の出側において、温度計4により鋼板の冷却停止温度が測定され、冷却プロセスコンピュータ5に入力される。温度測定方式としては、放射温度計やサーモグラフィ等、一般的な温度測定方式が適用可能である。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In each embodiment, an example in which the present invention is applied to prediction and control of a cooling stop temperature of a steel sheet in a cooling process will be described.
(First embodiment)
FIG. 1 is a diagram illustrating a configuration example of a cooling control system including a cooling facility.
In the cooling facility, the steel plate 1 is transported by the transport table 3 and water is sprayed from the cooling nozzle 2 to cool the steel plate 1.
The cooling nozzle 2 controls the amount of cooling water based on the instruction value output from the cooling process computer 5. As a cooling water amount control method, a general cooling water amount control method such as flow rate valve opening adjustment or nozzle ON / OFF control can be applied.
Further, the transfer table 3 controls the transfer speed of the steel sheet based on the instruction value output from the cooling process computer 5. As a method for controlling the conveying speed of the steel plate, a general conveying speed control method such as control by a motor driver can be applied.
On the exit side of the cooling facility, the cooling stop temperature of the steel sheet is measured by the thermometer 4 and input to the cooling process computer 5. As a temperature measurement method, a general temperature measurement method such as a radiation thermometer or thermography can be applied.

冷却プロセスコンピュータ5は、冷却停止温度計算部7、減算器8、データベース9、局所回帰モデル生成部10、及び冷却設定計算部11を備える。冷却プロセスコンピュータ5には、上位の圧延プロセスコンピュータ6から予測対象材の製造条件が入力される。製造条件としては、例えば鋼板サイズ、鋼種、冷却停止温度の目標値等があるが、外気温、圧延ロール粗度等、冷却工程に影響する情報として一般的である要素は含み得る。本実施形態では、冷却プロセスコンピュータ5が本発明でいう製品の状態予測装置、製品の状態制御装置として機能する。   The cooling process computer 5 includes a cooling stop temperature calculation unit 7, a subtracter 8, a database 9, a local regression model generation unit 10, and a cooling setting calculation unit 11. The cooling process computer 5 receives the manufacturing conditions of the material to be predicted from the upper rolling process computer 6. Production conditions include, for example, steel plate size, steel type, target value of cooling stop temperature, and the like, but may include elements that are general as information affecting the cooling process, such as outside air temperature and rolling roll roughness. In the present embodiment, the cooling process computer 5 functions as a product state prediction device and a product state control device according to the present invention.

冷却停止温度計算部7は、鋼板の製造条件と、冷却設備における水量実績値及び鋼板の搬送速度実績値に基づいて、伝熱モデルからなる温度予測モデルにより鋼板の冷却停止温度の計算値(「冷却停止温度計算値」と呼ぶ)を算出する。
減算器8は、温度計4で測定される冷却停止温度実績値と冷却停止温度計算部7から出力される冷却停止温度計算値との差(「モデル誤差実績値」と呼ぶ)をとる。
The cooling stop temperature calculation unit 7 calculates the cooling stop temperature calculation value of the steel sheet based on the temperature prediction model including the heat transfer model based on the manufacturing conditions of the steel sheet, the actual water amount value in the cooling facility and the actual transport speed value of the steel sheet (“ Calculated as “cooling stop temperature calculation value”).
The subtracter 8 takes the difference (referred to as “model error actual value”) between the actual cooling stop temperature value measured by the thermometer 4 and the calculated cooling stop temperature value output from the cooling stop temperature calculation unit 7.

データベース9は、実績データとして、減算器8から出力されるモデル誤差実績値を製造条件と紐付けて蓄積する。また、データベース9は、予測対象材の製造条件が入力されると、その製造条件と類似する製造条件を持つ実績データを近傍教師データとして抽出し、局所回帰モデル生成部10に出力する機能を有する。本実施形態では、データベース9が本発明でいう抽出手段として機能する。
データベース9から実績データを抽出するときに、製造条件の類似の判定は、例えば式(1)の重み付きユークリッド距離関数に基づいて行われる。なお、本実施形態ではユークリッド距離を例とするが、マハラノビス距離等、多変数系の距離の定義として公知であるものは適用可能である。
The database 9 stores the model error actual value output from the subtracter 8 in association with the manufacturing condition as actual data. Further, the database 9 has a function of extracting performance data having manufacturing conditions similar to the manufacturing conditions as neighborhood teacher data and outputting the results to the local regression model generation unit 10 when the manufacturing conditions of the prediction target material are input. . In the present embodiment, the database 9 functions as the extraction means in the present invention.
When the performance data is extracted from the database 9, the similar determination of the manufacturing condition is performed based on, for example, the weighted Euclidean distance function of Expression (1). In the present embodiment, the Euclidean distance is taken as an example, but what is known as a definition of a multivariable system distance such as Mahalanobis distance is applicable.

局所回帰モデル生成部10は、データベース9から抽出される近傍教師データを用いて、温度予測モデルにより算出する予測対象材の冷却停止温度の予測値の誤差(モデル誤差予測値と呼ぶ)を求める局所重み付き回帰モデルを生成し、当該局所重み付き回帰モデルによりモデル誤差予測値を計算する。本実施形態では、局所回帰モデル生成部10が本発明でいう修正手段、計算手段として機能する。   The local regression model generation unit 10 uses the neighborhood teacher data extracted from the database 9 to obtain a local error for obtaining a prediction value error (referred to as a model error prediction value) of the cooling stop temperature of the prediction target material calculated by the temperature prediction model. A weighted regression model is generated, and a model error prediction value is calculated using the local weighted regression model. In the present embodiment, the local regression model generation unit 10 functions as a correction unit and a calculation unit in the present invention.

冷却設定計算部11は、局所回帰モデル生成部10から出力されるモデル誤差予測値に基づいて、温度予測モデルにより算出する予測対象材の冷却停止温度の予測値を補正する。そして、冷却設定計算部11は、補正した予測対象材の冷却停止温度の予測値が、予め予測対象材毎に定められた目標値と一致するように、冷却水量及び鋼板の搬送速度のうち少なくともいずれかの指示値を補正した上で、冷却水量及び鋼板の搬送速度の指示値を冷却設備に出力する。本実施形態では、冷却設定計算部11が本発明でいう補正手段、制御手段として機能する。なお、本実施形態では冷却水量と鋼板の搬送速度を操作量とする例としたが、それ以外にも冷却ノズル2の高さ等、冷却設備の操作量として一般的である要素は含み得る。   The cooling setting calculation unit 11 corrects the predicted value of the cooling stop temperature of the prediction target material calculated by the temperature prediction model based on the model error predicted value output from the local regression model generation unit 10. And the cooling setting calculation part 11 is at least among the amount of cooling water and the conveyance speed of a steel plate so that the predicted value of the cooling stop temperature of the corrected prediction target material matches the target value previously determined for each prediction target material. After correcting one of the indicated values, the indicated value of the cooling water amount and the conveying speed of the steel sheet is output to the cooling facility. In the present embodiment, the cooling setting calculation unit 11 functions as a correction unit and a control unit in the present invention. In this embodiment, the amount of cooling water and the conveying speed of the steel plate are used as the operation amount. However, other elements that are general as the operation amount of the cooling facility such as the height of the cooling nozzle 2 may be included.

ここで、本発明者は、図8に示したように外れ予測値801が出力されるのは、一又は複数の製造条件について、近傍教師データのとりうる値の範囲が狭く、予測対象材の製造条件がこの範囲外に存在する外挿の状態になっているケースであることを見出した。
図3(a)〜(c)に、ある製造条件とモデル誤差実測値/予測値との関係を示す。図3(a)〜(c)の横軸が説明変数である当該製造条件を、縦軸がモデル誤差実績値及びモデル誤差予測値を表わす。○は、当該製造条件について近傍教師データのとりうる値の最大値及び最小値を表わす。
Here, as shown in FIG. 8, the present inventor outputs the outlier predicted value 801 because the range of values that the neighborhood teacher data can take is narrow for one or a plurality of manufacturing conditions, and the prediction target material It has been found that the manufacturing conditions are in an extrapolated state that is outside this range.
3A to 3C show the relationship between certain manufacturing conditions and model error actual measurement / predicted values. 3A to 3C, the horizontal axis represents the manufacturing conditions as explanatory variables, and the vertical axis represents the model error actual value and the model error predicted value. A represents the maximum value and the minimum value that can be taken by the neighborhood teacher data for the manufacturing condition.

図3(a)に示すように、当該製造条件について、近傍教師データの範囲Rが広い場合、操業のばらつきや測定誤差等によりノイズが乗ったとしても、回帰モデルにより求めるモデル誤差予測値はさほど変動しない。したがって、予測対象材の製造条件(図中の星印)が外挿の状態であっても、モデル誤差予測値は実績値(図中の真のモデル)から考えられる範囲からさほどかけ離れたものとはならない。   As shown in FIG. 3 (a), when the range R of the neighborhood teacher data is wide for the manufacturing conditions, even if noise is added due to operation variations, measurement errors, etc., the model error prediction value obtained by the regression model is not so much. Does not fluctuate. Therefore, even if the manufacturing conditions of the material to be predicted (stars in the figure) are extrapolated, the model error predicted value is far from the range considered from the actual value (true model in the figure). Must not.

一方、図3(b)に示すように、当該製造条件について、近傍教師データの範囲Rが狭い場合、小さなノイズによっても回帰モデルにより求めるモデル誤差予測値は大きく変動することになる。それでも、予測対象材の製造条件が内挿の状態であれば、モデル誤差予測値は実績値から考えられる範囲からさほどかけ離れたものとはならない。しかしながら、図3(c)に示すように、当該製造条件について、近傍教師データの範囲Rが狭い場合に、予測対象材の製造条件が外挿の状態であると、モデル誤差予測値は実績値から考えられる範囲から大きくかけ離れたものとなる。   On the other hand, as shown in FIG. 3B, when the range R of the neighborhood teacher data is narrow for the manufacturing condition, the model error predicted value obtained by the regression model varies greatly even with small noise. Still, if the manufacturing condition of the prediction target material is in an interpolated state, the model error predicted value is not so far from the range considered from the actual value. However, as shown in FIG. 3C, when the manufacturing condition of the prediction target material is in an extrapolated state when the range R of the neighborhood teacher data is narrow for the manufacturing condition, the model error prediction value is the actual value. It will be far from the range considered.

以上のように、外れ予測値が出力されるのは、ある製造条件について、近傍教師データの範囲Rが狭いためノイズの影響を大きく受け、しかも、予測対象材の製造条件が外挿の状態であることでそのノイズの影響が増幅されることになった結果といえる。
この問題への対策として、本実施形態では、上記のようにノイズの影響を大きく受け、その影響が増幅される製造条件を近傍教師データから除外した上で、回帰計算を行うようにする。
この場合に、近傍教師データの範囲Rの広さ、及び、外挿の状態か否かの両方を評価することが考えられるが、近傍教師データの範囲Rは、製造条件毎に単位系が異なり、製造範囲も製造箇所毎に違うため、一意に判断することは難しい。したがって、外挿の状態か否かを評価することが妥当であるといえる。
As described above, the out-of-range predicted value is output when the neighborhood teacher data range R is narrow for a certain manufacturing condition and is greatly affected by noise, and the manufacturing condition of the prediction target material is extrapolated. It can be said that the influence of the noise is amplified by being.
As a countermeasure to this problem, in the present embodiment, the regression calculation is performed after excluding the manufacturing conditions that are greatly affected by the noise as described above and amplifying the influence from the neighborhood teacher data.
In this case, it is conceivable to evaluate both the extent of the range R of the neighborhood teacher data and whether or not it is in an extrapolated state. However, the unit system of the range R of the neighborhood teacher data differs depending on the manufacturing conditions. Because the manufacturing range is different for each manufacturing location, it is difficult to make a unique determination. Therefore, it can be said that it is appropriate to evaluate whether or not the state is extrapolated.

図2は、局所回帰モデル生成部10の機能構成を示すブロック図である。
101は入力部であり、予測対象材の製造条件と、データベース9から抽出される近傍教師データとを入力する。
FIG. 2 is a block diagram illustrating a functional configuration of the local regression model generation unit 10.
Reference numeral 101 denotes an input unit that inputs the manufacturing conditions of the prediction target material and the neighborhood teacher data extracted from the database 9.

102は修正部であり、予測対象材のある製造条件が、入力部101で入力した近傍教師データの範囲R外に存在する外挿の状態になっているとき、外挿の状態となるのを避けるように近傍教師データを修正する。具体的には、予測対象材のある製造条件が、近傍教師データの範囲R外に存在するとき、近傍教師データから当該製造条件を除外する。   Reference numeral 102 denotes a correction unit. When a manufacturing condition of a material to be predicted is in an extrapolation state that exists outside the range R of the neighborhood teacher data input by the input unit 101, an extrapolation state is set. Modify neighborhood teacher data to avoid it. Specifically, when a certain production condition for the material to be predicted exists outside the range R of the neighborhood teacher data, the production condition is excluded from the neighborhood teacher data.

103は局所重み付き回帰計算部であり、入力部101で入力した近傍教師データ、或いは修正部102で修正した場合はその修正した近傍教師データを用いて、局所重み付き線形重回帰(式(4)、式(5))や、局所重み付きPLS回帰(式(6)〜式(8))等により局所重み付き回帰モデルを生成する。修正部102で修正した近傍教師データを用いる場合、局所重み付き回帰モデルは、除外された製造条件を説明変数として含まないかたちとなる。   Reference numeral 103 denotes a local weighted regression calculation unit, which uses the neighborhood teacher data input by the input unit 101 or, if corrected by the correction unit 102, the locally weighted linear multiple regression (formula (4) ), Formula (5)), local weighted PLS regression (formulas (6) to (8)), and the like, to generate a local weighted regression model. When the neighborhood teacher data corrected by the correction unit 102 is used, the locally weighted regression model does not include the excluded manufacturing conditions as explanatory variables.

104はモデル誤差計算部であり、局所重み付き回帰計算部103で生成した局所重み付き回帰モデルに予測対象材の製造条件を入力し、予測対象材のモデル誤差予測値を算出する。上述のように修正部102で修正した近傍教師データを用いる場合、局所重み付き回帰モデルは、除外された製造条件を説明変数として含まないかたちとなるので、予測対象材の当該製造条件は使用されないことになる。   A model error calculation unit 104 inputs the manufacturing condition of the prediction target material to the local weighted regression model generated by the local weighted regression calculation unit 103, and calculates a model error prediction value of the prediction target material. When using the neighborhood teacher data corrected by the correction unit 102 as described above, the locally weighted regression model does not include the excluded manufacturing condition as an explanatory variable, and thus the manufacturing condition of the prediction target material is not used. It will be.

105は出力部であり、モデル誤差計算部104で算出した予測対象材のモデル誤差予測値を冷却設定計算部11に出力する。   Reference numeral 105 denotes an output unit that outputs the predicted model error value of the prediction target material calculated by the model error calculation unit 104 to the cooling setting calculation unit 11.

図4に、修正部102による近傍教師データの修正処理の例を示す。
近傍教師データの製造条件がxi,jであり、予測対象材の製造条件がx0,jであるとする。iは鋼板を示す添字(i=1〜n)、jは製造条件を示す添え字(j=1〜m)である。
ステップS1で、j=1とする。
ステップS2で、予測対象材の製造条件x0,jが外挿の状態か否か、すなわち近傍教師データの範囲R外に存在するか否かを判定する。具体的には、予測対象材の製造条件x0,jが、製造条件xi,jの最小値min(x1,j,・・・,xn,j)よりも小さいか、或いは製造条件xi,jの最大値max(x1,j,・・・,xn,j)よりも大きいかを判定する。その結果、予測対象材の製造条件x0,jが近傍教師データの範囲R外に存在すれば、ステップS3に進み、近傍教師データの範囲R内に存在すれば、ステップS4に進む。
ステップS3で、近傍教師データから製造条件をxi,jを除外して、ステップS4に進む。
ステップS4で、j=mであるか否かを判定する。j=mに達していなければ、ステップS5でjをインクリメントしてステップS2に戻り、j=mに達していれば、修正した近傍教師データを出力して、本処理を終了する。
FIG. 4 shows an example of neighborhood teacher data modification processing by the modification unit 102.
Assume that the manufacturing condition of the neighborhood teacher data is x i, j and the manufacturing condition of the prediction target material is x 0, j . i is a subscript indicating a steel plate (i = 1 to n), and j is a subscript indicating a manufacturing condition (j = 1 to m).
In step S1, j = 1 is set.
In step S2, it is determined whether or not the manufacturing condition x 0, j of the prediction target material is in an extrapolated state, that is, whether or not the prediction target material exists outside the range R of the neighborhood teacher data. Specifically, the production condition x 0, j of the material to be predicted is smaller than the minimum value min (x 1, j ,..., X n, j ) of the production condition x i, j , or the production condition It is judged whether it is larger than the maximum value max (x 1, j ,..., x n, j ) of x i, j . As a result, if the manufacturing condition x 0, j of the prediction target material exists outside the range R of the vicinity teacher data, the process proceeds to step S3, and if it exists within the range R of the vicinity teacher data, the process proceeds to step S4.
In step S3, the manufacturing condition x i, j is excluded from the neighborhood teacher data, and the process proceeds to step S4.
In step S4, it is determined whether j = m. If j = m has not been reached, j is incremented in step S5, and the process returns to step S2. If j = m has been reached, the corrected neighborhood teacher data is output, and this processing ends.

以上のように、予測対象材の製造条件が、近傍教師データの範囲R外に存在するとき、近傍教師データから当該製造条件を除外するようにしたので、予測対象材の製造条件が外挿の状態となるのを解消することができる。これにより、ノイズの影響を大きく受けたり、その影響が増幅されたりすることがなく、外れ予測値の発生を抑えて、モデル誤差予測値の予測精度を向上させることができる。   As described above, when the production condition of the prediction target material exists outside the range R of the neighborhood teacher data, the production condition is excluded from the neighborhood teacher data. It is possible to eliminate the state. As a result, the influence of noise is not greatly affected or amplified, and the occurrence of outlier prediction values can be suppressed and the prediction accuracy of model error prediction values can be improved.

(第2の実施形態)
第1の実施形態では、予測対象材のある製造条件が近傍教師データの範囲R外に存在するとき、近傍教師データを修正するのに対して、第2の実施形態では、予測対象材の当該製造条件を修正する。なお、局所回帰モデル生成部10を含む冷却制御システムの構成は第1の実施形態と同様であり、以下では、第1の実施形態との相違点を中心に説明し、第1の実施形態との共通点についての説明は省略する。
(Second Embodiment)
In the first embodiment, when a certain manufacturing condition of the prediction target material exists outside the range R of the vicinity teacher data, the vicinity teacher data is corrected. In the second embodiment, the prediction target material Modify manufacturing conditions. The configuration of the cooling control system including the local regression model generation unit 10 is the same as that of the first embodiment, and the following description will focus on differences from the first embodiment. A description of the common points is omitted.

本実施形態では、修正部102は、予測対象材のある製造条件が、入力部101で入力した近傍教師データの範囲R外に存在する外挿の状態になっているとき、外挿の状態となるのを避けるように予測対象材の当該製造条件を修正する。具体的には、予測対象材のある製造条件が、近傍教師データに含まれる当該製造条件の最大値よりも大きいとき、予測対象材の当該製造条件を近傍教師データの最大値に置き換え、また、近傍教師データに含まれる当該製造条件の最小値よりも小さいとき、予測対象材の当該製造条件を近傍教師データの最小値に置き換える。   In the present embodiment, the correction unit 102 is in an extrapolation state when a certain manufacturing condition of the prediction target material is in an extrapolation state that exists outside the range R of the neighborhood teacher data input by the input unit 101. The manufacturing conditions of the material to be predicted are corrected so as to avoid this. Specifically, when a certain manufacturing condition of the prediction target material is larger than the maximum value of the manufacturing condition included in the vicinity teacher data, the manufacturing condition of the prediction target material is replaced with the maximum value of the vicinity teacher data, When the manufacturing condition is smaller than the minimum value of the manufacturing condition included in the vicinity teacher data, the manufacturing condition of the prediction target material is replaced with the minimum value of the vicinity teacher data.

この場合、局所重み付き回帰計算部103は、入力部101で入力した近傍教師データを用いて、局所重み付き線形重回帰(式(4)、式(5))や、局所重み付きPLS回帰(式(6)〜式(8))等により局所重み付き回帰モデルを生成する。
そして、モデル誤差計算部104は、局所重み付き回帰計算部103で生成した局所重み付き回帰モデルに、予測対象材の製造条件(修正部102で修正した場合はその修正した製造条件)を入力し、予測対象材のモデル誤差予測値を算出する。
In this case, the local weighted regression calculation unit 103 uses the neighborhood teacher data input by the input unit 101 to perform local weighted linear multiple regression (equation (4), equation (5)) or local weighted PLS regression ( A locally weighted regression model is generated according to equations (6) to (8)).
Then, the model error calculation unit 104 inputs the manufacturing condition of the prediction target material (or the corrected manufacturing condition when corrected by the correction unit 102) to the local weighted regression model generated by the local weighted regression calculation unit 103. The model error prediction value of the prediction target material is calculated.

図5に、修正部102による予測対象材の製造条件の修正処理の例を示す。
ステップS11で、j=1とする。
ステップS12、S14で、予測対象材の製造条件x0,jが外挿の状態か否か、すなわち近傍教師データの範囲R外に存在するか否かを判定する。具体的には、ステップS12で、予測対象材の製造条件x0,jが、製造条件xi,jの最小値min(x1,j,・・・,xn,j)よりも小さいか判定し、最小値よりも小さければ、ステップS13に進み、最小値以上であれば、ステップS14に進む。ステップS14で、予測対象材の製造条件x0,jが、製造条件xi,jの最大値max(x1,j,・・・,xn,j)よりも大きいか判定し、最大値よりも大きければ、ステップS15に進み、最大値以下であれば、ステップS16に進む。
ステップS13で、予測対象材の製造条件x0,jを近傍教師データの最小値min(x1,j,・・・,xn,j)に置き換えて、ステップS16に進む。また、ステップS15で、予測対象材の製造条件x0,jを近傍教師データの最大値max(x1,j,・・・,xn,j)に置き換えて、ステップS16に進む。
ステップS16で、j=mであるか否かを判定する。j=mに達していなければ、ステップS17でjをインクリメントしてステップS12に戻り、j=mに達していれば、修正した予測対象材の製造条件を出力して、本処理を終了する。
FIG. 5 shows an example of correction processing for the manufacturing conditions of the material to be predicted by the correction unit 102.
In step S11, j = 1 is set.
In steps S12 and S14, it is determined whether or not the manufacturing condition x 0, j of the prediction target material is in an extrapolated state, that is, whether or not it exists outside the range R of the neighborhood teacher data. Specifically, in step S12, is the production condition x 0, j of the material to be predicted smaller than the minimum value min (x 1, j ,..., X n, j ) of the production condition x i, j ? If it is determined that the value is smaller than the minimum value, the process proceeds to step S13. If the value is equal to or greater than the minimum value, the process proceeds to step S14. In step S14, it is determined whether the production condition x 0, j of the material to be predicted is larger than the maximum value max (x 1, j ,..., X n, j ) of the production condition x i, j. If greater, the process proceeds to step S15, and if less than the maximum value, the process proceeds to step S16.
In step S13, the production condition x0 , j of the prediction target material is replaced with the minimum value min (x1 , j ,..., Xn, j ) of the neighborhood teacher data, and the process proceeds to step S16. In step S15, the production condition x0 , j of the prediction target material is replaced with the maximum value max (x1 , j ,..., Xn, j ) of the neighborhood teacher data, and the process proceeds to step S16.
In step S16, it is determined whether j = m. If j = m has not been reached, j is incremented in step S17, and the process returns to step S12. If j = m has been reached, the manufacturing conditions of the corrected material to be predicted are output, and this process ends.

以上のように、予測対象材の製造条件が近傍教師データの範囲R外に存在するとき、予測対象材の当該製造条件を近傍教師データに含まれる当該製造条件の最大値又は最小値に合わせるようにしたので、予測対象材の製造条件が外挿の状態となるのを解消することができる。これにより、ノイズの影響を大きく受けたり、その影響が増幅されたりすることがなく、外れ予測値の発生を抑えて、モデル誤差予測値の予測精度を向上させることができる。   As described above, when the manufacturing condition of the prediction target material exists outside the range R of the vicinity teacher data, the manufacturing condition of the prediction target material is adjusted to the maximum value or the minimum value of the manufacturing condition included in the vicinity teacher data. Therefore, it is possible to eliminate the extrapolation of the manufacturing condition of the prediction target material. As a result, the influence of noise is not greatly affected or amplified, and the occurrence of outlier prediction values can be suppressed and the prediction accuracy of model error prediction values can be improved.

本発明は、冷却工程における鋼板の冷却停止温度の予測及び制御に適用できるだけでなく、汎用的に適用可能であって、ある製造設備にて原材料から製品を製造する製造工程において、状態予測モデルにより製品の状態の予測値を算出し、その予測値に基づき製造設備を制御する場合に広く効果を有する。
すなわち、実施形態における鋼板は製品の一例、冷却工程及び設備は製造工程及び設備の一例、鋼板の冷却停止温度は製品の状態の一例、温度予測モデルは状態予測モデルの一例である。そして、本発明を一般的な製造工程に適用する場合、状態制御システムは例えば図1と同様の構成とすればよく、実施形態における冷却停止温度計算部7を状態計算部とし、冷却設定計算部11を設定計算部とし、冷却水量や鋼板の搬送速度の指示値を製造設備の操作量の指示値と置き換えればよい。
製造条件と操作量の実績値から、状態計算部にて製品の状態を状態予測モデルにより予測し、この予測値である状態計算値と状態実績値との誤差であるモデル誤差実績値をデータベース9に蓄積する。そして、予測対象製品の状態の予測値を算出する際、実績データを蓄積したデータベース9から、距離関数に基づいて近傍教師データを抽出し、その近傍教師データを用いて、局所モデル生成部10にて前記モデル誤差を求める局所重み付き回帰モデルを生成し、この局所重み付き回帰モデルに製造条件を与えて計算した予測対象製品のモデル誤差の予測値に基づいて、前記状態予測モデルにより算出した予測対象製品の状態の予測値を補正する。このように補正することで、状態の予測値を実績値に近づけることができる。また、この補正された状態の予測値が予測対象製品毎に定められた目標値と一致するように、設定計算部にて製造設備の操作量の指示値を計算して製造設備を制御することですることで、製品の状態の実績値をより目標値に近づけることができる。
The present invention can be applied not only to the prediction and control of the cooling stop temperature of the steel sheet in the cooling process, but also to a general application, and in a manufacturing process for manufacturing a product from raw materials at a certain manufacturing facility, a state prediction model is used. This is widely effective when a predicted value of a product state is calculated and manufacturing equipment is controlled based on the predicted value.
That is, the steel plate in the embodiment is an example of a product, the cooling process and equipment are examples of a manufacturing process and equipment, the cooling stop temperature of the steel sheet is an example of a product state, and the temperature prediction model is an example of a state prediction model. And when applying this invention to a general manufacturing process, what is necessary is just to make a state control system the same structure as FIG. 1, for example, the cooling stop temperature calculation part 7 in embodiment is made into a state calculation part, and a cooling setting calculation part 11 is set as a setting calculation unit, and the instruction value of the cooling water amount and the conveying speed of the steel sheet may be replaced with the instruction value of the operation amount of the manufacturing facility.
From the manufacturing condition and the actual value of the manipulated variable, the state calculation unit predicts the state of the product using the state prediction model, and the model error actual value that is an error between the predicted state value and the actual state value is the database 9. To accumulate. Then, when calculating the predicted value of the state of the prediction target product, the neighborhood teacher data is extracted from the database 9 storing the actual data based on the distance function, and the neighborhood teacher data is used for the local model generation unit 10. A local weighted regression model for obtaining the model error is generated, and the prediction calculated by the state prediction model is based on the predicted value of the model error of the prediction target product calculated by giving the manufacturing condition to the local weighted regression model. Correct the predicted value of the target product. By correcting in this way, the predicted value of the state can be brought close to the actual value. In addition, the setting calculation unit calculates the instruction value for the operation amount of the manufacturing facility so that the predicted value in the corrected state matches the target value determined for each prediction target product, and controls the manufacturing facility. As a result, the actual value of the product state can be brought closer to the target value.

例えば本発明を熱間圧延における板幅の予測及び制御に適用する場合、第1の実施形態における冷却設備はエッジャ、サイジングプレス等の鋼板幅加工設備となる。また、製造条件は鋼板サイズ、鋼種、装置入側鋼板温度等、板幅に影響を与えると考えられる要素となる。また、冷却ノズル2、搬送テーブル3はエッジャならば油圧圧下装置、サイジングプレスならば機械クランク等の板幅制御のためのアクチュエータとなる。また、温度計4はラインセンサ等の板幅測定装置となる。また、冷却プロセスコンピュータ5は圧延プロセスコンピュータ、上位の圧延コンピュータ6は加熱プロセスコンピュータもしくはビジネスコンピュータとなる。また、冷却停止温度計算部7は例えば非特許文献1に記載のモデルに基づき、装置出側板幅を計算する板幅計算部となる。また、冷却設定計算部11は例えば非特許文献1に記載のモデルに基づき、装置出側板幅が所望の値となるようにエッジャやサイジングプレスの開度、速度を設定する幅圧下設定計算部となる。   For example, when the present invention is applied to sheet width prediction and control in hot rolling, the cooling facility in the first embodiment is a sheet width processing facility such as an edger or a sizing press. In addition, the manufacturing conditions are factors that are considered to affect the plate width, such as the steel plate size, the steel type, and the apparatus entry-side steel plate temperature. The cooling nozzle 2 and the transfer table 3 serve as hydraulic pressure reduction devices if they are edgers, and actuate actuators for plate width control such as mechanical cranks if they are sizing presses. The thermometer 4 is a plate width measuring device such as a line sensor. The cooling process computer 5 is a rolling process computer, and the upper rolling computer 6 is a heating process computer or a business computer. Moreover, the cooling stop temperature calculation part 7 becomes a board width calculation part which calculates an apparatus delivery side board width based on the model of a nonpatent literature 1, for example. Further, the cooling setting calculation unit 11 is based on a model described in Non-Patent Document 1, for example, and a width reduction setting calculation unit that sets the opening degree and speed of the edger and the sizing press so that the apparatus delivery side plate width becomes a desired value. Become.

本発明を適用した手法による効果を数値実験により検証した。
図6に、数値実験のための機能構成を示す。パーソナルコンピュータでデータベース9及び局所回帰モデル生成部10を再現して、数値実験を行う。工場で操業実績を蓄積している工場データベースからパーソナルコンピュータに製造条件を入力し、データベース9及び局所回帰モデル生成部10によりモデル誤差予測値を出力する。
工場データベースにはモデル誤差実績値も保存されているので、データベース9及び局所回帰モデル生成部10によるモデル誤差予測値と比較し、その精度を評価した。図1と違い、モデル誤差予測値は実操業に反映されないが、モデル誤差を精度良く予測することで、冷却停止温度制御の精度も向上すると考えられる。
The effect of the method to which the present invention is applied was verified by numerical experiments.
FIG. 6 shows a functional configuration for a numerical experiment. A numerical experiment is performed by reproducing the database 9 and the local regression model generation unit 10 with a personal computer. Manufacturing conditions are input to a personal computer from a factory database that has accumulated operational results in the factory, and model error prediction values are output by the database 9 and the local regression model generation unit 10.
Since the model error actual value is also stored in the factory database, it was compared with the model error predicted value by the database 9 and the local regression model generation unit 10 to evaluate its accuracy. Unlike FIG. 1, the model error prediction value is not reflected in actual operation, but it is considered that the accuracy of the cooling stop temperature control is improved by accurately predicting the model error.

特許文献1に記載の内容に基づいて、局所回帰モデル生成部10では局所重み付きPLS回帰を用いるものとし、近傍教師データを修正しない場合(比較法)、第1の実施形態に従って近傍教師データを修正した場合(発明法1)、第2の実施形態に従って予測対象材の製造条件を修正した場合(発明法2)のそれぞれについてモデル誤差の予測精度を評価した。   On the basis of the contents described in Patent Document 1, the local regression model generation unit 10 uses local weighted PLS regression, and when the neighborhood teacher data is not corrected (comparison method), the neighborhood teacher data is obtained according to the first embodiment. The prediction accuracy of the model error was evaluated for each of the cases where the correction was made (Invention Method 1) and where the manufacturing conditions of the material to be predicted were corrected according to the second embodiment (Invention Method 2).

図8は、比較法におけるモデル誤差実績値とモデル誤差予測値との関係を示す図である。既述したように、ノイズの影響を受けて、外れ予測値801が発生している。評価指標として平均二乗誤差RMSEは16.11℃、決定係数(寄与率)R2は0.088であった。 FIG. 8 is a diagram illustrating the relationship between the model error actual value and the model error predicted value in the comparison method. As described above, the predicted deviation value 801 is generated under the influence of noise. As an evaluation index, the mean square error RMSE was 16.11 ° C., and the coefficient of determination (contribution rate) R 2 was 0.088.

図7(a)は、発明法1におけるモデル誤差実績値とモデル誤差予測値との関係を示す図、図7(b)は、発明法2におけるモデル誤差実績値とモデル誤差予測値との関係を示す図である。発明法1、2では、いずれも外れ予測値の発生を抑えることができている。発明法1では、平均二乗誤差RMSEは10.82℃、決定係数(寄与率)R2は0.588となり、比較法よりも良い結果が得られた。また、発明法2では、平均二乗誤差RMSEは10.81℃、決定係数R2は0.589となり、比較法よりも良い結果が得られた。 FIG. 7A is a diagram showing the relationship between the model error actual value and the model error predicted value in Invention Method 1, and FIG. 7B is the relationship between the model error actual value and the model error predicted value in Invention Method 2. FIG. In the invention methods 1 and 2, it is possible to suppress the occurrence of outlier predicted values. In invention method 1, the mean square error RMSE was 10.82 ° C., and the coefficient of determination (contribution rate) R 2 was 0.588, which is a better result than the comparison method. In Invention Method 2, the mean square error RMSE was 10.81 ° C. and the coefficient of determination R 2 was 0.589, which was a better result than the comparative method.

本発明を適用した製品の状態予測装置、鋼板の冷却停止温度予測装置、鋼板の冷却制御装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現される。また、図1では、冷却停止温度計算部7、局所回帰モデル生成部10、冷却設定計算部11が1つのプロセスコンピュータ(冷却プロセスコンピュータ5)で動作する例を説明したが、それぞれ別個のコンピュータ装置で動作し、ネットワークを介して入出力を行うような形態でもよい。また、製造条件は圧延プロセスコンピュータ6からの入力となっているが、上位のビジネスコンピュータからの入力となる等、熱間圧延における加速冷却制御の形態として一般的である構成に対して本発明は適用可能である。
また、本発明は、本発明の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
A product state prediction apparatus, a steel sheet cooling stop temperature prediction apparatus, and a steel sheet cooling control apparatus to which the present invention is applied are realized by, for example, a computer apparatus including a CPU, a ROM, a RAM, and the like. In FIG. 1, an example in which the cooling stop temperature calculation unit 7, the local regression model generation unit 10, and the cooling setting calculation unit 11 operate on one process computer (cooling process computer 5) has been described. It is possible to operate in such a manner that input / output is performed via a network. Moreover, although the manufacturing conditions are input from the rolling process computer 6, the present invention is applied to a configuration that is common as a form of accelerated cooling control in hot rolling, such as input from a higher-level business computer. Applicable.
The present invention also provides software (program) that implements the functions of the present invention to a system or apparatus via a network or various storage media, and the system or apparatus computer reads out and executes the program. It is feasible.

1:鋼板、2:冷却ノズル、3:搬送テーブル、4:温度計、5:冷却プロセスコンピュータ、7:冷却停止温度計算部、8:減算器、9:データベース、10:局所回帰モデル生成部、11:冷却設定計算部、101:入力部、102:修正部、103:局所重み付き回帰計算部、104:モデル誤差計算部、105:出力部   1: Steel plate, 2: Cooling nozzle, 3: Transfer table, 4: Thermometer, 5: Cooling process computer, 7: Cooling stop temperature calculation unit, 8: Subtractor, 9: Database, 10: Local regression model generation unit, 11: Cooling setting calculation unit, 101: Input unit, 102: Correction unit, 103: Regression calculation unit with local weight, 104: Model error calculation unit, 105: Output unit

Claims (9)

製品の製造工程において、状態予測モデルにより製品の状態の予測値を算出する製品の状態予測装置であって、
予測対象製品の状態の予測値を算出する際に、製造条件を含む実績データを蓄積したデータベースから、距離関数に基づいて近傍教師データを抽出する抽出手段と、
前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データの範囲外にあるとき、前記抽出手段で抽出した近傍教師データ及び前記予測対象製品の当該製造条件のうち少なくともいずれか一方を修正する修正手段と、
前記抽出手段で抽出した近傍教師データ或いは前記修正手段で修正した場合はその修正した近傍教師データを用いて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値の誤差を求める回帰モデルを生成し、当該回帰モデル、及び前記予測対象製品の製造条件或いは前記修正手段で修正した場合はその修正した製造条件により当該誤差を計算する計算手段と、
前記計算手段で求めた前記予測対象製品の状態の予測値の誤差に基づいて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値を補正する補正手段とを備えたことを特徴とする製品の状態予測装置。
A product state prediction device for calculating a predicted value of a product state by a state prediction model in a product manufacturing process,
An extraction means for extracting neighborhood teacher data based on a distance function from a database in which performance data including manufacturing conditions is accumulated when calculating a predicted value of a state of a prediction target product;
When the manufacturing condition of the prediction target product is outside the range of the vicinity teacher data extracted by the extraction unit, at least one of the vicinity teacher data extracted by the extraction unit and the manufacturing condition of the prediction target product is Correction means to correct;
Regression model for obtaining an error in the predicted value of the state of the prediction target product calculated by the state prediction model using the vicinity teacher data extracted by the extraction unit or the corrected vicinity teacher data when corrected by the correction unit And calculating means for calculating the error according to the regression model and the manufacturing condition of the prediction target product or the corrected manufacturing condition when corrected by the correcting means,
Correction means for correcting the predicted value of the state of the prediction target product calculated by the state prediction model based on the error of the predicted value of the state of the prediction target product obtained by the calculation means; Product state prediction device.
前記修正手段は、前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データの範囲外にあるとき、前記抽出手段で抽出した近傍教師データから当該製造条件を除外することを特徴とする請求項1に記載の製品の状態予測装置。   The correction means excludes the manufacturing conditions from the vicinity teacher data extracted by the extraction means when the manufacturing conditions of the prediction target product are outside the range of the vicinity teacher data extracted by the extraction means. The product state prediction apparatus according to claim 1. 前記修正手段は、前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データに含まれる当該製造条件の最大値よりも大きいとき、前記予測対象製品の当該製造条件を前記近傍教師データの最大値に置き換え、また、前記抽出手段で抽出した近傍教師データに含まれる当該製造条件の最小値よりも小さいとき、前記予測対象製品の当該製造条件を前記近傍教師データの最小値に置き換えることを特徴とする請求項1に記載の製品の状態予測装置。   When the manufacturing condition of the prediction target product is larger than the maximum value of the manufacturing condition included in the proximity teacher data extracted by the extraction means, the correction means sets the manufacturing condition of the prediction target product as the vicinity teacher data. And the manufacturing condition of the prediction target product is replaced with the minimum value of the vicinity teacher data when the manufacturing condition is smaller than the minimum value of the manufacturing condition included in the vicinity teacher data extracted by the extraction means. The product state prediction apparatus according to claim 1. 前記データベースは、実績データとして、製品の状態実績値と前記状態予測モデルを用いて算出した製品の状態の予測値との差を製造条件と紐付けて蓄積し、
前記抽出手段は、前記予測対象製品の製造条件と類似する製造条件を持つ実績データを、前記距離関数に基づいて近傍教師データとして抽出することを特徴とする請求項1乃至3のいずれか1項に記載の製品の状態予測装置。
The database stores, as actual data, the difference between the actual product state value and the predicted product state value calculated using the state prediction model in association with manufacturing conditions,
4. The extraction unit according to claim 1, wherein the extraction unit extracts performance data having manufacturing conditions similar to the manufacturing conditions of the prediction target product as neighborhood teacher data based on the distance function. 5. The state prediction apparatus of the product described in 1.
前記製品は鋼板、前記製造工程は冷却工程、前記製品の状態は鋼板の冷却停止温度、前記状態予測モデルは温度予測モデルであることを特徴とする請求項1乃至4のいずれか1項に記載の製品の状態予測装置。   5. The apparatus according to claim 1, wherein the product is a steel plate, the manufacturing process is a cooling step, the state of the product is a cooling stop temperature of the steel plate, and the state prediction model is a temperature prediction model. Product state prediction device. 請求項1乃至4のいずれか1項に記載の製品の状態予測装置と、
前記補正手段で補正した前記予測対象製品の状態の予測値が、予め前記予測対象製品毎に定められた目標値と一致するように、前記製造工程に用いられる製造設備の操作量を制御する制御手段とを備えたことを特徴とする製品の状態制御装置。
The product state prediction apparatus according to any one of claims 1 to 4,
Control for controlling the operation amount of the manufacturing equipment used in the manufacturing process so that the predicted value of the state of the prediction target product corrected by the correction means matches the target value previously determined for each prediction target product And a product state control device.
前記製品は鋼板、前記製造工程は冷却工程、前記製品の状態は鋼板の冷却停止温度、前記状態予測モデルは温度予測モデル、前記操作量は冷却水量及び鋼板の搬送速度のうち少なくともいずれかであることを特徴とする請求項6に記載の製品の状態制御装置。   The product is a steel plate, the manufacturing process is a cooling step, the product state is a cooling stop temperature of the steel plate, the state prediction model is a temperature prediction model, and the operation amount is at least one of a cooling water amount and a steel plate conveyance speed. The product state control device according to claim 6. 製品の製造工程において、状態予測モデルを用いて製品の状態の予測値を算出する製品の状態予測方法であって、
予測対象製品の状態の予測値を算出する際に、製造条件を含む実績データを蓄積したデータベースから、距離関数に基づいて近傍教師データを抽出する抽出ステップと、
前記予測対象製品の製造条件が、前記抽出ステップで抽出した近傍教師データの範囲外にあるとき、前記抽出ステップで抽出した近傍教師データ及び前記予測対象製品の当該製造条件のうち少なくともいずれか一方を修正する修正ステップと、
前記抽出ステップで抽出した近傍教師データ或いは前記修正ステップで修正した場合はその修正した近傍教師データを用いて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値の誤差を求める回帰モデルを生成し、当該回帰モデル、及び前記予測対象製品の製造条件或いは前記修正ステップで修正した場合はその修正した製造条件により当該誤差を計算するステップと、
前記計算ステップで求めた前記予測対象製品の状態の予測値の誤差に基づいて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値を補正する補正ステップとを有することを特徴とする製品の状態予測方法。
A product state prediction method for calculating a predicted value of a product state using a state prediction model in a product manufacturing process,
When calculating the predicted value of the state of the prediction target product, an extraction step of extracting neighborhood teacher data based on a distance function from a database in which performance data including manufacturing conditions is accumulated;
When the manufacturing condition of the prediction target product is outside the range of the vicinity teacher data extracted in the extraction step, at least one of the vicinity teacher data extracted in the extraction step and the manufacturing condition of the prediction target product Correction steps to correct;
Regression model for obtaining an error in the predicted value of the state of the prediction target product calculated by the state prediction model using the vicinity teacher data extracted in the extraction step or the corrected vicinity teacher data when corrected in the correction step Generating the error and calculating the error according to the corrected manufacturing condition when the correction model is corrected in the manufacturing condition of the prediction target product or the correction step;
A correction step of correcting the predicted value of the state of the prediction target product calculated by the state prediction model based on the error of the predicted value of the state of the prediction target product obtained in the calculation step. Product state prediction method.
製品の製造工程において、状態予測モデルを用いて製品の状態の予測値を算出するためのプログラムであって、
予測対象製品の状態の予測値を算出する際に、製造条件を含む実績データを蓄積したデータベースから、距離関数に基づいて近傍教師データを抽出する抽出手段と、
前記予測対象製品の製造条件が、前記抽出手段で抽出した近傍教師データの範囲外にあるとき、前記抽出手段で抽出した近傍教師データ及び前記予測対象製品の当該製造条件のうち少なくともいずれか一方を修正する修正手段と、
前記抽出手段で抽出した近傍教師データ或いは前記修正手段で修正した場合はその修正した近傍教師データを用いて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値の誤差を求める回帰モデルを生成し、当該回帰モデル、及び前記予測対象製品の製造条件或いは前記修正手段で修正した場合はその修正した製造条件により当該誤差を計算する計算手段と、
前記計算手段で求めた前記予測対象製品の状態の予測値の誤差に基づいて、前記状態予測モデルにより算出する前記予測対象製品の状態の予測値を補正する補正手段としてコンピュータを機能させるためのプログラム。
A program for calculating a predicted value of a product state using a state prediction model in a product manufacturing process,
An extraction means for extracting neighborhood teacher data based on a distance function from a database in which performance data including manufacturing conditions is accumulated when calculating a predicted value of a state of a prediction target product;
When the manufacturing condition of the prediction target product is outside the range of the vicinity teacher data extracted by the extraction unit, at least one of the vicinity teacher data extracted by the extraction unit and the manufacturing condition of the prediction target product is Correction means to correct;
Regression model for obtaining an error in the predicted value of the state of the prediction target product calculated by the state prediction model using the vicinity teacher data extracted by the extraction unit or the corrected vicinity teacher data when corrected by the correction unit And calculating means for calculating the error according to the regression model and the manufacturing condition of the prediction target product or the corrected manufacturing condition when corrected by the correcting means,
A program for causing a computer to function as correction means for correcting the predicted value of the state of the prediction target product calculated by the state prediction model based on the error of the predicted value of the state of the prediction target product obtained by the calculation means .
JP2016139591A 2016-07-14 2016-07-14 Product status prediction device, product status control device, product status prediction method and program Active JP6834209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139591A JP6834209B2 (en) 2016-07-14 2016-07-14 Product status prediction device, product status control device, product status prediction method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139591A JP6834209B2 (en) 2016-07-14 2016-07-14 Product status prediction device, product status control device, product status prediction method and program

Publications (2)

Publication Number Publication Date
JP2018010521A true JP2018010521A (en) 2018-01-18
JP6834209B2 JP6834209B2 (en) 2021-02-24

Family

ID=60993859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139591A Active JP6834209B2 (en) 2016-07-14 2016-07-14 Product status prediction device, product status control device, product status prediction method and program

Country Status (1)

Country Link
JP (1) JP6834209B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028949A (en) * 2017-08-03 2019-02-21 新日鐵住金株式会社 Product state prediction device and method, manufacturing process control system, and program
WO2022018912A1 (en) * 2020-07-21 2022-01-27 株式会社日立製作所 Prediction system, prediction method, and display device
CN115185805A (en) * 2022-09-13 2022-10-14 浪潮电子信息产业股份有限公司 Performance prediction method, system, equipment and storage medium of storage system
KR20230061513A (en) 2020-09-14 2023-05-08 제이에프이 스틸 가부시키가이샤 Material property value prediction system and manufacturing method of metal plate
JP7387552B2 (en) 2019-08-20 2023-11-28 株式会社神戸製鋼所 Steel plate temperature prediction device, steel plate temperature prediction method, learning device and learning method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372046A (en) * 1991-06-20 1992-12-25 Hitachi Ltd Method and device for predicting demand amount
JPH08240587A (en) * 1995-03-03 1996-09-17 Nippon Steel Corp Method for estimation of material of thick steel plate utilizing neural network
JP2008112288A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP2011039762A (en) * 2009-08-11 2011-02-24 Kobe Steel Ltd Output value prediction method and device, and program for the method
JP2012081518A (en) * 2010-09-16 2012-04-26 Sumitomo Metal Ind Ltd Control method for cooling of thick steel plate, cooling controller, and method for production of thick steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372046A (en) * 1991-06-20 1992-12-25 Hitachi Ltd Method and device for predicting demand amount
JPH08240587A (en) * 1995-03-03 1996-09-17 Nippon Steel Corp Method for estimation of material of thick steel plate utilizing neural network
JP2008112288A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP2011039762A (en) * 2009-08-11 2011-02-24 Kobe Steel Ltd Output value prediction method and device, and program for the method
JP2012081518A (en) * 2010-09-16 2012-04-26 Sumitomo Metal Ind Ltd Control method for cooling of thick steel plate, cooling controller, and method for production of thick steel plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028949A (en) * 2017-08-03 2019-02-21 新日鐵住金株式会社 Product state prediction device and method, manufacturing process control system, and program
JP7387552B2 (en) 2019-08-20 2023-11-28 株式会社神戸製鋼所 Steel plate temperature prediction device, steel plate temperature prediction method, learning device and learning method
WO2022018912A1 (en) * 2020-07-21 2022-01-27 株式会社日立製作所 Prediction system, prediction method, and display device
KR20230061513A (en) 2020-09-14 2023-05-08 제이에프이 스틸 가부시키가이샤 Material property value prediction system and manufacturing method of metal plate
CN115185805A (en) * 2022-09-13 2022-10-14 浪潮电子信息产业股份有限公司 Performance prediction method, system, equipment and storage medium of storage system
CN115185805B (en) * 2022-09-13 2023-01-24 浪潮电子信息产业股份有限公司 Performance prediction method, system, equipment and storage medium of storage system

Also Published As

Publication number Publication date
JP6834209B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP2018010521A (en) Product state prediction device, product state control device, product state prediction method and program
JP6881137B2 (en) Product status predictors and methods, manufacturing process control systems, and programs
JP6922675B2 (en) Manufacturing process state predictors, methods and programs, and manufacturing process control systems
JP4752764B2 (en) Material control method and apparatus for rolling, forging or straightening line
JP4744226B2 (en) Learning method of cooling control model and cooling method of rolled material.
JP6915428B2 (en) Manufacturing process control systems, methods and programs
KR20170039736A (en) Rolling simulation device
JP6662109B2 (en) Product state prediction device, product state control device, product state prediction method and program
JP2008102720A (en) Controller, and apparatus, method and program for adjusting control parameter
JPWO2017130508A1 (en) Steel plate temperature control device and temperature control method
JP2012101235A (en) Apparatus and method for controlling cooling stop temperature
JP7387552B2 (en) Steel plate temperature prediction device, steel plate temperature prediction method, learning device and learning method
Zheng et al. An approach to model building for accelerated cooling process using instance-based learning
JP7135962B2 (en) Steel plate finishing delivery side temperature control method, steel plate finishing delivery side temperature control device, and steel plate manufacturing method
JP6229799B2 (en) Flatness control device
JP5167891B2 (en) Result prediction apparatus and product quality prediction method using the same
US20180161839A1 (en) Metal thickness control model based inferential sensor
JP2014018844A (en) Heat transfer coefficient predictor for steel material and cooling control method
JP5682131B2 (en) Steel material prediction device
Prinz et al. Online parameter estimation for adaptive feedforward control of the strip thickness in a hot strip rolling mill
JP6699340B2 (en) Cooling control method and manufacturing method for thick steel plate
JP7102962B2 (en) Control set value determination device, control set value determination method, and program
CN111132773A (en) Flatness control using optimizer
JP2010235972A (en) Manufacturing controller and manufacturing method for high tension steel sheet
JP7179426B2 (en) Steel plate temperature data processing device and steel plate temperature data processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151