JP2018010429A - Method for calculating fiber accumulation content in high pressure tank - Google Patents

Method for calculating fiber accumulation content in high pressure tank Download PDF

Info

Publication number
JP2018010429A
JP2018010429A JP2016137837A JP2016137837A JP2018010429A JP 2018010429 A JP2018010429 A JP 2018010429A JP 2016137837 A JP2016137837 A JP 2016137837A JP 2016137837 A JP2016137837 A JP 2016137837A JP 2018010429 A JP2018010429 A JP 2018010429A
Authority
JP
Japan
Prior art keywords
fiber
resin layer
reinforced resin
point
pressure tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016137837A
Other languages
Japanese (ja)
Inventor
智徳 金子
Tomonori Kaneko
智徳 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016137837A priority Critical patent/JP2018010429A/en
Publication of JP2018010429A publication Critical patent/JP2018010429A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a calculation method capable of improving calculation accuracy of a fiber accumulation content of a fiber-reinforced resin layer formed on the outer periphery of a liner.SOLUTION: A method for calculating a fiber accumulation content includes: a step of multiplying a theoretical cross section area of a fiber-reinforced resin layer 50 in a dome portion 30 from a first point to a second point which are separated with a predetermined length in a radial direction from a central axis of a high pressure tank 10 in the fiber-reinforced resin layer 50 by a design value Vfor designof the previously set fiber accumulation content to calculate a used fiber amount; a step of measuring the cross section area of the fiber-reinforced resin layer 50 from the first point to the second point; and a step of dividing the used fiber amount by the measured cross section area to calculate a fiber accumulate content Vfor design.SELECTED DRAWING: Figure 2

Description

本発明は、高圧タンクにおける繊維堆積含有率の計算方法に関する。   The present invention relates to a method for calculating fiber deposition content in a high-pressure tank.

近年、燃料電池システム等に用いられる高圧ガスを貯蔵するタンクの開発が進んでいる。特に、車載用の燃料電池システムにおいては、強度の確保や軽量化等の観点からライナー(内容器)の外周を繊維強化プラスチック(Fiber Reinforced Plastics)層(以下、繊維強化樹脂層)で補強した高圧タンクが有力視されている。この高圧タンクは、略円筒状の円筒部と、円筒部の両側に位置するドーム状のドーム部とを有し、ドーム部の開口には口金が接続される。   In recent years, tanks for storing high-pressure gas used in fuel cell systems and the like have been developed. In particular, in automotive fuel cell systems, the outer periphery of the liner (inner container) is reinforced with a fiber reinforced plastic (Fiber Reinforced Plastics) layer (hereinafter referred to as a fiber reinforced resin layer) from the viewpoint of ensuring strength and reducing weight. The tank is considered promising. The high-pressure tank has a substantially cylindrical cylindrical portion and dome-shaped dome portions located on both sides of the cylindrical portion, and a base is connected to the opening of the dome portion.

上記高圧タンクは、例えば、フィラメント・ワインディング法(以下、「FW法」という)を用いて製造される。FW法においては、熱硬化性樹脂を含浸させた樹脂含浸繊維(以下、単に「繊維」ともいう)をライナーの周囲に複数層巻回させたのち加熱して樹脂を熱硬化させ繊維強化樹脂層を形成する。   The high-pressure tank is manufactured using, for example, a filament winding method (hereinafter referred to as “FW method”). In the FW method, a resin-impregnated fiber impregnated with a thermosetting resin (hereinafter also simply referred to as “fiber”) is wound around a plurality of layers around a liner, and then heated to thermally cure the resin and a fiber-reinforced resin layer. Form.

こうして作製される高圧タンクは、特に車両に搭載される場合、高い充填圧に耐える強度が必要となるため、その強度が確保されているか否か正確に把握する必要がある。そこで、例えば下記特許文献1では、有限要素法を用いて繊維強化樹脂層の厚みや断面積を求めて、高圧タンクの強度を解析する方法が提案されている。   Since the high-pressure tank manufactured in this way is required to be strong enough to withstand a high filling pressure, particularly when mounted on a vehicle, it is necessary to accurately grasp whether or not the strength is ensured. Therefore, for example, Patent Document 1 below proposes a method of analyzing the strength of the high-pressure tank by obtaining the thickness and cross-sectional area of the fiber reinforced resin layer using a finite element method.

特開2011−248394号公報JP 2011-248394 A

ところで、強度の物性値として繊維堆積含有率からヤング率を求める場合がある。しかしながら、実際には繊維束を巻回したことにより樹脂が染み出し、実際の繊維堆積含有率は、設計値(設計用の繊維堆積含有率)とは異なる値となる場合がある。そうすると、ヤング率等の物性値が、実際の物性値とは異なることになり、製造された高圧タンクの強度を正確に把握することが困難になる。   By the way, the Young's modulus may be obtained from the fiber deposition content as a physical property value of strength. However, in reality, the resin oozes out by winding the fiber bundle, and the actual fiber deposition content may be different from the design value (designed fiber deposition content). Then, physical property values such as Young's modulus are different from actual physical property values, and it is difficult to accurately grasp the strength of the manufactured high-pressure tank.

本発明はこのような課題に鑑みてなされたものであり、その目的は、ライナー外周に形成された繊維強化樹脂層の繊維堆積含有率の計算精度を向上させることができる計算方法を提供することにある。   This invention is made | formed in view of such a subject, The objective is providing the calculation method which can improve the calculation precision of the fiber deposition content rate of the fiber reinforced resin layer formed in the liner outer periphery. It is in.

上記課題を解決するために本発明に係る高圧タンクにおける繊維堆積含有率の計算方法は、円筒状のシリンダー部の両側に球面形状のドーム部を有するライナーと、該ライナーの外周に繊維を巻回して形成された繊維強化樹脂層と、を備えた高圧タンクにおける繊維堆積含有率の計算方法であって、前記ドーム部における繊維強化樹脂層のうち前記高圧タンクの中心軸から半径方向に所定長離間した第1地点から第2地点までの繊維強化樹脂層の理論断面積と、予め設定された繊維堆積含有率の設計値とを掛け合わせて使用繊維量を算出する工程と、前記第1地点から第2地点までの繊維強化樹脂層の断面積を測定する工程と、前記使用繊維量を前記測定した断面積で除して繊維堆積含有率を算出する工程と、を備える。   In order to solve the above problems, a method for calculating a fiber accumulation content in a high-pressure tank according to the present invention includes a liner having spherical dome portions on both sides of a cylindrical cylinder portion, and a fiber wound around the outer periphery of the liner. And a fiber-reinforced resin layer formed in a high-pressure tank, wherein the fiber deposition content rate in the high-pressure tank is a predetermined distance in the radial direction from the central axis of the high-pressure tank among the fiber-reinforced resin layer in the dome portion Calculating the amount of fiber used by multiplying the theoretical cross-sectional area of the fiber reinforced resin layer from the first point to the second point and the preset design value of the fiber accumulation content, from the first point, A step of measuring a cross-sectional area of the fiber reinforced resin layer up to the second point, and a step of dividing the amount of used fiber by the measured cross-sectional area to calculate a fiber deposition content.

本発明では、実際に測定した断面積(高圧タンクの中心軸から半径方向に所定長離間した第1地点から第2地点までの繊維強化樹脂層の断面積)に基づいて計算を行っているため、実際の繊維堆積含有率を算出することができる。このように算出した繊維堆積含有率を用いてヤング率を計算することにより、強度物性値を正確に得ることができる。   In the present invention, the calculation is performed based on the actually measured cross-sectional area (the cross-sectional area of the fiber reinforced resin layer from the first point to the second point spaced apart from the central axis of the high-pressure tank by a predetermined length in the radial direction). The actual fiber deposition content can be calculated. By calculating the Young's modulus using the fiber deposition content calculated in this way, the strength property value can be accurately obtained.

本発明によれば、ライナー外周に形成された繊維強化樹脂層の繊維堆積含有率の計算精度を向上させることができる計算方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the calculation method which can improve the calculation precision of the fiber deposition content rate of the fiber reinforced resin layer formed in the liner outer periphery can be provided.

高圧タンクの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a high pressure tank. 本実施形態における高圧タンクの繊維堆積含有率の計算方法を示す工程図である。It is process drawing which shows the calculation method of the fiber accumulation content of the high pressure tank in this embodiment. ドーム部における繊維強化樹脂層の厚さを比較するための説明図である。It is explanatory drawing for comparing the thickness of the fiber reinforced resin layer in a dome part. 既存技術でのドーム部の要素厚みの算出の様子を説明する説明図である。It is explanatory drawing explaining the mode of calculation of the element thickness of the dome part by the existing technique.

以下添付図面を参照しながら本発明の実施形態について説明する。尚、以下の好ましい実施形態の説明は、例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the following description of the preferred embodiment is merely an example, and is not intended to limit the present invention, its application, or its use.

まず、高圧タンクの構成について説明する。図1は、高圧タンクの概略構成を示す断面図である。   First, the configuration of the high-pressure tank will be described. FIG. 1 is a cross-sectional view showing a schematic configuration of a high-pressure tank.

図1に示すように、高圧タンク10は、ライナー40と、ライナー40の表面を覆う繊維強化樹脂層50と、2つの口金部14とを備える。なお、高圧タンク10は、2つの口金部14のうち1つのみを備える構成であっても良い。   As shown in FIG. 1, the high-pressure tank 10 includes a liner 40, a fiber reinforced resin layer 50 that covers the surface of the liner 40, and two base parts 14. Note that the high-pressure tank 10 may be configured to include only one of the two cap portions 14.

高圧タンク10は、略円筒状の円筒部20と、円筒部20の両側に位置するドーム状のドーム部30とを有する。ドーム部30は、円筒部20のタンク中心軸AX方向について、円筒部20から離れるにしたがって縮径している。最も縮径した部分は開口し、開口には口金部14が挿入されている。   The high-pressure tank 10 includes a substantially cylindrical cylindrical portion 20 and dome-shaped dome portions 30 located on both sides of the cylindrical portion 20. The dome portion 30 is reduced in diameter with increasing distance from the cylindrical portion 20 in the tank central axis AX direction of the cylindrical portion 20. The portion with the smallest diameter is opened, and the base portion 14 is inserted into the opening.

ライナー40は、高圧タンク10の内殻又は内容器とも言われる部分であり、流体を貯蔵する空間部25を内部に有する。ライナー40は、水素ガス等の気体の外部への透過を抑制する。ライナー40の材料は特に限定されるものではないが、例えばナイロン系樹脂、ポリエチレン系樹脂等の合成樹脂等が用いられる。   The liner 40 is a portion also referred to as an inner shell or an inner container of the high-pressure tank 10, and has a space 25 for storing a fluid therein. The liner 40 suppresses permeation of gas such as hydrogen gas to the outside. The material of the liner 40 is not particularly limited. For example, a synthetic resin such as a nylon resin or a polyethylene resin is used.

繊維強化樹脂層50は、ライナー40の表面にフィラメント・ワインディング法(以下、「FW法」ともいう。)により繊維を巻き付けることで形成されるものであり、繊維が複数積層された構成を有する。FW法とは、熱硬化性樹脂を含浸した強化繊維をライナー40に巻き付けて、熱硬化性樹脂を熱硬化させる方法である。熱硬化性樹脂としては、例えばエポキシ樹脂が用いられる。   The fiber reinforced resin layer 50 is formed by winding fibers around the surface of the liner 40 by a filament winding method (hereinafter also referred to as “FW method”), and has a configuration in which a plurality of fibers are laminated. The FW method is a method in which reinforcing fibers impregnated with a thermosetting resin are wound around a liner 40 to thermoset the thermosetting resin. For example, an epoxy resin is used as the thermosetting resin.

ところで、ドーム部の口金部周辺においては繊維強化樹脂層の厚さが増えることが通常であり、この厚さをモデル化するための理論式が知られている。図4は、既存技術でのドーム部における繊維強化樹脂層50の厚みの算出(理論式)を説明するための図である。   By the way, it is normal that the thickness of the fiber reinforced resin layer increases around the base portion of the dome portion, and a theoretical formula for modeling this thickness is known. FIG. 4 is a diagram for explaining the calculation (theoretical formula) of the thickness of the fiber reinforced resin layer 50 in the dome portion in the existing technology.

図4に示すように、ライナーの外周に繊維を巻き付ける繊維1束を想定した場合、シリンダー部とドーム部とでは、繊維1束の繊維量は同じである。ところが、繊維の巻き付け角度は、シリンダー部がフープ巻き、ドーム部がヘリカル巻き(特に、タンク両端の口金付近では、低角度のヘリカル巻き)であることから、シリンダー部の繊維角α0と、ドーム部の繊維角αとは、相違することになる。そして、繊維1束を繊維と直角、即ち繊維角0°で切断した時の繊維1束の面積をSとすると、タンク中心軸AXから半径R0のシリンダー部における繊維1束の繊維層厚h0と、タンク中心軸AXから半径Rxのドーム部における繊維1束の繊維層厚hxとの間には、面積Sとそれぞれの繊維角α0、αおよび半径R0、Rxを用いて下記の関係式が成立することが知られている。   As shown in FIG. 4, when assuming a bundle of fibers in which fibers are wound around the outer periphery of the liner, the amount of fibers in the bundle of fibers is the same in the cylinder portion and the dome portion. However, the fiber wrapping angle is that the cylinder part is hoop-wound and the dome part is helically wound (especially low-angle helical winding near the caps at both ends of the tank), so the fiber angle α0 of the cylinder part and the dome part Is different from the fiber angle α. When the area of one fiber bundle when the fiber bundle is cut at right angles to the fiber, that is, at a fiber angle of 0 °, is S, the fiber layer thickness h0 of the fiber bundle in the cylinder portion having the radius R0 from the tank center axis AX The following relational expression is established between the tank center axis AX and the fiber layer thickness hx of one bundle of fibers in the dome portion having the radius Rx by using the area S and the respective fiber angles α0 and α and the radii R0 and Rx. It is known to do.

この数式1は、図4に示したシリンダー部およびドーム部における繊維1束の層厚の比を示しており、数式2より、タンク中心軸AXから半径Rxのドーム部における繊維1束の繊維層厚hxは算出される。つまり、数式1及び数式2に基づき、本明細書における「理論断面積(理論厚さ)」を算出することができる。   Formula 1 shows the ratio of the layer thickness of one bundle of fibers in the cylinder portion and the dome portion shown in FIG. 4, and from Formula 2, the fiber layer of one bundle of fibers in the dome portion having a radius Rx from the tank center axis AX. The thickness hx is calculated. That is, the “theoretical cross-sectional area (theoretical thickness)” in the present specification can be calculated based on Formula 1 and Formula 2.

数式1及び数式2に示されるように、ドーム部における繊維1束の繊維層厚hx(以下、層厚さとも称する)を算出する理論式が知られているが、実際は、製造による影響で樹脂が染み出し、層厚さは数式1、数式2により算出される理論値とずれる。この理論値の繊維層厚hxと実際の高圧タンク(以下、実タンク)の層厚さのずれを、図3に示すグラフ(半径方向位置を横軸、層厚さを縦軸)の符号Gで表している。このように、ドーム部30における口金部14周辺の層厚さは、理論値(図3に示す「理論」の層厚さ)と実タンク(図3に示す「実タンク」の層厚さ)とで、ずれが生じる。   As shown in Equations 1 and 2, a theoretical equation for calculating the fiber layer thickness hx (hereinafter also referred to as layer thickness) of one bundle of fibers in the dome is known. Ooze out and the layer thickness deviates from the theoretical value calculated by Equation 1 and Equation 2. The deviation between the theoretical fiber layer thickness hx and the layer thickness of an actual high-pressure tank (hereinafter referred to as an actual tank) is indicated by the symbol G in the graph shown in FIG. It is represented by Thus, the layer thickness around the base portion 14 in the dome portion 30 is the theoretical value (the layer thickness of “theoretical” shown in FIG. 3) and the actual tank (the layer thickness of the “actual tank” shown in FIG. 3). And a shift occurs.

上記のようにずれが生じると、実タンクの繊維堆積含有率は、当初の繊維堆積含有率(繊維堆積含有率の設計値)とは異なる値となる場合がある。そうすると、繊維堆積含有率を用いて算出されるヤング率の計算精度が低下する。   When the deviation occurs as described above, the fiber accumulation content of the actual tank may be different from the initial fiber accumulation content (design value of the fiber accumulation content). If it does so, the calculation precision of the Young's modulus calculated using fiber accumulation content will fall.

そこで、本実施形態では、実際の繊維堆積含有率Vf(計算用)を算出し、このVf(計算用)に基づきヤング率を算出することで、ヤング率の計算精度を向上させている。この繊維堆積含有率Vf(計算用)の算出方法を以下で詳細に説明する。 Therefore, in the present embodiment, the calculation accuracy of the Young's modulus is improved by calculating the actual fiber deposition content V f (for calculation) and calculating the Young's modulus based on this V f (for calculation) . . A method for calculating the fiber deposition content V f (for calculation) will be described in detail below.

図2は、本実施形態における高圧タンクの繊維堆積含有率の計算工程を示す工程図である。図3(A)は、図1に示すドーム部の口金部周辺の構成を示す拡大断面図である。図3(B)は、繊維強化樹脂層の層厚さの理論値を示すグラフであり、図3(C)は、繊維強化樹脂層の層厚さの実測値を示すグラフである。図3(B)及び図3(C)の横軸は、半径方向位置(図3(A)参照)を示し、図3(B)及び図3(C)の縦軸は、繊維強化樹脂層の層厚さ(図3(A)参照)を示す。   FIG. 2 is a process diagram showing a calculation process of the fiber accumulation content of the high-pressure tank in the present embodiment. FIG. 3A is an enlarged cross-sectional view showing the configuration around the base portion of the dome portion shown in FIG. FIG. 3B is a graph showing the theoretical value of the layer thickness of the fiber reinforced resin layer, and FIG. 3C is a graph showing the measured value of the layer thickness of the fiber reinforced resin layer. The horizontal axis of FIG. 3 (B) and FIG. 3 (C) shows a radial position (refer FIG. 3 (A)), and the vertical axis | shaft of FIG. 3 (B) and FIG. 3 (C) is a fiber reinforced resin layer. The layer thickness (see FIG. 3A) is shown.

(ステップS10)
まず、図2及び図3(B)に示すように、ドーム部30における繊維強化樹脂層50のうちタンク中心軸AXから半径方向に所定長離間した第1地点から第2地点までの繊維強化樹脂層50の理論断面積(図3(B)に示す斜線部分の面積)と、予め設定した繊維堆積含有率の設計値Vf(設計用)とを掛け合わせて使用繊維量を算出する(使用繊維量算出工程)。
(Step S10)
First, as shown in FIG. 2 and FIG. 3 (B), the fiber reinforced resin from the first point to the second point that is separated from the tank center axis AX in the radial direction by a predetermined length in the fiber reinforced resin layer 50 in the dome portion 30. The amount of fiber used is calculated by multiplying the theoretical cross-sectional area of the layer 50 (the area of the hatched portion shown in FIG. 3B) by the preset design value V f (for design) of the fiber accumulation content (use) Fiber amount calculation step).

(ステップS20)
次いで、図2及び図3(C)に示すように、実タンクにおける、ステップS10で理論断面積を算出した際に用いた範囲と同じ範囲(ドーム部30における繊維強化樹脂層50のうちタンク中心軸AXから半径方向に所定長離間した第1地点から第2地点まで)の繊維強化樹脂層50の断面積(図3(C)に示す斜線部分の面積)を測定する(断面積測定工程)。
(Step S20)
Next, as shown in FIG. 2 and FIG. 3 (C), the same range as the range used when the theoretical cross-sectional area was calculated in step S10 in the actual tank (the center of the tank in the fiber reinforced resin layer 50 in the dome portion 30). The cross-sectional area (area of the hatched portion shown in FIG. 3C) of the fiber reinforced resin layer 50 is measured (from the first point to the second point spaced apart from the axis AX by a predetermined length in the radial direction) (cross-sectional area measuring step). .

(ステップS30)
次いで、図2に示すように、ステップS10において算出した使用繊維量を、ステップS20で測定した断面積で除して、繊維堆積含有率Vf(計算用)を算出する(繊維堆積含有率算出工程)。
(Step S30)
Next, as shown in FIG. 2, the fiber accumulation content V f (for calculation) is calculated by dividing the used fiber amount calculated in step S10 by the cross-sectional area measured in step S20 (fiber accumulation content calculation). Process).

図2に示すS10〜S30の工程を経て算出された繊維堆積含有率を用いてヤング率を算出する。ヤング率の算出方法を下記式に記す。
1/ET=Vf(計算用)/Ef+(1−Vf(計算用))/Em
f:繊維堆積含有率
T:厚さ方向ヤング率
f:繊維単体ヤング率
m:樹脂単体ヤング率
The Young's modulus is calculated using the fiber deposition content calculated through steps S10 to S30 shown in FIG. The calculation method of Young's modulus is described in the following formula.
1 / E T = V f (for calculation) / E f + (1−V f (for calculation) ) / E m
V f : Fiber deposition content ratio E T : Young's modulus in the thickness direction E f : Young modulus of fiber simple substance E m : Young modulus of single resin

以上説明した本実施形態による繊維堆積含有率の計算精度について検証するため、従来手法を用いたヤング率計算結果と本実施形態の計算方法(以下、本計算方法)を用いたヤング率計算結果とを比較する実験を行った。実験条件として、繊維堆積含有率の設計値Vf(設計用)=0.67、繊維単体ヤング率Ef=260[GPa]、樹脂単体ヤング率Em=2[GPa]とし、また、理論断面積と実タンクの断面積との比=1/0.95と設定した。 In order to verify the calculation accuracy of the fiber deposition content according to this embodiment described above, the Young's modulus calculation result using the conventional method and the Young's modulus calculation result using the calculation method of the present embodiment (hereinafter, this calculation method) The experiment which compares was conducted. As experimental conditions, the design value V f (for design) of the fiber accumulation content is 0.67, the Young's modulus E f of the fiber is 260 [GPa], the Young's modulus of the resin is E m = 2 [GPa], and the theoretical cross section And the ratio of the cross-sectional area of the actual tank to 1 / 0.95.

本計算方法での厚さ方向ヤング率ETを、下記手順(1−1)〜(1−3)で計算した。
(1−1)理論断面積と繊維堆積含有率の設計値(Vf(設計用))から使用繊維量算出。
(使用繊維量)=1×0.67=0.67
(1−2)使用繊維量と実タンクの断面積から実際の繊維堆積含有率Vf(計算用)を算出。
f(計算用)=0.67/0.95=0.705
(1−3)算出した繊維堆積含有率Vf(計算用)を用いてヤング率を算出。
1/ET=Vf(設計用)/Ef+(1−Vf(設計用))/Em=0.705/260+(1-0.705)/2
T=6.66[GPa]・・・(計算結果(1))
The thickness direction Young's modulus E T in this calculation method was calculated by the following procedures (1-1) to (1-3).
(1-1) Calculate the amount of fiber used from the theoretical cross-sectional area and the design value (V f (for design) ) of the fiber accumulation content.
(Amount of fiber used) = 1 x 0.67 = 0.67
(1-2) The actual fiber accumulation content V f (for calculation) is calculated from the amount of fiber used and the cross-sectional area of the actual tank.
V f (for calculation) = 0.67 / 0.95 = 0.705
(1-3) The Young's modulus is calculated using the calculated fiber deposition content V f (for calculation) .
1 / E T = V f (for design) / E f + (1−V f (for design) ) / E m = 0.705 / 260 + (1-0.705) / 2
E T = 6.66 [GPa] (Calculation result (1))

比較例として、従来手法での厚さ方向ヤング率ETを、下記手順(2−1)、(2−2)で計算した。
(2−1)繊維堆積含有率の設計値Vf(設計用)67%時の厚さ方向ヤング率ETを算出。
1/ET=Vf(設計用)/Ef+(1−Vf(設計用))/Em=0.67/260+(1-0.67)/2
T=5.97[GPa]
(2−2)理論断面積と実タンク断面積の比を掛けて、算出したヤング率を修正。
T=5.97×1/0.95=6.28[GPa]・・・(計算結果(2))
As a comparative example, the Young's modulus E T in the thickness direction according to the conventional method was calculated by the following procedures (2-1) and (2-2).
(2-1) Design value V f of fiber accumulation content (for design) Calculate thickness direction Young's modulus E T at 67%.
1 / E T = V f (for design) / E f + (1-V f (for design) ) / E m = 0.67 / 260 + (1-0.67) / 2
E T = 5.97 [GPa]
(2-2) The calculated Young's modulus is corrected by multiplying the ratio of the theoretical cross section and the actual tank cross section.
E T = 5.97 x 1 / 0.95 = 6.28 [GPa] (Calculation result (2))

上記計算結果(1)及び計算結果(2)に示されるように、本計算方法で算出したヤング率値と従来手法で算出したヤング率値とで6%の誤差が生じた。この誤差は、上述したように、実タンクでは製造による影響で樹脂が染み出し、層厚さのずれ(図3に示す符号G参照)が生じることに起因するものである。本実施形態では、実際に測定した断面積(タンク中心軸AXから半径方向に所定長離間した第1地点から第2地点までの繊維強化樹脂層50の断面積)に基づいて計算を行っているため、実際の繊維堆積含有率Vf(計算用)を算出することができる。このように算出した繊維堆積含有率Vf(計算用)を用いてヤング率を計算することにより、強度物性値を正確に得ることができる。 As shown in the calculation results (1) and (2), an error of 6% occurred between the Young's modulus value calculated by this calculation method and the Young's modulus value calculated by the conventional method. As described above, this error is caused by the fact that the resin leaks out due to the influence of the manufacturing in the actual tank, and the deviation of the layer thickness (see the symbol G shown in FIG. 3) occurs. In the present embodiment, the calculation is performed based on the actually measured cross-sectional area (the cross-sectional area of the fiber reinforced resin layer 50 from the first point to the second point spaced apart from the tank center axis AX by a predetermined length in the radial direction). Therefore, the actual fiber deposition content V f (for calculation) can be calculated. By calculating the Young's modulus using the fiber deposition content V f (for calculation) calculated in this way, the strength property value can be obtained accurately.

以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention.

10:高圧タンク
14:口金部
20:円筒部(シリンダー部)
25:空間部
30:ドーム部
40:ライナー
50:繊維強化樹脂層
f:繊維単体ヤング率
m:樹脂単体ヤング率
T:厚さ方向ヤング率
G:ずれ
10: High-pressure tank 14: Base part 20: Cylindrical part (cylinder part)
25: Space part 30: Dome part 40: Liner 50: Fiber reinforced resin layer E f : Fiber simplex Young's modulus E m : Resin simplex Young's modulus E T : Thickness direction Young's modulus G: Deviation

Claims (1)

円筒状のシリンダー部の両側に球面形状のドーム部を有するライナーと、該ライナーの外周に繊維を巻回して形成された繊維強化樹脂層と、を備えた高圧タンクにおける繊維堆積含有率の計算方法であって、
前記ドーム部における繊維強化樹脂層のうち前記高圧タンクの中心軸から半径方向に所定長離間した第1地点から第2地点までの繊維強化樹脂層の理論断面積と、予め設定された繊維堆積含有率の設計値とを掛け合わせて使用繊維量を算出する工程と、
前記第1地点から第2地点までの繊維強化樹脂層の断面積を測定する工程と、
前記使用繊維量を前記測定した断面積で除して繊維堆積含有率を算出する工程と、を備える、
高圧タンクにおける繊維堆積含有率の計算方法。
Method for calculating fiber deposition content in a high-pressure tank comprising: a liner having spherical dome portions on both sides of a cylindrical cylinder portion; and a fiber reinforced resin layer formed by winding fibers on the outer periphery of the liner Because
The theoretical cross-sectional area of the fiber reinforced resin layer from the first point to the second point that is spaced apart from the central axis of the high-pressure tank by a predetermined length in the fiber reinforced resin layer in the dome part, and a preset fiber deposition content Multiplying the design value of the rate to calculate the amount of fiber used,
Measuring the cross-sectional area of the fiber reinforced resin layer from the first point to the second point;
Dividing the used fiber amount by the measured cross-sectional area to calculate a fiber deposition content,
Calculation method of fiber accumulation content in high-pressure tank.
JP2016137837A 2016-07-12 2016-07-12 Method for calculating fiber accumulation content in high pressure tank Pending JP2018010429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016137837A JP2018010429A (en) 2016-07-12 2016-07-12 Method for calculating fiber accumulation content in high pressure tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137837A JP2018010429A (en) 2016-07-12 2016-07-12 Method for calculating fiber accumulation content in high pressure tank

Publications (1)

Publication Number Publication Date
JP2018010429A true JP2018010429A (en) 2018-01-18

Family

ID=60994299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137837A Pending JP2018010429A (en) 2016-07-12 2016-07-12 Method for calculating fiber accumulation content in high pressure tank

Country Status (1)

Country Link
JP (1) JP2018010429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110472367A (en) * 2019-08-23 2019-11-19 黄河勘测规划设计研究院有限公司 A kind of husky full interactive simulation method and system of heavily silt-carrying river Heavenly Stems and Earthly Branches flowing water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110472367A (en) * 2019-08-23 2019-11-19 黄河勘测规划设计研究院有限公司 A kind of husky full interactive simulation method and system of heavily silt-carrying river Heavenly Stems and Earthly Branches flowing water

Similar Documents

Publication Publication Date Title
US11421824B2 (en) Pressure vessel and manufacturing method thereof
US9879825B2 (en) High-pressure tank and manufacturing method of high-pressure tank
US10168002B2 (en) Breather layer for exhausting permeate from pressure vessels
US20150192251A1 (en) High pressure carbon composite pressure vessel
JP5621631B2 (en) High pressure tank manufacturing method and high pressure tank
US20160341359A1 (en) High pressure tank, method of manufacturing high pressure tank and method of designing liner shape
KR102039001B1 (en) High-pressure tank
US11098851B2 (en) High-pressure tank and attachment structure thereof
US11529780B2 (en) Manufacturing method for high-pressure tank
US11441732B2 (en) Manufacturing method for high-pressure tank and high-pressure tank
JP2018010429A (en) Method for calculating fiber accumulation content in high pressure tank
US11524447B2 (en) Pressure vessel and manufacturing method thereof
JP6341425B2 (en) Manufacturing method of high-pressure tank
KR102347694B1 (en) Method for manufacturing a pressure vessel
US20230119246A1 (en) High-pressure tank and manufacturing method of the same
JP6726408B2 (en) High pressure tank manufacturing method and high pressure tank
JP2021139382A (en) High pressure tank and method of manufacturing the same
JP5730718B2 (en) Manufacturing method of high-pressure gas tank
JP2020139565A (en) High pressure tank
JP7318781B2 (en) Pressure vessel and manufacturing method thereof
JP6733228B2 (en) Pressure vessel
US9765929B2 (en) Composite materials