JP2018009239A - Steel sheet and production method therefor - Google Patents

Steel sheet and production method therefor Download PDF

Info

Publication number
JP2018009239A
JP2018009239A JP2016213579A JP2016213579A JP2018009239A JP 2018009239 A JP2018009239 A JP 2018009239A JP 2016213579 A JP2016213579 A JP 2016213579A JP 2016213579 A JP2016213579 A JP 2016213579A JP 2018009239 A JP2018009239 A JP 2018009239A
Authority
JP
Japan
Prior art keywords
mass
less
tin
steel sheet
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016213579A
Other languages
Japanese (ja)
Inventor
雅弘 井元
Masahiro Imoto
雅弘 井元
秀徳 名古
Hidenori Nako
秀徳 名古
喜臣 岡崎
Yoshiomi Okazaki
喜臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP2017/003701 priority Critical patent/WO2017141714A1/en
Priority to EP17752977.3A priority patent/EP3418415A4/en
Priority to KR1020187022996A priority patent/KR20180100422A/en
Priority to CN201780010241.6A priority patent/CN108603268A/en
Publication of JP2018009239A publication Critical patent/JP2018009239A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet excellent in base material strength and HAZ (Heat Affected Zone) toughness.SOLUTION: The steel sheet has a composition containing C:0.005 mass% to 0.07 mass%, Si:0 mass% to 0.04 mass%, Mn:1.4 mass% to 2.0 mass%, P:over 0 mass% and 0.010 mass% or less, S:over 0 mass% and 0.007 mass% or less, Al:0.010 mass% to 0.040 mass%, Ni:0.1 mass% to 1.50 mass%, Cu:0.1 mass% to 0.8 mass%, Nb:0.004 mass% to 0.025 mass%, Ti:0.010 mass% to 0.025 mass%, N:0.0040 mass% to 0.0080 mass%, Ca:0.0005 mass% to 0.0030 mass% and the balance:Fe with inevitable impurities, and a ratio of content of acid insoluble Ti to content of Ti based on whole composition is 0.80 or less.SELECTED DRAWING: None

Description

本発明は、鋼板及びその製造方法に関する。   The present invention relates to a steel plate and a manufacturing method thereof.

造船分野における溶接構造物の大型化に伴い、板厚が50mm以上かつ降伏強度が490MPa以上の高強度鋼板の適用が拡大しつつある。このような鋼板では、入熱量が増加するため、溶接施工効率向上の観点とも相まって、大入熱溶接の需要が高まっている。大入熱溶接では、溶接熱影響部(Heat Affected Zone:HAZ)において、加熱によりオーステナイト温度に長時間保持されることで粗大オーステナイト組織が形成され、その後の冷却過程で旧オーステナイト粒界に沿った粗大粒界フェライト及び粗大粒界ベイナイトが生成される。その結果、HAZにおける靭性(以下、「HAZ靭性」ともいう)が安定して得られなくなる。   With the increase in size of welded structures in the shipbuilding field, the application of high-strength steel sheets having a plate thickness of 50 mm or more and a yield strength of 490 MPa or more is expanding. In such a steel plate, since the amount of heat input increases, the demand for large heat input welding is increased in combination with the viewpoint of improving welding construction efficiency. In large heat input welding, in a heat affected zone (HAZ), a coarse austenite structure is formed by being kept at the austenite temperature for a long time by heating, and along the former austenite grain boundary in the subsequent cooling process Coarse grain boundary ferrite and coarse grain boundary bainite are produced. As a result, the toughness in HAZ (hereinafter also referred to as “HAZ toughness”) cannot be obtained stably.

このような不都合に対し、Ti含有窒化物の形態を制御することで大入熱溶接でのHAZ靭性を改善する方法が提案されている(特開2010−95781号公報及び特開2011−21263号公報参照)。しかしながら、これらの方法では、Ti含有窒化物の制御のために鋳造工程に制約があり、生産コストの増大を招くおそれがある。また、母材の強度については考慮されていない。   For such inconvenience, methods for improving the HAZ toughness in high heat input welding by controlling the form of the Ti-containing nitride have been proposed (Japanese Patent Application Laid-Open Nos. 2010-95781 and 2011-21263). See the official gazette). However, in these methods, there is a limitation in the casting process for controlling the Ti-containing nitride, which may increase the production cost. Further, the strength of the base material is not taken into consideration.

また、酸化物系介在物の大きさを制御することで大入熱溶接でのHAZ靭性を改善する方法が提案されている(特開2010−222652号公報参照)。しかしながら、この方法では、酸化物の制御のために精緻な製鋼プロセスが求められるため、生産コストの増大を招くおそれがある。また、この方法でも母材の強度については考慮されていない。   In addition, a method for improving the HAZ toughness in high heat input welding by controlling the size of oxide inclusions has been proposed (see Japanese Patent Application Laid-Open No. 2010-222652). However, this method requires a precise steelmaking process for controlling the oxide, which may increase the production cost. In this method, the strength of the base material is not taken into consideration.

さらに、Ca、S、O等の量を制御し、粒内変態核を導入することでHAZ組織を微細化し、HAZ靭性を改善する方法が提案されている(特開2013−147740号公報参照)。しかしながら、この方法で得られる母材の降伏強度は大半が490MPa未満と不十分であり、一方で降伏強度が490MPa以上のものではHAZ靭性が十分とは言い難い。   Furthermore, a method has been proposed in which the amount of Ca, S, O, etc. is controlled, and the HAZ structure is refined by introducing intragranular transformation nuclei to improve the HAZ toughness (see JP 2013-147740 A). . However, the yield strength of the base material obtained by this method is mostly insufficient at less than 490 MPa, while it is difficult to say that the HAZ toughness is sufficient when the yield strength is 490 MPa or more.

また、Ti−Ca複合添加並びにCaO及びCaS量の最適化により、高い母材強度と良好なHAZ靭性とを実現する方法が提案されている(特開2002−317243号公報)。しかしながら、この方法では圧延前の保持温度が1150〜1250℃と高く、生産性について改善の余地がある。また、板厚50mm以上の厚鋼板における特性が考慮されていない。   In addition, a method has been proposed for realizing high base material strength and good HAZ toughness by adding Ti—Ca composite and optimizing the amount of CaO and CaS (Japanese Patent Laid-Open No. 2002-317243). However, in this method, the holding temperature before rolling is as high as 1150 to 1250 ° C., and there is room for improvement in productivity. Moreover, the characteristic in the thick steel plate of 50 mm or more thickness is not considered.

さらに、0.1μm以下のTiN析出物を制御することで、HAZ靭性を改善する方法が提案されている(特開2001−98340号公報参照)。しかしながら、検討されている入熱量が最大で450kJ/cmであり、大入熱溶接における改善が十分とは言えない。また、母材の強度についても考慮されていない。   Furthermore, a method for improving the HAZ toughness by controlling TiN precipitates of 0.1 μm or less has been proposed (see JP 2001-98340 A). However, the amount of heat input being studied is 450 kJ / cm at the maximum, and it cannot be said that the improvement in high heat input welding is sufficient. Further, the strength of the base material is not taken into consideration.

特開2010−95781号公報JP 2010-95781 A 特開2011−21263号公報JP 2011-21263 A 特開2010−222652号公報JP 2010-222652 A 特開2013−147740号公報JP 2013-147740 A 特開2002−317243号公報JP 2002-317243 A 特開2001−98340号公報JP 2001-98340 A

本発明は、上述のような事情に基づいてなされたものであり、母材強度及びHAZ靭性に優れる鋼板及びその製造方法を提供することを目的とする。   This invention is made | formed based on the above situations, and it aims at providing the steel plate excellent in base material strength and HAZ toughness, and its manufacturing method.

本発明者らは、鋭意検討した結果、鋼板のTi添加量を増やすと、HAZ靭性の改善に有効な微細TiNが増加する一方で、HAZ靭性を低下させる例えば粒径が2.0μm以上の粗大TiNも増加することを見出した。そこで、本発明者らはTi添加量を増やした際に生成する粗大TiNの量を低減することで、大入熱溶接時のHAZ靭性を改善できる本発明に至った。   As a result of intensive studies, the inventors have increased the amount of Ti added to the steel sheet, while increasing the fine TiN effective in improving the HAZ toughness, while reducing the HAZ toughness, for example, a coarse particle size of 2.0 μm or more. We found that TiN also increases. Therefore, the present inventors have reached the present invention that can improve the HAZ toughness during high heat input welding by reducing the amount of coarse TiN produced when the Ti addition amount is increased.

すなわち、上記課題を解決するためになされた発明は、C:0.005質量%以上0.07質量%以下、Si:0質量%以上0.04質量%以下、Mn:1.4質量%以上2.0質量%以下、P:0質量%超0.010質量%以下、S:0質量%超0.007質量%以下、Al:0.010質量%以上0.040質量%以下、Ni:0.1質量%以上1.50質量%以下、Cu:0.1質量%以上0.8質量%以下、Nb:0.004質量%以上0.025質量%以下、Ti:0.010質量%以上0.025質量%以下、N:0.0040質量%以上0.0080質量%以下、Ca:0.0005質量%以上0.0030質量%以下、並びに残部:Fe及び不可避的不純物である組成を有し、酸不溶性のTiの含有量[質量%]を[insol.Ti]、上記組成全体を基準とするTiの含有量[質量%]を[Ti]とした場合に下記式(1)を満たす鋼板である。
[insol.Ti]/[Ti]≦0.80 ・・・(1)
That is, the invention made in order to solve the above problems is as follows: C: 0.005 mass% to 0.07 mass%, Si: 0 mass% to 0.04 mass%, Mn: 1.4 mass% or more 2.0% by mass or less, P: more than 0% by mass and 0.010% by mass or less, S: more than 0% by mass and 0.007% by mass or less, Al: 0.010% by mass or more and 0.040% by mass or less, Ni: 0.1% by mass to 1.50% by mass, Cu: 0.1% by mass to 0.8% by mass, Nb: 0.004% by mass to 0.025% by mass, Ti: 0.010% by mass 0.025% by mass or less, N: 0.0040% by mass or more and 0.0080% by mass or less, Ca: 0.0005% by mass or more and 0.0030% by mass or less, and the balance: Fe and inevitable impurities. Having an acid-insoluble Ti content [mass%] [ins] l. Ti], a steel sheet that satisfies the following formula (1) when the Ti content [% by mass] based on the whole composition is [Ti].
[Insol. Ti] / [Ti] ≦ 0.80 (1)

当該鋼板は、全Tiの含有量と、主にTiNとして存在する酸不溶性のTiの含有量との比を、上記式(1)を満たす値に調整することで、微細なTiNが粗大なTiNに対し相対的に増加するので、粗大TiNに起因する脆性破壊が抑制され、HAZ靭性に優れる。また、当該鋼板は、上記組成を有することで母材強度にも優れる。   In the steel sheet, the ratio of the total Ti content and the content of acid-insoluble Ti mainly present as TiN is adjusted to a value satisfying the above formula (1), whereby fine TiN is coarse TiN. Therefore, the brittle fracture due to coarse TiN is suppressed, and the HAZ toughness is excellent. Moreover, the said steel plate is excellent also in base material strength by having the said composition.

Nの含有量[質量%]を[N]とした場合に[Ti]/[N]が2.0以上5.0以下であり、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が2.0×10個/mm以上、かつ円相当径0.040μm以上1μm以下のTiN含有析出物における円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が15%以下であるとよい。このように[Ti]/[N]、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度及び円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合を上記範囲に調整することで、大入熱溶接時のTiNのオストワルド成長を抑制し、入熱後溶け残るTiNにより、旧オーステナイト粒径の粗大化が抑制される。その結果、粗大粒界フェライト及び粗大粒界ベイナイトの生成が抑制されるので、HAZ靭性の向上を促進することができる。 When the content [% by mass] of N is [N], [Ti] / [N] is 2.0 or more and 5.0 or less, and the equivalent circle diameter of the TiN-containing precipitate is 0.040 μm or more and 1 μm or less. The number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 to 1 μm in a TiN-containing precipitate having a cross-sectional density of 2.0 × 10 5 pieces / mm 2 or more and an equivalent circle diameter of 0.040 μm to 1 μm is 15 % Or less. Thus, the [Ti] / [N], the cross-sectional density of the TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm, and the number ratio of the TiN-containing precipitates having an equivalent circle diameter of 0.1 μm to 1 μm are within the above range. By adjusting, the Ostwald growth of TiN at the time of high heat input welding is suppressed, and the coarsening of the prior austenite grain size is suppressed by TiN that remains undissolved after heat input. As a result, since the formation of coarse grain boundary ferrite and coarse grain boundary bainite is suppressed, the improvement of HAZ toughness can be promoted.

C、Si、Mn、Cu、Ni、Cr、Mo、V及びBの含有量[質量%]をそれぞれ[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]及び[B]とした場合に下記式(2)を満たすとよい。
([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×(1+200×[B])×1.115≧0.72 ・・・(2)
The contents [% by mass] of C, Si, Mn, Cu, Ni, Cr, Mo, V and B are [C], [Si], [Mn], [Cu], [Ni], [Cr], In the case of [Mo], [V], and [B], the following formula (2) may be satisfied.
([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [Ni]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × (1 + 200 × [B]) × 1.115 ≧ 0.72 (2)

上記式(2)を満たすことで、HAZ靭性を維持しつつ、母材強度をさらに向上することができる。   By satisfy | filling the said Formula (2), base material intensity | strength can further be improved, maintaining HAZ toughness.

C、Mn、Cu、Ni、Cr、Mo及びVの含有量[質量%]をそれぞれ[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]及び[V]とした場合に下記式(3)を満たすとよい。
110×[C]+7×[Mn]+4×[Cu]+5×[Ni]+2.8×[Cr]+5×[Mo]+7.2×[V]≦21.5 ・・・(3)
The contents [% by mass] of C, Mn, Cu, Ni, Cr, Mo and V are respectively [C], [Mn], [Cu], [Ni], [Cr], [Mo] and [V]. In this case, the following formula (3) should be satisfied.
110 × [C] + 7 × [Mn] + 4 × [Cu] + 5 × [Ni] + 2.8 × [Cr] + 5 × [Mo] + 7.2 × [V] ≦ 21.5 (3)

上記式(3)を満たすことで、固相線の温度が上昇し、鋳造時に早期に凝固が完了するため、粗大TiNの低減が容易に達成できる。その結果、HAZ靭性をさらに向上することができる。   By satisfy | filling said Formula (3), since the temperature of a solidus line rises and solidification completes early at the time of casting, reduction of coarse TiN can be achieved easily. As a result, the HAZ toughness can be further improved.

Cr:0質量%超1.00質量%以下、Mo:0質量%超0.50質量%以下、V:0質量%超0.50質量%以下、B:0質量%超0.0009質量%以下、希土類金属:0質量%超0.0050質量%以下、及びZr:0質量%超0.0050質量%以下のうち少なくとも1種をさらに含有するとよい。このような元素をさらに含有することで、母材強度をさらに向上することができる。   Cr: more than 0% by mass and 1.00% by mass or less, Mo: more than 0% by mass and 0.50% by mass or less, V: more than 0% by mass and 0.50% by mass or less, B: more than 0% by mass and 0.0009% by mass Hereinafter, at least one of rare earth metals: more than 0% by mass and 0.0050% by mass or less and Zr: more than 0% by mass and 0.0050% by mass or less may be further contained. By further containing such an element, the strength of the base material can be further improved.

上記課題を解決するためになされた別の発明は、C:0.005質量%以上0.07質量%以下、Si:0質量%以上0.04質量%以下、Mn:1.4質量%以上2.0質量%以下、P:0質量%超0.010質量%以下、S:0質量%超0.007質量%以下、Al:0.010質量%以上0.040質量%以下、Ni:0.1質量%以上1.50質量%以下、Cu:0.1質量%以上0.8質量%以下、Nb:0.004質量%以上0.025質量%以下、Ti:0.010質量%以上0.025質量%以下、N:0.0040質量%以上0.0080質量%以下、Ca:0.0005質量%以上0.0030質量%以下、並びに残部:Fe及び不可避的不純物である組成を有する溶鋼を鋳造する工程と、上記鋳造工程で得られた鋳塊を750℃以上820℃以下の最終圧延温度で熱間圧延する工程と、上記熱間圧延工程後の鋼材を5℃/秒以上の冷却速度で冷却する冷却工程とを備え、上記鋳造工程で1,500℃から1,450℃までの冷却を300秒未満で行うことを特徴とする鋼板の製造方法である。   Another invention made to solve the above problems is C: 0.005 mass% or more and 0.07 mass% or less, Si: 0 mass% or more and 0.04 mass% or less, Mn: 1.4 mass% or more 2.0% by mass or less, P: more than 0% by mass and 0.010% by mass or less, S: more than 0% by mass and 0.007% by mass or less, Al: 0.010% by mass or more and 0.040% by mass or less, Ni: 0.1% by mass to 1.50% by mass, Cu: 0.1% by mass to 0.8% by mass, Nb: 0.004% by mass to 0.025% by mass, Ti: 0.010% by mass 0.025% by mass or less, N: 0.0040% by mass or more and 0.0080% by mass or less, Ca: 0.0005% by mass or more and 0.0030% by mass or less, and the balance: Fe and inevitable impurities. A process of casting molten steel, and an ingot obtained by the casting process A step of hot rolling at a final rolling temperature of 750 ° C. or higher and 820 ° C. or lower; and a cooling step of cooling the steel material after the hot rolling step at a cooling rate of 5 ° C./second or more, A method for producing a steel sheet, wherein cooling from 500 ° C. to 1,450 ° C. is performed in less than 300 seconds.

当該鋼板の製造方法は、上記組成を有する溶鋼を1,500℃から1,450℃まで300秒未満で冷却する鋳造工程により、微細なTiNが粗大なTiNに対し相対的に増加するので、粗大TiNに起因する脆性破壊が抑制され、HAZ靭性に優れる鋼板を製造することができる。また、当該鋼板の製造方法では、上述の条件で熱間圧延及び冷却を行うことで、母材強度にも優れる鋼板を得ることができる。   In the manufacturing method of the steel sheet, fine TiN is relatively increased with respect to coarse TiN by a casting process in which molten steel having the above composition is cooled from 1,500 ° C. to 1,450 ° C. in less than 300 seconds. A brittle fracture due to TiN is suppressed, and a steel sheet having excellent HAZ toughness can be produced. Moreover, in the manufacturing method of the said steel plate, the steel plate which is excellent also in base material strength can be obtained by performing hot rolling and cooling on the above-mentioned conditions.

上記溶鋼が、Cr:0質量%超1.00質量%以下、Mo:0質量%超0.50質量%以下、V:0質量%超0.50質量%以下、B:0質量%超0.0009質量%以下、希土類金属:0質量%超0.0050質量%以下、及びZr:0質量%超0.0050質量%以下のうち少なくとも1種をさらに含有するとよい。溶鋼がこのような元素をさらに含有することで、得られる鋼板の母材強度をさらに向上することができる。   The molten steel is Cr: more than 0% by mass to 1.00% by mass or less, Mo: more than 0% by mass to 0.50% by mass or less, V: more than 0% by mass to 0.50% by mass or less, B: more than 0% by mass to 0% It is preferable to further contain at least one selected from the following: .0009 mass% or less, rare earth metal: more than 0 mass% to 0.0050 mass% or less, and Zr: more than 0 mass% to 0.0050 mass% or less. When the molten steel further contains such an element, the strength of the base material of the obtained steel plate can be further improved.

上記課題を解決するためになされたさらに別の発明は、C:0.005質量%以上0.07質量%以下、Si:0質量%以上0.04質量%以下、Mn:1.4質量%以上2.0質量%以下、P:0質量%超0.010質量%以下、S:0質量%超0.007質量%以下、Al:0.010質量%以上0.040質量%以下、Ni:0.1質量%以上1.50質量%以下、Cu:0.1質量%以上0.8質量%以下、Nb:0.004質量%以上0.025質量%以下、Ti:0.010質量%以上0.025質量%以下、N:0.0040質量%以上0.0080質量%以下、Ca:0.0005質量%以上0.0030質量%以下、並びに残部:Fe及び不可避的不純物である組成を有し、上記組成全体を基準とするNの含有量[質量%]を[N]、Tiの含有量[質量%]を[Ti]とした場合に[Ti]/[N]が2.0以上5.0以下であり、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が2.0×10個/mm以上、かつ円相当径0.040μm以上1μm以下のTiN含有析出物における円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が15%以下である鋼板である。 Still another invention made to solve the above problems is C: 0.005 mass% or more and 0.07 mass% or less, Si: 0 mass% or more and 0.04 mass% or less, Mn: 1.4 mass% 2.0% by mass or less, P: more than 0% by mass and 0.010% by mass or less, S: more than 0% by mass and 0.007% by mass or less, Al: 0.010% by mass to 0.040% by mass, Ni : 0.1 mass% or more and 1.50 mass% or less, Cu: 0.1 mass% or more and 0.8 mass% or less, Nb: 0.004 mass% or more and 0.025 mass% or less, Ti: 0.010 mass %: 0.025 mass% or less, N: 0.0040 mass% or more and 0.0080 mass% or less, Ca: 0.0005 mass% or more and 0.0030 mass% or less, and the balance: Fe and inevitable impurities N content based on the whole composition [mass% [N] and Ti content [% by mass] is [Ti], [Ti] / [N] is 2.0 or more and 5.0 or less, and the equivalent circle diameter is 0.040 μm or more and 1 μm or less. TiN-containing precipitates having a cross-sectional density of TiN-containing precipitates of 2.0 × 10 5 pieces / mm 2 or more and TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm. Is a steel sheet having a number ratio of 15% or less.

当該鋼板は、[Ti]/[N]、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度及び円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合を上記範囲に調整することで、大入熱溶接時のTiNのオストワルド成長を抑制し、入熱後溶け残るTiNにより、旧オーステナイト粒径の粗大化が抑制される。その結果、当該鋼板は、溶接時の粗大粒界フェライト及び粗大粒界ベイナイトの生成が抑制され、HAZ靭性に優れる。また、当該鋼板は、上記組成を有することで母材強度にも優れる。   The steel sheet has [Ti] / [N], the cross-sectional density of TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm, and the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm to 1 μm within the above range. By adjusting to, the Ostwald growth of TiN at the time of large heat input welding is suppressed, and the coarsening of the prior austenite grain size is suppressed by TiN that remains undissolved after heat input. As a result, the steel sheet is suppressed in the formation of coarse grain boundary ferrite and coarse grain boundary bainite during welding, and is excellent in HAZ toughness. Moreover, the said steel plate is excellent also in base material strength by having the said composition.

Cr:0質量%超1.00質量%以下、Mo:0質量%超0.50質量%以下、V:0質量%超0.50質量%以下、B:0質量%超0.0009質量%以下、希土類金属:0質量%超0.0050質量%以下、及びZr:0質量%超0.0050質量%以下のうち少なくとも1種をさらに含有するとよい。このような元素をさらに含有することで、母材強度をさらに向上することができる。   Cr: more than 0% by mass and 1.00% by mass or less, Mo: more than 0% by mass and 0.50% by mass or less, V: more than 0% by mass and 0.50% by mass or less, B: more than 0% by mass and 0.0009% by mass Hereinafter, at least one of rare earth metals: more than 0% by mass and 0.0050% by mass or less and Zr: more than 0% by mass and 0.0050% by mass or less may be further contained. By further containing such an element, the strength of the base material can be further improved.

上記課題を解決するためになされたさらに別の発明は、C:0.005質量%以上0.07質量%以下、Si:0質量%以上0.04質量%以下、Mn:1.4質量%以上2.0質量%以下、P:0質量%超0.010質量%以下、S:0質量%超0.007質量%以下、Al:0.010質量%以上0.040質量%以下、Ni:0.1質量%以上1.50質量%以下、Cu:0.1質量%以上0.8質量%以下、Nb:0.004質量%以上0.025質量%以下、Ti:0.010質量%以上0.025質量%以下、N:0.0040質量%以上0.0080質量%以下、Ca:0.0005質量%以上0.0030質量%以下、並びに残部:Fe及び不可避的不純物である組成を有する溶鋼を鋳造する工程と、上記鋳造工程で得られた鋳塊を熱間圧延する工程と、上記熱間圧延工程後の鋼材を5℃/秒以上の冷却速度で冷却する冷却工程とを備え、上記鋳造工程で、1,500℃から1,450℃までの冷却を300秒未満、1,300℃から1,200℃までの冷却を450秒以上680秒以下で行い、上記熱間圧延工程で、圧延前の鋳塊を1,050℃以上1,200℃以下で20分以上5時間以下保持し、900℃以上での累積圧下量を30%以上、820℃以上900℃未満での累積圧下量を15%以上とすることを特徴とする鋼板の製造方法である。   Still another invention made to solve the above problems is C: 0.005 mass% or more and 0.07 mass% or less, Si: 0 mass% or more and 0.04 mass% or less, Mn: 1.4 mass% 2.0% by mass or less, P: more than 0% by mass and 0.010% by mass or less, S: more than 0% by mass and 0.007% by mass or less, Al: 0.010% by mass to 0.040% by mass, Ni : 0.1 mass% or more and 1.50 mass% or less, Cu: 0.1 mass% or more and 0.8 mass% or less, Nb: 0.004 mass% or more and 0.025 mass% or less, Ti: 0.010 mass %: 0.025 mass% or less, N: 0.0040 mass% or more and 0.0080 mass% or less, Ca: 0.0005 mass% or more and 0.0030 mass% or less, and the balance: Fe and inevitable impurities Obtained by the process of casting the molten steel having A step of hot rolling the ingot, and a cooling step of cooling the steel material after the hot rolling step at a cooling rate of 5 ° C./second or more. In the casting step, 1,500 ° C. to 1,450 ° C. Is cooled for less than 300 seconds, and is cooled from 1,300 ° C. to 1,200 ° C. for 450 seconds or more and 680 seconds or less. In the hot rolling step, the ingot before rolling is 1,050 ° C. or more and 1, The steel sheet is characterized in that it is held at 200 ° C. or lower for 20 minutes or longer and 5 hours or shorter, the cumulative rolling amount at 900 ° C. or higher is 30% or higher, and the cumulative rolling amount at 820 ° C. or higher and lower than 900 ° C. is 15% or higher. It is a manufacturing method.

当該鋼板の製造方法は、上記組成を有する溶鋼を上記条件で冷却する鋳造工程と、上記条件で鋳塊の温度を保持した後に圧延する熱間圧延工程とにより、大入熱溶接後に溶け残る一定の大きさのTiNの数を増加させる。これにより、旧オーステナイト粒界の粗大化が抑制され、ひいては粗大粒界フェライト及び粗大粒界ベイナイトの生成が抑制されるので、当該鋼板の製造方法によれば、HAZ靭性に優れる鋼板を製造することができる。また、当該鋼板の製造方法では、上述の条件で熱間圧延及び冷却を行うことで、母材強度にも優れる鋼板を得ることができる。   The method for producing the steel sheet is a constant that remains melted after high heat input welding by a casting process in which the molten steel having the above composition is cooled under the above conditions and a hot rolling process in which the steel sheet is rolled after maintaining the temperature of the ingot under the above conditions. Increase the number of TiN of the size. Thereby, the coarsening of the prior austenite grain boundaries is suppressed, and as a result, the formation of coarse grain boundary ferrite and coarse grain boundary bainite is suppressed. Can do. Moreover, in the manufacturing method of the said steel plate, the steel plate which is excellent also in base material strength can be obtained by performing hot rolling and cooling on the above-mentioned conditions.

上記溶鋼が、Cr:0質量%超1.00質量%以下、Mo:0質量%超0.50質量%以下、V:0質量%超0.50質量%以下、B:0質量%超0.0009質量%以下、希土類金属:0質量%超0.0050質量%以下、及びZr:0質量%超0.0050質量%以下のうち少なくとも1種をさらに含有するとよい。溶鋼がこのような元素をさらに含有することで、得られる鋼板の母材強度をさらに向上することができる。   The molten steel is Cr: more than 0% by mass to 1.00% by mass or less, Mo: more than 0% by mass to 0.50% by mass or less, V: more than 0% by mass to 0.50% by mass or less, B: more than 0% by mass to 0% It is preferable to further contain at least one selected from the following: .0009 mass% or less, rare earth metal: more than 0 mass% to 0.0050 mass% or less, and Zr: more than 0 mass% to 0.0050 mass% or less. When the molten steel further contains such an element, the strength of the base material of the obtained steel plate can be further improved.

本発明の鋼板は、母材強度及びHAZ靭性に優れるため、大型の溶接構造物に好適に使用できる。また、本発明の鋼板の製造方法は、母材強度及びHAZ靭性に優れる鋼板を得ることができる。   Since the steel plate of the present invention is excellent in base material strength and HAZ toughness, it can be suitably used for large-sized welded structures. Moreover, the manufacturing method of the steel plate of this invention can obtain the steel plate which is excellent in base material strength and HAZ toughness.

以下、本発明に係る鋼板及びその製造方法の実施形態について説明する。   Hereinafter, an embodiment of a steel plate and a manufacturing method thereof according to the present invention will be described.

〔第一実施形態〕
まず、本発明の第一実施形態について説明する。
[First embodiment]
First, a first embodiment of the present invention will be described.

<鋼板>
当該鋼板は、C(炭素):0.005質量%以上0.07質量%以下、Si(ケイ素):0質量%以上0.04質量%以下、Mn(マンガン):1.4質量%以上2.0質量%以下、P(リン):0質量%超0.010質量%以下、S(硫黄):0質量%超0.007質量%以下、Al(アルミニウム):0.010質量%以上0.040質量%以下、Ni(ニッケル):0.1質量%以上1.50質量%以下、Cu(銅):0.1質量%以上0.8質量%以下、Nb(ニオブ):0.004質量%以上0.025質量%以下、Ti(チタン):0.010質量%以上0.025質量%以下、N(窒素):0.0040質量%以上0.0080質量%以下、Ca(カルシウム):0.0005質量%以上0.0030質量%以下、並びに残部:Fe(鉄)及び不可避的不純物である組成を有する。
<Steel plate>
The steel sheet is C (carbon): 0.005 mass% to 0.07 mass%, Si (silicon): 0 mass% to 0.04 mass%, Mn (manganese): 1.4 mass% to 2 0.0 mass% or less, P (phosphorus): more than 0 mass% to 0.010 mass% or less, S (sulfur): more than 0 mass% to 0.007 mass% or less, Al (aluminum): 0.010 mass% or more 0 0.040 mass% or less, Ni (nickel): 0.1 mass% or more and 1.50 mass% or less, Cu (copper): 0.1 mass% or more and 0.8 mass% or less, Nb (niobium): 0.004 % By mass to 0.025% by mass, Ti (titanium): 0.010% by mass to 0.025% by mass, N (nitrogen): 0.0040% by mass to 0.0080% by mass, Ca (calcium) : 0.0005 mass% or more and 0.0030 mass% or less, and the balance Having a composition which is Fe (iron) and unavoidable impurities.

当該鋼板の平均厚さの下限としては、特に限定されないが、例えば50mmであり、60mmがより好ましい。一方、当該鋼板の平均厚さの上限としては、特に限定されないが、例えば100mmである。当該鋼板の平均厚さが上記下限より小さい場合、船舶等の用途に不向きとなるおそれがある。逆に、当該鋼板の平均厚さが上記上限を超える場合、加工等が困難となるおそれがある。   Although it does not specifically limit as a minimum of the average thickness of the said steel plate, For example, it is 50 mm, and 60 mm is more preferable. On the other hand, although it does not specifically limit as an upper limit of the average thickness of the said steel plate, For example, it is 100 mm. If the average thickness of the steel sheet is smaller than the lower limit, it may be unsuitable for applications such as ships. Conversely, when the average thickness of the steel sheet exceeds the upper limit, processing or the like may be difficult.

[C(炭素)]
以下、当該鋼板の各成分について説明する。Cは、当該鋼板の強度確保のために必要な元素である。Cの含有量の下限としては、0.005質量%であり、0.01質量%が好ましく、0.02質量%がより好ましい。一方、Cの含有量の上限としては、0.07質量%であり、0.06質量%が好ましく、0.05質量%がより好ましい。Cの含有量が上記下限より小さい場合、当該鋼板の強度が不十分となるおそれがある。逆に、Cの含有量が上記上限を超える場合、当該鋼板の固相線温度が低下することで粗大TiNの生成が助長され、HAZ靭性が低下するおそれがある。
[C (carbon)]
Hereinafter, each component of the steel sheet will be described. C is an element necessary for ensuring the strength of the steel sheet. The lower limit of the C content is 0.005% by mass, preferably 0.01% by mass, and more preferably 0.02% by mass. On the other hand, the upper limit of the C content is 0.07% by mass, preferably 0.06% by mass, and more preferably 0.05% by mass. When the C content is smaller than the lower limit, the strength of the steel sheet may be insufficient. On the other hand, when the C content exceeds the upper limit, the solidus temperature of the steel sheet is lowered, which promotes the formation of coarse TiN and may reduce the HAZ toughness.

[Si(ケイ素)]
Siは、当該鋼板の脱酸に有用な元素である。Siの含有量の下限としては、0質量%である。一方、Siの含有量の上限としては、0.04質量%であり、0.03質量%が好ましく、0.02質量%がより好ましい。Siの含有量が上記上限を超える場合、Tiの活量が増加することで粗大TiNの生成が助長され、HAZ靭性が低下するおそれがある。
[Si (silicon)]
Si is an element useful for deoxidation of the steel sheet. The lower limit of the Si content is 0% by mass. On the other hand, the upper limit of the Si content is 0.04% by mass, preferably 0.03% by mass, and more preferably 0.02% by mass. When the Si content exceeds the above upper limit, the Ti activity increases, so that the formation of coarse TiN is promoted, and the HAZ toughness may be reduced.

[Mn(マンガン)]
Mnは、当該鋼板の強度確保のために必要な元素である。Mnの含有量の下限としては、1.4質量%であり、1.50質量%が好ましく、1.60質量%がより好ましい。一方、Mnの含有量の上限としては、2.0質量%であり、1.95質量%が好ましく、1.92質量%がより好ましい。Mnの含有量が上記下限より小さい場合、当該鋼板の強度が不十分となるおそれがある。逆に、Mnの含有量が上記上限を超える場合、大入熱溶接のHAZに島状マルテンサイトが生じると共に、硬度が過度に上昇して靭性が低下するおそれがある。
[Mn (manganese)]
Mn is an element necessary for ensuring the strength of the steel sheet. The lower limit of the Mn content is 1.4% by mass, preferably 1.50% by mass, and more preferably 1.60% by mass. On the other hand, the upper limit of the Mn content is 2.0% by mass, preferably 1.95% by mass, and more preferably 1.92% by mass. If the Mn content is smaller than the lower limit, the strength of the steel sheet may be insufficient. Conversely, when the Mn content exceeds the above upper limit, island-shaped martensite is generated in the HAZ of high heat input welding, and the hardness may be excessively increased and the toughness may be decreased.

[P(リン)]
Pは、当該鋼板に不可避的に含まれ、HAZ靭性を低下させる元素である。Pの含有量は、0質量%超である。Pの含有量は小さいほど好ましいが、工業的に0質量%とすることは困難である。一方、Pの含有量の上限としては、0.010質量%であり、0.009質量%が好ましく、0.008質量%がさらに好ましい。Pの含有量が上記上限を超える場合、当該鋼板のHAZ靭性が低下するおそれがある。
[P (phosphorus)]
P is an element that is inevitably contained in the steel sheet and reduces the HAZ toughness. The content of P is more than 0% by mass. The smaller the content of P, the better, but it is difficult to make it 0% by mass industrially. On the other hand, the upper limit of the P content is 0.010% by mass, preferably 0.009% by mass, and more preferably 0.008% by mass. When content of P exceeds the said upper limit, there exists a possibility that the HAZ toughness of the said steel plate may fall.

[S(硫黄)]
Sは、当該鋼板に不可避的に含まれ、HAZ靭性を低下させる元素である。Sの含有量は、0質量%超である。Sの含有量は小さいほど好ましいが、工業的に0質量%とすることは困難である。一方、Sの含有量の上限としては、0.007質量%であり、0.005質量%が好ましく、0.003質量%がより好ましい。Sの含有量が上記上限を超える場合、当該鋼板のHAZ靭性が低下するおそれがある。
[S (sulfur)]
S is an element that is inevitably contained in the steel sheet and reduces the HAZ toughness. The S content is more than 0% by mass. The smaller the S content, the better. However, it is difficult to make it 0% by mass industrially. On the other hand, the upper limit of the S content is 0.007% by mass, preferably 0.005% by mass, and more preferably 0.003% by mass. When content of S exceeds the said upper limit, there exists a possibility that the HAZ toughness of the said steel plate may fall.

[Al(アルミニウム)]
Alは、当該鋼板の脱酸に必要な元素である。Alの含有量の下限としては、0.010質量%であり、0.015質量%が好ましく、0.020質量%がより好ましい。一方、Alの含有量の上限としては、0.040質量%であり、0.038質量%が好ましく、0.036質量%がさらに好ましい。Alの含有量が上記下限より小さい場合、当該鋼板中の酸素濃度が上昇し、酸化物の増加によってHAZ靭性が低下するおそれがある。逆に、Alの含有量が上記上限を超える場合、粗大酸化物が増加し、HAZ靭性が低下するおそれがある。
[Al (aluminum)]
Al is an element necessary for deoxidation of the steel sheet. As a minimum of content of Al, it is 0.010 mass%, 0.015 mass% is preferable, and 0.020 mass% is more preferable. On the other hand, the upper limit of the Al content is 0.040% by mass, preferably 0.038% by mass, and more preferably 0.036% by mass. When the Al content is less than the lower limit, the oxygen concentration in the steel sheet increases, and the HAZ toughness may decrease due to an increase in oxide. On the other hand, when the Al content exceeds the above upper limit, the coarse oxide increases and the HAZ toughness may decrease.

[Ni(ニッケル)]
Niは、当該鋼板の強度向上に寄与する元素である。Niの含有量の下限としては、0.1質量%であり、0.15質量%が好ましく、0.20質量%がより好ましい。一方、Niの含有量の上限としては、1.50質量%であり、1.00質量%が好ましく、0.80質量%がより好ましい。Niの含有量が上記下限より小さい場合、当該鋼板の強度が低下するおそれがある。逆に、Niの含有量が上記上限を超える場合、硬度が過度に上昇して靭性が低下するおそれがある。
[Ni (nickel)]
Ni is an element that contributes to improving the strength of the steel sheet. The lower limit of the Ni content is 0.1% by mass, preferably 0.15% by mass, and more preferably 0.20% by mass. On the other hand, the upper limit of the Ni content is 1.50% by mass, preferably 1.00% by mass, and more preferably 0.80% by mass. When the Ni content is smaller than the lower limit, the strength of the steel sheet may be reduced. Conversely, if the Ni content exceeds the above upper limit, the hardness may increase excessively and the toughness may decrease.

[Cu(銅)]
Cuは、当該鋼板の強度向上に寄与する元素である。Cuの含有量の下限としては、0.1質量%であり、0.12質量%が好ましく、0.15質量%がより好ましい。一方、Cuの含有量の上限としては、0.8質量%であり、0.60質量%が好ましく、0.50質量%がより好ましい。Cuの含有量が上記下限より小さい場合、当該鋼板の強度が低下するおそれがある。逆に、Cuの含有量が上記上限を超える場合、硬度が過度に上昇して靭性が低下するおそれがある。
[Cu (copper)]
Cu is an element that contributes to improving the strength of the steel sheet. The lower limit of the Cu content is 0.1% by mass, preferably 0.12% by mass, and more preferably 0.15% by mass. On the other hand, the upper limit of the Cu content is 0.8 mass%, preferably 0.60 mass%, and more preferably 0.50 mass%. If the Cu content is less than the lower limit, the strength of the steel sheet may be reduced. Conversely, if the Cu content exceeds the upper limit, the hardness may increase excessively and the toughness may decrease.

[Nb(ニオブ)]
Nbは、当該鋼板の強度確保に必要な元素である。Nbの含有量の下限としては、0.004質量%であり、0.006質量%が好ましく、0.007質量%がより好ましい。一方、Nbの含有量の上限としては、0.025質量%であり、0.022質量%が好ましく、0.020質量%がより好ましい。Nbの含有量が上記下限より小さい場合、当該鋼板の強度が不十分となるおそれがある。逆に、Nbの含有量が上記上限を超える場合、大入熱溶接のHAZに島状マルテンサイトが生じると共に、硬度が過度に上昇して靭性が低下するおそれがある。
[Nb (Niobium)]
Nb is an element necessary for ensuring the strength of the steel sheet. The lower limit of the Nb content is 0.004% by mass, preferably 0.006% by mass, and more preferably 0.007% by mass. On the other hand, the upper limit of the Nb content is 0.025% by mass, preferably 0.022% by mass, and more preferably 0.020% by mass. When content of Nb is smaller than the said minimum, there exists a possibility that the intensity | strength of the said steel plate may become inadequate. On the other hand, when the Nb content exceeds the above upper limit, island-shaped martensite is generated in the HAZ of the high heat input welding, and the hardness is excessively increased and the toughness may be decreased.

[Ti(チタン)]
Tiは、Nと共にTiNとして析出し、大入熱溶接のHAZ組織を微細化し、靭性を向上させる元素である。Tiの含有量の下限としては、0.010質量%であり、0.012質量%が好ましく、0.013質量%がより好ましい。一方、Tiの含有量の上限としては、0.025質量%であり、0.022質量%が好ましく、0.020質量%がより好ましい。Tiの含有量が上記下限より小さい場合、微細なTiNの絶対量が不足し、HAZ靭性の向上効果が不十分となるおそれがある。逆に、Tiの含有量が上記上限を超える場合、HAZにおいて固溶Tiが増加し、粗大なベイナイト組織が形成されるようになってHAZ靭性が確保できなくなるおそれがある。
[Ti (titanium)]
Ti is an element that precipitates as TiN together with N, refines the HAZ structure of high heat input welding, and improves toughness. As a minimum of content of Ti, it is 0.010 mass%, 0.012 mass% is preferable, and 0.013 mass% is more preferable. On the other hand, the upper limit of the Ti content is 0.025% by mass, preferably 0.022% by mass, and more preferably 0.020% by mass. If the Ti content is smaller than the lower limit, the absolute amount of fine TiN is insufficient, and the HAZ toughness improving effect may be insufficient. On the other hand, when the Ti content exceeds the upper limit, solid solution Ti increases in HAZ, and a coarse bainite structure may be formed, making it impossible to ensure HAZ toughness.

[N(窒素)]
Nは、Tiと共にTiNとして析出し、大入熱溶接のHAZ組織を微細化し、靭性を向上させる元素である。Nの含有量の下限としては、0.0040質量%であり、0.0045質量%が好ましく、0.0050質量%がより好ましい。一方、Nの含有量の上限としては、0.0080質量%であり、0.0075質量%が好ましく、0.0070質量%がより好ましい。Nの含有量が上記下限より小さい場合、微細なTiNによるHAZ靭性の向上効果が不十分となるおそれがある。逆に、Nの含有量が上記上限を超える場合、大入熱溶接のHAZにおける固溶Nが増加し、靭性が低下するおそれがある。
[N (nitrogen)]
N is an element that precipitates as TiN together with Ti, refines the HAZ structure of high heat input welding, and improves toughness. The lower limit of the N content is 0.0040% by mass, preferably 0.0045% by mass, and more preferably 0.0050% by mass. On the other hand, the upper limit of the N content is 0.0080% by mass, preferably 0.0075% by mass, and more preferably 0.0070% by mass. When the N content is smaller than the lower limit, the effect of improving the HAZ toughness by fine TiN may be insufficient. On the other hand, when the N content exceeds the above upper limit, the solid solution N in the high heat input welding HAZ may increase, and the toughness may decrease.

[Ca(カルシウム)]
Caは、当該鋼板の脱酸に必要な元素である。Caの含有量の下限としては、0.0005質量%であり、0.0008質量%が好ましく、0.0010質量%がより好ましい。一方、Caの含有量の上限としては、0.0030質量%であり、0.0025質量%が好ましく、0.0022質量%がより好ましい。Caの含有量が上記下限より小さい場合、酸化物粒子を起点とする粗大TiNの生成が助長され、HAZ靭性が低下するおそれがある。逆に、Caの含有量が上記上限を超える場合、粗大酸化物の増加により、HAZ靭性が低下するおそれがある。
[Ca (calcium)]
Ca is an element necessary for deoxidation of the steel sheet. The lower limit of the Ca content is 0.0005% by mass, preferably 0.0008% by mass, and more preferably 0.0010% by mass. On the other hand, the upper limit of the Ca content is 0.0030% by mass, preferably 0.0025% by mass, and more preferably 0.0022% by mass. When the content of Ca is smaller than the lower limit, generation of coarse TiN starting from oxide particles is promoted, and HAZ toughness may be reduced. On the other hand, when the Ca content exceeds the upper limit, the HAZ toughness may decrease due to an increase in coarse oxide.

当該鋼板は、上述の組成に加え、Cr(クロム):0質量%超1.00質量%以下、Mo(モリブデン):0質量%超0.50質量%以下、V(バナジウム):0質量%超0.50質量%以下、B(ホウ素):0質量%超0.0009質量%以下、希土類金属:0質量%超0.0050質量%以下、及びZr(ジルコニウム):0質量%超0.0050質量%以下のうち少なくとも1種をさらに含有するとよい。   In addition to the above-mentioned composition, the steel sheet has Cr (chromium): more than 0% by mass and 1.00% by mass or less, Mo (molybdenum): more than 0% by mass and 0.50% by mass or less, and V (vanadium): 0% by mass. More than 0.50% by mass, B (boron): more than 0% by mass, 0.0009% by mass or less, rare earth metal: more than 0% by mass and 0.0050% by mass or less, and Zr (zirconium): more than 0% by mass. It is preferable to further contain at least one of 0050% by mass or less.

[Cr(クロム)]
Crは、当該鋼板の強度向上に寄与する元素である。強度を向上するためには、Crを0.01質量%以上含有させることが好ましく、0.05質量%以上含有させることがより好ましい。一方、Crの添加により、大入熱溶接のHAZ硬度が過度に上昇して靭性が低下する可能性がある。そのため、Crの含有量の上限としては、1.00質量%が好ましく、0.50質量%がより好ましく、0.10質量%がさらに好ましい。
[Cr (chrome)]
Cr is an element that contributes to improving the strength of the steel sheet. In order to improve the strength, Cr is preferably contained in an amount of 0.01% by mass or more, and more preferably 0.05% by mass or more. On the other hand, the addition of Cr may excessively increase the HAZ hardness of high heat input welding and reduce toughness. Therefore, the upper limit of the Cr content is preferably 1.00% by mass, more preferably 0.50% by mass, and still more preferably 0.10% by mass.

[Mo(モリブデン)]
Moは、当該鋼板の強度向上に寄与する元素である。強度を向上するためには、Moを0.01質量%以上含有させることが好ましく、0.03質量%以上含有させることがより好ましく、0.05質量%以上含有させることがさらに好ましい。一方、Moの添加により、大入熱溶接のHAZ硬度が過度に上昇して靭性が低下する可能性がある。そのため、Moの含有量の上限としては、0.50質量%が好ましく、0.30質量%がより好ましく、0.20質量%がさらに好ましい。
[Mo (molybdenum)]
Mo is an element that contributes to improving the strength of the steel sheet. In order to improve the strength, it is preferable to contain Mo by 0.01% by mass or more, more preferably by 0.03% by mass or more, and further preferably by 0.05% by mass or more. On the other hand, the addition of Mo may increase the HAZ hardness of high heat input welding excessively and reduce toughness. Therefore, the upper limit of the Mo content is preferably 0.50% by mass, more preferably 0.30% by mass, and still more preferably 0.20% by mass.

[V(バナジウム)]
Vは、当該鋼板の強度向上に寄与する元素である。強度を向上するためには、Vを0.003質量%以上含有させることが好ましく、0.02質量%以上含有させることがより好ましく、0.05質量%以上含有させることがさらに好ましい。一方、Vの含有量の上限としては、0.50質量%が好ましく、0.35質量%がより好ましく、0.15質量%がさらに好ましい。Vの含有量が上記上限を超える場合、大入熱溶接のHAZ硬度が過度に上昇して靭性が低下するおそれがある。
[V (Vanadium)]
V is an element that contributes to improving the strength of the steel sheet. In order to improve the strength, V is preferably contained in an amount of 0.003% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more. On the other hand, the upper limit of the V content is preferably 0.50% by mass, more preferably 0.35% by mass, and still more preferably 0.15% by mass. When the content of V exceeds the above upper limit, the HAZ hardness of high heat input welding may excessively increase and the toughness may decrease.

[B(ホウ素)]
Bは、当該鋼板の強度及びHAZ靭性向上に寄与する元素である。強度を向上するためには、Bを0.0002質量%以上含有させることが好ましく、0.0004質量%以上含有させることがより好ましく、0.0005質量%以上含有させることがさらに好ましい。一方、Bの含有量の上限としては、0.0009質量%が好ましく、0.0008質量%がより好ましく、0.0007質量%がさらに好ましい。Bの含有量が上記上限を超える場合、当該鋼板の靭性が不安定となるおそれがある。
[B (boron)]
B is an element that contributes to improving the strength and HAZ toughness of the steel sheet. In order to improve the strength, B is preferably contained in an amount of 0.0002% by mass or more, more preferably 0.0004% by mass or more, and further preferably 0.0005% by mass or more. On the other hand, the upper limit of the B content is preferably 0.0009% by mass, more preferably 0.0008% by mass, and still more preferably 0.0007% by mass. When the content of B exceeds the above upper limit, the toughness of the steel sheet may become unstable.

[希土類金属]
希土類金属は、当該鋼板の脱酸に寄与する元素であり、0.0003質量%以上含有させることが好ましく、0.0010質量%以上含有させることがより好ましく、0.0015質量%以上含有させることがさらに好ましい。一方、希土類金属の含有量の上限としては、0.0050質量%が好ましく、0.0040質量%がより好ましく、0.0030質量%がさらに好ましい。希土類金属の含有量が上記上限を超える場合、粗大酸化物の増加により、HAZ靭性が低下するおそれがある。ここで「希土類金属」とは、原子番号57のLa(ランタン)から原子番号71のLu(ルテチウム)までの15のランタノイド元素と、Sc(スカンジウム)及びY(イットリウム)とを意味する。
[Rare earth metal]
Rare earth metal is an element that contributes to deoxidation of the steel sheet, preferably 0.0003% by mass or more, more preferably 0.0010% by mass or more, and more preferably 0.0015% by mass or more. Is more preferable. On the other hand, the upper limit of the rare earth metal content is preferably 0.0050 mass%, more preferably 0.0040 mass%, and still more preferably 0.0030 mass%. When the content of the rare earth metal exceeds the above upper limit, the HAZ toughness may decrease due to an increase in the coarse oxide. Here, the “rare earth metal” means 15 lanthanoid elements from La (lanthanum) having an atomic number of 57 to Lu (lutetium) having an atomic number of 71, Sc (scandium), and Y (yttrium).

[Zr(ジルコニウム)]
Zrは当該鋼板の脱酸に寄与する元素であり、0.0003質量%以上含有させることが好ましく、0.0008質量%以上含有させることがより好ましく、0.0010質量%以上含有させることがさらに好ましい。一方、Zrの含有量の上限としては、0.0050質量%が好ましく、0.0040質量%がより好ましく、0.0030質量%がさらに好ましい。Zrの含有量が上記上限を超える場合、粗大酸化物の増加により、HAZ靭性が低下するおそれがある。
[Zr (zirconium)]
Zr is an element that contributes to deoxidation of the steel sheet, preferably 0.0003 mass% or more, more preferably 0.0008 mass% or more, and even more preferably 0.0010 mass% or more. preferable. On the other hand, the upper limit of the Zr content is preferably 0.0050% by mass, more preferably 0.0040% by mass, and still more preferably 0.0030% by mass. When the Zr content exceeds the above upper limit, the HAZ toughness may decrease due to an increase in coarse oxide.

[残部]
当該鋼板は、上述した各元素以外にFe(鉄)及び不可避的不純物を残部として含有する。この不可避的不純物としては、例えばSn(スズ)、As(砒素)、Pb(鉛)等が挙げられる。
[Remainder]
The steel sheet contains Fe (iron) and unavoidable impurities as the balance in addition to the elements described above. Examples of the inevitable impurities include Sn (tin), As (arsenic), Pb (lead), and the like.

当該鋼板は、酸不溶性のTiの含有量[質量%]を[insol.Ti]、組成全体を基準とするTiの含有量[質量%]を[Ti]とした場合に下記式(1)を満たす。
[insol.Ti]/[Ti]≦0.80 ・・・(1)
The steel sheet has an acid-insoluble Ti content [mass%] [insol. When the Ti content [% by mass] based on the entire composition is [Ti], the following formula (1) is satisfied.
[Insol. Ti] / [Ti] ≦ 0.80 (1)

上記式(1)の右辺としては、0.77が好ましく、0.75がより好ましい。[insol.Ti]/[Ti]がこれらの値を超えると、粗大TiNによりHAZ靭性が低下し易くなる。なお、[insol.Ti]/[Ti]が同等でTi添加量が異なる鋼材を比較すると、Ti添加量の多いものほど粗大TiNの生成量も多い。しかし、Ti添加量の多いものは同時にHAZ組織の微細化に寄与する微細TiNも増加しているため、[insol.Ti]/[Ti]が等しければ、得られるHAZ靭性もほぼ同等となる。   As a right side of the said Formula (1), 0.77 is preferable and 0.75 is more preferable. [Insol. If Ti] / [Ti] exceeds these values, the HAZ toughness tends to decrease due to coarse TiN. [Insol. When steel materials having the same Ti] / [Ti] and different Ti addition amounts are compared, the larger the Ti addition amount, the larger the amount of coarse TiN produced. However, since the amount of Ti added is large, the amount of fine TiN that contributes to the refinement of the HAZ structure is also increasing [insol. If Ti] / [Ti] are equal, the HAZ toughness obtained will be substantially equivalent.

ここで、酸不溶性のTiの含有量は、鋼板の厚さ方向で板厚の1/4の位置で採取した試験片に対し電解液を用いた電解抽出法を実施し、得られた残渣をろ過して化合物を抽出し、この化合物について、例えばICP発光分光分析法により、Ti含有量を測定することで得られる。   Here, the content of acid-insoluble Ti was determined by conducting an electrolytic extraction method using an electrolytic solution on a test piece collected at a position of ¼ of the plate thickness in the thickness direction of the steel plate, The compound is extracted by filtration, and this compound is obtained by measuring the Ti content by, for example, ICP emission spectroscopy.

なお、本発明における酸不溶性のTiは、主にTiNとして存在するが、Ti酸化物等、他の化合物として存在するものも含まれる。また、上記酸不溶性のTiは、後述の鋳造工程において、溶鋼中で生成する晶出物が大部分であるが、固体鉄中に生成する析出物も一部含むものである。   The acid-insoluble Ti in the present invention is mainly present as TiN, but includes those present as other compounds such as Ti oxide. In addition, the acid-insoluble Ti contains most of the crystallized product generated in the molten steel in the casting process described later, but also includes a part of the precipitate generated in the solid iron.

また、Nの含有量[質量%]を[N]とした場合、[Ti]/[N]の下限としては、2.0が好ましく、2.5がより好ましい。一方、[Ti]/[N]の上限としては、5.0が好ましく、4.5がより好ましい。[Ti]/[N]が上記下限より小さいと、TiNの数は増加するが、TiNのサイズが小さくなり、後述する円相当径が一定範囲のTiN含有析出物の断面密度が不足するおそれがある。逆に、[Ti]/[N]が上記上限を超えると、Ti拡散律速成長であるTiNのサイズが大きくなり、粗大なTiNが増加するおそれがある。   When the N content [% by mass] is [N], the lower limit of [Ti] / [N] is preferably 2.0, more preferably 2.5. On the other hand, the upper limit of [Ti] / [N] is preferably 5.0, and more preferably 4.5. If [Ti] / [N] is smaller than the above lower limit, the number of TiNs increases, but the size of TiN becomes small, and there is a possibility that the cross-sectional density of TiN-containing precipitates with a circle-equivalent diameter described later in a certain range is insufficient. is there. On the other hand, when [Ti] / [N] exceeds the above upper limit, the size of TiN, which is Ti diffusion-controlled growth, increases, and coarse TiN may increase.

当該鋼板は、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が2.0×10個/mm以上、かつ円相当径0.040μm以上1μm以下のTiN含有析出物における円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が15%以下であるとよい。 In the steel sheet, the cross-sectional density of the TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm is 2.0 × 10 5 pieces / mm 2 or more, and the TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm. The number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less is preferably 15% or less.

また、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度の下限としては、2.5×10個/mmがより好ましく、3.0×10個/mmがさらに好ましい。円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が上記下限より小さいと、旧オーステナイト粒径粗大化抑制に寄与する微細TiNが減少し、HAZ靭性が低下し易くなるおそれがある。一方、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度の上限は特に限定されないが、例えば1.0×10個/mmである。 Further, the lower limit of the cross-sectional density of the TiN-containing precipitate having an equivalent circle diameter of 0.040 μm to 1 μm is more preferably 2.5 × 10 5 pieces / mm 2 , further 3.0 × 10 5 pieces / mm 2. preferable. If the cross-sectional density of the TiN-containing precipitate having an equivalent circle diameter of 0.040 μm or more and 1 μm or less is smaller than the above lower limit, the fine TiN contributing to the suppression of coarsening of the prior austenite grain size is reduced, and the HAZ toughness is likely to be lowered. . On the other hand, the upper limit of the cross-sectional density of the TiN-containing precipitate having an equivalent circle diameter of 0.040 μm or more and 1 μm or less is not particularly limited, but is, for example, 1.0 × 10 6 pieces / mm 2 .

さらに、円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合の上限としては、10%がより好ましく、6%がさらに好ましい。円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が上記上限を超えると、溶接時の高温保持におけるオストワルド成長が促進されてTiNが消失し、旧オーステナイト粒径が粗大化するため、HAZ靭性が低下し易くなるおそれがある。一方、円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合の下限は特に限定されず、実質的に0%である。   Furthermore, the upper limit of the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less is more preferably 10%, and even more preferably 6%. When the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less exceeds the above upper limit, Ostwald growth at high temperature holding during welding is promoted, TiN disappears, and the prior austenite grain size becomes coarse. , HAZ toughness tends to decrease. On the other hand, the lower limit of the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less is not particularly limited, and is substantially 0%.

ここで、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度、及び円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合は、以下の方法により測定した値をいう。まず、当該鋼板の任意の部位を切断し、得られた切断面を透過型電子顕微鏡(Transmission Electron Microscope:TEM)等の電子顕微鏡で観察する。上記観察においては、エネルギー分散型蛍光X線分析(Energy Dispersive X−ray spectrometry:EDX)装置等によってTiを含有する析出物を判別し、これをTiN含有析出物とする。次に、画像解析によって観察視野中の各TiN含有析出物の面積を測定して円相当径に換算し、円相当径0.040μm以上1μm以下のTiN含有析出物の個数と、円相当径0.1μm以上1μm以下のTiN含有析出物の個数とを計測し、1mmあたりの個数を算出することで断面密度を求め、上記個数の比から個数割合を求める。 Here, the cross-sectional density of TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm and the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm to 1 μm are values measured by the following methods. . First, an arbitrary part of the steel sheet is cut, and the obtained cut surface is observed with an electron microscope such as a transmission electron microscope (TEM). In the above observation, a Ti-containing precipitate is discriminated using an energy dispersive X-ray spectroscopy (EDX) apparatus or the like, and this is used as a TiN-containing precipitate. Next, the area of each TiN-containing precipitate in the observation field is measured by image analysis and converted into a circle-equivalent diameter. The number of TiN-containing precipitates having a circle-equivalent diameter of 0.040 μm to 1 μm and the circle-equivalent diameter 0 The number of TiN-containing precipitates of 1 μm or more and 1 μm or less is measured, the number per 1 mm 2 is calculated, the cross-sectional density is obtained, and the number ratio is obtained from the ratio of the above numbers.

当該鋼板は、C、Si、Mn、Cu、Ni、Cr、Mo、V及びBの含有量[質量%]をそれぞれ[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]及び[B]とした場合に下記式(2)を満たすことが好ましい。
Di=([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×(1+200×[B])×1.115≧0.72 ・・・(2)
In the steel sheet, the contents [mass%] of C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are respectively [C], [Si], [Mn], [Cu], [Ni], In the case of [Cr], [Mo], [V] and [B], it is preferable to satisfy the following formula (2).
Di = ([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [Ni ]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × (1 + 200 × [B]) × 1.115 ≧ 0.72 ( 2)

上記式(2)の右辺としては、0.75がより好ましく、0.77がさらに好ましい。Diがこれらの値未満であると、母材強度が不十分となるおそれがある。   As a right side of the said Formula (2), 0.75 is more preferable and 0.77 is further more preferable. If Di is less than these values, the base material strength may be insufficient.

C、Mn、Cu、Ni、Cr、Mo及びVの含有量[質量%]をそれぞれ[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]及び[V]とした場合に下記式(3)を満たすことが好ましい。
A=110×[C]+7×[Mn]+4×[Cu]+5×[Ni]+2.8×[Cr]+5×[Mo]+7.2×[V]≦21.5 ・・・(3)
The contents [% by mass] of C, Mn, Cu, Ni, Cr, Mo and V are respectively [C], [Mn], [Cu], [Ni], [Cr], [Mo] and [V]. In this case, it is preferable to satisfy the following formula (3).
A = 110 × [C] + 7 × [Mn] + 4 × [Cu] + 5 × [Ni] + 2.8 × [Cr] + 5 × [Mo] + 7.2 × [V] ≦ 21.5 (3 )

上記式(3)の右辺としては、21.2がより好ましく、21.0がさらに好ましい。Aがこれらの値を超えると、固相線温度の低下により粗大TiNが生成され易くなり、HAZ靭性が不十分となるおそれがある。   As a right side of the said Formula (3), 21.2 is more preferable and 21.0 is still more preferable. When A exceeds these values, coarse TiN tends to be generated due to a decrease in the solidus temperature, and the HAZ toughness may be insufficient.

[用途]
当該鋼板は、強度及び大入熱溶接時のHAZ靭性に優れるので、船舶等の大型溶接構造物に好適に使用することができる。
[Usage]
Since the steel sheet is excellent in strength and HAZ toughness during high heat input welding, it can be suitably used for large-sized welded structures such as ships.

<鋼板の製造方法>
第一実施形態の当該鋼板の製造方法としては、例えば溶鋼を鋳造する鋳造工程と、得られた鋳塊を熱間圧延する熱間圧延工程と、熱間圧延後の鋼材を冷却する工程とを備える方法等が挙げられる。以下、各工程について説明する。
<Manufacturing method of steel plate>
As a method for producing the steel sheet of the first embodiment, for example, a casting process for casting molten steel, a hot rolling process for hot rolling the obtained ingot, and a process for cooling the steel material after hot rolling are performed. The method of providing etc. is mentioned. Hereinafter, each step will be described.

[鋳造工程]
本工程では、上記組成を有する溶鋼をスラブ形状等に鋳造し、鋳塊を得る。上記組成を有する溶鋼は、脱硫処理、脱酸処理、各元素の添加等の従来公知の方法を適宜組み合わせることで得ることができる。
[Casting process]
In this step, molten steel having the above composition is cast into a slab shape or the like to obtain an ingot. The molten steel having the above composition can be obtained by appropriately combining conventionally known methods such as desulfurization treatment, deoxidation treatment, and addition of each element.

鋳造工程では、1,500℃から1,450℃までの温度範囲の冷却処理を300秒未満の冷却時間で行う。粗大TiNは、鋳造過程において鋼が一部凝固した温度域(固液共存温度域)で生成する。つまり、液相鉄が凝固して固体となる過程で、固体鉄から液相鉄にTiが排出され、液相鉄中のTi濃度が上昇する。Ti濃度の高まった液相鉄中ではTiNが生成され易くなり、加えて、液相中で生成したTiNは容易に粗大化する。そのため、粗大TiNを低減するには、固液共存温度域を速やかに通過し、TiNの生成及び粗大化を抑制することが重要である。従って、1,500℃から1,450℃までの冷却時間が300秒以上であると、鋳造時に粗大なTiNが生成され、[insol.Ti]/[Ti]が上記式(1)を満たさなくなり、ひいてはHAZ靭性が低下する。なお、1,500℃から1,450℃までの冷却時間は285秒未満がより好ましい。また、鋳塊が厚さt[mm]の板状の場合、上記冷却温度は鋳塊の表面から厚さ方向にt/4の位置での測定温度とする。   In the casting process, the cooling process in the temperature range from 1,500 ° C. to 1,450 ° C. is performed with a cooling time of less than 300 seconds. Coarse TiN is generated in a temperature range (solid-liquid coexistence temperature range) in which the steel partially solidifies during the casting process. That is, in the process where the liquid phase iron is solidified to become solid, Ti is discharged from the solid iron to the liquid phase iron, and the Ti concentration in the liquid phase iron increases. TiN is likely to be produced in liquid phase iron with an increased Ti concentration, and in addition, TiN produced in the liquid phase is easily coarsened. Therefore, in order to reduce coarse TiN, it is important to quickly pass through the solid-liquid coexisting temperature region and suppress the formation and coarsening of TiN. Therefore, if the cooling time from 1,500 ° C. to 1,450 ° C. is 300 seconds or more, coarse TiN is produced during casting, and [insol. Ti] / [Ti] does not satisfy the above formula (1), and consequently the HAZ toughness decreases. The cooling time from 1,500 ° C. to 1,450 ° C. is more preferably less than 285 seconds. When the ingot is plate-shaped with a thickness of t [mm], the cooling temperature is a measurement temperature at a position of t / 4 in the thickness direction from the surface of the ingot.

[熱間圧延工程]
本工程では、上記鋳造工程で得られた鋳塊を熱間圧延することで鋼板を得る。この熱間圧延時の鋳塊の最終圧延温度としては、750℃以上820℃以下である。最終圧延温度が上記下限より小さいと、オーステナイト粒が微細化し、続く冷却工程でのフェライト析出が助長されるため、所定の強度を得ることが難しくなるおそれがある。逆に、最終圧延温度が上記上限を超えると、鋼材の靭性が低下するおそれがある。
[Hot rolling process]
In this step, a steel plate is obtained by hot rolling the ingot obtained in the casting step. The final rolling temperature of the ingot during the hot rolling is 750 ° C. or higher and 820 ° C. or lower. If the final rolling temperature is smaller than the above lower limit, the austenite grains become finer and ferrite precipitation in the subsequent cooling step is promoted, so that it may be difficult to obtain a predetermined strength. Conversely, if the final rolling temperature exceeds the above upper limit, the toughness of the steel material may be reduced.

[冷却工程]
熱間圧延後には、鋼材の冷却を行う。この冷却速度としては、5℃/秒以上とする。冷却速度が上記下限より小さいと、フェライトが析出し、所定の強度を得ることが難しくなるおそれがある。
[Cooling process]
After hot rolling, the steel material is cooled. The cooling rate is 5 ° C./second or more. If the cooling rate is lower than the lower limit, ferrite precipitates and it may be difficult to obtain a predetermined strength.

〔第二実施形態〕
次に、本発明の第二実施形態について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.

<鋼板>
当該鋼板は、C(炭素):0.005質量%以上0.07質量%以下、Si(ケイ素):0質量%以上0.04質量%以下、Mn(マンガン):1.4質量%以上2.0質量%以下、P(リン):0質量%超0.010質量%以下、S(硫黄):0質量%超0.007質量%以下、Al(アルミニウム):0.010質量%以上0.040質量%以下、Ni(ニッケル):0.1質量%以上1.50質量%以下、Cu(銅):0.1質量%以上0.8質量%以下、Nb(ニオブ):0.004質量%以上0.025質量%以下、Ti(チタン):0.010質量%以上0.025質量%以下、N(窒素):0.0040質量%以上0.0080質量%以下、Ca(カルシウム):0.0005質量%以上0.0030質量%以下、並びに残部:Fe(鉄)及び不可避的不純物である組成を有する。
<Steel plate>
The steel sheet is C (carbon): 0.005 mass% to 0.07 mass%, Si (silicon): 0 mass% to 0.04 mass%, Mn (manganese): 1.4 mass% to 2 0.0 mass% or less, P (phosphorus): more than 0 mass% to 0.010 mass% or less, S (sulfur): more than 0 mass% to 0.007 mass% or less, Al (aluminum): 0.010 mass% or more 0 0.040 mass% or less, Ni (nickel): 0.1 mass% or more and 1.50 mass% or less, Cu (copper): 0.1 mass% or more and 0.8 mass% or less, Nb (niobium): 0.004 % By mass to 0.025% by mass, Ti (titanium): 0.010% by mass to 0.025% by mass, N (nitrogen): 0.0040% by mass to 0.0080% by mass, Ca (calcium) : 0.0005 mass% or more and 0.0030 mass% or less, and the balance Having a composition which is Fe (iron) and unavoidable impurities.

当該鋼板の平均厚さは上記第一実施形態の鋼板と同様とすることができる。また、当該鋼板のC、Si、Mn、P、S、Al、Ni、Cu、Nb、Ti、N及びCaの好ましい含有量、並びに残部は上記第一実施形態の鋼板と同様とすることができる。   The average thickness of the steel plate can be the same as that of the steel plate of the first embodiment. Moreover, the preferable content of C, Si, Mn, P, S, Al, Ni, Cu, Nb, Ti, N, and Ca and the balance of the steel sheet can be the same as those of the steel sheet of the first embodiment. .

当該鋼板は、上述の組成に加え、Cr(クロム):0質量%超1.00質量%以下、Mo(モリブデン):0質量%超0.50質量%以下、V(バナジウム):0質量%超0.50質量%以下、B(ホウ素):0質量%超0.0009質量%以下、希土類金属:0質量%超0.0050質量%以下、及びZr(ジルコニウム):0質量%超0.0050質量%以下のうち少なくとも1種をさらに含有するとよい。また、当該鋼板のこれらの組成の好ましい含有量は上記第一実施形態の鋼板と同様とすることができる。   In addition to the above-mentioned composition, the steel sheet has Cr (chromium): more than 0% by mass and 1.00% by mass or less, Mo (molybdenum): more than 0% by mass and 0.50% by mass or less, and V (vanadium): 0% by mass. More than 0.50% by mass, B (boron): more than 0% by mass, 0.0009% by mass or less, rare earth metal: more than 0% by mass and 0.0050% by mass or less, and Zr (zirconium): more than 0% by mass. It is preferable to further contain at least one of 0050% by mass or less. Moreover, preferable content of these compositions of the said steel plate can be made the same as that of the steel plate of said 1st embodiment.

また、当該鋼板の[Ti]/[N]の下限としては、2.0であり、2.5が好ましい。一方、[Ti]/[N]の上限としては、5.0であり、4.5が好ましい。[Ti]/[N]が上記下限より小さいと、TiNの数は増加するが、TiNのサイズが小さくなり、後述する円相当径が一定範囲のTiN含有析出物の断面密度が不足し易くなる。逆に、[Ti]/[N]が上記上限を超えると、Ti拡散律速成長であるTiNのサイズが大きくなり、粗大なTiNが増加し易くなる。   Moreover, as a minimum of [Ti] / [N] of the said steel plate, it is 2.0 and 2.5 is preferable. On the other hand, the upper limit of [Ti] / [N] is 5.0, and 4.5 is preferable. When [Ti] / [N] is less than the above lower limit, the number of TiNs increases, but the size of TiN decreases, and the cross-sectional density of TiN-containing precipitates having a circle-equivalent diameter in a certain range is likely to be insufficient. . On the other hand, when [Ti] / [N] exceeds the above upper limit, the size of TiN, which is Ti diffusion-controlled growth, increases, and coarse TiN tends to increase.

当該鋼板は、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が2.0×10個/mm以上、かつ円相当径0.040μm以上1μm以下のTiN含有析出物における円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が15%以下である。 In the steel sheet, the cross-sectional density of the TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm is 2.0 × 10 5 pieces / mm 2 or more, and the TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm. The number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less is 15% or less.

また、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度の下限としては、2.5×10個/mmが好ましく、3.0×10個/mmがより好ましい。円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が上記下限より小さいと、旧オーステナイト粒径抑制に寄与する微細TiNが減少し、HAZ靭性が低下し易くなる。一方、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度の上限は特に限定されないが、例えば5.0×10個/mmである。 The lower limit of the cross-sectional density of the TiN-containing precipitate having an equivalent circle diameter of 0.040 μm or more and 1 μm or less is preferably 2.5 × 10 5 pieces / mm 2, more preferably 3.0 × 10 5 pieces / mm 2. . If the cross-sectional density of the TiN-containing precipitate having an equivalent circle diameter of 0.040 μm or more and 1 μm or less is smaller than the above lower limit, the fine TiN contributing to the suppression of the prior austenite grain size is reduced, and the HAZ toughness is likely to be lowered. On the other hand, the upper limit of the cross-sectional density of the TiN-containing precipitate having an equivalent circle diameter of 0.040 μm or more and 1 μm or less is not particularly limited, but is, for example, 5.0 × 10 5 pieces / mm 2 .

さらに、円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合の上限としては、10%が好ましく、6%がより好ましい。円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が上記上限を超えると、溶接時の高温保持におけるTiNのオストワルド成長が促進され、旧オーステナイト粒径抑制に寄与するTiN数が少なくなり、HAZ靭性が低下し易くなる。一方、円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合の下限は特に限定されず、実質的に0%である。   Furthermore, the upper limit of the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less is preferably 10%, more preferably 6%. When the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less exceeds the above upper limit, the TiN Ostwald growth at high temperature holding during welding is promoted, and the TiN number contributing to the suppression of the prior austenite grain size is small. Thus, the HAZ toughness tends to decrease. On the other hand, the lower limit of the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less is not particularly limited, and is substantially 0%.

[用途]
当該鋼板は、強度及び大入熱溶接時のHAZ靭性に優れるので、船舶等の大型溶接構造物に好適に使用することができる。
[Usage]
Since the steel sheet is excellent in strength and HAZ toughness during high heat input welding, it can be suitably used for large-sized welded structures such as ships.

<鋼板の製造方法>
第二実施形態の当該鋼板の製造方法としては、例えば溶鋼を鋳造する鋳造工程と、得られた鋳塊を熱間圧延する熱間圧延工程と、熱間圧延後の鋼材を冷却する工程とを備える方法等が挙げられる。以下、各工程について説明する。
<Manufacturing method of steel plate>
As a manufacturing method of the steel sheet of the second embodiment, for example, a casting process for casting molten steel, a hot rolling process for hot rolling the obtained ingot, and a process for cooling the steel material after hot rolling are performed. The method of providing etc. is mentioned. Hereinafter, each step will be described.

[鋳造工程]
本工程では、上記組成を有する溶鋼をスラブ形状等に鋳造し、鋳塊を得る。上記組成を有する溶鋼は、脱硫処理、脱酸処理、各元素の添加等の従来公知の方法を適宜組み合わせることで得ることができる。
[Casting process]
In this step, molten steel having the above composition is cast into a slab shape or the like to obtain an ingot. The molten steel having the above composition can be obtained by appropriately combining conventionally known methods such as desulfurization treatment, deoxidation treatment, and addition of each element.

鋳造工程では、1,500℃から1,450℃までの温度範囲の冷却処理を300秒未満の冷却時間で行う。粗大TiNは、鋳造過程において鋼が一部凝固した温度域(固液共存温度域)で生成する。つまり、液相鉄が凝固して固体となる過程で、固体鉄から液相鉄にTiが排出され、液相鉄中のTi濃度が上昇する。Ti濃度の高まった液相鉄中ではTiNが生成され易くなり、加えて、液相中で生成したTiNは容易に粗大化する。そのため、粗大TiNを低減するには、固液共存温度域を速やかに通過し、TiNの生成及び粗大化を抑制することが重要である。従って、1,500℃から1,450℃までの冷却時間が300秒以上であると、鋳造時に粗大なTiNが生成され、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が小さくなり、ひいてはHAZ靭性が低下する。なお、1,500℃から1,450℃までの冷却時間は285秒未満がより好ましい。また、鋳塊が厚さt[mm]の板状の場合、上記冷却温度は鋳塊の表面から厚さ方向にt/4の位置での測定温度とする。   In the casting process, the cooling process in the temperature range from 1,500 ° C. to 1,450 ° C. is performed with a cooling time of less than 300 seconds. Coarse TiN is generated in a temperature range (solid-liquid coexistence temperature range) in which the steel partially solidifies during the casting process. That is, in the process where the liquid phase iron is solidified to become solid, Ti is discharged from the solid iron to the liquid phase iron, and the Ti concentration in the liquid phase iron increases. TiN is likely to be produced in liquid phase iron with an increased Ti concentration, and in addition, TiN produced in the liquid phase is easily coarsened. Therefore, in order to reduce coarse TiN, it is important to quickly pass through the solid-liquid coexisting temperature region and suppress the formation and coarsening of TiN. Therefore, if the cooling time from 1,500 ° C. to 1,450 ° C. is 300 seconds or more, coarse TiN is generated during casting, and the cross-sectional density of the TiN-containing precipitate having a circle-equivalent diameter of 0.040 μm to 1 μm is reduced. As a result, the HAZ toughness decreases. The cooling time from 1,500 ° C. to 1,450 ° C. is more preferably less than 285 seconds. When the ingot is plate-shaped with a thickness of t [mm], the cooling temperature is a measurement temperature at a position of t / 4 in the thickness direction from the surface of the ingot.

さらに、鋳造工程では、1,300℃から1,200℃までの温度範囲の冷却処理を450秒以上680秒以下で行う。上記温度範囲の冷却処理時間の下限としては500秒が好ましく、上限としては600秒が好ましい。上記冷却処理時間が上記下限未満であると、円相当径0.040μm以上1μm以下のTiN含有析出物が減少し、HAZ靭性が低下する。一方、上記冷却処理時間が上記上限を超えると、円相当径0.1μm以上のTiN含有析出物が増加することで円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が大きくなり、HAZ靭性が低下する。   Further, in the casting process, the cooling process in the temperature range from 1,300 ° C. to 1,200 ° C. is performed for 450 seconds or more and 680 seconds or less. The lower limit of the cooling treatment time in the above temperature range is preferably 500 seconds, and the upper limit is preferably 600 seconds. When the cooling treatment time is less than the lower limit, TiN-containing precipitates having an equivalent circle diameter of 0.040 μm or more and 1 μm or less are reduced, and HAZ toughness is lowered. On the other hand, when the cooling treatment time exceeds the upper limit, the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less increases due to an increase in TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more. , HAZ toughness decreases.

[熱間圧延工程]
本工程では、上記鋳造工程で得られた鋳塊を熱間圧延することで鋼板を得る。本工程では、熱間圧延の前に圧延前の鋳塊を1,050℃以上1,200℃以下で20分以上5時間以下保持する。また、上記保持時間の下限としては、2時間が好ましい。保持温度又は時間が上記下限未満であると、0.040μm未満の微小なTiNが成長しないため、円相当径0.040μm以上1μm以下のTiN含有析出物が減少し、HAZ靭性が低下する。一方、保持温度又は時間が上記上限を超えると、オストワルド成長が過剰に進行し円相当径0.040μm以上1μm以下のTiN含有析出物が減少し、HAZ靭性が低下する。
[Hot rolling process]
In this step, a steel plate is obtained by hot rolling the ingot obtained in the casting step. In this step, the ingot before rolling is held at 1,050 ° C. or more and 1,200 ° C. or less for 20 minutes or more and 5 hours or less before hot rolling. The lower limit of the holding time is preferably 2 hours. When the holding temperature or time is less than the above lower limit, TiN-containing precipitates having an equivalent circle diameter of 0.040 μm or more and 1 μm or less are reduced and HAZ toughness is lowered because minute TiN of less than 0.040 μm does not grow. On the other hand, when the holding temperature or time exceeds the upper limit, Ostwald growth proceeds excessively, TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm are reduced, and HAZ toughness is lowered.

熱間圧延工程では、900℃以上での累積圧下量を30%以上、820℃以上900℃未満での累積圧下量を15%以上となるよう圧延を行う。これにより歪から誘起されるTiの拡散により微細TiNが成長し、円相当径0.040μm以上1μm以下のTiN含有析出物の個数が増加し、HAZ靭性を向上できる。一方で、上記範囲を逸脱して圧延を行うと、円相当径0.040μm以上1μm以下のTiN含有析出物の個数が減少し、HAZ靭性が低下する。なお、各温度範囲での累積圧下量の上限は特に限定されないが、例えば50%である。また、「累積圧下量」とは、1パス当たりの圧下量の総和であり、「圧下量」は、下記式(4)により計算される値である。
圧下量=(t−t)/t×100 ・・・(4)
式(4)中、tは、表面の温度が圧延温度範囲にあるときの鋼片の圧延開始厚み[mm]、tは、表面の温度が圧延温度範囲にあるときの鋼片の圧延終了厚み[mm]をそれぞれ示す。
In the hot rolling step, rolling is performed so that the cumulative reduction amount at 900 ° C. or more is 30% or more, and the cumulative reduction amount at 820 ° C. or more and less than 900 ° C. is 15% or more. Thereby, fine TiN grows by diffusion of Ti induced by strain, the number of TiN-containing precipitates having an equivalent circle diameter of 0.040 μm to 1 μm increases, and HAZ toughness can be improved. On the other hand, when rolling is performed out of the above range, the number of TiN-containing precipitates having an equivalent circle diameter of 0.040 μm or more and 1 μm or less decreases, and the HAZ toughness decreases. In addition, although the upper limit of the cumulative reduction amount in each temperature range is not specifically limited, For example, it is 50%. The “cumulative reduction amount” is the total sum of the reduction amounts per pass, and the “reduction amount” is a value calculated by the following equation (4).
Reduction amount = (t 0 −t 1 ) / t 0 × 100 (4)
Wherein (4), t 0 is start rolling the thickness of the steel strip when the temperature of the surface is in the rolling temperature range [mm], t 1 is the rolling of the steel strip when the temperature of the surface is in the rolling temperature range The end thickness [mm] is shown respectively.

[冷却工程]
熱間圧延後には、鋼材の冷却を行う。この冷却速度としては、5℃/秒以上であり、6℃/秒以上が好ましい。冷却速度が上記下限より小さいと、フェライトが析出し、所定の強度を得ることが難しくなるおそれがある。
[Cooling process]
After hot rolling, the steel material is cooled. The cooling rate is 5 ° C./second or more, and preferably 6 ° C./second or more. If the cooling rate is lower than the lower limit, ferrite precipitates and it may be difficult to obtain a predetermined strength.

〔その他の実施形態〕
本発明の鋼板及びその製造方法は、上記実施形態に限定されるものではない。
[Other Embodiments]
The steel plate and the manufacturing method thereof of the present invention are not limited to the above embodiment.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

<鋼板の作製(1)>
150kg真空誘導炉を用い、表1に示す組成を有する溶鋼を溶製し、この溶鋼を鋳造することでスラブを作製した。ここで1,500℃から1,450℃までの冷却時間は表2に示す時間とした。このスラブを1,100℃で3時間保持後、最終仕上げ温度780℃で熱間圧延し、冷却速度7.5℃/秒で水冷することにより平均厚さ65mmの実施例1〜10及び比較例1〜6の鋼板を得た。
<Production of steel sheet (1)>
Using a 150 kg vacuum induction furnace, molten steel having the composition shown in Table 1 was melted, and this molten steel was cast to produce a slab. Here, the cooling time from 1,500 ° C. to 1,450 ° C. was set to the time shown in Table 2. This slab was held at 1,100 ° C. for 3 hours, then hot-rolled at a final finishing temperature of 780 ° C., and water-cooled at a cooling rate of 7.5 ° C./second, so that Examples 1 to 10 having an average thickness of 65 mm and comparative examples 1 to 6 steel plates were obtained.

<[insol.Ti]の測定>
得られた鋼板の厚さ方向で板厚の1/4の位置で試験片を採取し、電解液を用いた電解抽出法により上記試験片から抽出した酸不溶性のTiの濃度を測定することで[insol.Ti]の測定を行った。なお、電解液としては、メタノール100cc中に、トリエタノールアミン2ccと、テトラメチルアンモニウムクロライド1gとを含有するものを用いた。測定に際しては、上記電解液での電解抽出により得られた溶液を孔径2.0μmのフィルタでろ過して残渣を得た後、この残渣をICP発光分光分析法によって化学成分を分析し、[insol.Ti]を求めた。なお、上記電解液での電解抽出で不溶であるTiは、本発明で定義する酸不溶性のTiと判断できる。この測定結果を表2に示す。
<[Insol. Measurement of Ti]>
By collecting a test piece at a position of 1/4 of the plate thickness in the thickness direction of the obtained steel sheet, and measuring the concentration of acid-insoluble Ti extracted from the test piece by an electrolytic extraction method using an electrolytic solution. [Insol. Ti] was measured. As the electrolytic solution, an electrolyte solution containing 2 cc of triethanolamine and 1 g of tetramethylammonium chloride in 100 cc of methanol was used. In the measurement, a solution obtained by electrolytic extraction with the above electrolytic solution was filtered through a filter having a pore size of 2.0 μm to obtain a residue, and then the residue was analyzed for chemical components by ICP emission spectroscopy. . Ti] was determined. It should be noted that Ti that is insoluble in the electrolytic extraction with the electrolytic solution can be determined to be acid-insoluble Ti as defined in the present invention. The measurement results are shown in Table 2.

<鋼板の評価(1)>
以下の方法により、各鋼板の降伏強度、及びHAZ靭性を評価した。評価結果を表2に示す。なお、表2中、「Di」は上記(2)式の左辺を示し、「A」は上記(3)式の左辺を示す。
<Evaluation of steel sheet (1)>
The yield strength and HAZ toughness of each steel plate were evaluated by the following methods. The evaluation results are shown in Table 2. In Table 2, “Di” indicates the left side of the formula (2), and “A” indicates the left side of the formula (3).

[降伏強度]
各鋼板から、JIS−Z2241:2011に規定の棒状の4号試験片を切り出した。この切り出しにおいては、試験片の軸方向が鋼板の幅方向と一致し、試験片の中心軸と鋼板の一方の表面との距離が鋼板の板厚の1/4となるようにした。次に、JIS−Z2241:2011に記載の方法で引張り試験を行い、降伏強度YS[MPa]を測定した。降伏強度は、その値が大きいほど強度に優れることを示し、490MPa以上を「良好」、490MPa未満を「良好ではない」と判断できる。
[Yield strength]
A bar-shaped No. 4 test piece defined in JIS-Z2241: 2011 was cut out from each steel plate. In this cutting, the axial direction of the test piece coincided with the width direction of the steel sheet, and the distance between the central axis of the test piece and one surface of the steel sheet was set to ¼ of the plate thickness of the steel sheet. Next, a tensile test was performed by the method described in JIS-Z2241: 2011, and the yield strength YS [MPa] was measured. The yield strength indicates that the larger the value is, the better the strength is. It can be judged that 490 MPa or more is “good” and less than 490 MPa is “not good”.

[HAZ靭性]
各鋼板の厚さ方向で板厚の1/4の位置から、12.5mm×32mm×55mmの試験片を切り出し、1400℃で60秒間保持した後、800℃から500℃までの冷却時間が400秒となるように速度を制御して冷却した。これは、入熱量が55kJ/mmの大入熱溶接を模擬した熱サイクルである。次に、JIS−Z2242:2005に準拠し、規定のシャルピー衝撃試験片を3本ずつ採取し、−20℃でシャルピー衝撃試験を行い、吸収エネルギーvE[J]を測定した。HAZ靭性は、vEが100Jを超えるものを「良好」、100J以下を「良好ではない」と判断できる。
[HAZ toughness]
A test piece of 12.5 mm × 32 mm × 55 mm was cut out from a position ¼ of the plate thickness in the thickness direction of each steel plate, held at 1400 ° C. for 60 seconds, and then the cooling time from 800 ° C. to 500 ° C. was 400. The cooling was performed by controlling the speed so as to be 2 seconds. This is a thermal cycle that simulates large heat input welding with a heat input of 55 kJ / mm. Next, in accordance with JIS-Z2242: 2005, three specified Charpy impact test pieces were sampled, subjected to a Charpy impact test at -20 ° C., and the absorbed energy vE [J] was measured. With regard to the HAZ toughness, it can be judged that the case where vE exceeds 100 J is “good”, and the case where 100 J or less is “not good”.

Figure 2018009239
Figure 2018009239

Figure 2018009239
Figure 2018009239

表1、2から明らかなように、実施例1〜10の鋼板は、降伏強度及びHAZ靭性が共に良好であった。   As is clear from Tables 1 and 2, the steel sheets of Examples 1 to 10 both had good yield strength and HAZ toughness.

また、Diが0.72以上である実施例2、6〜9は、実施例1、3〜5、10に比べて降伏強度に優れていた。このことから、Diの値を0.72以上とすることで、HAZ靭性を維持しつつ、母材強度を向上することができると判断される。   In addition, Examples 2 and 6 to 9 having Di of 0.72 or more were superior in yield strength to Examples 1, 3 to 5, and 10. From this, it is determined that the base material strength can be improved while maintaining the HAZ toughness by setting the value of Di to 0.72 or more.

さらに、Aが21.5以下の実施例3〜5、10は、実施例1、2に比べてHAZ靭性に優れていた。このことから、Aの値を21.5以下とすることで、HAZ靭性をより向上することができると判断される。   Furthermore, Examples 3 to 5 and 10 having A of 21.5 or less were superior in HAZ toughness compared to Examples 1 and 2. From this, it is determined that the HAZ toughness can be further improved by setting the value of A to 21.5 or less.

さらに、Cr含有量が0.10質量%以下、及びMo含有量が0.20質量%以下である実施例3〜5は、実施例6〜9に比べてHAZ靱性に優れていた。このことから、Cr含有量を0.10質量%以下、及びMo含有量を0.20質量%以下とすることで、HAZ靭性をより向上することができると判断される。   Furthermore, Examples 3 to 5 having a Cr content of 0.10% by mass or less and a Mo content of 0.20% by mass or less were superior in HAZ toughness as compared with Examples 6 to 9. From this, it is judged that HAZ toughness can be improved more by making Cr content 0.10 mass% or less and Mo content 0.20 mass% or less.

一方で、Cr含有量が0.10質量%超、又はMo含有量が0.20質量%超である実施例6〜9は、実施例3〜5に比べて降伏強度に優れていた。このことから、Cr含有量を0.10質量%超、又はMo含有量を0.20質量%超とすることで、降伏強度をより向上することができると判断される。   On the other hand, Examples 6-9 whose Cr content exceeds 0.10 mass% or Mo content exceeds 0.20 mass% were excellent in yield strength compared with Examples 3-5. From this, it is judged that the yield strength can be further improved by setting the Cr content to over 0.10 mass% or the Mo content to over 0.20 mass%.

一方で、比較例1〜4は、[insol.Ti]/[Ti]が0.8超であるため、粗大なTiNが多くなり、HAZ靭性が良好でない。また、比較例5は、[insol.Ti]/[Ti]が0.8以下であるが、Tiの含有量が多すぎるため、固溶Tiが多くなり、HAZ靭性が良好でない。さらに、比較例6も、[insol.Ti]/[Ti]が0.8以下であるが、Ti及びNの含有量が小さいため、微細なTiNの絶対量が不足し、HAZ靭性が良好でない。   On the other hand, Comparative Examples 1 to 4 are [insol. Since Ti] / [Ti] is more than 0.8, coarse TiN increases and the HAZ toughness is not good. Moreover, Comparative Example 5 is [insol. Ti] / [Ti] is 0.8 or less, but the content of Ti is too large, so that the solid solution Ti increases and the HAZ toughness is not good. Furthermore, Comparative Example 6 is also [insol. Ti] / [Ti] is 0.8 or less, but since the contents of Ti and N are small, the absolute amount of fine TiN is insufficient and the HAZ toughness is not good.

<鋼板の作製(2)>
次に、150kg真空誘導炉を用い、表3に示す組成を有する溶鋼を溶製し、この溶鋼を鋳造することでスラブを作製した。ここで1,500℃から1,450℃までの冷却時間及び1,300℃から1,200℃までの冷却時間は表4に示す時間とした。このスラブを表4に示す温度及び時間で保持後、900℃以上及び820℃以上900℃未満でそれぞれ表4に示す累積圧下量となるよう熱間圧延し、さらに表4に示す冷却速度で水冷することにより平均厚さ65mmの実施例11〜20及び比較例7〜15の鋼板を得た。なお、表3の「REM」は、希土類金属(rare earth metal)を示す。
<Production of steel plate (2)>
Next, using a 150 kg vacuum induction furnace, molten steel having the composition shown in Table 3 was melted, and this molten steel was cast to produce a slab. Here, the cooling time from 1,500 ° C. to 1,450 ° C. and the cooling time from 1,300 ° C. to 1,200 ° C. were the times shown in Table 4. After holding this slab at the temperature and time shown in Table 4, it was hot-rolled at 900 ° C. or more and 820 ° C. or more and less than 900 ° C. to obtain the cumulative reduction amount shown in Table 4, respectively, and further water-cooled at the cooling rate shown in Table 4 As a result, steel plates of Examples 11 to 20 and Comparative Examples 7 to 15 having an average thickness of 65 mm were obtained. In addition, “REM” in Table 3 represents rare earth metal.

<TiN含有析出物の測定>
得られた鋼板の厚さ方向で板厚の1/4の位置で試験片を採取し、各鋼板から、柱体状の試験片を切り出した。この切り出しにおいては、試験片の軸方向が鋼板の圧延方向と一致し、試験片の中心軸と鋼板の一方の表面との距離が鋼板の平均厚さの1/4となり、かつ試験片の一方の底面が鋼板の縦断面となるようにした。次に、この試験片の上記鋼板の縦断面に相当する底面からレプリカTEM試験片を作成し、透過型電子顕微鏡(TEM)で観察した。観察条件は、観察倍率15,000倍、観察視野52.7μmとし、2視野観察した。観察においては、エネルギー分散型蛍光X線分析(EDX)装置によってTiを含有する析出物を判別し、この析出物をTiN含有析出物とした。次に、画像解析によって観察視野中の各TiN含有析出物の面積を測定して円相当径に換算し、円相当径0.040μm以上1μm以下のTiN含有析出物の個数と、円相当径0.1μm以上1μm以下のTiN含有析出物の個数とを計測し、1mmあたりの個数を算出することで断面密度を求めると共に、円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合を求めた。測定結果を表4に示す。
<Measurement of TiN-containing precipitate>
A test piece was collected at a position of ¼ of the plate thickness in the thickness direction of the obtained steel plate, and a columnar test piece was cut out from each steel plate. In this cutting, the axial direction of the test piece coincides with the rolling direction of the steel sheet, the distance between the central axis of the test piece and one surface of the steel sheet is 1/4 of the average thickness of the steel sheet, and one of the test pieces The bottom surface of the steel plate was a longitudinal section of the steel plate. Next, a replica TEM test piece was created from the bottom surface corresponding to the longitudinal section of the steel sheet of the test piece, and observed with a transmission electron microscope (TEM). The observation conditions were an observation magnification of 15,000 times, an observation visual field of 52.7 μm 2, and two visual fields were observed. In the observation, a precipitate containing Ti was determined by an energy dispersive X-ray fluorescence (EDX) apparatus, and this precipitate was used as a TiN-containing precipitate. Next, the area of each TiN-containing precipitate in the observation field is measured by image analysis and converted into a circle-equivalent diameter. The number of TiN-containing precipitates having a circle-equivalent diameter of 0.040 μm to 1 μm and the circle-equivalent diameter 0 The number of TiN-containing precipitates of 1 μm or more and 1 μm or less is measured, and the number of TiN-containing precipitates having a circle equivalent diameter of 0.1 μm or more and 1 μm or less is obtained by calculating the number per 1 mm 2. Asked. Table 4 shows the measurement results.

<鋼板の評価(2)>
上述の方法により、各鋼板の降伏強度、及びHAZ靭性を評価した。評価結果を表4に示す。
<Evaluation of steel sheet (2)>
By the above method, the yield strength and the HAZ toughness of each steel plate were evaluated. The evaluation results are shown in Table 4.

Figure 2018009239
Figure 2018009239

Figure 2018009239
Figure 2018009239

表3、4から明らかなように、実施例11〜20の鋼板は、降伏強度及びHAZ靭性が共に良好であった。   As is clear from Tables 3 and 4, the steel sheets of Examples 11 to 20 had good yield strength and HAZ toughness.

また、実施例を比較すると、円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が小さいほどHAZ靭性に優れる傾向があり、特に個数割合が6%以下の実施例11、13、14、18は他の実施例よりも良好なHAZ靭性を有する。   Further, when the examples are compared, the smaller the number ratio of the TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less, the more excellent the HAZ toughness tends to be, and in particular, Examples 11 and 13 in which the number ratio is 6% or less. 14 and 18 have better HAZ toughness than the other examples.

一方で、比較例7〜10は、組成が本願発明の範囲を満たさないため、降伏強度又はHAZ靭性のどちらかが良好ではない。また、比較例11、13、14は、円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が不十分であるため、HAZ靭性が良好でない。比較例11は1,500℃から1,450℃までの冷却時間が大きすぎること、比較例13は900℃以上での累積圧下量が小さすぎること、比較例14は820℃以上900℃未満での累積圧下量が小さすぎることにより、上記断面密度が不十分となったと考えられる。さらに、比較例12は、円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が大きすぎるため、HAZ靭性が良好でない。比較例12は1,300℃から1,200℃までの冷却時間が大きすぎることにより、上記個数割合が増大したと考えられる。   On the other hand, since the compositions of Comparative Examples 7 to 10 do not satisfy the scope of the present invention, either yield strength or HAZ toughness is not good. In Comparative Examples 11, 13, and 14, the cross-sectional density of the TiN-containing precipitate having an equivalent circle diameter of 0.040 μm or more and 1 μm or less is insufficient, so that the HAZ toughness is not good. Comparative Example 11 is that the cooling time from 1,500 ° C. to 1,450 ° C. is too long, Comparative Example 13 is that the cumulative reduction amount is 900 ° C. or higher, and Comparative Example 14 is 820 ° C. or higher and lower than 900 ° C. It is considered that the cross-sectional density is insufficient because the cumulative reduction amount of is too small. Furthermore, in Comparative Example 12, the number ratio of TiN-containing precipitates having an equivalent circle diameter of 0.1 μm or more and 1 μm or less is too large, so that the HAZ toughness is not good. In Comparative Example 12, it is considered that the number ratio increased because the cooling time from 1,300 ° C. to 1,200 ° C. was too long.

本発明の鋼板は、母材強度及びHAZ靭性に優れる。また、本発明の鋼板の製造方法は、母材強度及びHAZ靭性に優れる鋼板を得ることができる。   The steel plate of the present invention is excellent in base material strength and HAZ toughness. Moreover, the manufacturing method of the steel plate of this invention can obtain the steel plate which is excellent in base material strength and HAZ toughness.

Claims (11)

C:0.005質量%以上0.07質量%以下、
Si:0質量%以上0.04質量%以下、
Mn:1.4質量%以上2.0質量%以下、
P:0質量%超0.010質量%以下、
S:0質量%超0.007質量%以下、
Al:0.010質量%以上0.040質量%以下、
Ni:0.1質量%以上1.50質量%以下、
Cu:0.1質量%以上0.8質量%以下、
Nb:0.004質量%以上0.025質量%以下、
Ti:0.010質量%以上0.025質量%以下、
N:0.0040質量%以上0.0080質量%以下、
Ca:0.0005質量%以上0.0030質量%以下、並びに
残部:Fe及び不可避的不純物
である組成を有し、
酸不溶性のTiの含有量[質量%]を[insol.Ti]、上記組成全体を基準とするTiの含有量[質量%]を[Ti]とした場合に下記式(1)を満たす鋼板。
[insol.Ti]/[Ti]≦0.80 ・・・(1)
C: 0.005 mass% or more and 0.07 mass% or less,
Si: 0% by mass or more and 0.04% by mass or less,
Mn: 1.4 mass% or more and 2.0 mass% or less,
P: more than 0% by mass and 0.010% by mass or less,
S: more than 0% by mass and 0.007% by mass or less,
Al: 0.010 mass% or more and 0.040 mass% or less,
Ni: 0.1% by mass or more and 1.50% by mass or less,
Cu: 0.1 mass% or more and 0.8 mass% or less,
Nb: 0.004 mass% or more and 0.025 mass% or less,
Ti: 0.010 mass% or more and 0.025 mass% or less,
N: 0.0040 mass% or more and 0.0080 mass% or less,
Ca: 0.0005 mass% or more and 0.0030 mass% or less, and the balance: Fe and a composition that is an inevitable impurity,
The content [mass%] of the acid-insoluble Ti is changed to [insol. Ti], a steel sheet that satisfies the following formula (1) when the Ti content [% by mass] based on the entire composition is [Ti].
[Insol. Ti] / [Ti] ≦ 0.80 (1)
Nの含有量[質量%]を[N]とした場合に[Ti]/[N]が2.0以上5.0以下であり、
円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が2.0×10個/mm以上、かつ円相当径0.040μm以上1μm以下のTiN含有析出物における円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が15%以下である請求項1に記載の鋼板。
When the content [% by mass] of N is [N], [Ti] / [N] is 2.0 or more and 5.0 or less,
The equivalent circle diameter of a TiN-containing precipitate having a cross-sectional density of 2.0 × 10 5 pieces / mm 2 or more and an equivalent circle diameter of 0.040 μm to 1 μm is 0. The steel sheet according to claim 1, wherein the number ratio of TiN-containing precipitates of 1 µm or more and 1 µm or less is 15% or less.
C、Si、Mn、Cu、Ni、Cr、Mo、V及びBの含有量[質量%]をそれぞれ[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]及び[B]とした場合に下記式(2)を満たす請求項1又は請求項2に記載の鋼板。
([C]/10)0.5×(1+0.7×[Si])×(1+3.33×[Mn])×(1+0.35×[Cu])×(1+0.36×[Ni])×(1+2.16×[Cr])×(1+3×[Mo])×(1+1.75×[V])×(1+200×[B])×1.115≧0.72 ・・・(2)
The contents [% by mass] of C, Si, Mn, Cu, Ni, Cr, Mo, V and B are [C], [Si], [Mn], [Cu], [Ni], [Cr], The steel plate according to claim 1 or 2, wherein the following formula (2) is satisfied when [Mo], [V], and [B] are set.
([C] / 10) 0.5 × (1 + 0.7 × [Si]) × (1 + 3.33 × [Mn]) × (1 + 0.35 × [Cu]) × (1 + 0.36 × [Ni]) × (1 + 2.16 × [Cr]) × (1 + 3 × [Mo]) × (1 + 1.75 × [V]) × (1 + 200 × [B]) × 1.115 ≧ 0.72 (2)
C、Mn、Cu、Ni、Cr、Mo及びVの含有量[質量%]をそれぞれ[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]及び[V]とした場合に下記式(3)を満たす請求項1、請求項2又は請求項3に記載の鋼板。
110×[C]+7×[Mn]+4×[Cu]+5×[Ni]+2.8×[Cr]+5×[Mo]+7.2×[V]≦21.5 ・・・(3)
The contents [% by mass] of C, Mn, Cu, Ni, Cr, Mo and V are respectively [C], [Mn], [Cu], [Ni], [Cr], [Mo] and [V]. The steel plate of Claim 1, Claim 2, or Claim 3 which satisfy | fills following formula (3) when it does.
110 × [C] + 7 × [Mn] + 4 × [Cu] + 5 × [Ni] + 2.8 × [Cr] + 5 × [Mo] + 7.2 × [V] ≦ 21.5 (3)
Cr:0質量%超1.00質量%以下、
Mo:0質量%超0.50質量%以下、
V:0質量%超0.50質量%以下、
B:0質量%超0.0009質量%以下、
希土類金属:0質量%超0.0050質量%以下、及び
Zr:0質量%超0.0050質量%以下
のうち少なくとも1種をさらに含有する請求項1から請求項4のいずれか1項に記載の鋼板。
Cr: more than 0% by mass and 1.00% by mass or less,
Mo: more than 0% by mass and 0.50% by mass or less,
V: more than 0% by mass and 0.50% by mass or less,
B: more than 0% by mass and 0.0009% by mass or less,
The rare earth metal: more than 0% by mass and 0.0050% by mass or less, and Zr: more than 0% by mass and 0.0050% by mass or less, further containing at least one kind. Steel plate.
C:0.005質量%以上0.07質量%以下、
Si:0質量%以上0.04質量%以下、
Mn:1.4質量%以上2.0質量%以下、
P:0質量%超0.010質量%以下、
S:0質量%超0.007質量%以下、
Al:0.010質量%以上0.040質量%以下、
Ni:0.1質量%以上1.50質量%以下、
Cu:0.1質量%以上0.8質量%以下、
Nb:0.004質量%以上0.025質量%以下、
Ti:0.010質量%以上0.025質量%以下、
N:0.0040質量%以上0.0080質量%以下、
Ca:0.0005質量%以上0.0030質量%以下、並びに
残部:Fe及び不可避的不純物
である組成を有する溶鋼を鋳造する工程と、
上記鋳造工程で得られた鋳塊を750℃以上820℃以下の最終圧延温度で熱間圧延する工程と、
上記熱間圧延工程後の鋼材を5℃/秒以上の冷却速度で冷却する冷却工程と
を備え、
上記鋳造工程で1,500℃から1,450℃までの冷却を300秒未満で行うことを特徴とする鋼板の製造方法。
C: 0.005 mass% or more and 0.07 mass% or less,
Si: 0% by mass or more and 0.04% by mass or less,
Mn: 1.4 mass% or more and 2.0 mass% or less,
P: more than 0% by mass and 0.010% by mass or less,
S: more than 0% by mass and 0.007% by mass or less,
Al: 0.010 mass% or more and 0.040 mass% or less,
Ni: 0.1% by mass or more and 1.50% by mass or less,
Cu: 0.1% by mass or more and 0.8% by mass or less,
Nb: 0.004 mass% or more and 0.025 mass% or less,
Ti: 0.010 mass% or more and 0.025 mass% or less,
N: 0.0040 mass% or more and 0.0080 mass% or less,
Ca: 0.0005 mass% or more and 0.0030 mass% or less, and the balance: a step of casting molten steel having a composition that is Fe and inevitable impurities;
Hot rolling the ingot obtained in the casting step at a final rolling temperature of 750 ° C. or higher and 820 ° C. or lower;
A cooling step of cooling the steel material after the hot rolling step at a cooling rate of 5 ° C / second or more,
A method for producing a steel sheet, wherein cooling from 1,500 ° C. to 1,450 ° C. is performed in less than 300 seconds in the casting step.
上記溶鋼が、
Cr:0質量%超1.00質量%以下、
Mo:0質量%超0.50質量%以下、
V:0質量%超0.50質量%以下、
B:0質量%超0.0009質量%以下、
希土類金属:0質量%超0.0050質量%以下、及び
Zr:0質量%超0.0050質量%以下
のうち少なくとも1種をさらに含有する請求項6に記載の鋼板の製造方法。
The molten steel is
Cr: more than 0% by mass and 1.00% by mass or less,
Mo: more than 0% by mass and 0.50% by mass or less,
V: more than 0% by mass and 0.50% by mass or less,
B: more than 0% by mass and 0.0009% by mass or less,
The method for producing a steel sheet according to claim 6, further comprising at least one of rare earth metals: more than 0% by mass and 0.0050% by mass or less, and Zr: more than 0% by mass and 0.0050% by mass or less.
C:0.005質量%以上0.07質量%以下、
Si:0質量%以上0.04質量%以下、
Mn:1.4質量%以上2.0質量%以下、
P:0質量%超0.010質量%以下、
S:0質量%超0.007質量%以下、
Al:0.010質量%以上0.040質量%以下、
Ni:0.1質量%以上1.50質量%以下、
Cu:0.1質量%以上0.8質量%以下、
Nb:0.004質量%以上0.025質量%以下、
Ti:0.010質量%以上0.025質量%以下、
N:0.0040質量%以上0.0080質量%以下、
Ca:0.0005質量%以上0.0030質量%以下、並びに
残部:Fe及び不可避的不純物
である組成を有し、
上記組成全体を基準とするNの含有量[質量%]を[N]、Tiの含有量[質量%]を[Ti]とした場合に[Ti]/[N]が2.0以上5.0以下であり、
円相当径0.040μm以上1μm以下のTiN含有析出物の断面密度が2.0×10個/mm以上、かつ円相当径0.040μm以上1μm以下のTiN含有析出物における円相当径0.1μm以上1μm以下のTiN含有析出物の個数割合が15%以下である鋼板。
C: 0.005 mass% or more and 0.07 mass% or less,
Si: 0% by mass or more and 0.04% by mass or less,
Mn: 1.4 mass% or more and 2.0 mass% or less,
P: more than 0% by mass and 0.010% by mass or less,
S: more than 0% by mass and 0.007% by mass or less,
Al: 0.010 mass% or more and 0.040 mass% or less,
Ni: 0.1% by mass or more and 1.50% by mass or less,
Cu: 0.1% by mass or more and 0.8% by mass or less,
Nb: 0.004 mass% or more and 0.025 mass% or less,
Ti: 0.010 mass% or more and 0.025 mass% or less,
N: 0.0040 mass% or more and 0.0080 mass% or less,
Ca: 0.0005 mass% or more and 0.0030 mass% or less, and the balance: Fe and a composition that is an inevitable impurity,
[Ti] / [N] is 2.0 or more when the content [% by mass] of N based on the whole composition is [N] and the content [% by mass] of Ti is [Ti]. 0 or less,
The equivalent circle diameter of a TiN-containing precipitate having a cross-sectional density of 2.0 × 10 5 pieces / mm 2 or more and an equivalent circle diameter of 0.040 μm to 1 μm is 0. A steel sheet in which the number ratio of TiN-containing precipitates of 1 μm or more and 1 μm or less is 15% or less.
Cr:0質量%超1.00質量%以下、
Mo:0質量%超0.50質量%以下、
V:0質量%超0.50質量%以下、
B:0質量%超0.0009質量%以下、
希土類金属:0質量%超0.0050質量%以下、及び
Zr:0質量%超0.0050質量%以下
のうち少なくとも1種をさらに含有する請求項8に記載の鋼板。
Cr: more than 0% by mass and 1.00% by mass or less,
Mo: more than 0% by mass and 0.50% by mass or less,
V: more than 0% by mass and 0.50% by mass or less,
B: more than 0% by mass and 0.0009% by mass or less,
The steel sheet according to claim 8, further comprising at least one of rare earth metals: more than 0% by mass and 0.0050% by mass or less, and Zr: more than 0% by mass and 0.0050% by mass or less.
C:0.005質量%以上0.07質量%以下、
Si:0質量%以上0.04質量%以下、
Mn:1.4質量%以上2.0質量%以下、
P:0質量%超0.010質量%以下、
S:0質量%超0.007質量%以下、
Al:0.010質量%以上0.040質量%以下、
Ni:0.1質量%以上1.50質量%以下、
Cu:0.1質量%以上0.8質量%以下、
Nb:0.004質量%以上0.025質量%以下、
Ti:0.010質量%以上0.025質量%以下、
N:0.0040質量%以上0.0080質量%以下、
Ca:0.0005質量%以上0.0030質量%以下、並びに
残部:Fe及び不可避的不純物
である組成を有する溶鋼を鋳造する工程と、
上記鋳造工程で得られた鋳塊を熱間圧延する工程と、
上記熱間圧延工程後の鋼材を5℃/秒以上の冷却速度で冷却する冷却工程と
を備え、
上記鋳造工程で、1,500℃から1,450℃までの冷却を300秒未満、1,300℃から1,200℃までの冷却を450秒以上680秒以下で行い、
上記熱間圧延工程で、圧延前の鋳塊を1,050℃以上1,200℃以下で20分以上5時間以下保持し、900℃以上での累積圧下量を30%以上、820℃以上900℃未満での累積圧下量を15%以上とすることを特徴とする鋼板の製造方法。
C: 0.005 mass% or more and 0.07 mass% or less,
Si: 0% by mass or more and 0.04% by mass or less,
Mn: 1.4 mass% or more and 2.0 mass% or less,
P: more than 0% by mass and 0.010% by mass or less,
S: more than 0% by mass and 0.007% by mass or less,
Al: 0.010 mass% or more and 0.040 mass% or less,
Ni: 0.1% by mass or more and 1.50% by mass or less,
Cu: 0.1% by mass or more and 0.8% by mass or less,
Nb: 0.004 mass% or more and 0.025 mass% or less,
Ti: 0.010 mass% or more and 0.025 mass% or less,
N: 0.0040 mass% or more and 0.0080 mass% or less,
Ca: 0.0005 mass% or more and 0.0030 mass% or less, and the balance: a step of casting molten steel having a composition that is Fe and inevitable impurities;
Hot rolling the ingot obtained in the casting process,
A cooling step of cooling the steel material after the hot rolling step at a cooling rate of 5 ° C / second or more,
In the casting step, cooling from 1,500 ° C. to 1,450 ° C. is performed in less than 300 seconds, cooling from 1,300 ° C. to 1,200 ° C. is performed in 450 seconds to 680 seconds,
In the hot rolling step, the ingot before rolling is held at 1,050 ° C. or more and 1,200 ° C. or less for 20 minutes or more and 5 hours or less, and the cumulative reduction amount at 900 ° C. or more is 30% or more, 820 ° C. or more and 900 The manufacturing method of the steel plate characterized by making the cumulative reduction amount below 15 degreeC into 15% or more.
上記溶鋼が、
Cr:0質量%超1.00質量%以下、
Mo:0質量%超0.50質量%以下、
V:0質量%超0.50質量%以下、
B:0質量%超0.0009質量%以下、
希土類金属:0質量%超0.0050質量%以下、及び
Zr:0質量%超0.0050質量%以下
のうち少なくとも1種をさらに含有する請求項10に記載の鋼板の製造方法。
The molten steel is
Cr: more than 0% by mass and 1.00% by mass or less,
Mo: more than 0% by mass and 0.50% by mass or less,
V: more than 0% by mass and 0.50% by mass or less,
B: more than 0% by mass and 0.0009% by mass or less,
The method for producing a steel sheet according to claim 10, further comprising at least one of rare earth metals: more than 0% by mass and 0.0050% by mass or less, and Zr: more than 0% by mass and 0.0050% by mass or less.
JP2016213579A 2016-02-15 2016-10-31 Steel sheet and production method therefor Pending JP2018009239A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/003701 WO2017141714A1 (en) 2016-02-15 2017-02-02 Steel sheet and production method therefor
EP17752977.3A EP3418415A4 (en) 2016-02-15 2017-02-02 Steel sheet and production method therefor
KR1020187022996A KR20180100422A (en) 2016-02-15 2017-02-02 Steel sheet and manufacturing method thereof
CN201780010241.6A CN108603268A (en) 2016-02-15 2017-02-02 Steel plate and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016026380 2016-02-15
JP2016026380 2016-02-15
JP2016132915 2016-07-04
JP2016132915 2016-07-04

Publications (1)

Publication Number Publication Date
JP2018009239A true JP2018009239A (en) 2018-01-18

Family

ID=60995101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213579A Pending JP2018009239A (en) 2016-02-15 2016-10-31 Steel sheet and production method therefor

Country Status (4)

Country Link
EP (1) EP3418415A4 (en)
JP (1) JP2018009239A (en)
KR (1) KR20180100422A (en)
CN (1) CN108603268A (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098340A (en) 1999-09-29 2001-04-10 Nippon Steel Corp Steel for welding structure excellent in heat-affected zone
JP4821051B2 (en) 2001-04-19 2011-11-24 Jfeスチール株式会社 High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
CN100447278C (en) * 2005-01-11 2008-12-31 宝山钢铁股份有限公司 Thick steel plate capable of being welded under large heat input and method for manufacturing the same
JP5207914B2 (en) 2008-10-20 2013-06-12 株式会社神戸製鋼所 Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP5340839B2 (en) 2009-07-17 2013-11-13 株式会社神戸製鋼所 Steel sheet with excellent toughness of weld heat affected zone
JP5394785B2 (en) 2009-03-24 2014-01-22 株式会社神戸製鋼所 Thick steel plate with excellent weld heat affected zone toughness and low temperature base metal toughness
JP5320274B2 (en) * 2009-12-07 2013-10-23 株式会社神戸製鋼所 Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP5444093B2 (en) * 2010-04-07 2014-03-19 株式会社神戸製鋼所 Thick steel plate with excellent toughness in weld heat affected zone
JP5966907B2 (en) 2011-12-19 2016-08-10 Jfeスチール株式会社 Steel material for large heat input welding
JP5820341B2 (en) * 2012-06-19 2015-11-24 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
JP5833991B2 (en) * 2012-08-23 2015-12-16 株式会社神戸製鋼所 Thick steel plate with excellent cryogenic toughness
JP6211296B2 (en) * 2013-04-30 2017-10-11 株式会社神戸製鋼所 Steel plate with excellent sour resistance and HAZ toughness
JP6193206B2 (en) * 2013-12-11 2017-09-06 株式会社神戸製鋼所 Steel plate and line pipe steel pipe with excellent sour resistance, HAZ toughness and HAZ hardness

Also Published As

Publication number Publication date
EP3418415A4 (en) 2019-07-24
EP3418415A1 (en) 2018-12-26
CN108603268A (en) 2018-09-28
KR20180100422A (en) 2018-09-10

Similar Documents

Publication Publication Date Title
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
KR20180095640A (en) Austenitic heat-resistant alloys and methods for making same
JP4699341B2 (en) High strength hot forged non-tempered steel parts with excellent fatigue limit ratio
KR101892412B1 (en) Steel
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
CN105658829A (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent cold workability
JP5820341B2 (en) Steel with excellent toughness in weld heat affected zone
JP4699342B2 (en) High strength non-tempered steel for cold forging with excellent fatigue limit ratio
CN111433381B (en) High Mn steel and method for producing same
JPWO2019186931A1 (en) Hot stamped body
JP6418418B2 (en) Steel material for large heat input welding
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP6111892B2 (en) Continuous casting method and continuous casting slab
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
WO2022145067A1 (en) Steel material
WO2022145065A1 (en) Steel material
WO2022145063A1 (en) Steel material
WO2022145066A1 (en) Steel material
JP2018009239A (en) Steel sheet and production method therefor
WO2017141714A1 (en) Steel sheet and production method therefor
JP7127751B2 (en) Steel plate and its manufacturing method
JP2019099866A (en) Two-phase stainless steel and weld article thereof
JP7243916B2 (en) Steel plate and steel plate manufacturing method
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
WO2023053827A1 (en) Steel plate