JP2018009202A - Carbon steel before heat treatment having excellent scale removal property, carbon steel after heat treatment, manufacturing method of the same, scale removing method, and agent for easily forming descaling film - Google Patents

Carbon steel before heat treatment having excellent scale removal property, carbon steel after heat treatment, manufacturing method of the same, scale removing method, and agent for easily forming descaling film Download PDF

Info

Publication number
JP2018009202A
JP2018009202A JP2016136963A JP2016136963A JP2018009202A JP 2018009202 A JP2018009202 A JP 2018009202A JP 2016136963 A JP2016136963 A JP 2016136963A JP 2016136963 A JP2016136963 A JP 2016136963A JP 2018009202 A JP2018009202 A JP 2018009202A
Authority
JP
Japan
Prior art keywords
heat treatment
film
metal element
carbon steel
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016136963A
Other languages
Japanese (ja)
Other versions
JP6757194B2 (en
Inventor
清水 大輔
Daisuke Shimizu
大輔 清水
伊藤 祐介
Yusuke Ito
祐介 伊藤
中島 隆
Takashi Nakajima
中島  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2016136963A priority Critical patent/JP6757194B2/en
Priority to CN201710541963.6A priority patent/CN107604135B/en
Priority to KR1020170086089A priority patent/KR102222258B1/en
Publication of JP2018009202A publication Critical patent/JP2018009202A/en
Application granted granted Critical
Publication of JP6757194B2 publication Critical patent/JP6757194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel technology enabling a scale produced by heating a steel material to be easily removed.SOLUTION: In a steel material before a heat treatment that has a film on a surface of a carbon steel, the carbon steel includes carbon of 0.06 mass% or more based on a total mass of the steel carbon. The film includes one or more types of metal elements (X) selected from Fe, Ni, and Co, and one or more types of metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo, and W. A total attachment amount of the metal element (Y) is 1-100 mg/m, and (X)/(Y), a mass ratio of the metal element (X) and the metal element (Y) is in a range of 0.01-0.5.SELECTED DRAWING: None

Description

本発明は、炭素鋼を熱処理する際に発生するスケールの易除去に関する技術である。   The present invention is a technique relating to easy removal of scale generated when heat treating carbon steel.

金属材料は、機械的強度の向上のために、加熱・冷却による熱処理が施される。熱処理の条件は、目的の機械的強度、材質、形状及び設備の制約等によって異なるが、鋼の焼き入れでは、概ね700℃以上の高い温度に鋼材を加熱する。したがって、大気下において高温に加熱される鋼材は、加熱されている間に表面酸化によるスケールが生成する。このようなスケールが鋼材の表面に残存すると、外観不良、寸法精度や表面粗さへの影響など品質の低下をもたらす問題がある。そのため、従来は、鋼材の熱処理後に、酸洗やショットブラスト等のスケール除去が行われる。   The metal material is subjected to heat treatment by heating / cooling in order to improve mechanical strength. The heat treatment conditions vary depending on the target mechanical strength, material, shape, equipment restrictions, and the like, but in steel quenching, the steel material is heated to a high temperature of approximately 700 ° C. or higher. Therefore, the steel material heated to a high temperature in the atmosphere generates a scale due to surface oxidation while being heated. If such a scale remains on the surface of the steel material, there is a problem in that quality is deteriorated such as an appearance defect and an influence on dimensional accuracy and surface roughness. Therefore, conventionally, scale removal such as pickling or shot blasting is performed after the heat treatment of the steel material.

また、特許文献1に開示されているように、鋼材のSi量及びCr量、更には表面粗さを一定範囲に制御することで、大気炉での加熱においてスケール量の発生を抑制できる技術も提案されている。   In addition, as disclosed in Patent Document 1, by controlling the Si amount and Cr amount of the steel material, and also the surface roughness within a certain range, there is also a technology that can suppress the generation of the scale amount during heating in the atmospheric furnace. Proposed.

他方では、特許文献2に開示されているように、炭化ケイ素を含む組成物からなる高温脱炭防止塗料を鋼材に塗布することで、酸化防止及び脱炭防止、更には熱処理後の塗膜除去性を改善できる技術も提案されている。   On the other hand, as disclosed in Patent Document 2, by applying a high-temperature decarburization-preventing coating composed of a composition containing silicon carbide to a steel material, it is possible to prevent oxidation and decarburization, and further remove the coating film after heat treatment. Technologies that can improve the performance have also been proposed.

特開2005−133180号公報JP-A-2005-133180 特開平2−205622号公報Japanese Patent Laid-Open No. 2-205622

本発明は、鋼材の加熱により生成されたスケールを容易に除去することができる新規技術の提供を目的とする。   An object of this invention is to provide the novel technique which can remove easily the scale produced | generated by the heating of steel materials.

本発明者らは、鋭意検討の結果、下記手法にて前記課題を解決できることを見出し、本発明を完成させた。
[1]炭素鋼の表面に皮膜を有する熱処理前鋼材において、
前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有し、
前記皮膜が、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有し、且つ
前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲である
ことを特徴とする熱処理前鋼材。
[2]熱処理前鋼材の製造方法において、
前記熱処理前鋼材が、炭素鋼の表面に皮膜を有し、
前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有し、
前記皮膜が、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有し、且つ
前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲であり、
前記製造方法が、
Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とエッチング成分とを含有する剤を前記炭素鋼に接触させることにより前記皮膜を形成する工程を含む
ことを特徴とする、熱処理前鋼材の製造方法。
[3]熱処理後鋼材の製造方法において、
0.06質量%以上の炭素を含有する炭素鋼の表面に、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有する皮膜であって、前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲である皮膜を形成し、熱処理前鋼材を得る工程と、
前記熱処理前鋼材を700℃以上で熱処理する工程と
を含むことを特徴とする熱処理後鋼材の製造方法。
[4]スケールの除去方法において、
炭素鋼の表面に、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有する皮膜を形成し、熱処理前鋼材を得る工程と、
前記熱処理前鋼材を700℃以上で加熱し、熱処理後鋼材を得る工程と、
前記熱処理後鋼材上に付着したスケールを除去する工程と
を含むことを特徴とするスケールの除去方法。
[5]前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有する、前記[4]のスケールの除去方法。
[6]前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲である、前記[4]又は[5]のスケールの除去方法。
[7]熱処理前鋼材を700℃以上に加熱して熱処理後鋼材を得る際、前記加熱に先立って、前記熱処理前鋼材を構成する炭素鋼上に易脱スケール性皮膜を形成させるために使用される剤であって、
Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)と、
エッチング成分と
を有することを特徴とする、易脱スケール性皮膜形成用剤。
[8]前記易脱スケール性皮膜が、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有する、前記[7]の易脱スケール性皮膜形成用剤。
[9]前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有する、前記[7]又は[8]の易脱スケール性皮膜形成用剤。
[10]前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が、0.01〜0.5の範囲である、前記[8]又は[9]の易脱スケール性皮膜形成用剤。
As a result of intensive studies, the present inventors have found that the above problem can be solved by the following method, and have completed the present invention.
[1] In the steel material before heat treatment having a film on the surface of carbon steel,
The carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel,
The film is composed of one or more metal elements (X) selected from Fe, Ni and Co and one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. ) And the total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and is the mass ratio of the metal element (X) and the metal element (Y) (X) / (Y) is in the range of 0.01 to 0.5.
[2] In the method of manufacturing a steel material before heat treatment,
The pre-heat treatment steel material has a film on the surface of carbon steel,
The carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel,
The film is composed of one or more metal elements (X) selected from Fe, Ni and Co and one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. ) And the total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and is the mass ratio of the metal element (X) and the metal element (Y) (X) / (Y) is in the range of 0.01 to 0.5,
The manufacturing method is
Forming the film by bringing the carbon steel into contact with an agent containing one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W and an etching component The manufacturing method of the steel materials before heat processing characterized by including the process to carry out.
[3] In the method for producing a steel material after heat treatment,
At least one metal element (X) selected from Fe, Ni and Co and Ti, Zr, Hf, Nb, V, Cr, Mn, and Mo are formed on the surface of carbon steel containing 0.06% by mass or more of carbon. And one or more metal elements (Y) selected from W, the total amount of the metal elements (Y) deposited is 1 to 100 mg / m 2 , and the metal elements (X) Forming a film in which (X) / (Y), which is a mass ratio between the metal element (Y) and 0.01 to 0.5, and obtaining a steel material before heat treatment,
And a step of heat-treating the steel material before heat treatment at 700 ° C. or higher.
[4] In the scale removal method,
One or more metal elements (X) selected from Fe, Ni and Co and one or more metal elements selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W on the surface of carbon steel Forming a film containing (Y) and obtaining a steel material before heat treatment;
Heating the steel material before heat treatment at 700 ° C. or higher to obtain a steel material after heat treatment;
Removing the scale adhered on the steel material after the heat treatment.
[5] The scale removing method according to [4], wherein the carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel.
[6] The total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and is the mass ratio of the metal element (X) and the metal element (Y) (X) / (Y) The method for removing a scale according to [4] or [5], wherein is in the range of 0.01 to 0.5.
[7] When the steel material before heat treatment is heated to 700 ° C. or higher to obtain the steel material after heat treatment, prior to the heating, it is used to form an easily descaleable film on the carbon steel constituting the steel material before heat treatment. An agent,
One or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W;
An easily-descaleable film-forming agent characterized by comprising an etching component.
[8] The easily descaleable film is selected from one or more metal elements (X) selected from Fe, Ni and Co and Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W 1 [7] The easy-to-descale film-forming agent according to [7], which contains at least a seed metal element (Y).
[9] The easy-to-descale film forming agent according to [7] or [8], wherein the carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel.
[10] The total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and is the mass ratio of the metal element (X) and the metal element (Y) (X) / (Y) Is in the range of 0.01 to 0.5, [8] or [9].

本発明によれば、鋼材の加熱により生成されたスケールを容易に除去(例えばエアブローや流水で容易に除去)することができる新規技術を提供することができる。したがって、従来の酸洗やショットブラスト等のスケール除去に比べて処理工程の簡易化及び短縮化を飛躍的に図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel technique which can remove easily the scale produced | generated by the heating of steel materials (for example, easy removal with an air blow or flowing water) can be provided. Therefore, the simplification and shortening of the treatment process can be dramatically achieved as compared with the conventional scale removal such as pickling and shot blasting.

以下、熱処理前鋼材と、熱処理前鋼材を製造する方法(併せて、当該製造方法にて使用される剤)と、熱処理前鋼材を加熱して熱処理後鋼材を製造する方法(併せて、スケールの除去方法)と、を順に説明する。   Hereinafter, a steel material before heat treatment, a method for producing the steel material before heat treatment (in addition, an agent used in the production method), and a method for producing the steel material after heat treatment by heating the steel material before heat treatment (also, The removal method) will be described in order.

≪1.熱処理前鋼材≫
本発明に係る熱処理前鋼材は、炭素鋼の表面に皮膜を有する熱処理前鋼材において、前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有し、前記皮膜が、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有し、且つ、前記金属元素(Y)の付着合計量が1〜100mg/mであり、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が、0.01〜0.5の範囲である。以下、各構成成分について詳述する。
<< 1. Steel before heat treatment≫
The pre-heat treatment steel material according to the present invention is the pre-heat treatment steel material having a coating on the surface of carbon steel, wherein the carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel, and the coating Is one or more metal elements (X) selected from Fe, Ni and Co, and one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W The total amount of the metal element (Y) deposited is 1 to 100 mg / m 2 , and the mass ratio of the metal element (X) to the metal element (Y) is (X) / ( Y) is in the range of 0.01 to 0.5. Hereinafter, each component will be described in detail.

<1−1.炭素鋼>
本発明に係る熱処理前鋼材を構成する炭素鋼は、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有する。好適には、0.06質量%以上3.1質量%以下、より好適には、0.1質量%以上0.77質量%以下、更に好適には、0.15質量%以上0.45質量%以下である。炭素鋼における炭素含有量が当該範囲内にて、後述する皮膜を特定量付着させることにより、熱処理後鋼材に付着したスケールを極めて容易に除去可能になる。尚、炭素鋼には、Fe及びC以外の元素、例えば、Ni、Co、Mo、V、Ti,Nb、Mn、Cr、B等が含まれていてもよい。
<1-1. Carbon steel>
The carbon steel which comprises the steel material before heat processing which concerns on this invention contains 0.06 mass% or more carbon on the basis of the total mass of the said carbon steel. Preferably, 0.06% by mass to 3.1% by mass, more preferably 0.1% by mass to 0.77% by mass, and even more preferably 0.15% by mass to 0.45% by mass. % Or less. When the carbon content in the carbon steel is within the above range, a specific amount of a film, which will be described later, is attached, so that the scale attached to the steel material after the heat treatment can be removed very easily. Carbon steel may contain elements other than Fe and C, such as Ni, Co, Mo, V, Ti, Nb, Mn, Cr, and B.

<1−2.皮膜>
{1−2−1.成分}
本発明に係る熱処理前鋼材を構成する皮膜は、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)と、Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)と、を含有する。ここで、金属元素(X)としては、エアブロー等にて極めて容易に剥離可能な、より優れた易脱スケール性皮膜を形成できるという点にて、Fe,Niが好適であり、Feがより好適である。また、金属元素(Y)としては、エアブロー等にて極めて容易に剥離可能である、より優れた易脱スケール性皮膜を形成できるという点にて、Ti,Zr,Nb,Cr,Moが好適であり、Zr,Tiがより好適である。尚、金属元素(X)及び金属元素(Y)のいずれに関しても、これらを1種のみ含有していても複数種含有していてもよい。尚、皮膜においてこれら金属元素は、金属、水酸化物、水和酸化物及び酸化物が混在して存在していると推定される。
<1-2. Film>
{1-2-1. component}
The film constituting the pre-heat treatment steel material according to the present invention is composed of one or more metal elements (X) selected from Fe, Ni and Co, and Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. One or more metal elements (Y) selected. Here, as the metal element (X), Fe and Ni are preferable, and Fe is more preferable in that it can form a superior easily-descaleable film that can be peeled off very easily by air blow or the like. It is. Further, as the metal element (Y), Ti, Zr, Nb, Cr, and Mo are preferable in that it can form an excellent easily-descaleable film that can be peeled off very easily by air blow or the like. Zr and Ti are more preferable. In addition, regarding any of the metal element (X) and the metal element (Y), these may be contained alone or in plural. In the coating, these metal elements are presumed to be present in a mixture of metals, hydroxides, hydrated oxides and oxides.

{1−2−2.成分比}
ここで、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が、0.01〜0.5の範囲であり、0.05〜0.3の範囲であることが好適であり、0.1〜0.2の範囲であることがより好適である。当該範囲内であると、皮膜の凝集割れを有効に防止できる。
{1-2-2. Component ratio}
Here, (X) / (Y), which is a mass ratio of the metal element (X) and the metal element (Y), is in the range of 0.01 to 0.5, and 0.05 to 0.3. It is preferable that it is the range of this, and it is more preferable that it is the range of 0.1-0.2. Within this range, cohesive cracking of the film can be effectively prevented.

{1−2−3.付着量}
本発明に係る熱処理前鋼材を構成する皮膜の炭素鋼への付着量は、前記金属元素(Y)の付着合計量が1〜100mg/mとなる量であり、前記金属元素(Y)の付着合計量が2〜40mg/mとなる量であることが好適であり、前記金属元素(Y)の付着合計量が5〜20mg/mとなる量であることがより好適である。前記金属元素(Y)は、熱処理で生成されるスケールに取り込まれるため、熱処理後鋼材に付着したスケールは、極めて安易に除去が可能となる。このため、本発明に係る熱処理前鋼材を構成する皮膜は、皮膜割れ及び皮膜抜けがない状態が好ましい。前記金属元素(Y)の付着合計量が100mg/mを超えると、皮膜割れが生じやすくなる。皮膜割れの箇所では、前記金属元素(Y)は、熱処理で生成されるスケールに取り込まれにくいため、そのスケールは、安易に除去可能とならない。また、前記金属元素(Y)の付着合計量が1mg/m未満であると、炭素鋼の表面を皮膜で覆うことができずに皮膜抜けが生じやすくなる。皮膜抜け箇所では、熱処理で生成するスケール中に前記金属元素(Y)が取り込まれず、安易に除去可能なスケールとならない。炭素鋼における炭素含有量が前記範囲内にて、前記皮膜を当該範囲にて付着させることにより、熱処理後鋼材に付着したスケールを極めて容易に除去可能になる。前記金属元素(Y)の付着量は蛍光X線分析装置(XRF)によって炭素鋼材表面から測定することができる。前記金属元素(X)の付着量はX線光電子分光装置(XPS)によって皮膜の深さごとに測定することができるが、本発明においてはXPSのデプスプロファイルでの酸素消滅位置を炭素鋼材と皮膜の境界とし、それより上層において検出される前記金属元素(X)の測定値の平均を前記金属元素(X)の付着量と定めた。
{1-2-3. Amount of adhesion}
The adhesion amount of the coating film constituting the pre-heat treatment steel material according to the present invention to the carbon steel is such that the total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and the metal element (Y) The total amount of adhesion is preferably 2 to 40 mg / m 2, and the total amount of the metal element (Y) is more preferably 5 to 20 mg / m 2 . Since the metal element (Y) is taken into the scale generated by the heat treatment, the scale attached to the steel material after the heat treatment can be removed very easily. For this reason, the film which comprises the steel material before heat processing which concerns on this invention has a preferable state which does not have a film crack and a film | membrane missing. When the total adhesion amount of the metal element (Y) exceeds 100 mg / m 2 , film cracking is likely to occur. Since the metal element (Y) is difficult to be taken into the scale generated by the heat treatment at the portion where the film is cracked, the scale cannot be easily removed. Further, if the total amount of the metal element (Y) attached is less than 1 mg / m 2 , the surface of the carbon steel cannot be covered with the film, and the film is likely to come off. In the part where the film is missing, the metal element (Y) is not taken into the scale generated by the heat treatment, and the scale cannot be easily removed. When the carbon content in the carbon steel is within the above range, the scale attached to the steel material after the heat treatment can be removed very easily by adhering the coating within the range. The adhesion amount of the metal element (Y) can be measured from the surface of the carbon steel material by a fluorescent X-ray analyzer (XRF). The adhesion amount of the metal element (X) can be measured for each depth of the film by an X-ray photoelectron spectrometer (XPS). In the present invention, the position of oxygen disappearance in the XPS depth profile is defined as the carbon steel material and the film. The average of the measured values of the metal element (X) detected in the upper layer was defined as the amount of adhesion of the metal element (X).

≪2.熱処理前鋼材の製造方法≫
本発明に係る熱処理前鋼材の製造方法は、Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とエッチング成分とを含有する剤を前記炭素鋼に接触させることにより前記皮膜を形成する工程を含む。以下、熱処理前鋼材の製造に使用される剤(易脱スケール性皮膜形成用剤)をまず説明し、次いで各工程を説明する。
≪2. Manufacturing method of steel before heat treatment≫
The method for producing a pre-heat treatment steel material according to the present invention comprises an agent containing at least one metal element (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W and an etching component. Forming the film by contacting the carbon steel. Hereinafter, the agent (easily descalable film-forming agent) used for manufacturing the steel material before heat treatment will be described first, and then each step will be described.

<2−1.易脱スケール性皮膜形成用剤>
{2−1−1.成分}
(2−1−1−1.金属元素)
本発明に係る易脱スケール性皮膜形成用剤は、Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)を含有する。ここで、金属元素としては、Ti,Zr,Nb,Cr,Moが好適であり、Zr,Tiがより好適である。好適な理由は上述した通りである。この場合、易脱スケール性皮膜形成用剤における金属元素(Y)の濃度は、好適には0.5〜10mmol/lである。尚、これら金属元素は、基材から供給される場合もあり、定常的に溶解した状態で無い場合もあるが、基本的には、後述する液体媒体に溶解した状態にて存在する。また、金属元素は1種のみでも複数種含有していてもよい。尚、上記の金属元素は必須であるが、他の金属元素を含有していてもよい。具体的には、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)を含有していてもよく、脱易スケール性皮膜形成用剤における金属元素(X)の濃度は、好適には0.1〜5mmol/lである。
<2-1. Easily descaling film forming agent>
{2-1-1. component}
(2-1-1-1. Metal elements)
The agent for forming an easily descaleable film according to the present invention contains one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. Here, Ti, Zr, Nb, Cr, and Mo are preferable as the metal element, and Zr and Ti are more preferable. The preferred reason is as described above. In this case, the concentration of the metal element (Y) in the easily descalable film-forming agent is preferably 0.5 to 10 mmol / l. These metal elements may be supplied from the base material and may not be in a constantly dissolved state, but basically exist in a dissolved state in a liquid medium to be described later. Moreover, the metal element may contain only 1 type or multiple types. In addition, although said metal element is essential, you may contain another metal element. Specifically, it may contain one or more metal elements (X) selected from Fe, Ni and Co, and the concentration of the metal element (X) in the easy-scaling film forming agent is preferably Is 0.1 to 5 mmol / l.

(2−1−1−2.エッチング成分)
本発明に係る易脱スケール性皮膜形成用剤は、エッチング成分を含有する。ここで、エッチング成分は、炭素鋼をエッチングし得る添加成分である限り特に限定されず、例えば、HNO、HF、HSO、HCl等の無機酸を挙げることができる。これらの中では、皮膜形成処理剤を安定化できるという点にて、HNO、HF、HSOが好適であり、HF単独又はHFとHNOとを組み合わせたものがより好適である。また、 易脱スケール性皮膜形成用剤におけるエッチング成分の存在形態は、好適なpH範囲(2.5〜4.5)や他の存在成分の種類や量等との関係で決まり得るものである。例えば、添加成分として前記酸を用いた場合には、前記酸の解離した形態が想定される。尚、エッチング成分は1種のみでも複数種含有していてもよい。
(2-1-1-2. Etching component)
The easily descalable film-forming agent according to the present invention contains an etching component. Here, the etching component is not particularly limited as long as it is an additive component capable of etching carbon steel, and examples thereof include inorganic acids such as HNO 3 , HF, H 2 SO 4 , and HCl. Among these, HNO 3 , HF, and H 2 SO 4 are preferable in that the film-forming treatment agent can be stabilized, and HF alone or a combination of HF and HNO 3 is more preferable. Moreover, the existence form of the etching component in the agent for forming an easily descalable film can be determined by the relationship with the suitable pH range (2.5 to 4.5) and the type and amount of other existing components. . For example, when the acid is used as an additive component, a dissociated form of the acid is assumed. In addition, the etching component may contain only 1 type or multiple types.

(2−1−1−3.他の成分)
本発明に係る易脱スケール性皮膜形成用剤は、必要に応じ、他の成分を含有していてもよい。例えば、pHを好適範囲に制御するためアルカリを添加する場合には、LiOH、NaOH、KOHなどの強アルカリ、NH{水酸化アンモニウム(NH−HO)}などの弱アルカリを用いることができ、酸を添加するときには、酢酸などの弱酸を用いることができる。アルカリとしては、NH{水酸化アンモニウム(NH−HO)}、酸としては弱酸が、好ましい。
(2-1-1-3. Other components)
The easily descalable film-forming agent according to the present invention may contain other components as necessary. For example, when adding an alkali to control the pH within a suitable range, use a strong alkali such as LiOH, NaOH, KOH, or a weak alkali such as NH 3 {ammonium hydroxide (NH 3 —H 2 O)}. When the acid is added, a weak acid such as acetic acid can be used. As the alkali, NH 3 {ammonium hydroxide (NH 3 —H 2 O)} is preferable, and as the acid, a weak acid is preferable.

(2−1−1−4.液体媒体)
本発明に係る易脱スケール性皮膜形成用剤における液体媒体は、好適には、水を主体とした液体媒体(例えば、脱イオン水、純水)である。ここで、「主体とする」とは、液体媒体の全質量を基準として水を51質量%以上(好適には60質量%以上、より好適には70質量%以上、更に好適には80質量%以上、特に好適には90質量%以上)を意味する。尚、液体媒体として水以外の他の液体媒体(例えば、水混和性の液体媒体、例えば、エタノール等のアルコール)を含有していてもよい。また、本剤は、乾燥形態又は濃縮形態であってもよい。この場合に現場にて水で溶解又は希釈して使用する。
(2-1-1-4. Liquid medium)
The liquid medium in the agent for forming an easily descalable film according to the present invention is preferably a liquid medium mainly composed of water (for example, deionized water or pure water). Here, “mainly” means 51% by mass or more of water (preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass) based on the total mass of the liquid medium. As mentioned above, it means 90% by mass or more particularly preferably. In addition, you may contain liquid media other than water (for example, water-miscible liquid media, for example, alcohol, such as ethanol), as a liquid medium. The agent may be in a dry form or a concentrated form. In this case, dissolve or dilute with water on site.

{2−1−2.液性}
(2−1−2−1.pH)
本発明に係る易脱スケール性皮膜形成用剤のpHは、好適には2.5〜4.5であり、より好適には3〜4である。尚、このpHは、易脱スケール性皮膜形成用剤について、JIS−Z8802:2011で処理温度(典型的には40℃)にて測定された値である。
{2-1-2. liquid}
(2-1-2-1. PH)
The pH of the easily descalable film-forming agent according to the present invention is preferably 2.5 to 4.5, more preferably 3 to 4. In addition, this pH is the value measured at the processing temperature (typically 40 degreeC) by JIS-Z8802: 2011 about the agent for easily descaleable film formation.

{2−1−3.製造方法}
本発明に係る易脱スケール性皮膜形成用剤の製造方法は、Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)の供給源と、エッチング成分の供給源と、を液体媒体に添加し、混合する工程を含む。以下、上記供給源について詳述する。
{2-1-3. Production method}
According to the present invention, there is provided a method for producing an easily-descaleable film forming agent comprising a supply source of one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. Adding a source of etching components to the liquid medium and mixing. Hereinafter, the said supply source is explained in full detail.

(2−1−3−1.供給源)
金属元素(Y)の供給源としては、例えば、Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)を含む塩、錯化合物又は金属水和酸化物を挙げることができる。具体的には、Tiの場合、例えば、オキシ二蓚酸チタン二アンモニウム、オキシ二蓚酸チタン二カリウム、酸化チタン(II)、酸化チタン(III)、酸化チタン(IV)、オキシ硫酸第二チタン、塩基性リン酸チタン、臭化チタン(IV)、メタチタン酸、メタチタン酸亜鉛(II)、チタン酸アルミニウム(III)、メタチタン酸カリウム、メタチタン三コバルト(II)、チタン酸ジルコニウム、メタチタン酸ストロンチウム、メタチタン三鉄(III)、メタチタン酸銅(II)、チタン酸ナトリウム、二チタン酸ネオジム(III)、メタチタン酸バリウム、メタチタン酸ビスマス(III)、メタチタン酸マグネシウム、チタン酸マグネシウム、メタチタン酸マンガン(II)、二チタン酸ランタン(III)、メタチタン酸リチウム、ヘキサフルオロチタン(IV)酸アンモニウム、ヘキサフルオロチタン(IV)酸カリウム、ヨウ化チタン(IV)、硫酸チタン(III)、硫酸チタン(IV)、塩化チタン、硝酸チタン、硫酸チタニル、フッ化チタン(III)、フッ化チタン(IV)、ヘキサフルオロチタン酸、乳酸チタン、ペルオキソチタン酸、チタンラウレート、チタニウムアセチルアセトネート、水酸化チタン(IV)等のチタン塩等又はチタン酸塩等;Zrの場合、例えば、 テトラキス(アセチルアセトナト)ジルコニウム(IV)、塩化酸化ジルコニウム(IV)、塩化ジルコニウム(IV)、ケイ酸ジルコニウム、酢酸酸化ジルコニウム(IV)、酸化ジルコニウム(IV)、硝酸酸化ジルコニウム(IV)、メタジルコニウム酸セシウム、メタジルコニウム酸リチウム、メタジルコニウム酸亜鉛(II)、メタジルコニウム酸アルミニウム(III)、メタジルコニウム酸カルシウム、メタジルコニウム酸コバルト(II)、メタジルコニウム酸ストロンチウム、メタジルコニウム酸銅(II)、メタジルコニウム酸ナトリウム、メタジルコニウム酸ニッケル(II)、メタジルコニウム酸バリウム、メタジルコニウム酸ビスマス(III)、メタジルコニウム酸マグネシウム、オキシ炭酸ジルコニウム、ヘキサフルオロジルコニウム(IV)酸アンモニウム、ヘキサフルオロジルコニウム(IV)酸カリウム、ヨウ化ジルコニウム、リン酸二水素酸化ジルコニウム(IV)、塩基性炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニルアンモニウム、硝酸ジルコニウム、硝酸ジルコニル、硫酸ジルコニウム(IV)、硫酸ジルコニル、ヘキサフルオロジルコニウム酸、オキシリン酸ジルコニウム、ピロリン酸ジルコニウム、リン酸二水素ジルコニル、オキシ塩化ジルコニウム、フッ化ジルコニウム、酢酸ジルコニル、酸化ジルコニウム、水酸化ジルコニウム等のジルコニウム塩等;Hfの場合、テトラキス(アセチルアセトナト)ハフニウム(IV)、塩化ハフニウム(IV)、酸化ハフニウム(IV)、ヨウ化ハフニウム(IV)、硫酸ハフニウム(IV)、硝酸ハフニウム(IV)、オキシ蓚酸ハフニウム(IV)、フルオロハフニウム酸、フルオロハフニウム酸塩、フッ化ハフニウム等のハフニウム塩等又はハフニウム酸塩等;Nbの場合、酸化ニオブ(II)、酸化ニオブ(V)、五(蓚酸水素)ニオブ、水酸化ニオブ(V)、ニオブオキシアセチルアセトネート、メタニオブ酸、メタニオブ酸カルシウム、メタニオブ酸ストロンチウム、メタニオブ酸バリウム、メタニオブ酸マグネシウム、メタニオブ酸リチウム、メタニオブ酸アンモニウム、メタニオブ酸ナトリウム、五塩化ニオブ等のニオブ塩等又はニオブ酸塩等;Vの場合、オキシ二塩化バナジウム、オキシ三塩化バナジウム、三塩化バナジウム、酸化バナジウム、四バナジン酸鉄(III)、臭化バナジウム(III)、オキシ蓚酸バナジウム、ヨウ化バナジウム(II)、五酸化バナジウム、メタバナジン酸、ピロバナジン酸ナトリウム、バナジン酸ナトリウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、オキシ三塩化バナジウム、三酸化バナジウム、二酸化バナジウム、オキシ硫酸バナジウム、バナジウムオキシアセチルアセテート、バナジウムアセチルアセテート、リンバナドモリブデン酸等のバナジウム塩等又はバナジン酸塩等;クロム;Crの場合、蟻酸クロム(III)、フッ化クロム(III)、硝酸クロム(III)、硫酸クロム(III)、蓚酸クロム(III)、酢酸クロム(III)、重燐酸クロム(III)、水酸化クロム(III)、酸化クロム(III)、臭化クロム(III)、ヨウ化クロム(III)等のクロム塩等;Mnの場合、ビス(アセチルアセトナト)ジアクアマンガン(II)、四酸化三マンガン、酸化マンガン(II)、酸化マンガン(III)、酸化マンガン(IV)、臭化マンガン(II)、蓚酸マンガン(II)、過マンガン酸(VII)、過マンガン酸カリウム(VII)、過マンガン酸ナトリウム(VII)、リン酸二水素マンガン(II)、硝酸マンガン(II)、硫酸マンガン(II)、硫酸マンガン(III)、硫酸マンガン(IV)、フッ化マンガン(II)、フッ化マンガン(III)、炭酸マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)、硫酸アンモニウムマンガン(II)、ヨウ化マンガン(II)、水酸化マンガン(II)等のマンガン塩等又はマンガン酸塩等;Moの場合、塩化モリブデン(V)、酸化モリブデン(IV)、酸化モリブデン(VI)、モリブデン酸亜鉛(II)、モリブデン酸カリウム、モリブデン酸カルシウム、モリブデン酸コバルト(II)、モリブデン酸セシウム、モリブデン酸ニッケル(II)、モリブデン酸バリウム、モリブデン酸ビスマス(III)、モリブデン酸マグネシウム、モリブデン酸リチウム、パラモリブデン酸リチウム、モリブデン酸ストロンチウム、リンモリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸ナトリウム、モリブデン酸、モリブデン酸アンモニウム、パラモリブデン酸アンモニウム、モリブデン酸ナトリウム等のモリブデン塩等又はモリブデン酸塩等;Wの場合、塩化タングステン(VI)、酸化タングステン酸鉄(III)、塩化タングステン(VI)、オキシ二塩化タングステン、二酸化タングステン、三酸化タングステン、メタタングステン酸、メタタングステン酸アンモニウム、メタタングステン酸ナトリウム、パラタングステン酸、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、タングステン酸亜鉛(II)、タングステン酸カリウム、タングステン酸カルシウム、タングステン酸コバルト(II)、タングステン酸ストロンチウム、タングステン酸、タングステン酸銅(II)、タングステン酸ニッケル、タングステン酸バリウム、タングステン酸マグネシウム、タングステン酸マンガン(II)、タングステン酸リチウム、リンタングセシウムステン酸、リンタングステン酸アンモニウム、リンタングステン酸ナトリウム等のタングステン塩等又はタングステン酸塩等;を挙げることができる。
(2-1-3-1. Supply source)
As a supply source of the metal element (Y), for example, a salt, a complex compound or a metal containing one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W There may be mentioned hydrated oxides. Specifically, in the case of Ti, for example, titanium diammonium oxalate, dipotassium oxybisuccinate, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium oxysulfate, base Titanium phosphate, titanium bromide (IV), metatitanic acid, zinc metatitanate (II), aluminum titanate (III), potassium metatitanate, metatitanium tricobalt (II), zirconium titanate, strontium metatitanate, metatitanium tri Iron (III), copper metatitanate (II), sodium titanate, neodymium dititanate (III), barium metatitanate, bismuth metatitanate, magnesium metatitanate, magnesium titanate, manganese metatitanate (II), Lanthanum dititanate (III), lithium metatitanate, hexafluorotitanium (IV) acid Monium, potassium hexafluorotitanium (IV), titanium iodide (IV), titanium sulfate (III), titanium sulfate (IV), titanium chloride, titanium nitrate, titanyl sulfate, titanium fluoride (III), titanium fluoride ( IV), titanium salts such as hexafluorotitanic acid, titanium lactate, peroxotitanic acid, titanium laurate, titanium acetylacetonate, titanium hydroxide (IV), etc. or titanates, etc .; in the case of Zr, for example, tetrakis (acetyl Acetonato) zirconium (IV), zirconium chloride (IV), zirconium chloride (IV), zirconium silicate, zirconium acetate (IV), zirconium oxide (IV), zirconium nitrate (IV), cesium metazirconate, Lithium metazirconate, zinc metazirconate (II), aluminum metazirconate (III), calcium metazirconate, cobalt (II) metazirconate, strontium metazirconate, copper (II) metazirconate, sodium metazirconate, nickel (II) metazirconate, barium metazirconate, meta Bismuth (III) zirconate, magnesium metazirconate, zirconium oxycarbonate, ammonium hexafluorozirconium (IV), potassium hexafluorozirconium (IV), zirconium iodide, zirconium dihydrogen phosphate (IV), basic Zirconium carbonate, ammonium zirconium carbonate, zirconyl ammonium carbonate, zirconium nitrate, zirconyl nitrate, zirconium (IV) sulfate, zirconyl sulfate, hexafluorozirconic acid, zirconium oxyphosphate Zirconium, zirconium pyrophosphate, zirconyl dihydrogen phosphate, zirconium oxychloride, zirconium fluoride, zirconyl acetate, zirconium oxide, zirconium hydroxide and other zirconium salts; in the case of Hf, tetrakis (acetylacetonato) hafnium (IV), Hafnium chloride (IV), hafnium oxide (IV), hafnium iodide (IV), hafnium sulfate (IV), hafnium nitrate (IV), hafnium oxyoxalate (IV), fluorohafnium acid, fluorohafnate, hafnium fluoride In the case of Nb, niobium oxide (II), niobium oxide (V), penta (hydrogen oxalate) niobium, niobium hydroxide (V), niobium oxyacetylacetonate, metaniobic acid, Calcium metaniobate, strontium metaniobate, metani Niobium salts such as barium oblate, magnesium metaniobate, lithium metaniobate, ammonium metaniobate, sodium metaniobate, niobium pentachloride, etc. or niobate salts; in the case of V, vanadium oxydichloride, vanadium oxytrichloride, trichloride Vanadium, vanadium oxide, iron (III) tetravanadate, vanadium (III) bromide, vanadium oxysuccinate, vanadium iodide (II), vanadium pentoxide, metavanadate, sodium pyrovanadate, sodium vanadate, ammonium metavanadate, Sodium metavanadate, potassium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, vanadium oxysulfate, vanadium oxyacetyl acetate, vanadium acetyl acetate, phosphovanadomolybde Vanadium salt such as acid or vanadate, etc .; chromium; in the case of Cr, chromium (III) formate, chromium (III) fluoride, chromium (III) nitrate, chromium (III) sulfate, chromium (III) oxalate, acetic acid Chromium salts such as chromium (III), chromium biphosphate (III), chromium hydroxide (III), chromium oxide (III), chromium bromide (III), chromium iodide (III), etc .; Acetylacetonato) diaquamanganese (II), trimanganese tetroxide, manganese (II) oxide, manganese (III) oxide, manganese oxide (IV), manganese bromide (II), manganese oxalate (II), permanganate (VII), potassium permanganate (VII), sodium permanganate (VII), manganese dihydrogen phosphate (II), manganese nitrate (II), manganese sulfate (II), manganese sulfate (III), manganese sulfate ( IV), manganese fluoride (II), Manganese salts such as manganese (III), manganese carbonate (II), manganese acetate (II), manganese acetate (III), ammonium manganese sulfate (II), manganese iodide (II), manganese hydroxide (II), etc. or manganic acid In the case of Mo, molybdenum chloride (V), molybdenum oxide (IV), molybdenum oxide (VI), zinc molybdate (II), potassium molybdate, calcium molybdate, cobalt molybdate (II), cesium molybdate , Nickel (II) molybdate, barium molybdate, bismuth molybdate (III), magnesium molybdate, lithium molybdate, lithium paramolybdate, strontium molybdate, phosphomolybdic acid, ammonium phosphomolybdate, sodium phosphomolybdate, Molybdic acid, molybdate ammo Molybdenum salts such as um, ammonium paramolybdate, sodium molybdate, etc. or molybdate, etc .; in the case of W, tungsten chloride (VI), iron tungstate oxide (III), tungsten chloride (VI), tungsten oxydichloride, Tungsten dioxide, tungsten trioxide, metatungstic acid, ammonium metatungstate, sodium metatungstate, paratungstic acid, ammonium paratungstate, sodium paratungstate, zinc tungstate (II), potassium tungstate, calcium tungstate, Cobalt (II) tungstate, strontium tungstate, tungstic acid, copper (II) tungstate, nickel tungstate, barium tungstate, magnesium tungstate, Gusuten manganese (II), lithium tungstate, phosphorus tongue cesium stent acid, ammonium phosphotungstic acid, tungsten salt or tungstate such as sodium phosphotungstic acid; and the like.

<2−2.熱処理前鋼材の製造方法における各ステップ>
熱処理前鋼材の製造方法は、好適には、(ステップ1)炭素鋼を前処理する工程、(ステップ2)易脱スケール性皮膜形成用剤を熱処理前鋼材に接触させて皮膜を形成する工程、を含む。以下、各工程を詳述する。
<2-2. Each step in the manufacturing method of the steel material before heat treatment>
The method for producing the pre-heat treatment steel material preferably includes (Step 1) a step of pretreating carbon steel, (Step 2) a step of bringing an easily-descaleable film forming agent into contact with the pre-heat treatment steel material to form a film, including. Hereinafter, each process is explained in full detail.

{2−2−1.前処理工程}
熱処理前鋼材を構成する炭素鋼上に皮膜を形成するに先立ち、当業界で周知である前処理(例えば、予め脱脂等による炭素鋼の表面清浄化)を実施してもよい。
{2-2-1. Pretreatment process}
Prior to forming a film on the carbon steel constituting the pre-heat treatment steel material, a pre-treatment well known in the art (for example, pre-cleaning of the surface of the carbon steel by degreasing or the like) may be performed.

{2−2−2.皮膜形成工程}
皮膜形成工程としては、(第一の方法)上記金属元素を含む炭素鋼の表面に、酸素を含むガス(例えば、酸素ガス、空気等)中で加熱することにより上記皮膜を形成する方法、(第二の方法)炭素鋼の表面に、易脱スケール性皮膜形成用剤を接触させて、易脱スケール性皮膜形成用剤に含まれるエッチング成分の作用によって炭素鋼表面を清浄化するとともに、化学的反応又は電気的反応によって上記皮膜を形成させる方法、が挙げられる。これらの内、上記皮膜は炭素鋼材の表面において均一であることが望ましいので、この観点からは第二の方法が好適である。 以下、これら二方法を詳述する。
{2-2-2. Film formation process}
As the film forming step, (first method) a method of forming the film by heating the surface of the carbon steel containing the metal element in a gas containing oxygen (for example, oxygen gas, air, etc.) Second method) The surface of the carbon steel is contacted with an agent for forming an easily-descaleable film, and the surface of the carbon steel is cleaned by the action of an etching component contained in the agent for forming an easily-descaleable film. And a method of forming the coating film by a mechanical reaction or an electrical reaction. Among these, it is desirable that the film is uniform on the surface of the carbon steel material, so the second method is preferable from this viewpoint. Hereinafter, these two methods will be described in detail.

まず、第一の方法における加熱は、上記金属元素を含む炭素鋼の表面を酸化することができる温度であれば特に制限されるものではないが、200〜300℃で行うことが好ましい。たとえば、Fe−C−Cr−Moの組成の鋼材(SCM材)を、酸素含有ガス雰囲気にて、少なくとも30分以上、200〜300℃で加熱すると、表面にFeとCr+Moの酸化皮膜が形成される。この酸化皮膜も、700℃以上の熱処理を施すことにより易脱スケール性皮膜となる。   First, the heating in the first method is not particularly limited as long as it is a temperature capable of oxidizing the surface of the carbon steel containing the metal element, but is preferably performed at 200 to 300 ° C. For example, when a steel material (SCM material) having a composition of Fe—C—Cr—Mo is heated at 200 to 300 ° C. for at least 30 minutes in an oxygen-containing gas atmosphere, an oxide film of Fe and Cr + Mo is formed on the surface. The This oxide film also becomes an easily descalable film by heat treatment at 700 ° C. or higher.

次に、第二の方法は、炭素鋼の表面に、上記金属元素を含む易脱スケール性皮膜形成用剤を接触させた後、乾燥して、所定の易脱スケール性皮膜を炭素鋼材の表面に形成する方法である。なお、第二の方法における接触方法として、例えば、浸漬法、スプレー法、ロールコート法、エアスプレー法、エアレススプレー法、電解法(例えば陰極電解法)、又はこれらの方法を組み合わせた方法を採用することができる。また、皮膜形成用剤を接触させた後の炭素鋼材の表面に付着している余剰な易脱スケール性皮膜形成用剤を除去する方法としては、エアナイフ、絞りロール、スプレー水洗、浸漬水洗、又はこれらの方法を組み合わせた方法を採用することができ、これらと乾燥工程を組み合わせ短時間で効率よく炭素鋼材の表面に脱スケール皮膜を形成することも可能である。なお、炭素鋼を皮膜形成用剤に接触させる時の、皮膜形成用剤の温度(液温)は、特に限定されるものではないが、20℃以上50℃以下が好適であり、35℃以上45℃以下が更に好適である。   Next, in the second method, the surface of the carbon steel is brought into contact with the agent for forming an easily descaleable film containing the above metal element, and then dried, and the predetermined easily descaleable film is applied to the surface of the carbon steel material. It is the method of forming. In addition, as a contact method in the second method, for example, a dipping method, a spray method, a roll coating method, an air spray method, an airless spray method, an electrolysis method (for example, a cathode electrolysis method), or a method combining these methods is adopted. can do. In addition, as a method of removing the excessive easily descaleable film forming agent adhering to the surface of the carbon steel material after contacting the film forming agent, air knife, squeeze roll, spray water washing, immersion water washing, or A method combining these methods can be adopted, and it is also possible to efficiently form a descaling film on the surface of the carbon steel material in a short time by combining these and a drying step. The temperature (liquid temperature) of the film-forming agent when carbon steel is brought into contact with the film-forming agent is not particularly limited, but is preferably 20 ° C. or higher and 50 ° C. or lower, and is 35 ° C. or higher. 45 ° C. or lower is more preferable.

≪3.熱処理前鋼材を加熱して熱処理後鋼材を製造する方法≫
次に、本発明に係る熱処理前鋼材を加熱して熱処理後鋼材を製造する方法を説明する。尚、本方法は、熱処理前鋼材を加熱して熱処理後鋼材を製造する際に発生するスケールの除去方法とも捉えることができる。
≪3. Method of manufacturing steel material after heat treatment by heating steel material before heat treatment >>
Next, a method for manufacturing a steel material after heat treatment by heating the steel material before heat treatment according to the present invention will be described. In addition, this method can also be grasped as a method for removing scale generated when a steel material before heat treatment is manufactured by heating the steel material before heat treatment.

<3−1.熱処理工程>
本発明に係る熱処理後鋼材の製造方法は、前記皮膜が形成された熱処理前鋼材を700℃以上で熱処理する工程を含む。ここで、熱処理温度は、700℃以上1350℃以下であることが好適であり、850℃以上1250℃以下であることがより好適であり、900℃以上1000℃以下であることが更に好適である。当該範囲内では、鋼材の溶解を防止しつつ、酸化スケール中に易脱スケール性皮膜が取り込まれることを実現できるからである。尚、加熱温度と保持時間は、鋼の成分や形状や厚さ、目的とする機械的強度によって異なるが、例を挙げるとすれば、焼き入れ処理を行うためには、鋼材をオーステナイト温度域である800〜1000℃の温度に加熱し、1〜120分の時間を保持すればよい。
<3-1. Heat treatment process>
The manufacturing method of the steel material after heat processing which concerns on this invention includes the process of heat-processing at 700 degreeC or more the steel material before heat processing in which the said film | membrane was formed. Here, the heat treatment temperature is preferably 700 ° C. or higher and 1350 ° C. or lower, more preferably 850 ° C. or higher and 1250 ° C. or lower, and further preferably 900 ° C. or higher and 1000 ° C. or lower. . This is because, within this range, it is possible to realize that the easily descaleable film is taken into the oxide scale while preventing the steel material from melting. The heating temperature and holding time vary depending on the steel composition, shape and thickness, and the intended mechanical strength.For example, in order to perform the quenching process, the steel material is kept in the austenite temperature range. What is necessary is just to heat to a certain 800-1000 degreeC temperature, and hold | maintain the time for 1-120 minutes.

ここで、本発明の適応対象となる加熱方式は、特に限定されるものではなく、加熱雰囲気炉、通電加熱処理、高周波誘導加熱を利用した高周波焼き入れとの組み合わせを採用することもできる。また、金属の表面焼き入れとして導入されているレーザー光を使ったレーザー焼き入れも可能である。   Here, the heating method to which the present invention is applied is not particularly limited, and a combination of a heating atmosphere furnace, current heating treatment, and induction hardening using induction heating can also be adopted. Laser quenching using laser light introduced as metal surface quenching is also possible.

また、本発明の適応対象となる熱処理は、真空や不活性ガスを必要としない熱処理において適応される。具体的には、例えば、酸素1体積%以上を含む酸化性雰囲気での熱処理である。また、加熱した部材を金型でプレスし成形した後、金型で急冷することにより焼入れを行う予プレスクエンチ法などの熱間プレス法に対しても本発明は適応される。   The heat treatment to which the present invention is applied is applicable to heat treatment that does not require a vacuum or an inert gas. Specifically, for example, heat treatment in an oxidizing atmosphere containing 1% by volume or more of oxygen. The present invention is also applied to a hot press method such as a pre-press quench method in which a heated member is pressed and molded with a mold and then quenched by quenching with a mold.

更に、冷却方法及び速度についても、鋼の成分や形状や厚さ、目的とする機械的強度によって異なるが、炉冷、空放冷、水冷、冷却剤の噴霧等が挙げられる。例を挙げるとすれば、熱処理後にマルテンサイトを得る焼き入れ処理では、その鋼の臨界冷却速度以上の冷却速度を確保すればよい。本発明の別の態様によれば、上記急冷焼き入れに変えて、成形用金型を用いて熱間プレス成形を行ってもよい。   Furthermore, the cooling method and speed also vary depending on the steel composition, shape and thickness, and the intended mechanical strength, and examples include furnace cooling, air cooling, water cooling, coolant spraying, and the like. For example, in the quenching process for obtaining martensite after the heat treatment, a cooling rate equal to or higher than the critical cooling rate of the steel may be ensured. According to another aspect of the present invention, hot press molding may be performed using a molding die instead of the rapid quenching.

<3−2.スケール除去工程>
本発明に係るスケールの除去方法は、サンドブラスト、ショットブラスト、ウェットブラスト、レーザーピーニング、ホーニング及びグラインダなどの機械的方法と、リン酸洗、硫酸洗、塩酸洗、硝酸洗などの化学的処理方法と、があるが、それらを組み合わせもよい。因みに、投射材や研磨剤を使用せずに、圧縮空気や圧縮水を0.1MPa以上の吐出圧力とするエアブロー、流水洗浄などの方法においても、スケールの除去が可能となる。
<3-2. Scale removal process>
The removal method of scale according to the present invention includes mechanical methods such as sand blasting, shot blasting, wet blasting, laser peening, honing and grinder, and chemical treatment methods such as phosphoric acid washing, sulfuric acid washing, hydrochloric acid washing and nitric acid washing. , But you may combine them. Incidentally, the scale can be removed even in a method such as air blowing or running water cleaning in which compressed air or compressed water is discharged at a pressure of 0.1 MPa or more without using a projection material or an abrasive.

≪鋼材≫
炭素鋼の全質量を基準として炭素の質量%が、0.03%、0.06%、0.1%、0.15%、0.3%、0.45%、0.77%、3.1%、4%である炭素鋼を用いた。
≪Steel material≫
The mass% of carbon based on the total mass of carbon steel is 0.03%, 0.06%, 0.1%, 0.15%, 0.3%, 0.45%, 0.77%, 3 .1% and 4% carbon steel were used.

≪皮膜形成用剤の調製≫
表1−1〜表1−3に示すように、各種原料を表1−1〜表1−3の配合量となるよう水に添加した後、十分撹拌し、処理液1〜102に係る皮膜形成用剤を得た。その際、表1−1〜表1−3に示すpHとなるように酢酸又はアンモニアを用いて調整した。
≪Preparation of film forming agent≫
As shown in Table 1-1 to Table 1-3, various raw materials are added to water so as to have the blending amounts shown in Table 1-1 to Table 1-3, and then sufficiently stirred. A forming agent was obtained. In that case, it adjusted using acetic acid or ammonia so that it might become pH shown in Table 1-1-Table 1-3.

Figure 2018009202
Figure 2018009202

Figure 2018009202
Figure 2018009202

Figure 2018009202
Figure 2018009202

≪熱処理前鋼材の製造≫
表2−1〜表2−3に示すように、40℃に管理された処理液(被膜用形成用剤)1〜102に、各種鋼材を30〜300秒間浸漬させた。尚、浸漬による各種鋼材と皮膜形成用剤との接触時間(浸漬時間)は、表2−1〜表2−3に示す付着量が得られるように調整した。その後、皮膜形成用剤に接触させた各種鋼材を、その鋼材の表面にある皮膜形成用剤が残存しないように充分に水洗し、水切り乾燥させて、熱処理前鋼材1〜132を得た。
≪Manufacture of steel before heat treatment≫
As shown in Tables 2-1 to 2-3, various steel materials were immersed for 30 to 300 seconds in the treatment liquid (film forming agent) 1 to 102 managed at 40 ° C. In addition, the contact time (immersion time) between various steel materials and the film-forming agent by immersion was adjusted so that the adhesion amounts shown in Table 2-1 to Table 2-3 were obtained. Thereafter, the various steel materials brought into contact with the film-forming agent were sufficiently washed with water so as not to leave the film-forming agent on the surface of the steel material, and then drained and dried to obtain pre-heat treatment steel materials 1-132.

≪熱処理後鋼材の製造≫
表2−1〜表2−3に示す条件にて、熱処理前鋼材1〜132を加熱し、熱処理後鋼材を得た。
≪Manufacture of steel after heat treatment≫
Under the conditions shown in Tables 2-1 to 2-3, the steel materials 1 to 132 before heat treatment were heated to obtain steel materials after heat treatment.

≪評価項目及び評価手法≫
<外観評価(エアブローによる易脱スケール除去性評価)>
(評価手法)
エアブロアーを用い、5.5KPaの吐出圧力で30秒間、熱処理後鋼材にエアブローを行った。熱処理後鋼材表面のスケール除去面積率を計測し、以下の判断基準に基づき、易脱スケール除去性を以下の評価基準に基づき評価した。×以外の評価であれば、実用性能である。
(評価基準)
◎ :スケール除去面積率99%以上
〇+:スケール除去面積率95%以上99%未満で、かつ素地が白色
〇−:スケール除去面積率95%以上99%未満で、かつ素地が白色以外(黒色又は灰色)
△ :スケール除去面積率90%以上95%未満
× :スケール除去面積率90%未満
≪Evaluation items and methods≫
<Appearance evaluation (Easy descalability evaluation by air blow)>
(Evaluation method)
Using an air blower, the steel material was air blown for 30 seconds at a discharge pressure of 5.5 KPa for 30 seconds. After heat treatment, the scale removal area ratio of the steel material surface was measured, and the easy descalability was evaluated based on the following evaluation criteria based on the following criteria. If the evaluation is other than x, it is a practical performance.
(Evaluation criteria)
◎: Scale removal area ratio 99% or more ○ +: Scale removal area ratio 95% or more and less than 99% and the base is white ○ −: Scale removal area ratio 95% or more and less than 99% and the base is other than white (black Or gray)
Δ: Scale removal area ratio of 90% or more and less than 95% ×: Scale removal area ratio of less than 90%

<易脱スケール性皮膜形成用剤の使いやすさ評価>
(評価手法)
表1−1〜表1−3に示す易脱スケール性皮膜形成用剤を調製した後、6時間経過後の液外観を沈殿の有無として目視観察した。更に、表1−1〜表1−3に示す易脱スケール性皮膜形成用剤の調製直後と調製24時間後における金属元素(Y)の合計付着量の変化量(%)を、皮膜形成条件(温度40℃、浸漬時間300秒)にて作成した熱処理前鋼材を用いて、下記の式Aから算出した。易脱スケール性皮膜形成用剤の使いやすさを、以下の評価基準に基づき評価した。×以外の評価であれば、実用性能である。
(式A)
金属元素(Y)の付着合計量の変化量(%)={皮膜形成用剤の調整直後における金属元素(Y)の付着合計量(mg/m)−皮膜形成用剤の調整24時間後における金属元素(Y)の付着合計量(mg/m)}/皮膜形成用剤の調整直後における金属元素(Y)の付着合計量(mg/m)×100
(評価基準)
◎:沈殿なし、かつ金属元素(Y)の付着合計量の変化量5%未満
○:沈殿なし、かつ金属元素(Y)の付着合計量の変化量5%以上
△:沈殿あり、かつ金属元素(Y)の付着合計量の変化量10%未満
×:沈殿あり、かつ金属元素(Y)の付着合計量の変化量10%以上(皮膜形成用剤の調製後24時間における液の性状が悪いため、熱処理前鋼材の作成ができず、評価できなかった場合を含む)
<易脱スケール性皮膜形成用剤に加工負荷をかけたときの安定性評価>
表1−1〜表1−3に示す易脱スケール性皮膜形成用剤を調整した後、皮膜形成用剤1000ml当たり、炭素量含有量0.3%の鋼材を、その表裏を含む表面積として180cm相当分を、皮膜形成用剤に浸漬し、恒温槽に保管(60℃で、2hr)させてから、以下の評価基準に基づき評価した。×以外の評価であれば、実用性能である。

◎ :易脱スケール性皮膜形成剤の液外観に変化なし、かつ、皮膜形成用剤のpHの変化が1.0未満
○ :易脱スケール性皮膜形成剤の液外観に変化なし、かつ、皮膜形成用剤のpHの変化が1.0以上2.0未満
△+:易脱スケール性皮膜形成剤の液外観に変化なし、かつ、皮膜形成用剤のpHの変化が2.0以上
△−:易脱スケール性皮膜形成剤の液外観に変化あり(懸濁と沈殿物あり)、かつ、皮膜形成用剤のpH変化が2.0未満
× :易脱スケール性皮膜形成剤の液外観に変化あり(懸濁と沈殿物あり)、かつ、皮膜形成用剤のpH変化が2.0以上
<Evaluation of ease-of-use of easily descalable film-forming agent>
(Evaluation method)
After preparing the easily-descaleable film-forming agent shown in Table 1-1 to Table 1-3, the liquid appearance after 6 hours was visually observed as the presence or absence of precipitation. Furthermore, the change amount (%) of the total adhesion amount of the metal element (Y) immediately after the preparation of the agent for forming an easily-descaleable film shown in Table 1-1 to Table 1-3 and 24 hours after the preparation, Using the steel material before heat treatment prepared at (temperature 40 ° C., immersion time 300 seconds), it was calculated from the following formula A. The ease of use of the easily descalable film-forming agent was evaluated based on the following evaluation criteria. If the evaluation is other than x, it is a practical performance.
(Formula A)
Change amount (%) of total adhesion amount of metal element (Y) = {Total adhesion amount of metal element (Y) immediately after adjustment of film forming agent (mg / m 2 ) −After 24 hours of adjustment of film forming agent Total amount of metal element (Y) deposited (mg / m 2 )} / Total amount of metal element (Y) deposited immediately after adjustment of the film-forming agent (mg / m 2 ) × 100
(Evaluation criteria)
◎: No precipitation and change in total amount of adhesion of metal element (Y) less than 5% ○: No precipitation and change in total amount of adhesion of metal element (Y) 5% or more Δ: Precipitation and metal element Less than 10% change in the total amount of (Y) adhesion x: Precipitation and more than 10% change in the total amount of adhesion of the metal element (Y) (The liquid properties are poor 24 hours after the preparation of the film-forming agent) (This includes cases where the steel material before heat treatment could not be created and evaluated.)
<Stability evaluation when processing load is applied to the agent for forming an easily descalable film>
After adjusting the easily-descaleable film-forming agent shown in Table 1-1 to Table 1-3, a steel material having a carbon content of 0.3% per 1000 ml of the film-forming agent is 180 cm as the surface area including the front and back surfaces. A portion corresponding to 2 was immersed in a film-forming agent and stored in a thermostatic bath ( 2 hours at 60 ° C.), and then evaluated based on the following evaluation criteria. If the evaluation is other than x, it is a practical performance.

◎: No change in liquid appearance of easy-scalable film-forming agent, and change in pH of film-forming agent is less than 1.0 ○: No change in liquid appearance of easily-descaleable film-forming agent, and film Change in pH of the forming agent is 1.0 or more and less than 2.0 Δ +: No change in the liquid appearance of the easily descalable film forming agent, and change in pH of the film forming agent is 2.0 or more Δ− : There is a change in the liquid appearance of the easily-descaleable film-forming agent (with suspension and precipitate), and the pH change of the film-forming agent is less than 2.0 x: There is a change (with suspension and precipitate), and the pH change of the film-forming agent is 2.0 or more

Figure 2018009202
Figure 2018009202

Figure 2018009202
Figure 2018009202

Figure 2018009202
Figure 2018009202

Claims (10)

炭素鋼の表面に皮膜を有する熱処理前鋼材において、
前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有し、
前記皮膜が、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有し、且つ
前記金属元素(Y)の付着合計量が1〜100mg/mであって、
前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が、0.01〜0.5の範囲であることを特徴とする熱処理前鋼材。
In steel materials before heat treatment having a coating on the surface of carbon steel,
The carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel,
The film is composed of one or more metal elements (X) selected from Fe, Ni and Co and one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. And the total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 ,
(X) / (Y), which is a mass ratio of the metal element (X) to the metal element (Y), is in the range of 0.01 to 0.5, and is a steel material before heat treatment.
熱処理前鋼材の製造方法において、
前記熱処理前鋼材が、炭素鋼の表面に皮膜を有し、
前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有し、
前記皮膜が、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有し、且つ
前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲であり、
前記製造方法が、
Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とエッチング成分とを含有する剤を前記炭素鋼に接触させることにより前記皮膜を形成する工程を含む
ことを特徴とする、熱処理前鋼材の製造方法。
In the method of manufacturing a steel material before heat treatment,
The pre-heat treatment steel material has a film on the surface of carbon steel,
The carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel,
The film is composed of one or more metal elements (X) selected from Fe, Ni and Co and one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. ) And the total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and is the mass ratio of the metal element (X) and the metal element (Y) (X) / (Y) is in the range of 0.01 to 0.5,
The manufacturing method is
Forming the film by bringing the carbon steel into contact with an agent containing one or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W and an etching component The manufacturing method of the steel materials before heat processing characterized by including the process to carry out.
熱処理後鋼材の製造方法において、
0.06質量%以上の炭素を含有する炭素鋼の表面に、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有する皮膜であって、前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲である皮膜を形成し、熱処理前鋼材を得る工程と、
前記熱処理前鋼材を700℃以上で熱処理する工程と
を含むことを特徴とする熱処理後鋼材の製造方法。
In the method for manufacturing a steel material after heat treatment,
At least one metal element (X) selected from Fe, Ni and Co and Ti, Zr, Hf, Nb, V, Cr, Mn, and Mo are formed on the surface of carbon steel containing 0.06% by mass or more of carbon. And one or more metal elements (Y) selected from W, the total amount of the metal elements (Y) deposited is 1 to 100 mg / m 2 , and the metal elements (X) Forming a film in which (X) / (Y), which is a mass ratio between the metal element (Y) and 0.01 to 0.5, and obtaining a steel material before heat treatment,
And a step of heat-treating the steel material before heat treatment at 700 ° C. or higher.
スケールの除去方法において、
炭素鋼の表面に、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有する皮膜を形成し、熱処理前鋼材を得る工程と、
前記熱処理前鋼材を700℃以上で加熱し、熱処理後鋼材を得る工程と、
前記熱処理後鋼材上に付着したスケールを除去する工程と
を含むことを特徴とするスケールの除去方法。
In the scale removal method,
One or more metal elements (X) selected from Fe, Ni and Co and one or more metal elements selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W on the surface of carbon steel Forming a film containing (Y) and obtaining a steel material before heat treatment;
Heating the steel material before heat treatment at 700 ° C. or higher to obtain a steel material after heat treatment;
Removing the scale adhered on the steel material after the heat treatment.
前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有する、請求項4記載のスケールの除去方法。   The scale removal method according to claim 4, wherein the carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel. 前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲である、請求項4又は5記載のスケールの除去方法。 The total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and the mass ratio of the metal element (X) and the metal element (Y) is (X) / (Y) is 0. The method for removing a scale according to claim 4 or 5, which is in a range of 01 to 0.5. 熱処理前鋼材を700℃以上に加熱して熱処理後鋼材を得る際、前記加熱に先立って、前記熱処理前鋼材を構成する炭素鋼上に易脱スケール性皮膜を形成させるために使用される剤であって、
Ti,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)と、
エッチング成分と
を有することを特徴とする、易脱スケール性皮膜形成用剤。
When the steel material before heat treatment is heated to 700 ° C. or higher to obtain a steel material after heat treatment, prior to the heating, an agent used for forming an easily descaleable film on the carbon steel constituting the steel material before heat treatment. There,
One or more metal elements (Y) selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W;
An easily-descaleable film-forming agent characterized by comprising an etching component.
前記易脱スケール性皮膜が、Fe,Ni及びCoから選ばれる1種以上の金属元素(X)とTi,Zr,Hf,Nb,V,Cr,Mn,Mo及びWから選ばれる1種以上の金属元素(Y)とを含有する、請求項7記載の易脱スケール性皮膜形成用剤。   The easily descalable film is one or more metal elements (X) selected from Fe, Ni and Co, and one or more metals selected from Ti, Zr, Hf, Nb, V, Cr, Mn, Mo and W. The agent for easily descaleable film formation according to claim 7, comprising a metal element (Y). 前記炭素鋼が、前記炭素鋼の全質量を基準として0.06質量%以上の炭素を含有する、請求項7又は8記載の易脱スケール性皮膜形成用剤。   The easily-descaleable film-forming agent according to claim 7 or 8, wherein the carbon steel contains 0.06% by mass or more of carbon based on the total mass of the carbon steel. 前記金属元素(Y)の付着合計量が1〜100mg/mであって、前記金属元素(X)と前記金属元素(Y)との質量比である(X)/(Y)が0.01〜0.5の範囲である、請求項8又は9記載の易脱スケール性皮膜形成用剤。

The total adhesion amount of the metal element (Y) is 1 to 100 mg / m 2 , and the mass ratio of the metal element (X) and the metal element (Y) is (X) / (Y) is 0. The easily-descaleable film-forming agent according to claim 8 or 9, which is in the range of 01 to 0.5.

JP2016136963A 2016-07-11 2016-07-11 Pre-heat treatment carbon steel with excellent scale removal properties, post-heat treatment carbon steel and their manufacturing methods, scale removal methods and easily descalable film forming agents Active JP6757194B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016136963A JP6757194B2 (en) 2016-07-11 2016-07-11 Pre-heat treatment carbon steel with excellent scale removal properties, post-heat treatment carbon steel and their manufacturing methods, scale removal methods and easily descalable film forming agents
CN201710541963.6A CN107604135B (en) 2016-07-11 2017-07-05 Carbon steel material before heat treatment having excellent scale removal property, carbon steel material after heat treatment, and method for producing same
KR1020170086089A KR102222258B1 (en) 2016-07-11 2017-07-06 Carbon steel material before heat treatment and carbon steel material after heat treatment having excellent scale removability and method for preparing the same, method for removing scale, and film forming agent easy to remove scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136963A JP6757194B2 (en) 2016-07-11 2016-07-11 Pre-heat treatment carbon steel with excellent scale removal properties, post-heat treatment carbon steel and their manufacturing methods, scale removal methods and easily descalable film forming agents

Publications (2)

Publication Number Publication Date
JP2018009202A true JP2018009202A (en) 2018-01-18
JP6757194B2 JP6757194B2 (en) 2020-09-16

Family

ID=60995142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136963A Active JP6757194B2 (en) 2016-07-11 2016-07-11 Pre-heat treatment carbon steel with excellent scale removal properties, post-heat treatment carbon steel and their manufacturing methods, scale removal methods and easily descalable film forming agents

Country Status (3)

Country Link
JP (1) JP6757194B2 (en)
KR (1) KR102222258B1 (en)
CN (1) CN107604135B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139374A (en) * 2020-01-06 2020-05-12 有研工程技术研究院有限公司 Multilayer annular element for absorbing and desorbing hydrogen and absorbing impurity gas and preparation method thereof
CN114888090A (en) * 2022-05-16 2022-08-12 湖北腾升科技股份有限公司 High-hardness high-nickel-chromium-molybdenum composite roll structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952096A (en) * 2019-12-25 2020-04-03 南京派诺金属表面处理技术有限公司 Carbon steel surface decarbonizer and decarbonization process thereof
KR102542473B1 (en) * 2021-09-14 2023-06-14 한국전력공사 Manufacturing method for nickel base superally sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547318A (en) * 1978-10-02 1980-04-03 Nippon Steel Corp Pretreating method for annealing of cr stainless steel
JPH02263987A (en) * 1988-12-07 1990-10-26 Nippon Fueroo Kk Composition for removing scale
JPH03232922A (en) * 1990-02-07 1991-10-16 Chugoku Marine Paints Ltd Scale modifier easy of peeling for ferrous slab
JP2008038220A (en) * 2006-08-09 2008-02-21 Nippon Parkerizing Co Ltd Steel member hardening method, hardened steel member and protective agent of hardened surface
JP2009280889A (en) * 2008-05-26 2009-12-03 Nippon Parkerizing Co Ltd Aquaous surface-treatment agent, pretreatment method for precoating metallic material, manufacturing method for precoating metallic material, and precoating metallic material
JP2010111898A (en) * 2008-11-05 2010-05-20 Nippon Parkerizing Co Ltd Chemical conversion-treated metal sheet and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125210A (en) * 1977-04-07 1978-11-01 Kobe Steel Ltd Preparation of steel material having small amount of scale
JPH02205622A (en) 1989-02-06 1990-08-15 Nissan Chem Ind Ltd Paint for preventing high-temperature decarburization of carbon steel
JP4306411B2 (en) 2003-10-31 2009-08-05 住友金属工業株式会社 Steel plate for heat treatment and its manufacturing method
JP5328545B2 (en) * 2009-07-31 2013-10-30 日本パーカライジング株式会社 Steel member having nitrogen compound layer and method for producing the same
JP4980471B1 (en) * 2011-01-07 2012-07-18 株式会社神戸製鋼所 Steel wire rod and manufacturing method thereof
CN103962410B (en) * 2013-01-24 2016-08-24 宝钢特钢有限公司 A kind of manufacture method of siliceous stainless steel seamless pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547318A (en) * 1978-10-02 1980-04-03 Nippon Steel Corp Pretreating method for annealing of cr stainless steel
JPH02263987A (en) * 1988-12-07 1990-10-26 Nippon Fueroo Kk Composition for removing scale
JPH03232922A (en) * 1990-02-07 1991-10-16 Chugoku Marine Paints Ltd Scale modifier easy of peeling for ferrous slab
JP2008038220A (en) * 2006-08-09 2008-02-21 Nippon Parkerizing Co Ltd Steel member hardening method, hardened steel member and protective agent of hardened surface
JP2009280889A (en) * 2008-05-26 2009-12-03 Nippon Parkerizing Co Ltd Aquaous surface-treatment agent, pretreatment method for precoating metallic material, manufacturing method for precoating metallic material, and precoating metallic material
JP2010111898A (en) * 2008-11-05 2010-05-20 Nippon Parkerizing Co Ltd Chemical conversion-treated metal sheet and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139374A (en) * 2020-01-06 2020-05-12 有研工程技术研究院有限公司 Multilayer annular element for absorbing and desorbing hydrogen and absorbing impurity gas and preparation method thereof
CN114888090A (en) * 2022-05-16 2022-08-12 湖北腾升科技股份有限公司 High-hardness high-nickel-chromium-molybdenum composite roll structure
CN114888090B (en) * 2022-05-16 2024-05-07 湖北腾升科技股份有限公司 High-hardness high-nickel-chromium-molybdenum composite roller structure

Also Published As

Publication number Publication date
KR20180006854A (en) 2018-01-19
KR102222258B1 (en) 2021-03-04
CN107604135B (en) 2020-11-10
JP6757194B2 (en) 2020-09-16
CN107604135A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
KR102222258B1 (en) Carbon steel material before heat treatment and carbon steel material after heat treatment having excellent scale removability and method for preparing the same, method for removing scale, and film forming agent easy to remove scale
EP2280094B1 (en) Metallic material and manufacturing method thereof
JP3784400B1 (en) Chemical conversion solution for metal and processing method
JP3392008B2 (en) Metal protective film forming treatment agent and treatment method
JP4762077B2 (en) Hardening method of steel member, hardened steel member and hardened surface protective agent
JP2008081812A (en) Method for coating ceramic film on metal, electrolytic solution used for the method, ceramic film and metallic material
JPS61231188A (en) Method for controlling aluminum surface cleaning agent
JPS5837391B2 (en) Method for manufacturing cold-rolled steel sheet with excellent phosphate treatment properties
KR20100102619A (en) Zirconium phosphating of metal components, in particular iron
US2250508A (en) Treating zinc with organic acids
KR101714292B1 (en) Methods for treating a ferrous metal substrate
EP3330016B1 (en) Method for producing hot-pressed member
EP3631043B1 (en) A coated metallic substrate and fabrication method
JP6642774B1 (en) Sn-plated steel sheet and method for producing Sn-plated steel sheet
JPH0488176A (en) Galvanized steel sheet excellent in weldability, workability in pressing and chemical convertibility
JP2017048449A (en) Surface treatment agent, surface treatment method, and surface treated metal material
JP5593532B2 (en) Chemical conversion aqueous solution for forming a chromium-free conversion coating on zinc or zinc alloy plating and a chromium-free conversion coating obtained therefrom
JP2009248763A (en) Manufacturing method of aluminum wheel, and aluminum wheel
JP2021105200A (en) Metal surface treatment agent, metal material having film and method for manufacturing the same
JP2007319898A (en) Manufacturing method of wire having dissimilar section
KR102500481B1 (en) Preparing method for cold rolled steel sheet with excellent in phosphate treatment property and cold rolled steel sheet with excellent in phosphate treatment property
Baudrand Conversion coatings for aluminum and magnesium
KR101940459B1 (en) Method for heat treating of metal priducts
JP3426408B2 (en) Manufacturing equipment for electro-galvanized cold-rolled steel sheets with excellent lubricity
JP2952835B2 (en) Manufacturing method of galvanized steel sheet with excellent weldability, pressability and chemical conversion treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200828

R150 Certificate of patent or registration of utility model

Ref document number: 6757194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250