JP2017048449A - Surface treatment agent, surface treatment method, and surface treated metal material - Google Patents

Surface treatment agent, surface treatment method, and surface treated metal material Download PDF

Info

Publication number
JP2017048449A
JP2017048449A JP2015175129A JP2015175129A JP2017048449A JP 2017048449 A JP2017048449 A JP 2017048449A JP 2015175129 A JP2015175129 A JP 2015175129A JP 2015175129 A JP2015175129 A JP 2015175129A JP 2017048449 A JP2017048449 A JP 2017048449A
Authority
JP
Japan
Prior art keywords
surface treatment
chemical conversion
film
iron
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015175129A
Other languages
Japanese (ja)
Other versions
JP6566798B2 (en
Inventor
英一 福士
Hidekazu Fukushi
英一 福士
淳 高見
Atsushi Takami
淳 高見
迫 良輔
Ryosuke Sako
良輔 迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2015175129A priority Critical patent/JP6566798B2/en
Priority to PCT/JP2016/073728 priority patent/WO2017038431A1/en
Priority to TW105126736A priority patent/TW201715082A/en
Publication of JP2017048449A publication Critical patent/JP2017048449A/en
Application granted granted Critical
Publication of JP6566798B2 publication Critical patent/JP6566798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel surface treatment agent capable of forming a coating film on any type of targeted metal materials, the coating film having an excellent corrosion resistance and film adhesion, a surface treatment method forming a coating film on the metal material using the surface treatment agent, and a surface treated metal material having the coating film formed by the method on the surface.SOLUTION: A surface treatment agent of PH 2 - 6 including at least one type of an anionic fluoro iron (III)complex compound ion (A) represented by an equation (I). The surface treatment agent including at least one type of metals selected from Zr Ti, Hf, Bi, Al, Mg, Zn, Ce, Y, In, Mn, W, Mo, and V, and further including water soluble or water dispersible resin of less than 1 mass% based on a total mass of the surface treatment agent. [3<n≤6, 0≤m<3, i=[6-(n+m)]/Z, i≥0, X is a ligand capable of coordinating with iron, and Z is a number of a conformation of the ligand X].SELECTED DRAWING: None

Description

本発明は、金属材料の表面に皮膜を形成させる表面処理剤、該表面処理剤を用いて金属材料の表面に皮膜を形成する表面処理方法、及び該方法によって形成された皮膜を表面に有する皮膜付き金属材料(以下、「表面処理金属材料」と称する。)に関する。   The present invention relates to a surface treatment agent for forming a film on the surface of a metal material, a surface treatment method for forming a film on the surface of a metal material using the surface treatment agent, and a film having a film formed by the method on the surface. The present invention relates to an attached metal material (hereinafter referred to as “surface-treated metal material”).

金属材料上に対して耐食性付与を目的とした化成処理が古くから実施されてきている。この化成処理とは、化成処理液と称される化学薬品に金属材料を接触させ、当該金属材料表面に化成皮膜を形成させることである。一般的な化成処理としては、例えば、特許文献1及び2等の、ジルコニウム化成処理、チタン化成処理、ハフニウム化成処理、バナジウム化成処理等が知られている。   Chemical conversion treatment for the purpose of imparting corrosion resistance to metal materials has been practiced for a long time. This chemical conversion treatment is to bring a metal material into contact with a chemical called a chemical conversion treatment solution to form a chemical conversion film on the surface of the metal material. As general chemical conversion treatments, for example, zirconium chemical conversion treatment, titanium chemical conversion treatment, hafnium chemical conversion treatment, vanadium chemical conversion treatment, and the like disclosed in Patent Documents 1 and 2 are known.

特開2000−199077号公報JP 2000-199077 A 特開2004−218073号公報JP 2004-218073 A

本発明は、対象金属材料種を問わず、耐食性及び塗膜密着性に優れた皮膜を金属材料の表面に形成することができる新規表面処理剤、該表面処理剤を用いて金属材料の表面に皮膜を形成する表面処理方法、及び該方法によって形成された皮膜を表面に有する表面処理金属材料を提供することを目的とする。   The present invention is a novel surface treatment agent capable of forming a film excellent in corrosion resistance and coating film adhesion on the surface of a metal material regardless of the target metal material type, and the surface of the metal material using the surface treatment agent. It is an object of the present invention to provide a surface treatment method for forming a film and a surface-treated metal material having a film formed on the surface by the method.

上記課題を解決するために研究を重ねた結果、下記発明に至った。
即ち、本発明は、
(1)下記式(I)で示されるアニオン性フルオロ鉄(III)錯化合物イオン(A)の少なくとも1種を含有するpH2以上6以下の表面処理剤:

Figure 2017048449
ここで、3<n≦6、0≦m<3、i=[6−(n+m)]/Z、i≧0、Xは鉄に配位可能な配位子、Zは配位子Xの座数である;
(2)Zr、Ti、Hf、Bi、Al、Mg、Zn、Ce、Y、In、Mn、W、Mo及びVから選ばれる少なくとも1種の金属成分(B)をさらに含有する上記(1)に記載の表面処理剤;
(3)水溶性又は水分散性の樹脂(C)を前記表面処理剤の全質量を基準として0質量%超1質量%未満でさらに含有する上記(1)又は(2)に記載の表面処理剤;
(4)Cu、Sn及びCoから選ばれる少なくとも1種の金属成分を0mmol/L超0.01mmol/L未満でさらに含有する上記(1)〜(3)のいずれかに記載の表面処理剤;
(5)界面活性剤をさらに含有する上記(1)〜(4)のいずれかに記載の表面処理剤;
(6)上記(1)〜(5)のいずれかに記載の表面処理剤を金属表面に接触させる接触工程を含む表面処理方法;
(7)上記(6)に記載の接触工程後に、リン酸塩化成皮膜を形成させるリン酸塩化成皮膜形成工程をさらに含む、表面処理方法;
(8)上記(6)に記載の接触工程後に、あるいは、上記(7)に記載のリン酸塩化成皮膜形成工程後に、ジルコニウム化成皮膜を形成させるジルコニウム化成皮膜形成工程、チタン化成皮膜を形成させるチタン化成皮膜形成工程、ハフニウム化成皮膜を形成させるハフニウム化成皮膜形成工程、又はバナジウム化成皮膜を形成させるバナジウム化成皮膜形成工程をさらに含む、表面処理方法;
(9)上記(6)〜(8)のいずれかに記載の表面処理方法により得られた表面処理金属材料;
等である。 As a result of researches to solve the above problems, the inventors have reached the following invention.
That is, the present invention
(1) A surface treating agent having a pH of 2 or more and 6 or less containing at least one of the anionic fluoroiron (III) complex compound ions (A) represented by the following formula (I):
Figure 2017048449
Here, 3 <n ≦ 6, 0 ≦ m <3, i = [6- (n + m)] / Z, i ≧ 0, X is a ligand capable of coordinating to iron, Z is a ligand X The number of seats;
(2) The above (1) further containing at least one metal component (B) selected from Zr, Ti, Hf, Bi, Al, Mg, Zn, Ce, Y, In, Mn, W, Mo and V A surface treatment agent according to claim 1;
(3) Surface treatment as described in said (1) or (2) which further contains water-soluble or water-dispersible resin (C) in more than 0 mass% and less than 1 mass% on the basis of the total mass of the said surface treating agent. Agent;
(4) The surface treatment agent according to any one of the above (1) to (3), further containing at least one metal component selected from Cu, Sn, and Co in an amount of more than 0 mmol / L and less than 0.01 mmol / L;
(5) The surface treatment agent according to any one of (1) to (4), further containing a surfactant;
(6) A surface treatment method including a contact step of bringing the surface treatment agent according to any one of (1) to (5) into contact with a metal surface;
(7) A surface treatment method further comprising a phosphate conversion film forming step of forming a phosphate conversion film after the contact step according to (6) above;
(8) A zirconium chemical conversion film forming step for forming a zirconium chemical conversion film, or a titanium chemical conversion film is formed after the contacting step described in (6) above or after the phosphate chemical conversion film forming step described in (7) above. A surface treatment method further comprising a titanium chemical conversion film forming step, a hafnium chemical conversion film forming step of forming a hafnium chemical conversion coating, or a vanadium chemical conversion coating forming step of forming a vanadium chemical conversion coating;
(9) A surface-treated metal material obtained by the surface treatment method according to any one of (6) to (8) above;
Etc.

本発明によれば、対象金属材料種を問わず、耐食性及び塗膜密着性に優れた皮膜を金属材料の表面に形成することができる新規表面処理剤、該表面処理剤を用いて金属材料の表面に皮膜を形成する表面処理方法、及び該方法によって形成された皮膜を表面に有する表面処理金属材料を提供することができる。   According to the present invention, regardless of the target metal material type, a novel surface treatment agent capable of forming a film excellent in corrosion resistance and coating film adhesion on the surface of the metal material, and using the surface treatment agent, A surface treatment method for forming a film on the surface, and a surface-treated metal material having a film formed on the surface by the method can be provided.

以下、本発明をより詳細に説明する。なお、本発明の技術的範囲は該形態に限定されるものではない。以下、本発明に係る表面処理剤、本発明に係る表面処理剤の製造方法、該表面処理剤を用いて金属材料の表面に皮膜を形成する表面処理方法、及び該方法によって形成された皮膜を表面に有する表面処理金属材料を順に説明することとする。   Hereinafter, the present invention will be described in more detail. The technical scope of the present invention is not limited to this form. Hereinafter, a surface treatment agent according to the present invention, a method for producing the surface treatment agent according to the present invention, a surface treatment method for forming a film on the surface of a metal material using the surface treatment agent, and a film formed by the method. The surface-treated metal material on the surface will be described in order.

≪表面処理剤≫
本発明に係る表面処理剤は、上記式(I)で示されるアニオン性フルオロ鉄(III)錯化合物イオン(A)の少なくとも1種を含有する。なお、式(I)中の、「n」は3超6以下であり、「m」は0以上3未満であり、「X」は鉄に配位可能な配位子を示し、「i」は0以上であって、かつ、[6−(n+m)]/Zである(Zは、配位子Xの座数である。)。なお、本発明に係る表面処理剤のpHは、2以上6以下である。
≪Surface treatment agent≫
The surface treating agent according to the present invention contains at least one anionic fluoroiron (III) complex compound ion (A) represented by the above formula (I). In the formula (I), “n” is more than 3 and 6 or less, “m” is 0 or more and less than 3, “X” represents a ligand capable of coordinating with iron, and “i” Is 0 or more and [6- (n + m)] / Z (Z is the dentate of the ligand X). The pH of the surface treatment agent according to the present invention is 2 or more and 6 or less.

本発明に係る表面処理剤は、上記式(I)で示されるアニオン性フルオロ鉄(III)錯化合物イオン(A)の少なくとも1種を含有すれば特に制限されるものではなく、必要に応じ、他の成分を含ませてもよい。他の成分としては、例えば、金属成分、水溶性又は水分散性の樹脂、界面活性剤等を挙げることができる。以下、他の成分について説明する。   The surface treatment agent according to the present invention is not particularly limited as long as it contains at least one kind of the anionic fluoroiron (III) complex compound ion (A) represented by the above formula (I). Other components may be included. Examples of other components include metal components, water-soluble or water-dispersible resins, and surfactants. Hereinafter, other components will be described.

(金属成分(B))
本発明に係る表面処理剤に配合させる金属成分(B)としては、例えば、Zr、Ti、Hf、Bi、Al、Mg、Zn、Ce、Y、In、Mn、W、Mo及びVから選ばれる少なくとも1種を挙げることができる。これらのうち、2種の金属成分をさらに含有させる場合、2種の金属成分の組み合わせとしては、例えば、ZrとAl、ZrとBi、ZrとW、ZrとCe、TiとV、TiとZr、ZnとAl、BiとCe、又はZnとMnを挙げることができる。これらの金属成分(B)を含有する場合、その濃度(金属量)は0.01g/L以上であることが好ましく、0.05g/L以上であることがより好ましい。なお、金属成分の濃度は、5.0g/L以下であることが好ましく、2.0g/L以下であることがより好ましい。当該範囲にて金属成分(B)が存在する場合、耐食性及び塗膜密着性がより向上する。
(Metal component (B))
As a metal component (B) mix | blended with the surface treating agent which concerns on this invention, it selects from Zr, Ti, Hf, Bi, Al, Mg, Zn, Ce, Y, In, Mn, W, Mo, and V, for example. At least one can be mentioned. Among these, when two kinds of metal components are further contained, the combination of the two kinds of metal components includes, for example, Zr and Al, Zr and Bi, Zr and W, Zr and Ce, Ti and V, Ti and Zr. Zn and Al, Bi and Ce, or Zn and Mn. When these metal components (B) are contained, the concentration (metal amount) is preferably 0.01 g / L or more, and more preferably 0.05 g / L or more. In addition, it is preferable that the density | concentration of a metal component is 5.0 g / L or less, and it is more preferable that it is 2.0 g / L or less. When a metal component (B) exists in the said range, corrosion resistance and coating-film adhesiveness improve more.

上記金属成分(B)の供給源としては、例えば、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、硫酸ジルコニウムナトリウム、硫酸ジルコニウムカリウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、硝酸ジルコニウムナトリウム、硝酸ジルコニウムカリウム、フルオロジルコニウム酸、フルオロジルコニウム錯塩、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、酢酸ジルコニル、乳酸ジルコニル等のジルコニウム化合物、硫酸チタン、オキシ硫酸チタン、硫酸チタンアンモニウム、硝酸チタン、オキシ硝酸チタン、硝酸チタンアンモニウム、フルオロチタン酸、フルオロチタン錯塩、チタンラクテート、チタンアセチルアセトネート等のチタン化合物、リン酸ハフニウム、硫酸ハフニウム、ケイ酸ハフニウム、炭化ハフニウム、塩化ハフニウム、フッ化ハフニウム、酸化ハフニウム等のハフニウム化合物、硫酸ビスマス、硝酸ビスマス、乳酸ビスマス、水酸化ビスマス、酸化ビスマス、酢酸ビスマス、三フッ化ビスマス、バナジン酸ビスマス、メタンスルホン酸ビスマス等のビスマス化合物、硫酸アルミニウム、硝酸アルミニウム、水酸化アルミニウム、リン酸アルミニウム、フッ化アルミニウム、炭酸アルミニウム、酸化アルミニウム等のアルミニウム化合物、硫酸マグネシウム、硝酸マグネシウム、水酸化マグネシウム、塩化マグネシウム、酢酸マグネシウム、酸化マグネシウム等のマグネシウム化合物、硫酸亜鉛、硝酸亜鉛、水酸化亜鉛、リン酸亜鉛、酢酸亜鉛、酸化亜鉛、フッ化亜鉛、塩化亜鉛等の亜鉛化合物、硫酸セリウム、硝酸セリウム、フッ化セリウム、炭酸セリウム、塩化セリウム、酢酸セリウム、酸化セリウム等のセリウム化合物、硫化イットリウム、塩化イットリウム、フッ化イットリウム、酸化イットリウム等のイットリウム化合物、酸化インジウム、リン化インジウム、アンチモン化インジウム等のインジウム化合物、硫酸マンガン、硝酸マンガン、炭酸マンガン、酸化マンガン、二酸化マンガン、水酸化マンガン等のマンガン化合物、酸化タングステン、炭化タングステン、フッ化タングステン、タングステン酸ナトリウム等のタングステン化合物、三酸化モリブデン、モリブデン酸ナトリウム、七モリブデン酸六アンモニウム等のモリブデン化合物、塩化バナジウム、酸化バナジウム、炭化バナジウム、フッ化バナジウム、五酸化バナジウム、メタバナジン酸ナトリウム等のバナジウム化合物等を挙げることができ、これらのうち、1種又は2種以上を組み合わせて用いることができる。   Examples of the supply source of the metal component (B) include zirconium sulfate, zirconium oxysulfate, ammonium zirconium sulfate, sodium zirconium sulfate, potassium zirconium sulfate, zirconium nitrate, zirconium oxynitrate, ammonium zirconium nitrate, sodium zirconium nitrate, zirconium nitrate. Zirconium compounds such as potassium, fluorozirconic acid, fluorozirconium complex salt, ammonium zirconium carbonate, potassium zirconium carbonate, zirconyl acetate, zirconyl lactate, titanium sulfate, titanium oxysulfate, titanium ammonium sulfate, titanium nitrate, titanium oxynitrate, ammonium ammonium nitrate, Titanium compounds such as fluorotitanic acid, fluorotitanium complex, titanium lactate, titanium acetylacetonate, Hafnium acid, hafnium sulfate, hafnium silicate, hafnium carbide, hafnium chloride, hafnium fluoride, hafnium oxide and other hafnium compounds, bismuth sulfate, bismuth nitrate, bismuth lactate, bismuth hydroxide, bismuth oxide, bismuth acetate, bismuth trifluoride Bismuth compounds such as bismuth vanadate and bismuth methanesulfonate, aluminum compounds such as aluminum sulfate, aluminum nitrate, aluminum hydroxide, aluminum phosphate, aluminum fluoride, aluminum carbonate, aluminum oxide, magnesium sulfate, magnesium nitrate, hydroxide Magnesium compounds such as magnesium, magnesium chloride, magnesium acetate, magnesium oxide, zinc sulfate, zinc nitrate, zinc hydroxide, zinc phosphate, zinc acetate, zinc oxide, zinc fluoride, Zinc compounds such as zinc fluoride, cerium compounds such as cerium sulfate, cerium nitrate, cerium fluoride, cerium carbonate, cerium chloride, cerium acetate, cerium oxide, yttrium compounds such as yttrium sulfide, yttrium chloride, yttrium fluoride, yttrium oxide, Indium compounds such as indium oxide, indium phosphide, indium antimonide, manganese sulfate, manganese nitrate, manganese carbonate, manganese oxide, manganese dioxide, manganese hydroxide and other manganese compounds, tungsten oxide, tungsten carbide, tungsten fluoride, tungstic acid Tungsten compounds such as sodium, molybdenum compounds such as molybdenum trioxide, sodium molybdate, hexaammonium molybdate, vanadium chloride, vanadium oxide, vanadium carbide, Vanadium compounds such as vanadium fluoride, vanadium pentoxide, and sodium metavanadate can be used, and one or more of these can be used in combination.

なお、金属成分として、本発明に係る表面処理剤に、Cu、Sn及びCoから選ばれる少なくとも1種の金属成分を配合させてもよい。これらの金属成分を配合させる場合には、0.01mmol/L未満であることが好ましい。   In addition, as a metal component, you may mix | blend the at least 1 sort (s) of metal component chosen from Cu, Sn, and Co with the surface treating agent which concerns on this invention. When these metal components are blended, it is preferably less than 0.01 mmol / L.

上記金属成分の供給源としては、例えば、硝酸銅、硫酸銅、塩化銅、酸化銅、フッ化銅、塩化スズ、酸化スズ、硫酸スズ、フッ化スズ、塩化コバルト、硝酸コバルト、酸化コバルト、水酸化コバルト、硫酸コバルト、フッ化コバルト等を挙げることができる。   Examples of the metal component supply source include copper nitrate, copper sulfate, copper chloride, copper oxide, copper fluoride, tin chloride, tin oxide, tin sulfate, tin fluoride, cobalt chloride, cobalt nitrate, cobalt oxide, and water. Examples thereof include cobalt oxide, cobalt sulfate, and cobalt fluoride.

(水溶性又は水分散性の樹脂(C))
また、本発明に係る表面処理剤に配合させる樹脂(C)としては、水溶性又は水分散性であれば特に制限されるものではなく、例えば、水酸基、スルホン酸基、アミノ基、カルボニル基、アミド基及びポリオキシエチレン基から選ばれる少なくとも1種の基を有する水溶性又は水分散性の樹脂の他、タンニン類、アミン変性タンニン類等を用いることができる。これらの樹脂(C)を添加する場合、その濃度は、表面処理剤の全質量を基準として1質量%未満が好ましく、0.0001g/L以上10g/L未満がより好ましく、0.01g/L以上1.0g/L以下が特に好ましい{樹脂(C)が複数存在する場合には合計値}。当該範囲内であると、適量の水溶性又は水分散性の樹脂(C)が鉄皮膜中に取り込まれる結果、より優れた耐食性(例えば塩温水浸漬試験)を発揮し得る。なお、「水溶性又は水分散性の樹脂」とは、20℃100gの水に0.1gの樹脂を攪拌混合した場合に、溶解する樹脂、あるいは、均一に分散する樹脂(エマルジョンを形成する樹脂を含む)を意味する。
(Water-soluble or water-dispersible resin (C))
Further, the resin (C) to be blended in the surface treatment agent according to the present invention is not particularly limited as long as it is water-soluble or water-dispersible, and examples thereof include a hydroxyl group, a sulfonic acid group, an amino group, a carbonyl group, In addition to water-soluble or water-dispersible resins having at least one group selected from amide groups and polyoxyethylene groups, tannins, amine-modified tannins, and the like can be used. When these resins (C) are added, the concentration is preferably less than 1% by mass based on the total mass of the surface treatment agent, more preferably from 0.0001 g / L to less than 10 g / L, and 0.01 g / L. It is particularly preferably 1.0 g / L or less {total value when a plurality of resins (C) are present}. Within the above range, as a result of incorporating an appropriate amount of the water-soluble or water-dispersible resin (C) into the iron film, more excellent corrosion resistance (for example, a salt warm water immersion test) can be exhibited. The “water-soluble or water-dispersible resin” means a resin that dissolves or uniformly disperses (resin that forms an emulsion) when 0.1 g of resin is stirred and mixed in 100 g of water at 20 ° C. Means).

前記水溶性又は水分散性の樹脂(C)としては、例えば、ポリビニルアルコール、カルボキシ変性PVA、ヒドロキシ変性PVA、シラノール変性PVA等のPVA誘導体、ポリエチレングリコール、ポリアクリル酸、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアクリルアミド又はポリアクリルアミド重合体、ポリエチレンイミン又はポリエチレンイミン重合体、ジアリルアミン又はジアリルアミン重合体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、ポリビニルピロリドン、ポリイミド樹脂、ビニルスルホン酸樹脂、ポリアリルアミン又はポリアリルアミン重合体等、金属の表面処理に常用されている樹脂が挙げられる。その他、公知のフェノール樹脂、より具体的には金属表面処理剤として使用されている一般的なフェノール樹脂、例えば、下記一般式(II)の水溶性重合体等を用いることができる。なお、これらの樹脂は、1種使用してもよいし、2種以上使用してもよい。2種の樹脂の組み合わせとしては、例えば、ジアリルアミンとポリエチレンイミン、エポキシ樹脂とポリウレタン樹脂、又はポリビニルアルコールとポリアリルアミンを挙げることができる。

Figure 2017048449
式(II)中、nは2〜50の平均重合度を表し、置換基Xは、水素原子、ヒドロキシル基、C〜Cアルキル基、ヒドロキシ置換C〜Cアルキル基、C〜C12アリール基、ベンジル基、ベンザル基、式(II)中のベンゼン環に縮合してナフタレン環を形成する不飽和ハイドロカーボン基、又は下記式(III)で示される基:
Figure 2017048449
を表し、式(III)中のR及びRは、それぞれ相互に独立に、水素原子、ヒドロキシル基、C〜Cアルキル基、又はヒドロキシ置換C〜C10アルキル基を表し、式(II)及び式(III)における置換基Y及びYは、それぞれ相互に独立に、水素原子、又は下記式(IV)若しくは式(V)で示されるZ基:
Figure 2017048449
を表わし、式(IV)及び式(V)におけるR、R、R、R及びRは、それぞれ相互に独立に、C〜C10アルキル基又はヒドロキシ置換C〜C10アルキル基を表し、この水溶性重合体分子中の各ベンゼン環における前記Z基の置換数の平均値は0.2〜1.0である。 Examples of the water-soluble or water-dispersible resin (C) include PVA derivatives such as polyvinyl alcohol, carboxy-modified PVA, hydroxy-modified PVA, and silanol-modified PVA, polyethylene glycol, polyacrylic acid, polyurethane resin, polyester resin, and epoxy. Resin, polyacrylamide or polyacrylamide polymer, polyethyleneimine or polyethyleneimine polymer, diallylamine or diallylamine polymer, cellulose derivatives such as carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyimide resin, vinylsulfonic acid resin, poly Examples thereof include resins commonly used for surface treatment of metals such as allylamine or polyallylamine polymers. In addition, a known phenol resin, more specifically, a general phenol resin used as a metal surface treatment agent, for example, a water-soluble polymer represented by the following general formula (II) can be used. These resins may be used alone or in combination of two or more. Examples of the combination of the two resins include diallylamine and polyethyleneimine, epoxy resin and polyurethane resin, or polyvinyl alcohol and polyallylamine.
Figure 2017048449
In the formula (II), n represents an average degree of polymerization of 2 to 50, and the substituent X is a hydrogen atom, a hydroxyl group, a C 1 to C 5 alkyl group, a hydroxy substituted C 1 to C 5 alkyl group, C 6 to C 12 aryl group, a benzyl group, benzal group, a group represented by unsaturated hydrocarbon groups fused to a benzene ring in the formula (II) to form a naphthalene ring, or the following formula (III):
Figure 2017048449
R 1 and R 2 in formula (III) each independently represent a hydrogen atom, a hydroxyl group, a C 1 -C 5 alkyl group, or a hydroxy-substituted C 1 -C 10 alkyl group, The substituents Y 1 and Y 2 in (II) and formula (III) are each independently a hydrogen atom, or a Z group represented by the following formula (IV) or formula (V):
Figure 2017048449
R 3 , R 4 , R 5 , R 6 and R 7 in formula (IV) and formula (V) are each independently a C 1 -C 10 alkyl group or a hydroxy-substituted C 1 -C 10. Represents an alkyl group, and the average number of substitutions of the Z group in each benzene ring in the water-soluble polymer molecule is 0.2 to 1.0.

(界面活性剤(D))
本発明に係る表面処理剤に配合させる界面活性剤(D)は、ノニオン性、カチオン性、アニオン性又は両性のいずれであってもよい。ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン−ポリオキシプロピレン−ブロックポリマー等のポリエチレングリコール型ノニオン性界面活性剤、ソルビタン脂肪酸エステル等の多価アルコール型ノニオン性界面活性剤、脂肪酸アルキロールアミド等のアミド型ノニオン性界面活性剤等を挙げることができる。カチオン性界面活性剤としては、例えば、高級アルキルアミン塩、ポリオキシエチレン高級アルキルアミン等のアミン塩型カチオン性界面活性剤、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩型カチオン界面活性剤等を挙げることができる。アニオン性界面活性剤としては、例えば、エチレンオキサイドが付加された高級アルキルエーテル硫酸エステル塩等を挙げることができる。これらのうち、HLB値(グリフィン法により算出)が6以上18以下であるものが好ましく、10以上14以下であるものがより好ましい。なお、これらの界面活性剤は、1種含有させてもよいし、2種以上含有させてもよい。このような界面活性剤を本発明の表面処理剤に配合させることにより、化成処理とともに脱脂処理を1工程で行うことが可能となる。界面活性剤の濃度は、0.1〜10.0g/Lの範囲内であることが好ましく、0.5〜5.0g/Lの範囲内であることがより好ましい。
(Surfactant (D))
The surfactant (D) to be blended in the surface treatment agent according to the present invention may be nonionic, cationic, anionic or amphoteric. Nonionic surfactants include, for example, polyethylene glycols such as polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene-polyoxypropylene-block polymer, etc. And non-ionic surfactants such as polyhydric alcohol type nonionic surfactants such as sorbitan fatty acid esters and amide type nonionic surfactants such as fatty acid alkylolamides. Examples of the cationic surfactant include amine salt type cationic surfactants such as higher alkylamine salts and polyoxyethylene higher alkylamines, and quaternary ammonium salt type cationic surfactants such as alkyltrimethylammonium salts. Can be mentioned. Examples of the anionic surfactant include higher alkyl ether sulfate salts to which ethylene oxide is added. Among these, the HLB value (calculated by the Griffin method) is preferably 6 or more and 18 or less, and more preferably 10 or more and 14 or less. These surfactants may be contained alone or in combination of two or more. By blending such a surfactant with the surface treatment agent of the present invention, it is possible to perform the degreasing treatment together with the chemical conversion treatment in one step. The concentration of the surfactant is preferably in the range of 0.1 to 10.0 g / L, and more preferably in the range of 0.5 to 5.0 g / L.

<液性>
本発明に係る表面処理剤は、pH2.0〜6.0であることが好ましく、pH3.0〜pH4.0であることがより好ましい。当該範囲にあると、優れた耐食性を有する鉄皮膜を得ることができる。なお、本明細書におけるpHは、pHメーターで測定された、25℃の液での値である。
<Liquid>
The surface treatment agent according to the present invention preferably has a pH of 2.0 to 6.0, and more preferably has a pH of 3.0 to 4.0. When it is in the range, an iron film having excellent corrosion resistance can be obtained. In addition, pH in this specification is a value in the liquid of 25 degreeC measured with the pH meter.

≪表面処理剤の製造方法≫
本発明に係る表面処理剤、すなわち、上記式(I)で示されるアニオン性フルオロ鉄(III)錯化合物イオン(A)の少なくとも1種を含有する表面処理剤は、例えば、(1)水不溶性の鉄源を、表面処理剤中で溶解型3価鉄として安定化させるフッ素含有化合物に溶解させ、必要に応じて、酸化剤、上記配位子X等を順次添加して混合する、(2)水可溶性の鉄源を水(必要に応じ、アルコール等の水性液体媒体を添加してもよい)に添加し混合した後、上記フッ素含有化合物を添加して、必要に応じて、酸化剤、上記配位子X等を順次添加して混合する、ことにより製造し得る。以下、各原料(配位子、酸化剤、鉄源、フッ素含有化合物)について詳述する。
≪Method for producing surface treatment agent≫
The surface treatment agent according to the present invention, that is, the surface treatment agent containing at least one of the anionic fluoroiron (III) complex compound ions (A) represented by the above formula (I) is, for example, (1) water-insoluble (2) is dissolved in a fluorine-containing compound that is stabilized as dissolved trivalent iron in a surface treatment agent, and if necessary, an oxidizing agent, the ligand X and the like are sequentially added and mixed. ) After adding and mixing a water-soluble iron source to water (optionally an aqueous liquid medium such as alcohol may be added), the fluorine-containing compound is added, and if necessary, an oxidizing agent, It can manufacture by adding the said ligand X etc. sequentially and mixing. Hereinafter, each raw material (ligand, oxidizing agent, iron source, fluorine-containing compound) will be described in detail.

(配位子)
配位子Xは、水溶液中で鉄(鉄化合物を含む。)の沈殿を防ぐための成分である。配位子Xは、溶解型3価鉄に配位し得るものであれば特に制限されるものではなく、例えば、アミノカルボン酸、ヒドロキシカルボン酸、スルホン酸、ホスホン酸からなる群より選ばれる少なくとも一種を挙げることができる。具体的には、EDTA(エチレンジアミン四酢酸)、HEDTA(ヒドロキシエチルエチレンジアミン三酢酸)、NTA(ニトリロ三酢酸)、DTPA(ジエチレントリアミン五酢酸)、TTHA(トリエチレンテトラミン六酢酸)、DHEG(ジヒドロキシエチルグリシン)、EDTMP(エチレンジアミンテトラメチレンホスホン酸)、NTMP(ニトリロトリメチレンホスホン酸)、HEDP(ヒドロキシエチリデンジホスホン酸)、イミノ二酢酸、トリシン、酒石酸、リンゴ酸、クエン酸、グリコール酸、乳酸、グルコン酸、粘液酸、キナ酸、タウリン等を挙げることができる。これらの配位子Xは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。ここで、配位子Xの存在量は、一般的手法、例えば、陰イオン分析用カラムを用いた高速液体クロマトグラフィー、誘導体化−溶媒抽出−GC/MS法等にて測定可能である。
(Ligand)
The ligand X is a component for preventing precipitation of iron (including an iron compound) in an aqueous solution. The ligand X is not particularly limited as long as it can coordinate with dissolved trivalent iron. For example, at least selected from the group consisting of aminocarboxylic acid, hydroxycarboxylic acid, sulfonic acid, and phosphonic acid One kind can be mentioned. Specifically, EDTA (ethylenediaminetetraacetic acid), HEDTA (hydroxyethylethylenediaminetriacetic acid), NTA (nitrilotriacetic acid), DTPA (diethylenetriaminepentaacetic acid), TTHA (triethylenetetraminehexaacetic acid), DHEG (dihydroxyethylglycine) , EDTMP (ethylenediaminetetramethylenephosphonic acid), NTMP (nitrilotrimethylenephosphonic acid), HEDP (hydroxyethylidene diphosphonic acid), iminodiacetic acid, tricine, tartaric acid, malic acid, citric acid, glycolic acid, lactic acid, gluconic acid, mucus Acid, quinic acid, taurine and the like can be mentioned. These ligands X may be used individually by 1 type, and may be used in combination of 2 or more type. Here, the abundance of the ligand X can be measured by a general method such as high performance liquid chromatography using a column for anion analysis, derivatization-solvent extraction-GC / MS method, or the like.

(酸化剤)
酸化剤としては、例えば、過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素等を挙げることができ、これらの酸化剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Oxidant)
Examples of the oxidizing agent include perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, hydrogen peroxide, and the like. These oxidizing agents may be used alone. And two or more kinds may be used in combination.

(鉄源)
鉄の供給源としては、例えば、鉄粉や酸化鉄等の水不溶性の鉄源、硝酸鉄、硫酸鉄、塩化鉄等の可溶性の鉄塩を使用してもよい。本発明の表面処理剤における鉄(3価の溶解型鉄)濃度は、0.1g/L以上10.0g/L以下であることが好ましく、0.5g/L以上5.0g/L以下であることがより好ましく、0.7g/L以上2.0g/L以下であることが特に好ましい。当該範囲内であると、より優れた耐食性及び塗膜密着性を発現する鉄皮膜が得られ易い。ここで、本発明の表面処理剤における鉄の存在量は、一般的な方法で測定可能であり、例えば、滴定法及びICP発光分光分析法を行うことにより測定可能である。
(Iron source)
As the iron supply source, for example, a water-insoluble iron source such as iron powder or iron oxide, or a soluble iron salt such as iron nitrate, iron sulfate, or iron chloride may be used. The iron (trivalent dissolved iron) concentration in the surface treatment agent of the present invention is preferably 0.1 g / L or more and 10.0 g / L or less, and 0.5 g / L or more and 5.0 g / L or less. More preferably, it is 0.7 g / L or more and 2.0 g / L or less. If it is within this range, an iron film that exhibits more excellent corrosion resistance and coating film adhesion is easily obtained. Here, the abundance of iron in the surface treatment agent of the present invention can be measured by a general method, for example, by performing a titration method and an ICP emission spectroscopic analysis method.

(フッ素含有化合物)
フッ素含有化合物におけるフッ素成分は、金属材料のエッチング成分ならびに鉄を水溶液中で安定化させる成分である。フッ素成分は、水に溶解可能なフッ素(溶解型フッ素)である。フッ素含有化合物、すなわちフッ素の供給源としては、例えば、フッ化水素酸、フルオロチタン酸、フルオロジルコニウム酸、フルオロ珪酸、フッ化アンモニウム、酸性フッ化アンモニウム、フッ化ナトリウム、二フッ化水素ナトリウム、フッ化カリウム、二フッ化水素カリウム等を挙げることができるが、これらに限定されるものではない。なお、本発明の表面処理剤におけるフッ素の存在量は、一般的な方法で測定可能であり、例えば、鉄とキレート錯体を形成しやすいキレート剤(例えば、エチレンジアミン四酢酸(EDTA)等)を表面処理剤に添加し、遊離したフッ素イオンをイオンクロマトグラフィーによって測定可能である。
(Fluorine-containing compound)
The fluorine component in the fluorine-containing compound is a component that stabilizes the etching component of the metal material and iron in an aqueous solution. The fluorine component is fluorine that can be dissolved in water (dissolved fluorine). Fluorine-containing compounds, that is, fluorine sources include, for example, hydrofluoric acid, fluorotitanic acid, fluorozirconic acid, fluorosilicic acid, ammonium fluoride, acidic ammonium fluoride, sodium fluoride, sodium dihydrofluoride, fluorine. Examples thereof include, but are not limited to, potassium fluoride and potassium hydrogen difluoride. The amount of fluorine present in the surface treatment agent of the present invention can be measured by a general method. For example, a chelating agent that easily forms a chelate complex with iron (for example, ethylenediaminetetraacetic acid (EDTA) or the like) is surfaced. When added to the treatment agent, the liberated fluorine ions can be measured by ion chromatography.

ここで、鉄は最大で六配位(正八面体構造)を取ることが可能であり、1の鉄に対して3超のフッ素を配位させることが必要である。この場合、残りは、水(水酸化物イオン)が配位し得る。前記フッ素の配位数にも拠るが、水は鉄に対して3倍モル濃度よりも少なく配位することが好ましい。例えば、フッ素が鉄に対して4倍モル配位している場合は、鉄の残る配位数が最大2となり、水ならびに配位子Xで残基を配位することとなる。したがって、上記式(I)で示されるアニオン性フルオロ鉄(III)錯化合物イオン(A)を形成させるため、すなわち、1の鉄に3超のフッ素を配位させるためには、フッ素(溶解型フッ素)は鉄(3価の溶解型鉄)に対して3倍モル濃度より大きく、6倍モル濃度以下であることが好ましい。より好ましくは4倍モル濃度以上又は超である。鉄に対してフッ素が前記濃度にて存在すると、より優れた耐食性及び塗膜密着性を発現する鉄皮膜が得られ易い。他方、これらの配位において、フッ素が鉄に対し3倍モル濃度以下である場合は、3価の鉄イオンの安定性を損ねてしまい不溶性の鉄塩を生じてしまう。以上より、剤中においては、フッ素(溶解型フッ素)は、鉄(3価の溶解型鉄)に対し、モル比で3超15以下存在する(より好適には4以上又は超10以下存在する)ことが、本発明の効果を奏する上で好適である。   Here, iron can take a maximum of six coordination (regular octahedral structure), and it is necessary to coordinate more than three fluorines to one iron. In this case, the remainder can be coordinated by water (hydroxide ions). Although depending on the coordination number of the fluorine, it is preferable that water is coordinated to less than 3 times the molar concentration with respect to iron. For example, when fluorine is coordinated four times with respect to iron, the remaining coordination number of iron is 2 at the maximum, and the residue is coordinated with water and ligand X. Therefore, in order to form the anionic fluoroiron (III) complex compound ion (A) represented by the above formula (I), that is, to coordinate more than 3 fluorine atoms to one iron, fluorine (dissolved type) Fluorine) is preferably more than 3 times the molar concentration and 6 times the molar concentration or less with respect to iron (trivalent dissolved iron). More preferably, it is 4 times or more molar concentration or more. When fluorine is present at a concentration relative to iron, an iron coating that exhibits better corrosion resistance and coating film adhesion is easily obtained. On the other hand, in these coordinations, when the fluorine is 3 times or less the molar concentration with respect to iron, the stability of the trivalent iron ions is impaired and an insoluble iron salt is produced. From the above, in the agent, fluorine (dissolved fluorine) is present in a molar ratio of more than 3 to 15 or less (more preferably 4 or more or more than 10) with respect to iron (trivalent dissolved iron). ) Is preferable for achieving the effects of the present invention.

一方、配位子Xはそれぞれ固有の座数を持つ。例えば、EDTAは6座配位が可能であり、上記式(I)記載のZの値は6となる。よって、配位子Xの配位数は0以上であることが好ましい。また、配位子Xは鉄とのキレート力がフッ素や水よりも強いため、鉄に優先的に配位する。   On the other hand, each ligand X has a unique locus. For example, EDTA can be hexadentate and the value of Z in the above formula (I) is 6. Therefore, the coordination number of the ligand X is preferably 0 or more. Moreover, since the ligand X has a chelating power with iron stronger than that of fluorine or water, it coordinates with iron preferentially.

≪表面処理方法≫
本発明に係る表面処理剤は、金属材料の表面処理に用いる。ここで、該表面処理方法は、金属材料を前述した表面処理剤と接触させることにより、該金属材料上に鉄皮膜を形成させる化成皮膜形成工程を必須的に有している。
≪Surface treatment method≫
The surface treatment agent according to the present invention is used for surface treatment of a metal material. Here, the surface treatment method essentially includes a chemical conversion film forming step of forming an iron film on the metal material by bringing the metal material into contact with the surface treatment agent described above.

以下、該表面処理方法について詳細に説明する。該表面処理方法に使用する金属材料は特に限定されず、例えば、鉄材、亜鉛めっき材、アルミニウム材等である。より具体的な例として、冷延鋼板、熱延鋼板、黒皮鋼板、溶融亜鉛系めっき鋼板、電気亜鉛系めっき鋼板、合金化溶融亜鉛系めっき鋼板、アルミニウムめっき鋼板、アルミ−亜鉛合金化めっき鋼板、亜鉛−ニッケル合金化めっき鋼板、アルミニウム板、アルミニウム合金板等、又はこれら材料に対して熱処理(例えば、高熱処理、溶接処理等)を施した熱履歴材料が挙げられる。   Hereinafter, the surface treatment method will be described in detail. The metal material used for the surface treatment method is not particularly limited, and examples thereof include iron materials, galvanized materials, and aluminum materials. As more specific examples, cold-rolled steel sheet, hot-rolled steel sheet, black leather sheet, hot-dip galvanized steel sheet, electrogalvanized steel sheet, galvannealed steel sheet, aluminum-plated steel sheet, aluminum-zinc alloyed steel sheet , Zinc-nickel alloyed plated steel sheets, aluminum plates, aluminum alloy plates, etc., or heat history materials obtained by subjecting these materials to heat treatment (for example, high heat treatment, welding treatment, etc.).

上記金属材料と表面処理剤との接触方法は特に限定されず、通常の化成処理方法において適用される方法であればよい。例えば、浸漬処理法、スプレー処理法、電解処理法、流しかけ処理法等が挙げられる。これらの中では浸漬処理法が好ましい。   The contact method of the said metal material and a surface treating agent is not specifically limited, What is necessary is just the method applied in a normal chemical conversion treatment method. For example, an immersion treatment method, a spray treatment method, an electrolytic treatment method, a pouring treatment method, and the like can be given. Among these, the immersion treatment method is preferable.

上記金属材料と表面処理剤との接触温度は25〜55℃が好ましく、35〜45℃がより好ましいが、これらの温度に制限されるものではない。また、上記金属材料と表面処理剤との接触時間は30〜300秒が好ましく、60〜180秒がより好ましいが、これらの処理時間に制限されるものではない。   The contact temperature between the metal material and the surface treatment agent is preferably 25 to 55 ° C, more preferably 35 to 45 ° C, but is not limited to these temperatures. Further, the contact time between the metal material and the surface treatment agent is preferably 30 to 300 seconds, more preferably 60 to 180 seconds, but the treatment time is not limited thereto.

なお、本発明に係る表面処理方法は、上記化成皮膜形成工程後に、リン酸亜鉛等を用いたリン酸塩化成処理、ジルコニウム化成処理、チタン化成処理、ハフニウム化成処理、バナジウム化成処理等の別の化成処理を行ってもよい。また、本形態に係る表面処理方法は、上記化成皮膜形成工程後に、第2の化成処理としてリン酸塩化成処理を行い、続いて、ジルコニウム化成処理、チタン化成処理、ハフニウム化成処理、バナジウム化成処理等の第3の化成処理を行ってもよい。このように、化成皮膜形成工程後に、別の化成処理、あるいは、第2及び第3の化成処理を行うことにより、金属材料の耐食性及び塗膜密着性をさらに向上させることができる。   In addition, the surface treatment method according to the present invention is another method such as phosphate chemical conversion treatment using zinc phosphate, zirconium chemical conversion treatment, titanium chemical conversion treatment, hafnium chemical conversion treatment, vanadium chemical conversion treatment after the chemical conversion film forming step. Chemical conversion treatment may be performed. Further, the surface treatment method according to the present embodiment performs the phosphate chemical conversion treatment as the second chemical conversion treatment after the chemical conversion film forming step, and subsequently the zirconium chemical conversion treatment, the titanium chemical conversion treatment, the hafnium chemical conversion treatment, and the vanadium chemical conversion treatment. A third chemical conversion treatment such as the above may be performed. Thus, the corrosion resistance and coating film adhesion of the metal material can be further improved by performing another chemical conversion treatment, or the second and third chemical conversion treatments, after the chemical conversion film forming step.

ここで、ジルコニウム化成処理には、一般的なジルコニウム化成処理剤を用いることができる。また、チタン化成処理には、一般的なチタン化成処理剤を用いることができる。ハフニウム化成処理には、一般的なハフニウム化成処理剤を用いることができ、バナジウム化成処理には、一般的なバナジウム化成処理剤を用いることができる。これらの化成処理は、例えば、ジルコニウムイオン、チタンイオン、ハフニウムイオン及び/又はバナジウムイオンを0.005〜5.0g/Lで含むpH3.0〜6.0の処理液を用いて、25〜55℃で10〜300秒間、浸漬あるいはスプレーすることにより行われる。   Here, a general zirconium chemical conversion treatment agent can be used for the zirconium chemical conversion treatment. Moreover, a general titanium chemical conversion treatment agent can be used for the titanium chemical conversion treatment. A general hafnium chemical conversion treatment agent can be used for the hafnium chemical conversion treatment, and a general vanadium chemical conversion treatment agent can be used for the vanadium chemical conversion treatment. In these chemical conversion treatments, for example, using a treatment liquid having a pH of 3.0 to 6.0 containing 0.005 to 5.0 g / L of zirconium ions, titanium ions, hafnium ions and / or vanadium ions, 25 to 55 is used. It is carried out by dipping or spraying at 10 ° C. for 10 to 300 seconds.

さらに、リン酸塩化成処理についても同様に、一般的なリン酸塩化成処理を用いることが出来る。リン酸塩化成処理は、例えば、リン酸イオンを0.1〜50g/L、亜鉛イオンを0.01〜3.0g/Lでそれぞれ含むpH3.0〜6.0の処理液を用いて、25〜55℃で10〜300秒間、浸漬あるいはスプレーすることにより行われる。   Furthermore, a general phosphate chemical conversion treatment can be similarly used for the phosphate chemical conversion treatment. The phosphate chemical conversion treatment uses, for example, a treatment solution having a pH of 3.0 to 6.0 containing 0.1 to 50 g / L of phosphate ions and 0.01 to 3.0 g / L of zinc ions, It is carried out by dipping or spraying at 25 to 55 ° C. for 10 to 300 seconds.

本発明に係る表面処理方法は、上記化成皮膜形成工程前に、前記金属材料を脱脂処理により予め清浄化する脱脂工程を行うことが好ましい。脱脂処理の方法は特に限定されず、従来公知の方法を適用することができる。なお、脱脂工程及び化成皮膜形成工程を行った後は、上記別の化成処理を行ってもよい。また、脱脂工程及び化成皮膜形成工程を行った後、第2の化成処理と第3の化成処理とを行ってもよい。   In the surface treatment method according to the present invention, it is preferable to perform a degreasing step of cleaning the metal material in advance by a degreasing treatment before the chemical conversion film forming step. The method of degreasing is not particularly limited, and a conventionally known method can be applied. In addition, after performing a degreasing process and a chemical conversion film formation process, you may perform said another chemical conversion treatment. Moreover, after performing a degreasing process and a chemical conversion film formation process, you may perform a 2nd chemical conversion treatment and a 3rd chemical conversion treatment.

また、本発明に係る表面処理方法は、上記化成皮膜形成工程後に、上記別の化成処理後に、あるいは、上記第3の化成処理後に、塗料を用いた塗装工程を行ってもよい。塗装方法は特に限定されず、従来公知の方法、例えば、電着塗装(例えば、カチオン電着塗装)、溶剤塗装、粉体塗装等の方法を適用することができる。なお、電着塗料を用いた電着塗装方法を適用する場合には、その前工程である、上記化成皮膜形成工程、上記別の化成処理、あるいは、上記第3の化成処理で用いる化成処理剤中のナトリウムイオン濃度を質量基準で500ppm未満に制御することが好ましい。   Moreover, the surface treatment method according to the present invention may perform a coating step using a paint after the chemical conversion film forming step, after the other chemical conversion treatment, or after the third chemical conversion treatment. The coating method is not particularly limited, and conventionally known methods such as electrodeposition coating (for example, cationic electrodeposition coating), solvent coating, and powder coating can be applied. In addition, when applying the electrodeposition coating method using an electrodeposition paint, the chemical conversion treatment agent used in the said chemical conversion film formation process which is the previous process, said another chemical conversion treatment, or said 3rd chemical conversion treatment. It is preferable to control the sodium ion concentration therein to less than 500 ppm on a mass basis.

なお、本発明に係る表面処理方法は、上記化成皮膜形成工程に加えて、上記脱脂工程;上記別の化成処理;上記第2の化成処理及び上記第3の化成処理;上記塗装工程;上記脱脂工程及び上記別の化成処理;上記脱脂工程、上記第2の化成処理及び上記第3の化成処理;上記脱脂工程及び上記塗装工程;上記別の化成処理及び上記塗装工程;上記第2の化成処理、上記第3の化成処理及び上記塗装工程;上記脱脂工程、上記別の化成処理及び上記塗装工程;あるいは、上記脱脂工程、上記第2の化成処理、上記第3の化成処理及び上記塗装工程、を含む場合には、各工程後にそれぞれ水洗工程を含んでいてもよい。このように各工程後に水洗工程を含む場合には、表面処理方法は、一部の水洗工程を省略してもよいし、全部の水洗工程を省略してもよい。   The surface treatment method according to the present invention includes, in addition to the chemical conversion film formation step, the degreasing step; the other chemical conversion treatment; the second chemical conversion treatment and the third chemical conversion treatment; the coating step; Step and the other chemical conversion treatment; the degreasing step, the second chemical conversion treatment and the third chemical conversion treatment; the degreasing step and the coating step; the another chemical conversion treatment and the coating step; the second chemical conversion treatment. The third chemical conversion treatment and the coating step; the degreasing step, the other chemical conversion treatment and the coating step; or the degreasing step, the second chemical conversion treatment, the third chemical conversion treatment and the coating step, In the case of containing water, a water washing step may be included after each step. Thus, when a water washing process is included after each process, the surface treatment method may abbreviate | omit a part of water washing process and may abbreviate | omit all the water washing processes.

≪表面処理によって得られる表面処理金属材料≫
次に、本発明に係る表面処理剤で化成処理することにより得られた化成皮膜を有する金属材料、すなわち、表面処理金属材料を詳細に説明する。本形態に係る表面処理金属材料の表面に形成された化成皮膜は、鉄皮膜である。本皮膜は金属材料種を問わず形成させることができる。ここで、該鉄皮膜の厚さは、0.001〜1.0μmであることが好ましい。
≪Surface treatment metal material obtained by surface treatment≫
Next, a metal material having a chemical conversion film obtained by chemical conversion treatment with the surface treatment agent according to the present invention, that is, a surface-treated metal material will be described in detail. The chemical conversion film formed on the surface of the surface-treated metal material according to the present embodiment is an iron film. This film can be formed regardless of the metal material type. Here, the thickness of the iron film is preferably 0.001 to 1.0 μm.

さらに、本発明に係る表面処理金属材料は、該鉄皮膜上に、ジルコニウム化成皮膜、チタン化成処理皮膜、ハフニウム化成処理皮膜又はバナジウム化成処理皮膜を有してもよい。この場合、該化成皮膜の厚さは、0.005〜0.2μmであることが好ましく、0.01〜0.1μmであることがより好ましい。   Furthermore, the surface-treated metal material according to the present invention may have a zirconium chemical conversion coating, a titanium chemical conversion coating, a hafnium chemical conversion coating, or a vanadium chemical conversion coating on the iron coating. In this case, the thickness of the chemical conversion film is preferably 0.005 to 0.2 μm, and more preferably 0.01 to 0.1 μm.

また、本発明に係る表面処理金属材料は、該鉄皮膜上に、リン酸塩化成皮膜を有してもよい。この場合、該リン酸塩化成皮膜の厚さは、0.1〜10μmであることが好ましく、1.0〜3.0μmであることがより好ましい。なお、本発明に係る表面処理金属材料が、該鉄皮膜上に、リン酸塩化成皮膜と、ジルコニウム化成皮膜、チタン化成処理皮膜、ハフニウム化成処理皮膜又はバナジウム化成処理皮膜とを有する場合には、リン酸塩化成皮膜上に、ジルコニウム化成皮膜、チタン化成処理皮膜、ハフニウム化成処理皮膜又はバナジウム化成処理皮膜が形成されている。   Moreover, the surface treatment metal material which concerns on this invention may have a phosphate chemical conversion film on this iron film. In this case, the thickness of the phosphate chemical film is preferably 0.1 to 10 μm, and more preferably 1.0 to 3.0 μm. When the surface-treated metal material according to the present invention has a phosphate chemical film, a zirconium chemical film, a titanium chemical film, a hafnium chemical film, or a vanadium chemical film on the iron film, A zirconium chemical conversion film, a titanium chemical conversion treatment film, a hafnium chemical conversion treatment film, or a vanadium chemical conversion treatment film is formed on the phosphate chemical conversion film.

本発明に係る鉄皮膜中の鉄元素の含有量は、X線光電子分光分析装置(ESCA)のイオンエッチング法により、深さ方向の組成分布のスペクトルから求めることができる。   The content of the iron element in the iron film according to the present invention can be determined from the spectrum of the composition distribution in the depth direction by an ion etching method of an X-ray photoelectron spectrometer (ESCA).

上記皮膜の耐食性を評価するために、前記処理方法によって得られた表面処理金属材料の表面に対して塗装を行ってもよい。塗装方法は特に限定されず、従来公知の方法、例えば、電着塗装(例えば、カチオン電着塗装)、溶剤塗装、粉体塗装等の方法を適用することができる。カチオン電着塗装としては、従来公知の方法を適用できる。例えば、塗料として、アミン付加エポキシ樹脂と、硬化成分としてブロック化ポリイソシアネート硬化剤とを含有するカチオン電着塗料組成物を用い、この塗料中に本発明の表面処理剤で得られた表面処理金属材料を浸漬する。なお、浸漬前に該表面処理金属材料は、水洗してもよいし、水洗せずに浸漬を行ってもよい。また、浸漬前に水洗後の、あるいは、未水洗の、金属材料の表面を乾燥してもよいし、乾燥せずに上記塗料に浸漬してもよい。   In order to evaluate the corrosion resistance of the coating, the surface of the surface-treated metal material obtained by the treatment method may be coated. The coating method is not particularly limited, and conventionally known methods such as electrodeposition coating (for example, cationic electrodeposition coating), solvent coating, and powder coating can be applied. Conventionally known methods can be applied as the cationic electrodeposition coating. For example, using a cationic electrodeposition coating composition containing an amine-added epoxy resin as a coating and a blocked polyisocyanate curing agent as a curing component, the surface-treated metal obtained with the surface treatment agent of the present invention in the coating Immerse the material. The surface-treated metal material may be washed with water before immersion, or may be immersed without being washed with water. Further, the surface of the metal material after washing with water or before washing may be dried before immersion, or may be immersed in the paint without drying.

なお、上記カチオン電着塗装は、例えば、塗料の温度を26〜30℃程度に保持し、塗料を攪拌した状態で、整流器を用いて上記表面処理金属材料に30秒かけて0Vから200Vまで直線的に電圧を陰極方向に印加し、その後200Vで150秒間保持して行う。このようにして表面を塗装した金属材料に対して、水洗及び焼き付けを実施して塗膜を形成させる。なお、焼き付けは、例えば、170℃で20分間行う。   In the cationic electrodeposition coating, for example, while maintaining the temperature of the paint at about 26 to 30 ° C. and stirring the paint, the surface-treated metal material is straightened from 0 V to 200 V over 30 seconds using a rectifier. Specifically, a voltage is applied in the cathode direction, and then held at 200 V for 150 seconds. The metal material coated on the surface in this manner is washed with water and baked to form a coating film. Note that the baking is performed at 170 ° C. for 20 minutes, for example.

塗装された金属材料の塗膜は、平均厚さで1〜50μmが好ましく、7〜25μmであることがより好ましい。   The coated metal material coating film has an average thickness of preferably 1 to 50 μm, and more preferably 7 to 25 μm.

なお、塗膜の厚さは、電磁式膜厚計又は渦電流式膜厚計を用いて測定することにより求めることができる。より具体的には、塗膜が磁性体の金属材料(鉄、鉄系合金等)の表面上に形成される場合は、電磁式膜厚計を用いて測定する。また、塗膜が非磁性体の金属材料(アルミニウム、アルミニウム合金等)の表面上に形成される場合は、渦電流式膜厚計を用いて測定する。測定後、塗膜の任意の箇所を数箇所測定して、平均厚さを求める。   In addition, the thickness of a coating film can be calculated | required by measuring using an electromagnetic film thickness meter or an eddy current film thickness meter. More specifically, when the coating film is formed on the surface of a magnetic metal material (iron, iron-based alloy, etc.), it is measured using an electromagnetic film thickness meter. Moreover, when a coating film is formed on the surface of a non-magnetic metal material (aluminum, aluminum alloy, etc.), it measures using an eddy current film thickness meter. After the measurement, several arbitrary points on the coating film are measured to obtain the average thickness.

以下、実施例を示して、本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

<金属材料>
次の金属材料を用意した(全て株式会社パルテック製)
・冷延鋼板:SPC(SPCC−SD)70×150×0.8mm
・高張力熱延鋼板:SPH(SPH−590)70×150×1.2mm
・熱履歴鋼板:焼SPH(SPHをマッフル炉にて400℃で20分間焼成させた鋼板;サイズはSPHと同じ)
・黒皮鋼板:SPHC 70×150×2.3mm
・電気亜鉛めっき鋼板:EG(亜鉛目付量20g/m;両面とも)70×150×0.8mm
・溶融亜鉛めっき鋼板:GI(亜鉛目付量90g/m;両面とも)70×150×0.8mm
・合金化亜鉛めっき鋼板:GA(亜鉛目付量45g/m;両面とも)70×150×0.8mm
・アルミニウム合金板:AL(A6061P)70×150×1.0mm
<Metal material>
The following metal materials were prepared (all manufactured by Partec Co., Ltd.)
-Cold-rolled steel sheet: SPC (SPCC-SD) 70 x 150 x 0.8 mm
・ High-tensile hot-rolled steel sheet: SPH (SPH-590) 70 x 150 x 1.2 mm
・ Heat history steel plate: baked SPH (steel plate fired at 400 ° C. for 20 minutes in a muffle furnace; size is the same as SPH)
・ Black skin steel plate: SPHC 70 × 150 × 2.3mm
Electrogalvanized steel sheet: EG (zinc basis weight 20 g / m 2 ; on both sides) 70 × 150 × 0.8 mm
· Hot-dip galvanized steel sheet: GI (zinc basis weight 90 g / m 2 ; both sides) 70 × 150 × 0.8 mm
Alloyed galvanized steel sheet: GA (zinc basis weight 45 g / m 2 ; on both sides) 70 × 150 × 0.8 mm
Aluminum alloy plate: AL (A6061P) 70 x 150 x 1.0 mm

<表面処理>
各金属材料の表面に、40℃に加温した脱脂剤(日本パーカライジング株式会社製;FC−E2001)を120秒間スプレーすることにより脱脂処理した。脱脂処理後、表面を30秒間スプレー水洗した。続いて、後述の実施例1〜44及び比較例1〜3の表面処理剤に40℃で120秒間浸漬し、その後、水洗し、常温乾燥することにより、表面に鉄皮膜が形成された金属材料を作製した。また、上記脱脂処理及びスプレー水洗処理した金属材料を、比較例4のジルコニウム化成処理液[50g/Lのジルコニウム化成処理液(日本パーカライジング株式会社製の化成処理剤;PLM−1000を使用)]に35℃で120秒間浸漬してジルコニウム化成処理を行い、ジルコニウム化成皮膜が形成された金属材料を作製した。さらに、上記脱脂処理及びスプレー水洗処理した金属材料を、比較例5のリン酸亜鉛化成処理液[50g/Lのリン酸亜鉛化成処理液(日本パーカライジング株式会社製のリン酸亜鉛化成処理剤;PB−SX35を使用)]に35℃で120秒間浸漬してリン酸亜鉛化成処理を行い、リン酸亜鉛化成皮膜が形成された金属材料を作製した。
<Surface treatment>
The surface of each metal material was degreased by spraying a degreasing agent (Nihon Parkerizing Co., Ltd .; FC-E2001) heated to 40 ° C. for 120 seconds. After the degreasing treatment, the surface was washed with spray water for 30 seconds. Subsequently, a metal material in which an iron film was formed on the surface by immersing in a surface treatment agent of Examples 1 to 44 and Comparative Examples 1 and 3 described later at 40 ° C. for 120 seconds, then washing with water and drying at room temperature. Was made. Moreover, the metal material which carried out the said degreasing process and the spray water washing process is used for the zirconium chemical conversion liquid of the comparative example 4 [50 g / L zirconium chemical conversion liquid (The chemical conversion processing agent by Nippon Parkerizing Co., Ltd .; PLM-1000 is used)]. A zirconium chemical conversion treatment was performed by immersion at 35 ° C. for 120 seconds to produce a metal material on which a zirconium chemical conversion film was formed. Further, the metal material subjected to the degreasing treatment and the spray water washing treatment was subjected to the zinc phosphate chemical conversion treatment solution of Comparative Example 5 [50 g / L of zinc phosphate chemical conversion treatment solution (Zinc phosphate chemical conversion treatment agent manufactured by Nihon Parkerizing Co., Ltd .; PB -SX35 used)] was immersed for 120 seconds at 35 ° C. to perform a zinc phosphate conversion treatment, and a metal material having a zinc phosphate conversion coating formed thereon was produced.

加えて、実施例1の表面処理剤に40℃で120秒間浸漬し、その後水洗することにより、鉄皮膜を形成した後、比較例4のジルコニウム化成処理液を用いてジルコニウム化成処理を行い、鉄皮膜とジルコニウム化成皮膜とを含む複合皮膜が形成された金属材料を作製した。また、実施例1の表面処理剤に40℃で120秒間浸漬し、その後水洗することにより、鉄皮膜を形成した後、3.0g/Lの表面調整液(日本パーカライジング株式会社製の表面調整剤;PL−Xを使用)に常温で30秒間浸漬して表面処理を行い、続いて比較例5のリン酸亜鉛化成処理液を用いてリン酸亜鉛化成処理を行い、鉄皮膜とリン酸亜鉛化成皮膜とを含む複合皮膜が形成された金属材料を作製した。   In addition, after forming an iron film by immersing in the surface treatment agent of Example 1 at 40 ° C. for 120 seconds and then washing with water, zirconium conversion treatment was performed using the zirconium chemical conversion treatment liquid of Comparative Example 4, A metal material on which a composite film including a film and a zirconium chemical conversion film was formed was produced. Moreover, after forming an iron film by immersing in the surface treating agent of Example 1 at 40 ° C. for 120 seconds and then washing with water, a 3.0 g / L surface conditioning solution (a surface conditioning agent manufactured by Nihon Parkerizing Co., Ltd.) ; Using PL-X) at room temperature for 30 seconds to perform surface treatment, followed by zinc phosphate chemical conversion treatment using the zinc phosphate chemical conversion solution of Comparative Example 5, and iron film and zinc phosphate chemical conversion A metal material on which a composite film including the film was formed was produced.

<カチオン電着塗装>
各皮膜を有する金属材料を陰極とし、電着塗料(関西ペイント社製;GT−100)を用いて、180秒間定電圧陰極電解して金属板の全表面に塗膜を形成させた。その後、水洗し、170℃で20分間焼き付けて各試験板を作製し、以下の塩温水浸漬試験、複合サイクル試験、及び塗膜密着性試験を実施した。なお、塗膜厚は20μmとなるように調整した。
<Cation electrodeposition coating>
A metal material having each film was used as a cathode, and an electrodeposition paint (manufactured by Kansai Paint Co., Ltd .; GT-100) was used for constant voltage cathodic electrolysis for 180 seconds to form a coating film on the entire surface of the metal plate. Then, it washed with water, baked at 170 degreeC for 20 minute (s), and produced each test board, and implemented the following salt warm water immersion tests, the combined cycle test, and the coating-film adhesiveness test. The coating thickness was adjusted to 20 μm.

<塩温水浸漬試験>
カッターで各試験板にクロスカットを施し、5質量%NaCl水溶液に、55℃で240時間(10日間)浸漬を行い、続いて水洗及び風乾を行った。次に、試験板のクロスカット部に対してセロテープ(登録商標)剥離試験を行い、クロスカットからの両側最大剥離幅を測定し、以下に示す評価基準に従って評価した。
<評価基準>
◎:両側最大剥離幅が3.0mm未満
○:両側最大剥離幅が3.0mm以上5.0mm未満
△:両側最大剥離幅が5.0mm以上10.0mm未満
×:両側最大剥離幅が10.0mm以上
<複合サイクル試験>
カッターで各試験板にクロスカットを施し、複合サイクル試験機に入れ、JASO−M609−91に則り複合サイクル試験を100サイクル実施した。100サイクル実施後のクロスカットからの両側最大膨れ幅を測定し、以下に示す評価基準に従って評価した。
<評価基準>
◎:両側最大膨れ幅が5.0mm未満
○:両側最大膨れ幅が5.0mm以上10.0mm未満
△:両側最大膨れ幅が10.0mm以上15.0mm未満
×:両側最大膨れ幅が15.0mm以上
<Salt warm water immersion test>
Each test plate was cross-cut with a cutter, immersed in a 5% by mass NaCl aqueous solution at 55 ° C. for 240 hours (10 days), followed by washing with water and air drying. Next, a cellotape (registered trademark) peel test was performed on the cross cut portion of the test plate, the maximum peel width on both sides from the cross cut was measured, and evaluated according to the following evaluation criteria.
<Evaluation criteria>
A: Maximum peel width on both sides is less than 3.0 mm ○: Maximum peel width on both sides is 3.0 mm or more and less than 5.0 mm Δ: Maximum peel width on both sides is 5.0 mm or more and less than 10.0 mm ×: Maximum peel width on both sides is 10. 0mm or more <Composite cycle test>
Each test plate was cross-cut with a cutter, put into a combined cycle tester, and combined cycle test was performed 100 cycles according to JASO-M609-91. The maximum swollen width on both sides from the crosscut after 100 cycles was measured and evaluated according to the following evaluation criteria.
<Evaluation criteria>
◎: Both sides maximum swelling width is less than 5.0 mm ○: Both sides maximum swelling width is 5.0 mm or more and less than 10.0 mm Δ: Both sides maximum swelling width is 10.0 mm or more and less than 15.0 mm ×: Both sides maximum swelling width is 15. 0mm or more

<塗膜密着性試験>
カッターで各試験板に1mm間隔で碁盤目状(10×10=100個)にカット傷を施した後、沸騰水に1時間浸漬した。続いて、表面上の水分を拭き取り、碁盤目状のカット傷に対してセロテープ(登録商標)を用いたテープ剥離試験を行い、剥離しなかった碁盤目の数を計測し、以下に示す評価基準に従って評価した。
<評価基準>
◎:100個
○:80〜99個
△:1〜79個
×:0個
<Coating adhesion test>
Each test plate was cut with a cutter in a grid pattern (10 × 10 = 100) at intervals of 1 mm, and then immersed in boiling water for 1 hour. Subsequently, the moisture on the surface was wiped off, a tape peeling test using cello tape (registered trademark) was performed on a grid-like cut wound, the number of grids that did not peel was measured, and the following evaluation criteria According to the evaluation.
<Evaluation criteria>
◎: 100 pieces ○: 80 to 99 pieces △: 1 to 79 pieces ×: 0 pieces

<実施例1〜44及び比較例1〜3の表面処理剤の調製>
鉄粉又は硫酸鉄(II)をフッ化水素酸水溶液に溶解し、鉄の濃度、及び鉄のモル濃度に対するフッ化水素酸のモル濃度の比(倍)が表1に示す各種溶解液を調製した。また、鉄粉又は硫酸鉄(II)をフッ化水素酸水溶液に溶解した後、過酸化水素(実施例1〜43及び比較例1〜3の表面処理剤の調製で使用)と、各種配位子X、各種金属化合物、各種樹脂等とを順次添加して攪拌混合し、鉄、各種金属化合物、各種樹脂等の濃度;鉄のモル濃度に対するフッ化水素酸のモル濃度の比(倍);ならびに、鉄のモル濃度に対する配位子Xのモル濃度の比(倍);が、表1に示す各種混合液を調製した。その後、各種溶解液又は各種混合液のpHを表1に示す値に調整し、実施例1〜44及び比較例1〜3の各種表面処理剤を得た。
<Preparation of surface treatment agents of Examples 1-44 and Comparative Examples 1-3>
Iron powder or iron (II) sulfate is dissolved in a hydrofluoric acid aqueous solution, and various solutions are prepared in which the concentration of iron and the molar concentration of hydrofluoric acid to the molar concentration of iron (times) are shown in Table 1. did. In addition, after iron powder or iron (II) sulfate is dissolved in a hydrofluoric acid aqueous solution, hydrogen peroxide (used in the preparation of the surface treatment agents of Examples 1 to 43 and Comparative Examples 1 to 3) and various coordinations The child X, various metal compounds, various resins, and the like are sequentially added and mixed with stirring. The concentration of iron, various metal compounds, various resins, etc .; the ratio of the molar concentration of hydrofluoric acid to the molar concentration of iron (times); In addition, various ratios of the molar concentration of the ligand X to the molar concentration of iron (times) were prepared as shown in Table 1. Then, pH of various solution or various liquid mixture was adjusted to the value shown in Table 1, and the various surface treating agents of Examples 1-44 and Comparative Examples 1-3 were obtained.

なお、実施例32〜44では、水溶性又は水分散性の樹脂(C)として以下の樹脂を用いた。
(C1)水系ウレタン樹脂(スーパーフレックスE−2000;第一工業製薬株式会社製)
(C2)フェノール樹脂(式(II)において、n=5、X=水素、Y=−CHN(CH、Z基置換数平均値=1.0)
(C3)ノボラック樹脂(F/P(フェノール類/アルデヒド類)の比が0.84のメチロール基を有するノボラックフェノール樹脂)
(C4)アミン変性タンニン(タンニン酸アルミニウム(100質量部;富士化学工業株式会社製)とモノエタノールアミン(15質量部)のホルムアルデヒド縮合物)
(C5)タンニン酸アルミニウム
(C6)ポリジアリルアミン塩酸塩(重量平均分子量:約110000)
(C7)ポリエチレンイミン(重量平均分子量:約1300)
(C8)ポリ酢酸ビニルの99%鹸化物(重量平均分子量:約50000)
(C9)水系エポキシ樹脂(アデカレジンEP−4100;株式会社ADEKA製)
In Examples 32 to 44, the following resins were used as the water-soluble or water-dispersible resin (C).
(C1) Water-based urethane resin (Superflex E-2000; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
(C2) Phenol resin (in formula (II), n = 5, X = hydrogen, Y 1 = —CH 2 N (CH 3 ) 2 , Z group substitution number average value = 1.0)
(C3) novolak resin (novolak phenol resin having a methylol group with a ratio of F / P (phenols / aldehydes) of 0.84)
(C4) Amine-modified tannin (formaldehyde condensate of aluminum tannate (100 parts by mass; manufactured by Fuji Chemical Co., Ltd.) and monoethanolamine (15 parts by mass))
(C5) Aluminum tannate (C6) Polydiallylamine hydrochloride (weight average molecular weight: about 110000)
(C7) Polyethyleneimine (weight average molecular weight: about 1300)
(C8) 99% saponified product of polyvinyl acetate (weight average molecular weight: about 50000)
(C9) Water-based epoxy resin (Adeka Resin EP-4100; manufactured by ADEKA Corporation)

Figure 2017048449
Figure 2017048449

表2〜4に、各試験板に対して実施した塩温水浸漬試験、複合サイクル試験、及び塗膜密着性試験の結果を示す。表2〜4に示すように、実施例1〜44の本発明に係る表面処理剤は、対象金属材料種を問わず、難化成材(黒皮鋼板及び熱履歴鋼板)に対しても、優れた耐食性及び塗膜密着性を有する鉄皮膜を形成させることができた。   Tables 2 to 4 show the results of a salt warm water immersion test, a combined cycle test, and a coating film adhesion test performed on each test plate. As shown in Tables 2 to 4, the surface treatment agent according to the present invention of Examples 1 to 44 is excellent for difficult-to-convert materials (black leather plate and heat history steel plate) regardless of the target metal material type. An iron film having high corrosion resistance and coating film adhesion could be formed.

これに対して比較例1の表面処理剤を用いて表面処理した試験板は、耐食性及び塗膜密着性が不十分であった。   On the other hand, the test plate surface-treated with the surface treatment agent of Comparative Example 1 was insufficient in corrosion resistance and coating film adhesion.

また、比較例2の表面処理剤を用いて表面処理した試験板も耐食性及び塗膜密着性が不十分であった。   Moreover, the test plate surface-treated with the surface treating agent of Comparative Example 2 also had insufficient corrosion resistance and coating film adhesion.

さらに、比較例3の表面処理剤を用いて表面処理した試験板も耐食性及び塗膜密着性が不十分であった。   Furthermore, the test plate surface-treated with the surface treating agent of Comparative Example 3 also had insufficient corrosion resistance and coating film adhesion.

Figure 2017048449
Figure 2017048449

Figure 2017048449
Figure 2017048449

Figure 2017048449
Figure 2017048449

Claims (8)

下記式(I)で示されるアニオン性フルオロ鉄(III)錯化合物イオン(A)の少なくとも1種を含有するpH2以上6以下の表面処理剤。
Figure 2017048449
ここで、3<n≦6、0≦m<3、i=[6−(n+m)]/Z、i≧0、Xは鉄に配位可能な配位子、Zは配位子Xの座数である。
A surface treatment agent having a pH of 2 or more and 6 or less, containing at least one kind of anionic fluoroiron (III) complex compound ion (A) represented by the following formula (I).
Figure 2017048449
Here, 3 <n ≦ 6, 0 ≦ m <3, i = [6- (n + m)] / Z, i ≧ 0, X is a ligand capable of coordinating to iron, Z is a ligand X The number of seats.
Zr、Ti、Hf、Bi、Al、Mg、Zn、Ce、Y、In、Mn、W、Mo及びVから選ばれる少なくとも1種の金属成分(B)をさらに含有する請求項1に記載の表面処理剤。   The surface according to claim 1, further comprising at least one metal component (B) selected from Zr, Ti, Hf, Bi, Al, Mg, Zn, Ce, Y, In, Mn, W, Mo and V. Processing agent. 水溶性又は水分散性の樹脂(C)を前記表面処理剤の全質量を基準として1質量%未満でさらに含有する請求項1又は2に記載の表面処理剤。   The surface treatment agent according to claim 1 or 2, further comprising a water-soluble or water-dispersible resin (C) in an amount of less than 1% by mass based on the total mass of the surface treatment agent. Cu、Sn及びCoから選ばれる少なくとも1種の金属成分を0.01mmol/L未満でさらに含有する請求項1〜3のいずれかに記載の表面処理剤。   The surface treating agent according to any one of claims 1 to 3, further containing at least one metal component selected from Cu, Sn, and Co at less than 0.01 mmol / L. 請求項1〜4のいずれかに記載の表面処理剤を金属表面に接触させる接触工程を含む表面処理方法。   The surface treatment method including the contact process which makes the surface treatment agent in any one of Claims 1-4 contact a metal surface. 請求項5に記載の接触工程後に、ジルコニウム化成皮膜を形成させるジルコニウム化成皮膜形成工程、チタン化成皮膜を形成させるチタン化成皮膜形成工程、ハフニウム化成皮膜を形成させるハフニウム化成皮膜形成工程、又はバナジウム化成皮膜を形成させるバナジウム化成皮膜形成工程をさらに含む、表面処理方法。   A zirconium conversion coating forming step for forming a zirconium conversion coating, a titanium conversion coating forming step for forming a titanium conversion coating, a hafnium conversion coating forming step for forming a hafnium conversion coating, or a vanadium conversion coating after the contacting step according to claim 5. A surface treatment method further comprising a vanadium chemical conversion film forming step of forming a film. 請求項5に記載の接触工程後に、リン酸塩化成皮膜を形成させるリン酸塩化成皮膜形成工程をさらに含む、表面処理方法。   A surface treatment method further comprising a phosphate conversion film forming step of forming a phosphate conversion film after the contacting step according to claim 5. 請求項5〜7のいずれかに記載の表面処理方法により得られた表面処理金属材料。   A surface-treated metal material obtained by the surface treatment method according to claim 5.
JP2015175129A 2015-09-04 2015-09-04 Surface treatment agent, surface treatment method and surface treatment metal material Active JP6566798B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015175129A JP6566798B2 (en) 2015-09-04 2015-09-04 Surface treatment agent, surface treatment method and surface treatment metal material
PCT/JP2016/073728 WO2017038431A1 (en) 2015-09-04 2016-08-12 Surface treatment agent, surface treatment method, and surface-treated metal material
TW105126736A TW201715082A (en) 2015-09-04 2016-08-22 Surface treating agent, method for surface treating and surface treated metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175129A JP6566798B2 (en) 2015-09-04 2015-09-04 Surface treatment agent, surface treatment method and surface treatment metal material

Publications (2)

Publication Number Publication Date
JP2017048449A true JP2017048449A (en) 2017-03-09
JP6566798B2 JP6566798B2 (en) 2019-08-28

Family

ID=58187322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175129A Active JP6566798B2 (en) 2015-09-04 2015-09-04 Surface treatment agent, surface treatment method and surface treatment metal material

Country Status (3)

Country Link
JP (1) JP6566798B2 (en)
TW (1) TW201715082A (en)
WO (1) WO2017038431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164982A (en) * 2019-03-27 2020-10-08 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513657B1 (en) * 2018-02-28 2023-03-23 니혼 파커라이징 가부시키가이샤 Metal materials for plastic working
JP2021066914A (en) * 2019-10-21 2021-04-30 日本パーカライジング株式会社 Treatment agent and coated metal material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223186A (en) * 1987-03-10 1988-09-16 Nippon Parkerizing Co Ltd Treating solution for phosphating metal and method therefor
JPH10306382A (en) * 1997-04-30 1998-11-17 Honda Motor Co Ltd Zinc phosphate treating agent for aluminum alloy
JP2004232047A (en) * 2003-01-31 2004-08-19 Dipsol Chem Co Ltd Treatment agent for forming highly corrosion resistant chromium-free chemical conversion film on aluminum and aluminum alloy, method of forming the chemical conversion film, and aluminum and aluminum alloy with the chemical conversion film formed
JP2005264230A (en) * 2004-03-18 2005-09-29 Nippon Parkerizing Co Ltd Surface treatment composition for metal, surface treatment liquid for metal, surface treatment method for metal, and metallic material
JP2009203519A (en) * 2008-02-27 2009-09-10 Nippon Parkerizing Co Ltd Metallic material, and method for producing the same
JP2010163640A (en) * 2009-01-13 2010-07-29 Nippon Parkerizing Co Ltd Surface treatment liquid for metal, surface treatment method for metal, and metallic material
JP2011117026A (en) * 2009-12-02 2011-06-16 Nippon Parkerizing Co Ltd Surface treatment solution for self-deposition coating treatment for metallic material and self-deposition coating treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223186A (en) * 1987-03-10 1988-09-16 Nippon Parkerizing Co Ltd Treating solution for phosphating metal and method therefor
JPH10306382A (en) * 1997-04-30 1998-11-17 Honda Motor Co Ltd Zinc phosphate treating agent for aluminum alloy
JP2004232047A (en) * 2003-01-31 2004-08-19 Dipsol Chem Co Ltd Treatment agent for forming highly corrosion resistant chromium-free chemical conversion film on aluminum and aluminum alloy, method of forming the chemical conversion film, and aluminum and aluminum alloy with the chemical conversion film formed
JP2005264230A (en) * 2004-03-18 2005-09-29 Nippon Parkerizing Co Ltd Surface treatment composition for metal, surface treatment liquid for metal, surface treatment method for metal, and metallic material
JP2009203519A (en) * 2008-02-27 2009-09-10 Nippon Parkerizing Co Ltd Metallic material, and method for producing the same
JP2010163640A (en) * 2009-01-13 2010-07-29 Nippon Parkerizing Co Ltd Surface treatment liquid for metal, surface treatment method for metal, and metallic material
JP2011117026A (en) * 2009-12-02 2011-06-16 Nippon Parkerizing Co Ltd Surface treatment solution for self-deposition coating treatment for metallic material and self-deposition coating treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164982A (en) * 2019-03-27 2020-10-08 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet
JP7036137B2 (en) 2019-03-27 2022-03-15 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP6566798B2 (en) 2019-08-28
WO2017038431A1 (en) 2017-03-09
TW201715082A (en) 2017-05-01

Similar Documents

Publication Publication Date Title
CA2700400C (en) Method of producing surface-treated metal material and method of producing coated metal item
JP4242827B2 (en) Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
KR101539042B1 (en) Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
EP2576083B1 (en) Corrosion resistant metallate compositions
JP5007469B2 (en) Green trivalent chromium conversion coating
TWI779838B (en) Chemical formation treatment agent, metal material and manufacturing method thereof
JP6532003B2 (en) Method for treating trivalent chromium black conversion coating solution, trivalent chromium-containing water-soluble finisher and metal substrate
JP2003171778A (en) Method for forming protective film of metal, and protective film of metal
KR102297703B1 (en) A chemical conversion treatment agent, a method for producing a chemical conversion film, a metal material with a chemical conversion film, and a coating metal material
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
US4600447A (en) After-passivation of phosphated metal surfaces
JP6566798B2 (en) Surface treatment agent, surface treatment method and surface treatment metal material
CN107109659B (en) 3-valent chromium chemical conversion treatment liquid and chemical conversion coating for zinc or zinc alloy substrate
JP6910543B2 (en) A surface treatment agent, an aluminum or aluminum alloy material having a surface treatment film, and a method for manufacturing the same.
US10435806B2 (en) Methods for electrolytically depositing pretreatment compositions
KR101539708B1 (en) Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
TWI711719B (en) Surface treatment agent, surface treatment method and surface treated metallic material
KR20220078673A (en) Systems and methods for processing substrates
JP3763834B2 (en) Zinc or zinc alloy blackening treatment liquid and blackening treatment method
WO2011061784A1 (en) Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method
JP2018095907A (en) Oxide film removal agent, oxide film removal method, surface treatment method, and method for producing metallic material with oxide film removed
WO2020179734A1 (en) Chemical conversion agent, method for producing metal material having chemical conversion coating, and metal material having chemical conversion coating
WO2022197358A1 (en) Systems and methods for treating a substrate
JP6043689B2 (en) Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same
JPWO2019087320A1 (en) Pretreatment agent, pretreatment method, metal material having chemical conversion film and production method thereof, and painted metal material and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190730

R150 Certificate of patent or registration of utility model

Ref document number: 6566798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250