JP2018008179A - Catalyst for dehydrogenation reaction - Google Patents

Catalyst for dehydrogenation reaction Download PDF

Info

Publication number
JP2018008179A
JP2018008179A JP2014236547A JP2014236547A JP2018008179A JP 2018008179 A JP2018008179 A JP 2018008179A JP 2014236547 A JP2014236547 A JP 2014236547A JP 2014236547 A JP2014236547 A JP 2014236547A JP 2018008179 A JP2018008179 A JP 2018008179A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
dehydrogenation reaction
platinum
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014236547A
Other languages
Japanese (ja)
Inventor
あかね 井上
Akane Inoue
あかね 井上
吉井 哲朗
Tetsuro Yoshii
哲朗 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2014236547A priority Critical patent/JP2018008179A/en
Priority to PCT/JP2015/005626 priority patent/WO2016079954A1/en
Publication of JP2018008179A publication Critical patent/JP2018008179A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for dehydrogenation reaction high in catalyst activity in a dehydrogenation reaction by suppressing side reactions of the dehydrogenation reaction.SOLUTION: There is provided a catalyst for dehydrogenation reaction containing alumina, an alumina carrier containing silica adhered to the alumina and platinum carried on the alumina carrier, where the adhered amount of the silica based on the weight of the alumina is 3.0×10to 1.0×10mol/g. The adhered amount of the silica based on weight of the alumina is preferably 4.0×10to 5.0×10mol/g, the number of acid points of the catalyst for dehydrogenation reaction is preferably 250 μmol or less, and carrying ratio of platinum based on the weight of the catalyst for dehydrogenation reaction is preferably 0.1 to 5.0 wt.%.SELECTED DRAWING: None

Description

本発明は、脱水素反応用触媒に関する。   The present invention relates to a catalyst for dehydrogenation reaction.

従来、脱水素反応用触媒として、アルミナ担体に白金微粒子を担持した触媒が使用されている。しかし、アルミナには、触媒として作用する酸点及び塩基点が存在し、特に酸点によって脱水素反応以外の副反応が生じるという問題があった。そこで、酸点の活性を低下させることにより、脱水素反応の副反応の発生を抑制した脱水素反応用触媒が、いくつか提案されている。   Conventionally, a catalyst in which platinum fine particles are supported on an alumina carrier has been used as a dehydrogenation reaction catalyst. However, alumina has acid sites and base sites that act as a catalyst, and there is a problem that side reactions other than dehydrogenation occur due to the acid sites. Therefore, several catalysts for dehydrogenation reaction in which the occurrence of side reaction of dehydrogenation reaction is suppressed by reducing the activity of acid sites have been proposed.

特許文献1には、マグネシウムを含有したアルミナといった非多孔性の高密度セラミック酸化物の表面に、2〜50nmのメソサイズの細孔を有する多孔質アルミナがコーティングされてなる複合担体に、活性成分である白金と助触媒である錫の二元金属を担持した、炭化水素の転換工程用触媒が提案されている。また、特許文献2には、アルミナ、チタニア、ジルコニアなどの多孔質酸化物の酸点を、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種によって中和した触媒担体が提案されている。しかしながら、これらの方法では、触媒担体が有する酸点の活性を十分に低下させることができないため、脱水素化反応の副反応の発生を抑制することに限界があった。   Patent Document 1 discloses a composite carrier obtained by coating porous alumina having mesosize pores of 2 to 50 nm on the surface of a non-porous high-density ceramic oxide such as alumina containing magnesium. There has been proposed a catalyst for a hydrocarbon conversion process, which carries a binary metal of platinum and co-catalyst tin. Patent Document 2 proposes a catalyst carrier in which the acid sites of porous oxides such as alumina, titania and zirconia are neutralized with at least one selected from alkali metals, alkaline earth metals and rare earth elements. . However, in these methods, since the activity of the acid sites of the catalyst carrier cannot be sufficiently lowered, there is a limit in suppressing the occurrence of side reactions in the dehydrogenation reaction.

特開2006−198616号公報JP 2006-198616 A 特開2004−337724号公報JP 2004-337724 A

本発明の目的は、脱水素反応の副反応の発生を抑制することができ、脱水素反応における触媒活性が高い脱水素反応用触媒を提供することにある。   An object of the present invention is to provide a catalyst for a dehydrogenation reaction that can suppress the occurrence of a side reaction of the dehydrogenation reaction and has a high catalytic activity in the dehydrogenation reaction.

本発明者は、脱水素反応用触媒について鋭意検討した結果、シリカが付着したアルミナを担体として使用することにより、脱水素反応の副反応の発生が抑制されることを見出し、本発明に至った。すなわち、本発明は、
アルミナと、前記アルミナに付着したシリカとを含むアルミナ担体と、
前記アルミナ担体に担持された白金とを含む、脱水素反応用触媒であって、
前記アルミナ担体の重量に基づく前記シリカの付着量は、3.0×10-5〜1.0×10-3mol/gである脱水素反応用触媒である。
As a result of intensive studies on the catalyst for dehydrogenation reaction, the present inventor has found that the use of alumina to which silica is attached as a carrier suppresses the occurrence of side reaction of the dehydrogenation reaction, leading to the present invention. . That is, the present invention
An alumina support containing alumina and silica adhered to the alumina;
A catalyst for dehydrogenation reaction comprising platinum supported on the alumina support,
The amount of the silica deposited based on the weight of the alumina support is a catalyst for dehydrogenation reaction of 3.0 × 10 −5 to 1.0 × 10 −3 mol / g.

本発明の脱水素反応用触媒は、脱水素反応の副反応の発生を抑制することができ、脱水素反応における触媒活性が高い。   The catalyst for dehydrogenation reaction of the present invention can suppress the occurrence of side reaction of dehydrogenation reaction and has high catalytic activity in the dehydrogenation reaction.

以下、本発明の実施形態について説明するが、以下の説明は、本発明を特定の実施形態に限定する趣旨ではない。   Hereinafter, although embodiment of this invention is described, the following description is not the meaning which limits this invention to specific embodiment.

本発明の脱水素反応用触媒は、アルミナと、アルミナに付着したシリカとを含むアルミナ担体(以下、単に「アルミナ担体」と表記する場合がある)と、アルミナ担体に担持された白金とを含む。   The catalyst for dehydrogenation reaction of the present invention includes an alumina carrier containing alumina and silica adhering to the alumina (hereinafter sometimes simply referred to as “alumina carrier”), and platinum supported on the alumina carrier. .

アルミナ担体を構成するアルミナの種類としては特に制限はなく、例えばα−アルミナ、γ−アルミナなどが挙げられる。アルミナの形状は特に制限はなく、破砕して得られた不定形な形状のものであっても、造粒して得られた球形のものであってもよい。   There is no restriction | limiting in particular as the kind of alumina which comprises an alumina support | carrier, For example, alpha-alumina, gamma-alumina etc. are mentioned. The shape of the alumina is not particularly limited, and may be an irregular shape obtained by crushing or a spherical shape obtained by granulation.

アルミナに付着したシリカとしては特に制限はないが、アルミナに付着しやすいという観点から、シリカの前駆体であるアルコキシシランから得られたものが好ましい。アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランなどが挙げられる。アルコキシシランは、いわゆるゾルゲル法により加水分解及び縮重合する。アルコキシシランの加水分解により水酸化ケイ素が生成し、次いで水酸化ケイ素が縮重合することによりシリカが生成する。   Silica attached to alumina is not particularly limited, but those obtained from alkoxysilane, which is a precursor of silica, are preferable from the viewpoint of easy attachment to alumina. Examples of alkoxysilane include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane. Alkoxysilane is hydrolyzed and polycondensed by a so-called sol-gel method. Silicon hydroxide is produced by hydrolysis of alkoxysilane, and then silica is produced by condensation polymerization of silicon hydroxide.

アルコキシシランの加水分解及び縮重合は、シリカがアルミナに付着しやすくするために、アルミナが存在する溶液中で行うことが好ましい。アルミナが存在する溶液に含まれる溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、アセトン、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルイミダゾリジノン、エチレングリコール、テトラエチレングリコール、ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラヒドロフラン、ジオキサン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2−メトキシエタノール(メチルセルソルブ)、2−エトキシエタノール(エチルセルソルブ)、酢酸エチルなどが挙げられる。   Hydrolysis and polycondensation of alkoxysilane is preferably performed in a solution containing alumina in order to make silica easily adhere to alumina. Solvents contained in the solution containing alumina include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, ethylene glycol, tetraethylene glycol, dimethylacetamide, N -Methyl-2-pyrrolidone, tetrahydrofuran, dioxane, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-methoxyethanol (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve), ethyl acetate and the like.

アルコキシシランの加水分解の後、溶媒を除去し、次いで熱処理することにより、シリカがアルミナに付着し、アルミナ担体が得られる。熱処理温度は、好ましくは200〜600℃である。熱処理時間は、好ましくは30分以上である。   After hydrolysis of the alkoxysilane, the solvent is removed, and then heat treatment is performed so that silica adheres to the alumina and an alumina support is obtained. The heat treatment temperature is preferably 200 to 600 ° C. The heat treatment time is preferably 30 minutes or longer.

シリカが付着したアルミナは、アルミナ表面の少なくとも一部をシリカが被覆している。また、アルミナが有する細孔内にシリカが付着していてもよい。アルミナの重量に基づくシリカの付着量は、3.0×10-5〜1.0×10-3mol/gであり、好ましくは3.0×10-5〜7.0×10-4mol/g、より好ましくは4.0×10-5〜5.0×10-4mol/g、特に好ましくは4.0×10-5〜2.0×10-4mol/gである。上記の範囲であれば、脱水素反応の副反応の発生を抑制する効果が高まる。アルミナの重量に基づくシリカの付着量は、使用したアルコキシシランから得られるシリカのモル数と、アルミナの使用量から算出することができる。 In the alumina to which silica is adhered, silica covers at least a part of the alumina surface. Further, silica may adhere to the pores of alumina. The adhesion amount of silica based on the weight of alumina is 3.0 × 10 −5 to 1.0 × 10 −3 mol / g, preferably 3.0 × 10 −5 to 7.0 × 10 −4 mol. / G, more preferably 4.0 × 10 −5 to 5.0 × 10 −4 mol / g, particularly preferably 4.0 × 10 −5 to 2.0 × 10 −4 mol / g. If it is said range, the effect which suppresses generation | occurrence | production of the side reaction of a dehydrogenation reaction will increase. The amount of silica adhered based on the weight of alumina can be calculated from the number of moles of silica obtained from the alkoxysilane used and the amount of alumina used.

アルミナ担体に担持された白金の分布としては特に制限はなく、均一担持、外層担持、内層担持、中心担持のいずれの様式でもよいが、触媒活性の観点から好ましいのは、外層担持である。   The distribution of platinum supported on the alumina support is not particularly limited and may be any of uniform support, outer layer support, inner layer support, and center support, but the outer layer support is preferable from the viewpoint of catalytic activity.

アルミナ担体に白金を担持する方法としては特に制限はなく、例えば、白金化合物溶液に還元剤を加えて白金コロイド溶液を得た後、白金コロイド溶液にアルミナ担体を含浸させ、白金コロイド溶液中の溶媒を除去する方法、などが挙げられる。   The method for supporting platinum on the alumina carrier is not particularly limited. For example, after adding a reducing agent to a platinum compound solution to obtain a platinum colloid solution, the platinum colloid solution is impregnated with the alumina carrier, and the solvent in the platinum colloid solution is obtained. And a method for removing the.

白金化合物としては、塩化白金酸、白金酸アンモニウム塩、臭化白金酸、二塩化白金、四塩化白金水和物、二塩化カルボニル白金二塩化物、ジニトロジアミン白金酸塩、酸化白金、白金ブラックなどが挙げられる。白金化合物は単独で使用してもよく、2種以上を併用してもよい。白金化合物溶液に含まれる溶媒としては、水、アセトン、エタノールなどが挙げられる。   Platinum compounds include chloroplatinic acid, ammonium platinate, bromoplatinic acid, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride, dinitrodiamine platinate, platinum oxide, platinum black, etc. Is mentioned. A platinum compound may be used independently and may use 2 or more types together. Examples of the solvent contained in the platinum compound solution include water, acetone, and ethanol.

還元剤としては、例えば、アルコール、カルボン酸、ケトン、エーテル、アルデヒド、エステルなどが挙げられる。還元剤は単独で使用してもよく、2種以上を併用してもよい。アルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、グリセリン、ピロガロールなどが挙げられる。カルボン酸としては、ギ酸、酢酸、フマル酸、リンゴ酸、クエン酸、コハク酸、アスパラギン酸、タンニン酸、没食子酸、それらのアルカリ金属(リチウム、ナトリウム、カリウム)塩などが挙げられる。ケトンとしては、アセトン、メチルエチルケトンなどが挙げられる。エーテルとしては、ジエチルエーテルなどが挙げられる。アルデヒドとしては、ホルムアルデヒド、アセトアルデヒドなどが挙げられる。エステルとしては、ギ酸メチル、酢酸メチル、酢酸エチルなどが挙げられる。   Examples of the reducing agent include alcohol, carboxylic acid, ketone, ether, aldehyde, ester and the like. A reducing agent may be used independently and may use 2 or more types together. Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, glycerin, and pyrogallol. Examples of the carboxylic acid include formic acid, acetic acid, fumaric acid, malic acid, citric acid, succinic acid, aspartic acid, tannic acid, gallic acid, and alkali metal (lithium, sodium, potassium) salts thereof. Examples of the ketone include acetone and methyl ethyl ketone. Examples of ethers include diethyl ether. Examples of the aldehyde include formaldehyde and acetaldehyde. Examples of the ester include methyl formate, methyl acetate, and ethyl acetate.

白金化合物溶液中の白金化合物の濃度は、好ましくは1×10-6〜15×10-4mol/Lである。還元剤の使用量は、白金化合物のモル数に対して、好ましくは1〜40当量である。白金化合物溶液に還元剤を加えた後、30分〜5時間程度溶媒を還流させ、室温まで急冷して還元反応を停止させる。次いで、イオン交換樹脂を用いて、未反応の白金化合物及び還元剤を除去することで、白金コロイド溶液が得られる。 The concentration of the platinum compound in the platinum compound solution is preferably 1 × 10 −6 to 15 × 10 −4 mol / L. The amount of the reducing agent used is preferably 1 to 40 equivalents relative to the number of moles of the platinum compound. After adding the reducing agent to the platinum compound solution, the solvent is refluxed for about 30 minutes to 5 hours, and the reaction is quenched by quenching to room temperature. Subsequently, a platinum colloid solution is obtained by removing an unreacted platinum compound and a reducing agent using an ion exchange resin.

白金コロイド溶液中の溶媒を除去する方法としては特に制限はなく、例えば、エバポレーターを用いて除去する方法などが挙げられる。   There is no restriction | limiting in particular as a method of removing the solvent in a platinum colloid solution, For example, the method of removing using an evaporator etc. are mentioned.

脱水素反応用触媒の重量に基づく白金の担持率は、好ましくは0.1〜5.0重量%であり、より好ましくは0.3〜2.0重量%である。上記の範囲であれば、脱水素反応用触媒の触媒活性が高くなる。   The platinum loading based on the weight of the catalyst for dehydrogenation reaction is preferably 0.1 to 5.0% by weight, more preferably 0.3 to 2.0% by weight. If it is said range, the catalytic activity of the catalyst for dehydrogenation will become high.

脱水素反応用触媒の酸点の数は、好ましくは250μmol/g以下である。ここで、脱水素反応用触媒の酸点とは、脱水素反応用触媒が有する酸としての性質を示す構成単位のことであり、以下の方法によりその数を測定することができる。   The number of acid sites in the dehydrogenation reaction catalyst is preferably 250 μmol / g or less. Here, the acid point of the catalyst for dehydrogenation reaction is a structural unit exhibiting the acid property of the catalyst for dehydrogenation reaction, and the number can be measured by the following method.

<脱水素反応用触媒の酸点の数の測定方法>
脱水素反応用触媒0.05gを、全自動昇温脱離スペクトル装置「TPD−ATw」[日本ベル(株)製]に備えられたセルに入れ、ヘリウム雰囲気下400℃で60分間熱処理した後、100℃でアンモニアを吸着させ、ヘリウム雰囲気下100℃のままで余剰のアンモニアを除去した後に、ヘリウム雰囲気下10℃/分で昇温しながら、アンモニアの脱離量を測定した。アンモニアの脱離量から、1gの脱水素反応用触媒に吸着したアンモニアのモル数を算出し、これを脱水素反応用触媒の酸点の数とした。
<Method for measuring the number of acid sites on the catalyst for dehydrogenation reaction>
After putting 0.05 g of a catalyst for dehydrogenation reaction in a cell provided in a fully automatic thermal desorption spectrum apparatus “TPD-ATw” [manufactured by Nippon Bell Co., Ltd.], heat-treating at 400 ° C. for 60 minutes in a helium atmosphere Then, ammonia was adsorbed at 100 ° C., and excess ammonia was removed at 100 ° C. in a helium atmosphere, and then the amount of ammonia desorbed was measured while raising the temperature at 10 ° C./min in a helium atmosphere. From the amount of ammonia desorbed, the number of moles of ammonia adsorbed on 1 g of the dehydrogenation reaction catalyst was calculated, and this was used as the number of acid sites of the dehydrogenation reaction catalyst.

実施例により、本発明を詳細に説明する。ただし、以下の実施例は、本発明の一例を示すものであり、本発明は以下の実施例に限定されない。   The examples illustrate the invention in detail. However, the following examples show examples of the present invention, and the present invention is not limited to the following examples.

<実施例1>
[アルミナ担体の作製]
テトラエトキシシラン[信越化学工業(株)製]100μL(0.451mmol)に対して、トータル液量が11mLになるようにエタノールを加え、アルミナ「GB−13」[平均粒径:2mm、比表面積:180m2/g、細孔容積:0.5cm3/g、平均細孔径:11.1nm、水澤化学工業(株)製]10gを加え、常温下に24時間放置した。次いで80℃の乾燥機中に1時間放置してエタノールを除去した後、400℃で3時間熱処理し、アルミナ担体を得た。
<Example 1>
[Production of alumina support]
Ethanol is added to tetraethoxysilane [manufactured by Shin-Etsu Chemical Co., Ltd.] 100 μL (0.451 mmol) so that the total liquid volume becomes 11 mL, and alumina “GB-13” [average particle size: 2 mm, specific surface area] : 180 m 2 / g, pore volume: 0.5 cm 3 / g, average pore diameter: 11.1 nm, manufactured by Mizusawa Chemical Industry Co., Ltd.] 10 g was added and left at room temperature for 24 hours. Next, the ethanol was removed by leaving it in a dryer at 80 ° C. for 1 hour, and then heat treated at 400 ° C. for 3 hours to obtain an alumina carrier.

[白金コロイド溶液の調製]
還流装置を備えた200mL丸底フラスコに超純水184.22mLを入れ、マントルヒーターを用いて超純水を30分間還流させた。次いで4重量%塩化白金酸[大浦貴金属工業(株)]5.31mLを加え、さらに40分間還流した。次いでpH調整剤としての1M炭酸カリウム水溶液2.05mLと、15重量%タンニン酸水溶液8.42mLを加えて30分間還流し、塩化白金酸を還元して白金コロイド溶液を得た。次いで常温まで冷却し、イオン交換樹脂「アンバーライトMB−1」[オルガノ(株)製]32gを用いて白金コロイド溶液中の不純物を取り除き、白金コロイド溶液(白金濃度:250ppm)を得た。
[Preparation of colloidal platinum solution]
184.22 mL of ultrapure water was placed in a 200 mL round bottom flask equipped with a reflux apparatus, and ultrapure water was refluxed for 30 minutes using a mantle heater. Next, 5.31 mL of 4 wt% chloroplatinic acid [Oura Precious Metal Industry Co., Ltd.] was added, and the mixture was further refluxed for 40 minutes. Next, 2.05 mL of 1M potassium carbonate aqueous solution as a pH adjusting agent and 8.42 mL of 15 wt% tannic acid aqueous solution were added and refluxed for 30 minutes, and chloroplatinic acid was reduced to obtain a platinum colloid solution. Subsequently, it cooled to normal temperature, the impurity in a platinum colloid solution was removed using 32g of ion exchange resin "Amberlite MB-1" [made by Organo Corporation], and the platinum colloid solution (platinum concentration: 250 ppm) was obtained.

[白金の担持]
アルミナ担体5gと、白金コロイド溶液120mLを500mLのナスフラスコに入れ、エバポレーターを用いて脱水しながら白金の担持を行い、脱水素反応用触媒E−1を得た。
[Supporting platinum]
5 g of an alumina carrier and 120 mL of a platinum colloid solution were placed in a 500 mL eggplant flask, and platinum was supported while dehydrating using an evaporator, to obtain a catalyst E-1 for dehydrogenation reaction.

<実施例2>
テトラエトキシシランの量を200μL(0.902mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒E−2を得た。
<Example 2>
A catalyst E-2 for dehydrogenation reaction was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 200 μL (0.902 mmol).

<実施例3>
テトラエトキシシランの量を400μL(1.80mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒E−3を得た。
<Example 3>
A dehydrogenation reaction catalyst E-3 was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 400 μL (1.80 mmol).

<実施例4>
テトラエトキシシランの量を2mL(9.02mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒E−4を得た。
<Example 4>
A catalyst E-4 for dehydrogenation reaction was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 2 mL (9.02 mmol).

<実施例5>
アルミナを「GB−45」[平均粒径:4mm、比表面積:180m2/g、細孔容積:0.5cm3/g、平均細孔径:11.1nm、水澤化学工業(株)製]に変更したこと以外は実施例1と同様にして、脱水素反応用触媒E−5を得た。
<Example 5>
Alumina is added to “GB-45” [average particle size: 4 mm, specific surface area: 180 m 2 / g, pore volume: 0.5 cm 3 / g, average pore size: 11.1 nm, manufactured by Mizusawa Chemical Co., Ltd.] Except having changed, it carried out similarly to Example 1, and obtained the catalyst E-5 for dehydrogenation.

<比較例1>
テトラエトキシシランを加えないこと以外は実施例1と同様にして、脱水素反応用触媒C−1を得た。
<Comparative Example 1>
A catalyst for dehydrogenation reaction C-1 was obtained in the same manner as in Example 1 except that tetraethoxysilane was not added.

<比較例2>
テトラエトキシシランの量を20μL(0.0902mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒C−2を得た。
<Comparative example 2>
A catalyst for dehydrogenation C-2 was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 20 μL (0.0902 mmol).

<比較例3>
テトラエトキシシランの量を40μL(0.180mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒C−3を得た。
<Comparative Example 3>
A dehydrogenation catalyst C-3 was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 40 μL (0.180 mmol).

<比較例4>
テトラエトキシシランの量を4mL(18.0mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒C−4を得た。
<Comparative Example 4>
A catalyst for dehydrogenation C-4 was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 4 mL (18.0 mmol).

<比較例5>
テトラエトキシシランの量を6mL(27.1mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒C−5を得た。
<Comparative Example 5>
A dehydrogenation catalyst C-5 was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 6 mL (27.1 mmol).

<比較例6>
テトラエトキシシランの量を10mL(45.1mmol)としたこと以外は実施例1と同様にして、脱水素反応用触媒C−6を得た。
<Comparative Example 6>
A catalyst C-6 for dehydrogenation was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane was 10 mL (45.1 mmol).

<比較例7>
テトラエトキシシランを加えないことと、アルミナを「GB−45」[水澤化学工業(株)製]に変更したこと以外は実施例1と同様にして、脱水素反応用触媒C−7を得た。
<Comparative Example 7>
A catalyst C-7 for dehydrogenation reaction was obtained in the same manner as in Example 1 except that tetraethoxysilane was not added and alumina was changed to “GB-45” [manufactured by Mizusawa Chemical Industry Co., Ltd.]. .

<比較例8>
テトラエトキシシランを加えないことと、アルミナをシリカ「Q−30」[平均粒径:1.7mm、比表面積:100m2/g、細孔容積:1.0cm3/g、平均細孔径:30nm、富士シリシア化学(株)製]に変更したこと以外は実施例1と同様にして、脱水素反応用触媒C−8を得た。
<Comparative Example 8>
No tetraethoxysilane was added, and alumina was silica “Q-30” [average particle size: 1.7 mm, specific surface area: 100 m 2 / g, pore volume: 1.0 cm 3 / g, average pore size: 30 nm The catalyst for dehydrogenation C-8 was obtained in the same manner as in Example 1 except that the product was changed to “Fuji Silysia Chemical Co., Ltd.”.

<アルミナに対するシリカ付着量>
実施例1〜5、比較例1〜8で作製した脱水素反応用触媒における、アルミナの重量に基づくシリカの付着量は、使用したテトラエトキシシランから得られるシリカのモル数と、アルミナの使用量から算出した。
<Amount of silica attached to alumina>
In the catalysts for dehydrogenation prepared in Examples 1 to 5 and Comparative Examples 1 to 8, the amount of silica attached based on the weight of alumina is the number of moles of silica obtained from the tetraethoxysilane used and the amount of alumina used. Calculated from

<脱水素反応用触媒の酸点の数の測定方法>
実施例1〜5、比較例1〜8で作製した脱水素反応用触媒の酸点の数は、上記の測定方法と同様の方法により測定した。
<Method for measuring the number of acid sites on the catalyst for dehydrogenation reaction>
The number of acid sites of the dehydrogenation reaction catalysts prepared in Examples 1 to 5 and Comparative Examples 1 to 8 was measured by the same method as the above measurement method.

<脱水素反応用触媒の白金の担持率の測定>
実施例1〜5、比較例1〜8で作製した脱水素反応用触媒50mgを、王水5mLとともに50mLテフロン製反応容器に入れ、さらにテフロン製反応容器をSUS製の容器に入れて密封し、170℃で6時間熱処理した。次いで常温まで冷却し、脱水素反応用触媒と王水の混合溶液を、超純水で100倍に希釈した。希釈した溶液中の白金濃度をICP−MSで測定し、白金の担持率を測定した。結果を表1に示す。
<Measurement of platinum loading on catalyst for dehydrogenation reaction>
Examples 1-5, 50 mg of the catalyst for dehydrogenation prepared in Comparative Examples 1-8 were placed in a 50 mL Teflon reaction vessel together with 5 mL of aqua regia, and the Teflon reaction vessel was placed in a SUS vessel and sealed. Heat treatment was performed at 170 ° C. for 6 hours. Next, the mixture was cooled to room temperature, and the mixed solution of dehydrogenation catalyst and aqua regia was diluted 100 times with ultrapure water. The platinum concentration in the diluted solution was measured by ICP-MS, and the platinum loading was measured. The results are shown in Table 1.

<脱水素反応の水素生成量の測定>
実施例1〜5、比較例1〜8で作製した脱水素反応用触媒を、固定床流通式反応装置に3.5cm3充填して300℃に加熱した。キャリアガスの供給装置にメチルシクロヘキサン200μLを投入し、加熱して気化させた。そこへ170℃のキャリアガス[窒素:空気=3:1(体積比)]を240mL/分の流速で流し込むことで、脱水素反応用触媒を充填した固定床流通式反応装置にメチルシクロヘキサンを送り込んだ。メチルシクロヘキサンの脱水素反応により生成する水素の量を7.5分間測定した。結果を表1に示す。
<Measurement of hydrogen production in dehydrogenation reaction>
The catalyst for dehydrogenation prepared in Examples 1 to 5 and Comparative Examples 1 to 8 was filled in a fixed bed flow type reactor at 3.5 cm 3 and heated to 300 ° C. 200 μL of methylcyclohexane was put into a carrier gas supply device and heated to be vaporized. The carrier gas [nitrogen: air = 3: 1 (volume ratio)] at 170 ° C. was poured there at a flow rate of 240 mL / min, so that methylcyclohexane was fed into the fixed bed flow reactor filled with the catalyst for dehydrogenation reaction. It is. The amount of hydrogen produced by the dehydrogenation reaction of methylcyclohexane was measured for 7.5 minutes. The results are shown in Table 1.

Figure 2018008179
Figure 2018008179

実施例1〜5の脱水素反応用触媒は、比較例1〜7の脱水素反応用触媒と比較して、水素生成量が多かった。つまり、シリカが付着したアルミナを含有するアルミナ担体に白金を担持することにより、脱水素反応用触媒としての触媒活性が高くなり、脱水素反応の副反応の発生を抑制することができた。また、アルミナを担体として使用せず、シリカそのものを担体とした場合(比較例8)には、実施例1〜5の脱水素反応用触媒と比較して水素生成量が少なかった。これは、脱水素反応は吸熱反応であり、その反応を進めるためには、反応場に熱を迅速に供給する必要があるが、シリカに対してアルミナの方が熱伝導性に優れているため、アルミナの熱伝導性を阻害しない範囲でアルミナにシリカが付着する(アルミナの酸点がシリカ膜で覆われている)ことにより、脱水素反応用触媒の触媒活性が高くなったためと考える。   The dehydrogenation reaction catalysts of Examples 1 to 5 produced more hydrogen than the dehydrogenation reaction catalysts of Comparative Examples 1 to 7. That is, by supporting platinum on an alumina carrier containing alumina with silica adhered thereto, the catalytic activity as a catalyst for the dehydrogenation reaction was increased, and the occurrence of a side reaction of the dehydrogenation reaction could be suppressed. Further, when alumina was not used as a carrier and silica itself was used as a carrier (Comparative Example 8), the amount of hydrogen produced was small compared to the dehydrogenation reaction catalysts of Examples 1-5. This is because the dehydrogenation reaction is an endothermic reaction, and in order to proceed with the reaction, it is necessary to rapidly supply heat to the reaction field, but alumina has better thermal conductivity than silica. It is considered that the catalytic activity of the catalyst for dehydrogenation reaction is increased by the silica adhering to the alumina within a range not inhibiting the thermal conductivity of the alumina (the acid sites of the alumina are covered with the silica film).

本発明の脱水素反応用触媒は、脱水素反応の副反応の発生を抑制することができ、脱水素反応における触媒活性が高いことから、例えば、種々の飽和炭化水素、特にシクロヘキサン、メチルシクロヘキサン、デカリンなどの環状飽和炭化水素から、水素と環状不飽和炭化水素とを生成する際の触媒として、好適に使用することができる。   The catalyst for dehydrogenation reaction of the present invention can suppress the occurrence of side reactions of the dehydrogenation reaction and has high catalytic activity in the dehydrogenation reaction. For example, various saturated hydrocarbons, particularly cyclohexane, methylcyclohexane, It can be suitably used as a catalyst for producing hydrogen and cyclic unsaturated hydrocarbons from cyclic saturated hydrocarbons such as decalin.

Claims (3)

アルミナと、前記アルミナに付着したシリカとを含むアルミナ担体と、
前記アルミナ担体に担持された白金とを含む、脱水素反応用触媒であって、
前記アルミナの重量に基づく前記シリカの付着量は、3.0×10-5〜1.0×10-3mol/gである脱水素反応用触媒。
An alumina support containing alumina and silica adhered to the alumina;
A catalyst for dehydrogenation reaction comprising platinum supported on the alumina support,
The amount of the silica adhered based on the weight of the alumina is 3.0 × 10 −5 to 1.0 × 10 −3 mol / g.
前記アルミナの重量に基づく前記シリカの付着量は、4.0×10-5〜5.0×10-4mol/gである、請求項1に記載の脱水素反応用触媒。 2. The catalyst for dehydrogenation reaction according to claim 1, wherein an amount of the silica adhered based on a weight of the alumina is 4.0 × 10 −5 to 5.0 × 10 −4 mol / g. 前記脱水素反応用触媒の重量に基づく前記白金の担持率は、0.1〜5.0重量%である、請求項1又は2に記載の脱水素反応用触媒。   The catalyst for dehydrogenation reaction according to claim 1 or 2, wherein the platinum loading based on the weight of the catalyst for dehydrogenation reaction is 0.1 to 5.0 wt%.
JP2014236547A 2014-11-21 2014-11-21 Catalyst for dehydrogenation reaction Pending JP2018008179A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014236547A JP2018008179A (en) 2014-11-21 2014-11-21 Catalyst for dehydrogenation reaction
PCT/JP2015/005626 WO2016079954A1 (en) 2014-11-21 2015-11-11 Catalyst for dehydrogenation reactions and method for producing hydrogen using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236547A JP2018008179A (en) 2014-11-21 2014-11-21 Catalyst for dehydrogenation reaction

Publications (1)

Publication Number Publication Date
JP2018008179A true JP2018008179A (en) 2018-01-18

Family

ID=56013528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236547A Pending JP2018008179A (en) 2014-11-21 2014-11-21 Catalyst for dehydrogenation reaction

Country Status (2)

Country Link
JP (1) JP2018008179A (en)
WO (1) WO2016079954A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1243771B (en) * 1990-08-01 1994-06-28 Eniricerche Spa DEHYDROISOMERIZATION CATALYST AND ITS USE IN THE PREPARATION OF ISOBUTENE FROM N-BUTANE
JPH07100388A (en) * 1993-10-05 1995-04-18 Nippon Oil Co Ltd Catalyst carrier for oil refinery and catalyst for oil refinery
JP2003053187A (en) * 2001-08-22 2003-02-25 Toyota Motor Corp Catalyst for cleaning exhaust gas and method of manufacturing the same
JP2013542064A (en) * 2010-09-15 2013-11-21 ビーエーエスエフ ソシエタス・ヨーロピア Heterogeneous catalyst stable against calcination

Also Published As

Publication number Publication date
WO2016079954A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
US7759281B2 (en) Photocatalyst containing metallic ultrafine particles and process for producing said photocatalyst
JP4044673B2 (en) Polybetaine-stabilized palladium-containing nanoparticles, method for preparing the particles, and catalyst prepared from the particles to produce vinyl acetate
Sa et al. Redispersion of gold supported on oxides
Huang et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method
WO2016173285A1 (en) Supported catalyst having core-shell structure, preparation method therefor, and application thereof
CN1617765A (en) Aerogel and metallic compositions
CN107638880B (en) Synthesis method of transition metal oxide modified noble metal nano catalyst
JP6284142B2 (en) Macroporous monolith, its production method and its application
KR102407669B1 (en) Method for preparing supported platinum particles
TW200922692A (en) Catalyst and production process thereof, and chlorine production using the catalyst
JP2011078888A (en) Catalyst for decomposing ammonia
JP4903932B2 (en) Method for producing binary metal particle colloidal dispersion
JP2018008179A (en) Catalyst for dehydrogenation reaction
CN112774676B (en) Rare earth oxide supported ruthenium catalyst and preparation method and application thereof
JP2011110509A (en) Method for manufacturing carried ruthenium oxide, and method for manufacturing chlorine
US9861960B2 (en) Hydrogenation catalyst, its method of preparation and use
CN103285903B (en) Hydrogenation catalyst, and preparation method and application thereof
US10130940B2 (en) Hydrogenation catalyst, its method of preparation and use
CN111569872B (en) Active carbon-palladium-gallium-tin liquid alloy composite catalyst and preparation method and application thereof
JP2010092814A (en) Electrode catalyst for polymer electrolyte fuel cell
KR101571319B1 (en) Sintering-resistant catalyst for water-gas shift reaction, preparing method of the same and water-gas shift method using the same
JP4481043B2 (en) Ni / SiO2 catalyst and method for producing the same
CN114618477B (en) Catalyst and preparation method and application thereof
CN111470989A (en) Synthesis method of aminophenol compound
WO2016143490A1 (en) Gold hydroxo anion complex solution