JP4903932B2 - Method for producing binary metal particle colloidal dispersion - Google Patents

Method for producing binary metal particle colloidal dispersion Download PDF

Info

Publication number
JP4903932B2
JP4903932B2 JP2000254468A JP2000254468A JP4903932B2 JP 4903932 B2 JP4903932 B2 JP 4903932B2 JP 2000254468 A JP2000254468 A JP 2000254468A JP 2000254468 A JP2000254468 A JP 2000254468A JP 4903932 B2 JP4903932 B2 JP 4903932B2
Authority
JP
Japan
Prior art keywords
metal
silver
colloidal dispersion
colloid
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000254468A
Other languages
Japanese (ja)
Other versions
JP2002060805A (en
Inventor
直樹 戸嶋
幸英 白石
和貴 平川
直彦 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2000254468A priority Critical patent/JP4903932B2/en
Publication of JP2002060805A publication Critical patent/JP2002060805A/en
Application granted granted Critical
Publication of JP4903932B2 publication Critical patent/JP4903932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Colloid Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二元金属粒子コロイド分散液の製造方法に関する。
【0002】
【従来の技術】
本発明者らは、先に一液中に存在する二種の貴金属を同時に還元すると、二元金属ナノクラスター分散液(いいかえれば二元金属粒子コロイド分散液)が得られること、この二元金属ナノクラスターは、一方の金属をコアに他の金属がシェルとなったコア/シェル型構造をもつものであることを発表した〔N.Toshima and T.Yonezawa,New J.chem.,22, 1179(1998)〕。
【0003】
前述の技術は、同じ液中で二種の金属が還元されて、二種の原子ができ、これがその場で結合し、固溶体化して合金状になるものや、金属の組合せによっては一方の金属がコア(核)になり他方の金属がシェル(殻)となってコア/シェル型クラスターとなったり、クラスターインクラスター(cluster−in−cluster)構造、いいかえればそれぞれの金属がいくつか集合したものがさらに集ったような構造となっていることがわかってきた。
【0004】
【発明が解決しようとする課題】
本発明の目的は、新規な二元金属粒子コロイド分散液の製造方法を提供する点にある。なお、本発明における二元金属粒子コロイド分散液とは、前述のような構造のもののほか例えばコアとなる第一の金属粒子上に第二の金属が斑状、帯状あるいは殻状に被覆したもの、または金属粒子中に他の金属層が喰い込んだ状態のもの、さらには一部合金化したものなどを総称している。
【0005】
【課題を解決するための手段】
従来、二元金属コロイドを調製するためには、二種の金属イオンが一液中に共通して存在している系において、二種の金属イオンを同時還元するか、または逐次還元することが不可欠であると考えられていたが、驚くべきことに、本発明者らは、金属毎に別々の液中で還元しておいたものを、ただ単に混合するだけで二元金属粒子コロイド分散液が調製できることを見出し、本発明を完成したものである。
【0006】
本発明の第一は、(1)1種類の貴金属イオン含有液を還元して得られた金属コロイド液を二種類調製し、(2)前記(1)の方法で得られた、金属の種類が異なる金属コロイド液を混合する二元金属粒子コロイド分散液の製造方法であって、前記二種類の貴金属の組合せが、Ag−Pd、Ag−RhまたはAg−Ptであり、前記金属コロイド液の調製にあたりコロイド保護剤を用いることを特徴とする二元金属粒子コロイド分散液の製造方法に関する。
【0011】
本発明の第は、前記コロイド保護剤が親水性高分子である請求項記載の二元金属粒子コロイド分散液の製造方法に関する。
【0012】
本発明における金属イオン供給源としては、とくに制限するものではないが、金属のハロゲン化物、酢酸金属塩、過ハロゲン酸金属塩、硫酸金属塩、硝酸金属塩、炭酸金属塩、修酸金属塩などの各種酸の金属塩などを挙げることができる。
【0013】
前記金属としては、Ag、Rh、Pd、Ptを用いる。
【0014】
二元金属コロイドを形成するための金属の組合せはAg−Pd、Ag−Rh、Ag−Ptが好ましく、金属コロイド液を高い温度ではなく、室温で混合しただけで、二元金属粒子コロイド分散液を得ることができる。
【0015】
混合に供される金属コロイド液の金属粒子は、平均粒径が100nm以下、好ましくは50nm以下、とくに好ましくは10nm以下である。下限はないが、好ましくは0.8nm以上である。
【0016】
前記金属イオン含有液を形成するための溶媒としては、水、アルコール類、エチレングリコール類およびエーテル類よりなる群から選ばれた少なくとも1種を用いることが好ましい。
【0017】
前記還元剤は、対象金属を還元できる還元剤であれば、とくに制限はなく、化学還元剤のほかに光還元、超音波還元、電気還元、X線還元、γ線還元なども使用することができる。また、化学還元剤としては、一級または二級アルコール類、グリコール類、酸素原子に隣接する炭素原子に水素原子が結合しているエーテル類、エタノールアミン類さらには水素化ホウ素類、ヒドラジンなどを挙げることができる。
【0018】
金属イオン供給源としてAgX(Xはハロゲン)を、還元剤として、エタノールを用いたケースでみると、本発明における還元反応は
【化1】

Figure 0004903932
であり、還元剤として光を用いたケースでは
【化2】
Figure 0004903932
となり、HXなどが系中に残るが溶媒を留去するとき、HXなどは一緒に除去される。
式中、Ag(0)は、還元されて0価の金属になっていることを示す。
【0019】
還元剤の使用量は、金属1モルに対し、1モル以上存在すればよく、好ましくは1〜100モルである。
【0020】
前記コロイド保護剤としては、親水性高分子、金属配位性分子、両親媒性分子および/またはアニオン性化合物を挙げることができる。
【0021】
前記コロイド保護剤の使用量は、金属1モルに対し、0.1モル以上存在すればよく、好ましくは1〜50モルである。なお、コロイド保護剤が高分子の場合には、そのモノマー単位当りのモル数に換算したものを適用する。
【0022】
前記親水性高分子としては、ポリビニルピロリドン〔たとえばポリ(N−ビニル−2−ピロリドン)〕、ポリビニルアルコール、ポリ(メタ)アクリル酸塩のように、アミド基、水酸基、カルボキシル基および/またはアミノ基を含有するポリマーあるいはこれら親水性ホモ重合体形成用モノマーの共重合体などのほか、シクロデキストリン、アミノペクチン、メチルセルロース、ゼラチンなどの天然物を挙げることができる。
【0023】
前記金属配位性分子としては、アミノ基、チオール基、ジスルフィド基、アミド基、カルボン酸基、ホスフィン基、スルホン酸基など金属に配位することのできる官能基を1つ以上持つ有機分子および一酸化炭素、一酸化窒素をあげることができる。
【0024】
前記両親媒性分子としては、各種一官能性または多官能性界面活性剤(アニオン性、カチオン性、ノニオン性、両性いずれでも可)たとえばドデシル硫酸ナトリウム、ポリエチレングリコールモノラウレートなどを挙げることができる。
【0025】
前記アニオン性化合物としては、塩化物などのハロゲン化物、過塩素酸塩、各種アルコキシドなどのほか修酸、酒石酸、クエン酸などのカルボン酸の塩を挙げることができ、その塩としてはアルカリ金属塩、アンモニウム塩、アミン塩などを挙げることができる。
【0026】
本発明により得られた二元金属粒子コロイド分散液は、そのまま、あるいはそれを適当な担体に担持させて触媒として使用することができる。本発明の二元金属粒子コロイド分散液中の元金属粒子は、本発明者らが先に発表した同時還元法で得られた二元金属粒子(同時還元以外の点は同じ方法、条件で得られたもの)より、やや大きい粒子となっているが、それにもかかわらず、同時還元法で得られたものより触媒活性が高い傾向を示すのは全く驚くべき現象である。
【0027】
【実施例】
以下に、実施例、比較例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。
【0028】
実施例1
(1)銀粒子コロイド分散液の調製
還流冷却器付き100ミリリットルナス型フラスコに過塩素酸銀(小島化学製特級試薬)0.0068g(0.033ミリモル)およびポリ(N−ビニル−2−ピロリドン)(東京化成工業製特級試薬)0.147g(1.32ミリモル、単量体単位)を入れ、反応器の空気部分を窒素置換した。これに蒸留水5ミリリットルを加え、磁気撹拌機を用いて十分撹拌した後、さらにエタノール45ミリリットルを加え、90〜95℃で2時間加熱還流した。溶液は黄色に変化し、銀粒子コロイド分散液が得られた。銀粒子コロイド分散液のUV−Vis吸収スペクトルの結果、銀特有の表面プラズモン吸収による吸収極大が400nm付近に現れた。この溶液を透過型電子顕微鏡により分析した結果、銀粒子の平均粒径は7.6nmであった。
【0029】
(2)ロジウム粒子コロイド分散液の調製
前記銀コロイド液の調製における過塩素酸銀に変えて、塩化ロジウム0.0087g(0.033ミリモル)を使用した以外は、銀粒子コロイド分散液の調製と同様に操作し、黒褐色の溶液を得た。ロジウム粒子コロイド分散液のUV−Vis吸収スペクトルは、吸収極大は観察されず、滑らかな右下がりの曲線であった。この溶液を透過型電子顕微鏡により分析した結果、粒子の平均粒径は2.2nmであった。
【0030】
(3)パラジウム粒子コロイド分散液の調製
前記銀粒子コロイド分散液の調製における過塩素酸銀に変えて、酢酸パラジウム0.0074g(0.033ミリモル)を使用した以外は、銀粒子コロイド分散液の調製と同様に操作し、黒褐色の溶液を得た。パラジウム粒子コロイド分散液のUV−Vis吸収スペクトルは、吸収極大は観察されず、滑らかな右下がりの曲線であった。この溶液を透過型電子顕微鏡により分析した結果、粒子の平均粒径は2.7nmであった。
【0031】
(4)銀/ロジウム 複合金属粒子コロイド分散液の調製
100ミリリットルナス型フラスコに前記(1)記載の銀粒子コロイド分散液4ミリリットルと、前記(2)記載のロジウム粒子コロイド分散液16ミリリットルとを磁気撹拌機を用いて十分撹拌した。銀/ロジウムコロイドのUV−Vis吸収スペクトルの結果、銀とロジウムの単なる算術平均を示さず、混合後時間が経つと図1に示すような滑らかな右下がりの曲線を示した。この結果は、銀粒子およびロジウム粒子の単独コロイド分散液の混合物ではなく、銀/ロジウム複合金属粒子コロイド分散液の生成を示唆している。透過型電子顕微鏡写真からも、銀およびロジウムの単なる混合ではないことが観察された。
【0032】
実施例2(銀/パラジウム複合金属粒子コロイド分散液の調製)
100ミリリットルナス型フラスコに実施例1(1)記載の銀コロイド4ミリリットルと、実施例1(3)記載のパラジウムコロイド16ミリリットルとを磁気撹拌機を用いて十分撹拌した。銀/パラジウムコロイドのUV−Vis吸収スペクトルの結果、銀とパラジウムの単なる算術平均を示さず、滑らかな右下がりの曲線を示した。この結果は、銀およびパラジウムの単独コロイドの単なる混合物ではなく、銀/パラジウム複合金属粒子コロイド分散液の生成を示唆している。透過型電子顕微鏡写真からも、銀およびパラジウムの単なる混合ではないことが観察された。
【0033】
実施例3(水素化触媒としての利用)
30ミリリットルナス型フラスコに、実施例1(4)記載の銀/ロジウム複合金属粒子コロイド分散液を0.3ミリリットル(2.0×10−4ミリモル)入れ、溶媒としてエタノール18.7ミリリットルを加え、水素雰囲気下、磁気撹拌機を用いて2時間30℃で十分撹拌した。2時間後、水素化反応の基質としてアクリル酸メチル1ミリリットル(0.5ミリモル)を加え、消費した水素の量をガスビュレットにより読みとった。水素化触媒活性は、水素化初速度を測定することにより評価した。調製した触媒の水素化触媒活性は、4.7モル−Hモル−M−1−1であった。
【0034】
比較例1
同様に実施例1(1)記載の銀粒子コロイド分散液の水素化触媒活性を調べたところ、0.1モル−Hモル−M−1−1であった。
【0035】
比較例2
同様に実施例1(2)記載のロジウム粒子コロイド分散液の水素化触媒活性を調べたところ、3.1モル−Hモル−M−1−1であった。
【0036】
実施例4
(1)銀粒子コロイド分散液の調製
100ミリリットル石英製シュリンク管に過塩素酸銀(小島化学製特級試薬)0.0068g(0.033ミリモル)およびポリアクリル酸ナトリウム(Aldrich Chemical製特級試薬)0.124g(1.32ミリモル、単量体単位)を入れ、これに蒸留水25ミリリットルを加え、さらにエタノール25ミリリットルを加え、反応器の空気部分を窒素置換した。磁気撹拌機を用いて十分撹拌した後、500W高圧水銀灯にて1時間紫外線照射した。溶液は黄色に変化し、銀コロイド溶液が得られた。銀粒子コロイド分散液のUV−Vis吸収スペクトルの結果、銀特有の表面プラズモン吸収による吸収極大が400nm付近に現れた。この溶液を透過型電子顕微鏡により分析した結果、銀粒子の平均粒径は3.7nmであった。
【0037】
(2)パラジウム粒子コロイド分散液の調製
実施例4(1)の過塩素酸銀に変えて、酢酸パラジウム0.0074g(0.033ミリモル)を使用した以外は、実施例4(1)と同様に操作し、黒褐色の溶液を得た。パラジウム粒子コロイド分散液のUV−Vis吸収スペクトルは、吸収極大は観察されず、滑らかな右下がりの曲線であった。この溶液を透過型電子顕微鏡により分析した結果、粒子の平均粒径は3.0nmであった。
【0038】
(3)銀/パラジウム複合金属粒子コロイド分散液の調製
100ミリリットルナス型フラスコに実施例4(1)記載の銀コロイド18ミリリットルと、実施例4(2)記載のパラジウムコロイド2ミリリットルとを磁気撹拌機を用いて十分撹拌した。銀/パラジウムコロイドのUV−Vis吸収スペクトルの結果、銀とパラジウムの単なる算術平均を示さず、滑らかな右下がりの曲線を示した。この結果は、銀およびパラジウムの単独コロイドの混合物ではなく、銀/パラジウム複合金属粒子コロイド分散液の生成を示唆している。透過型電子顕微鏡写真からも、銀およびパラジウムの単なる混合ではないことが観察された。
【0039】
実施例5
還流冷却器付き100ミリリットルナス型フラスコに、実施例4(3)記載の銀/パラジウム複合金属粒子コロイド分散液を30ミリリットル入れ、凍結脱気した。エチレン:酸素(2:1)600ミリリットルの雰囲気下に静置し、閉鎖系で磁気撹拌機を用いて十分撹拌した後、3時間、170℃で加熱した。3時間後反応温度を0〜5℃に冷却し、反応を停止した。反応溶液中の生成物をガスクロマトグラフ法(TSG−1カラムにより60℃、FID検出器)により分析定量したところ、調製した触媒のエチレン酸化触媒活性は、4.3モル−EOモル−M−1−1であった。
【0040】
比較例3
同様に実施例4(1)記載の銀粒子コロイド分散液のエチレン酸化触媒活性を調べたところ、2.7モル−EOモル−M−1−1であった。
【0041】
比較例4
同様に実施例4(2)記載のパラジウム粒子コロイド分散液のエチレン酸化触媒活性を調べたところ、0.46モル−EOモル−M−1−1であった。
【0042】
【発明の効果】
本発明により、予期もできない二元金属粒子コロイド分散液の簡単な製法が提供でき、かつそのコロイド分散液は触媒としても有用であった。
【図面の簡単な説明】
【図1】銀粒子コロイド分散液にロジウム粒子分散液を混合したときの銀表面プラズモン吸収が時間の経過とともに滑らかな右下り曲線に収れんしてゆくことを示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a binary metal particle colloidal dispersion.
[0002]
[Prior art]
The inventors of the present invention can obtain a binary metal nanocluster dispersion (in other words, a binary metal particle colloid dispersion) by simultaneously reducing two kinds of precious metals existing in one liquid, and this binary metal. It has been announced that nanoclusters have a core / shell structure in which one metal is a core and the other metal is a shell [N. Toshima and T.A. Yonezawa, New J .; chem. , 22 , 1179 (1998)].
[0003]
In the above technique, two kinds of metals are reduced in the same liquid to form two kinds of atoms, which are combined in situ and become a solid solution into an alloy, or depending on the combination of metals, Becomes a core and the other metal becomes a shell, forming a core / shell cluster, or a cluster-in-cluster structure, in other words, a collection of several metals. It has been found that the structure is more like a gathering.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel process for producing bimetallic particle colloidal dispersion. In addition, the binary metal particle colloid dispersion in the present invention, in addition to the one having the structure as described above, for example, the first metal particles that become the core, the second metal is coated in the form of spots, strips or shells, Or, it is a generic term for a state in which another metal layer is engulfed in a metal particle, or a partially alloyed one.
[0005]
[Means for Solving the Problems]
Conventionally, in order to prepare a binary metal colloid, two kinds of metal ions can be simultaneously reduced or sequentially reduced in a system in which two kinds of metal ions are commonly present in one liquid. was thought to be essential, surprisingly, the present inventors have found that what had been reduced in separate liquid in each metal, simply by simply mixing binary metal particle colloidal dispersion The present invention has been completed.
[0006]
First the present invention, (1) one kind of a noble metal ion-containing solution the metal colloid solution obtained by reducing to two prepared, obtained by the method (2) above (1), precious metals A method for producing a binary metal particle colloidal dispersion in which different types of metal colloidal liquids are mixed , wherein the combination of the two types of noble metals is Ag-Pd, Ag-Rh or Ag-Pt, liquid process for producing bimetallic particle colloidal dispersion, which comprises using a colloidal protective agent in the preparation of.
[0011]
The second invention relates to a method for producing a bimetallic particle colloidal dispersion of claim 1 wherein the colloidal protecting agent is a hydrophilic polymer.
[0012]
The metal ion source in the present invention is not particularly limited, but metal halides, metal acetates, metal perhalogenates, metal sulfates, metal nitrates, metal carbonates, metal oxalates, etc. And metal salts of various acids.
[0013]
As the metal, Ag, Rh, Pd, or Pt is used.
[0014]
The combination of metal for forming the bimetallic colloid, Ag-Pd, Ag-Rh , Ag-Pt are preferred, rather than the higher temperature of the metal colloid solution, only by mixing at room temperature, bimetallic particles colloidal dispersion A liquid can be obtained.
[0015]
The metal particles of the metal colloid liquid to be mixed have an average particle size of 100 nm or less, preferably 50 nm or less, particularly preferably 10 nm or less. Although there is no lower limit, it is preferably 0.8 nm or more.
[0016]
As a solvent for forming the metal ion-containing liquid, it is preferable to use at least one selected from the group consisting of water, alcohols, ethylene glycols and ethers.
[0017]
The reducing agent is not particularly limited as long as it is a reducing agent capable of reducing the target metal, and in addition to the chemical reducing agent, photoreduction, ultrasonic reduction, electrical reduction, X-ray reduction, γ-ray reduction, etc. may be used. it can. Examples of the chemical reducing agent include primary or secondary alcohols, glycols, ethers in which a hydrogen atom is bonded to a carbon atom adjacent to an oxygen atom, ethanolamines, borohydrides, and hydrazine. be able to.
[0018]
In the case of using AgX (X is halogen) as the metal ion source and ethanol as the reducing agent, the reduction reaction in the present invention is
Figure 0004903932
In the case where light is used as the reducing agent,
Figure 0004903932
HX and the like remain in the system, but when the solvent is distilled off, HX and the like are removed together.
In the formula, Ag (0) indicates that it is reduced to a zero-valent metal.
[0019]
The reducing agent may be used in an amount of 1 mol or more, preferably 1 to 100 mol, per 1 mol of metal.
[0020]
Examples of the colloid protective agent include hydrophilic polymers, metal coordination molecules, amphiphilic molecules, and / or anionic compounds.
[0021]
The colloid protective agent is used in an amount of 0.1 mol or more, preferably 1 to 50 mol, per 1 mol of metal. In addition, when the colloid protective agent is a polymer, the one converted to the number of moles per monomer unit is applied.
[0022]
Examples of the hydrophilic polymer include an amide group, a hydroxyl group, a carboxyl group, and / or an amino group such as polyvinyl pyrrolidone [for example, poly (N-vinyl-2-pyrrolidone)], polyvinyl alcohol, and poly (meth) acrylate. In addition to polymers containing styrene or copolymers of monomers for forming these hydrophilic homopolymers, natural products such as cyclodextrin, aminopectin, methylcellulose, and gelatin can be used.
[0023]
Examples of the metal coordinating molecule include an organic molecule having one or more functional groups capable of coordinating to a metal such as an amino group, a thiol group, a disulfide group, an amide group, a carboxylic acid group, a phosphine group, and a sulfonic acid group. Examples thereof include carbon monoxide and nitric oxide.
[0024]
Examples of the amphiphilic molecule include various monofunctional or polyfunctional surfactants (which may be anionic, cationic, nonionic or amphoteric) such as sodium dodecyl sulfate, polyethylene glycol monolaurate, and the like. .
[0025]
Examples of the anionic compound include halides such as chlorides, perchlorates, various alkoxides, and salts of carboxylic acids such as oxalic acid, tartaric acid, and citric acid, and the salts include alkali metal salts. , Ammonium salts and amine salts.
[0026]
Binary metal particle colloidal dispersion obtained by the present invention can be used as such or it be supported on a suitable carrier as a catalyst. Two bimetallic particles bimetallic particle colloidal dispersion of the present invention, the present inventors have same way except for the points bimetallic particles (simultaneous reduction obtained by the co-reduction method previously announced, the condition It is a surprising phenomenon that the catalyst activity tends to be higher than that obtained by the simultaneous reduction method.
[0027]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto.
[0028]
Example 1
(1) Preparation of silver particle colloidal dispersion In a 100 ml eggplant type flask equipped with a reflux condenser, 0.0068 g (0.033 mmol) of silver perchlorate (special reagent manufactured by Kojima Chemical) and poly (N-vinyl-2-pyrrolidone) ) (Tokyo Chemical Industry special grade reagent) 0.147 g (1.32 mmol, monomer unit) was added, and the air portion of the reactor was purged with nitrogen. Distilled water (5 ml) was added thereto, and after sufficiently stirring using a magnetic stirrer, 45 ml of ethanol was further added, followed by heating to reflux at 90 to 95 ° C. for 2 hours. The solution turned yellow and a silver particle colloidal dispersion was obtained. As a result of the UV-Vis absorption spectrum of the silver particle colloidal dispersion, an absorption maximum due to surface plasmon absorption peculiar to silver appeared near 400 nm. As a result of analyzing this solution with a transmission electron microscope, the average particle diameter of the silver particles was 7.6 nm.
[0029]
(2) Preparation of rhodium particle colloid dispersion Preparation of silver particle colloid dispersion except that 0.0087 g (0.033 mmol) of rhodium chloride was used instead of silver perchlorate in the preparation of the silver colloid solution. The same operation was performed to obtain a dark brown solution. In the UV-Vis absorption spectrum of the rhodium particle colloidal dispersion, no absorption maximum was observed, and it was a smooth downward curve. As a result of analyzing this solution with a transmission electron microscope, the average particle diameter of the particles was 2.2 nm.
[0030]
(3) Preparation of palladium particle colloidal dispersion The silver particle colloidal dispersion liquid except that 0.0074 g (0.033 mmol) of palladium acetate was used instead of silver perchlorate in the preparation of the silver particle colloidal dispersion. The same operation as in the preparation was performed to obtain a dark brown solution. The UV-Vis absorption spectrum of the palladium particle colloidal dispersion was a smooth, downward-sloping curve with no absorption maximum observed. As a result of analyzing this solution with a transmission electron microscope, the average particle size of the particles was 2.7 nm.
[0031]
(4) Preparation of silver / rhodium composite metal particle colloid dispersion In a 100 ml eggplant type flask, 4 ml of silver particle colloid dispersion described in (1) above and 16 ml of rhodium particle colloid dispersion described in (2) above. Stir well using a magnetic stirrer. As a result of the UV-Vis absorption spectrum of the silver / rhodium colloid, it did not show a simple arithmetic average of silver and rhodium, and showed a smooth downward curve as shown in FIG. This result suggests the production of a colloidal dispersion of silver / rhodium composite metal particles rather than a mixture of single colloidal dispersions of silver and rhodium particles. It was also observed from transmission electron micrographs that it was not just a mixture of silver and rhodium.
[0032]
Example 2 (Preparation of colloidal dispersion of silver / palladium composite metal particles)
In a 100 ml eggplant type flask, 4 ml of silver colloid described in Example 1 (1) and 16 ml of palladium colloid described in Example 1 (3) were sufficiently stirred using a magnetic stirrer. As a result of the UV-Vis absorption spectrum of the silver / palladium colloid, it did not show a mere arithmetic mean of silver and palladium, but showed a smooth downward-sloping curve. This result suggests the formation of a colloidal dispersion of silver / palladium composite metal particles, not just a single colloid of silver and palladium. It was also observed from transmission electron micrographs that it was not just a mixture of silver and palladium.
[0033]
Example 3 (Utilization as a hydrogenation catalyst)
Into a 30 ml eggplant-shaped flask, 0.3 ml (2.0 × 10 −4 mmol) of the silver / rhodium composite metal particle colloid dispersion described in Example 1 (4) was added, and 18.7 ml of ethanol was added as a solvent. In a hydrogen atmosphere, the mixture was sufficiently stirred at 30 ° C. for 2 hours using a magnetic stirrer. Two hours later, 1 ml (0.5 mmol) of methyl acrylate was added as a substrate for the hydrogenation reaction, and the amount of hydrogen consumed was read with a gas burette. Hydrogenation catalyst activity was evaluated by measuring the initial hydrogenation rate. The hydrogenation catalytic activity of the prepared catalyst was 4.7 mol-H 2 mol-M −1 s −1 .
[0034]
Comparative Example 1
Similarly, when the hydrogenation catalytic activity of the silver particle colloidal dispersion described in Example 1 (1) was examined, it was 0.1 mol-H 2 mol-M −1 s −1 .
[0035]
Comparative Example 2
Similarly, when the hydrogenation catalytic activity of the rhodium particle colloidal dispersion described in Example 1 (2) was examined, it was 3.1 mol-H 2 mol-M −1 s −1 .
[0036]
Example 4
(1) Preparation of silver particle colloidal dispersion 0.0068 g (0.033 mmol) of silver perchlorate (special reagent manufactured by Kojima Chemical) and sodium polyacrylate (special reagent manufactured by Aldrich Chemical) 0 in a 100 ml quartz shrink tube .124 g (1.32 mmol, monomer unit) was added, 25 ml of distilled water was added thereto, and 25 ml of ethanol was further added, and the air portion of the reactor was purged with nitrogen. After sufficiently stirring using a magnetic stirrer, ultraviolet irradiation was performed for 1 hour with a 500 W high-pressure mercury lamp. The solution turned yellow and a silver colloid solution was obtained. As a result of the UV-Vis absorption spectrum of the silver particle colloidal dispersion, an absorption maximum due to surface plasmon absorption peculiar to silver appeared near 400 nm. As a result of analyzing this solution with a transmission electron microscope, the average particle diameter of the silver particles was 3.7 nm.
[0037]
(2) Preparation of colloidal dispersion of palladium particles As in Example 4 (1) except that 0.0074 g (0.033 mmol) of palladium acetate was used instead of silver perchlorate in Example 4 (1). To give a dark brown solution. The UV-Vis absorption spectrum of the palladium particle colloidal dispersion was a smooth, downward-sloping curve with no absorption maximum observed. As a result of analyzing this solution with a transmission electron microscope, the average particle diameter of the particles was 3.0 nm.
[0038]
(3) Preparation of silver / palladium composite metal particle colloid dispersion In a 100 ml eggplant type flask, 18 ml of silver colloid described in Example 4 (1) and 2 ml of palladium colloid described in Example 4 (2) were magnetically stirred. The mixture was sufficiently stirred using a machine. As a result of the UV-Vis absorption spectrum of the silver / palladium colloid, it did not show a mere arithmetic mean of silver and palladium, but showed a smooth downward-sloping curve. This result suggests the formation of a colloidal dispersion of silver / palladium composite metal particles rather than a single colloidal mixture of silver and palladium. It was also observed from transmission electron micrographs that it was not just a mixture of silver and palladium.
[0039]
Example 5
30 ml of the colloidal dispersion of silver / palladium composite metal particles described in Example 4 (3) was placed in a 100 ml eggplant-shaped flask equipped with a reflux condenser and freeze-deaerated. The mixture was allowed to stand in an atmosphere of 600 ml of ethylene: oxygen (2: 1), sufficiently stirred using a magnetic stirrer in a closed system, and then heated at 170 ° C. for 3 hours. After 3 hours, the reaction temperature was cooled to 0 to 5 ° C., and the reaction was stopped. When the product in the reaction solution was analyzed and quantified by gas chromatography (60 ° C. using a TSG-1 column, FID detector), the ethylene oxidation catalytic activity of the prepared catalyst was 4.3 mol-EO mol-M −1. h- 1 .
[0040]
Comparative Example 3
Similarly, when the ethylene oxidation catalytic activity of the silver particle colloidal dispersion described in Example 4 (1) was examined, it was 2.7 mol-EO mol-M −1 h −1 .
[0041]
Comparative Example 4
Similarly, when the ethylene oxidation catalyst activity of the colloidal dispersion of palladium particles described in Example 4 (2) was examined, it was 0.46 mol-EO mol-M −1 h −1 .
[0042]
【Effect of the invention】
The present invention, expected also simple method to provide a bimetallic particle colloidal dispersion that can not be, and the colloidal dispersion is useful as a catalyst.
[Brief description of the drawings]
FIG. 1 is a graph showing that silver surface plasmon absorption converges on a smooth downward curve over time when a rhodium particle dispersion is mixed with a silver particle colloid dispersion.

Claims (2)

(1)1種類の貴金属イオン含有液を還元して得られた金属コロイド液を二種類調製し、(2)前記(1)の方法で得られた、金属の種類が異なる金属コロイド液を混合する二元金属粒子コロイド分散液の製造方法であって、前記二種類の貴金属の組合せが、Ag−Pd、Ag−RhまたはAg−Ptであり、前記金属コロイド液の調製にあたりコロイド保護剤を用いることを特徴とする二元金属粒子コロイド分散液の製造方法。(1) one kind of a noble metal ion-containing solution the metal colloid solution obtained by reducing to two prepared, (2) the (1) obtained by the method, a metal colloid solution type of noble metal are different In which a combination of the two kinds of precious metals is Ag-Pd, Ag-Rh, or Ag-Pt, and the colloid protective agent is used in the preparation of the metal colloid solution. method for producing a bimetallic particle colloidal dispersion characterized by using. 前記コロイド保護剤が親水性高分子である請求項記載の二元金属粒子コロイド分散液の製造方法。Method for producing a bimetallic particle colloidal dispersion of claim 1 wherein the colloidal protecting agent is a hydrophilic polymer.
JP2000254468A 2000-08-24 2000-08-24 Method for producing binary metal particle colloidal dispersion Expired - Lifetime JP4903932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000254468A JP4903932B2 (en) 2000-08-24 2000-08-24 Method for producing binary metal particle colloidal dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000254468A JP4903932B2 (en) 2000-08-24 2000-08-24 Method for producing binary metal particle colloidal dispersion

Publications (2)

Publication Number Publication Date
JP2002060805A JP2002060805A (en) 2002-02-28
JP4903932B2 true JP4903932B2 (en) 2012-03-28

Family

ID=18743411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000254468A Expired - Lifetime JP4903932B2 (en) 2000-08-24 2000-08-24 Method for producing binary metal particle colloidal dispersion

Country Status (1)

Country Link
JP (1) JP4903932B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2492707A1 (en) * 2002-07-16 2004-01-22 Nippon Sheet Glass Co., Ltd. Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifying device using the same
EP1598071A4 (en) * 2003-02-20 2006-04-26 Shetech Co Ltd Superoxide anion decomposing agent
WO2004073723A1 (en) * 2003-02-20 2004-09-02 She Tec Co., Ltd. Medical drug containing fine particle of noble metal
JP4145166B2 (en) * 2003-02-28 2008-09-03 田中貴金属工業株式会社 Method for producing one- or multi-component metal colloid and one- or multi-component metal colloid
JP4272916B2 (en) * 2003-05-06 2009-06-03 田中貴金属工業株式会社 Ternary metal colloid having a three-layer core / shell structure and method for producing the ternary metal colloid
WO2005007328A1 (en) * 2003-07-17 2005-01-27 Asahi Kasei Medical Co., Ltd. Metal colloid solution
CA2537806A1 (en) * 2003-09-03 2005-03-17 Shetech Co., Ltd. Platinum nanocolloid solution, process for producing the same and drink containing platinum nanocolloid
JP2005139102A (en) * 2003-11-05 2005-06-02 Shetech:Kk Platinum nanocolloid-containing cosmetic
JP4485174B2 (en) * 2003-11-26 2010-06-16 日揮触媒化成株式会社 Composite metal fine particle dispersion and method for producing the same
WO2005053885A1 (en) * 2003-12-01 2005-06-16 Kojima Chemicals Co., Ltd. Process for producing metal micropowder having particle diameter uniformalized
KR20060129090A (en) * 2004-04-16 2006-12-14 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Colloidal solution of fine metal particles, electroconductive pasty material, electroconductive ink material and method for producting them
JP2006342380A (en) * 2005-06-07 2006-12-21 Morimura Chemicals Ltd Composite colloidal metal particle, coated body with composite colloidal metal particle, mixed dispersion liquid of colloidal metals particles, and method for forming electroconductive film
JP2007113059A (en) * 2005-10-19 2007-05-10 Fujifilm Corp Method for producing dispersion of metal microparticles, dispersion of metal microparticles, coloring composition using the same, photosensitive printing material, substrate provided with light-shielding image, color filter and liquid crystal display
US7749300B2 (en) * 2008-06-05 2010-07-06 Xerox Corporation Photochemical synthesis of bimetallic core-shell nanoparticles
JP5537024B2 (en) * 2008-12-25 2014-07-02 株式会社新光化学工業所 Binary Metal Nanoparticle Colloid, Binary Metal Nanoparticle, Binary Metal Nanoparticle Colloid Manufacturing Method, and Binary Metal Nanoparticle Manufacturing Method
EP3725288A4 (en) 2017-12-13 2021-08-18 Kuraray Noritake Dental Inc. Dental composition containing platinum nanoparticles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561537B2 (en) * 1989-03-30 1996-12-11 真空冶金株式会社 Metal paste and manufacturing method thereof
JP3535156B2 (en) * 1991-12-03 2004-06-07 ローム アンド ハース カンパニー Particle adsorption method
JP3937113B2 (en) * 1998-06-05 2007-06-27 日産化学工業株式会社 Organic-inorganic composite conductive sol and method for producing the same
JP4171850B2 (en) * 1998-08-10 2008-10-29 日産化学工業株式会社 Modified titanium oxide-zirconium oxide-stannic oxide composite sol and method for producing the same

Also Published As

Publication number Publication date
JP2002060805A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP4903932B2 (en) Method for producing binary metal particle colloidal dispersion
Rodrigues et al. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities
EP3092072B1 (en) A process for vapor-phase methanol carbonylation to methyl formate
Murugadoss et al. Chitosan-stabilized gold, gold–palladium, and gold–platinum nanoclusters as efficient catalysts for aerobic oxidation of alcohols
Liu et al. Hollow and cage-bell structured nanomaterials of noble metals
Yonezawa et al. Polymer-and micelle-protected gold/platinum bimetallic systems. Preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods
Dupont et al. On the structural and surface properties of transition-metal nanoparticles in ionic liquids
US7759281B2 (en) Photocatalyst containing metallic ultrafine particles and process for producing said photocatalyst
JP5177339B2 (en) Metal nanoparticles, catalyst containing the same, and method for hydrogenating alkyne compounds
Toshima Polymer-protected bimetallic clusters. Preparation and application to catalysis
JP2005097642A (en) Noble metal-metal oxide composite cluster
JP5894233B2 (en) Supported catalysts with controlled metal cluster size
JPH04122452A (en) Metal particle and/or metal compound particle carrier and production thereof
Yuan et al. Recent progress in chemoselective hydrogenation of α, β-unsaturated aldehyde to unsaturated alcohol over nanomaterials
Grass et al. Colloidally synthesized monodisperse Rh nanoparticles supported on SBA-15 for size-and pretreatment-dependent studies of CO oxidation
JP5165204B2 (en) Method for producing palladium fine particles
Favier et al. Metal-based nanoparticles dispersed in glycerol: An efficient approach for catalysis
JP2008516882A (en) Transition metal-magnetic iron oxide nanocomposite, production method and application thereof
JP2008546519A (en) Catalyst and method for producing the same
JP2011089143A (en) Method for producing mono-component system and bi-component system cubic type metal nanoparticle
JP6653875B2 (en) Method for producing platinum catalyst and fuel cell using the same
Yavuz et al. Facile Synthesis of Gold Icosahedra in an Aqueous Solution by Reacting HAuCl4 with N‐Vinyl Pyrrolidone
JPH05271418A (en) Reduced platinum and/or palladium containing organopolysiloxane-ammonium compound and its preparation
JP4272916B2 (en) Ternary metal colloid having a three-layer core / shell structure and method for producing the ternary metal colloid
Yu et al. Immobilization of polymer-stabilized metal colloids by a modified coordination capture: preparation of supported metal colloids with singular catalytic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4903932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term