JP2018007518A - Metal mold for manufacturing rotor core - Google Patents

Metal mold for manufacturing rotor core Download PDF

Info

Publication number
JP2018007518A
JP2018007518A JP2016135743A JP2016135743A JP2018007518A JP 2018007518 A JP2018007518 A JP 2018007518A JP 2016135743 A JP2016135743 A JP 2016135743A JP 2016135743 A JP2016135743 A JP 2016135743A JP 2018007518 A JP2018007518 A JP 2018007518A
Authority
JP
Japan
Prior art keywords
punch
crushing
bridge
thin plate
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135743A
Other languages
Japanese (ja)
Other versions
JP6555202B2 (en
Inventor
宏 金原
Hiroshi Kanehara
宏 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016135743A priority Critical patent/JP6555202B2/en
Publication of JP2018007518A publication Critical patent/JP2018007518A/en
Application granted granted Critical
Publication of JP6555202B2 publication Critical patent/JP6555202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To relieve stress concentration of a magnetic material thin plate when plastic processing for reinforcing a bridge part is performed with a metal mold for manufacturing a rotor core.SOLUTION: A metal mold for manufacturing a rotor core comprises: a die part used for the rotor core to support a back face of a magnetic material thin plate having a plurality of holes; and a punch part having a crushing punch extending thin and long corresponding to a bridge part extending thin and log between adjacent holes of the magnetic material thin plate supported by the die part to crush the bridge part from an upper face side and make it plastically flow. The crushing punch has an arcuate slope part which gradually decreases width toward a tip side extending thin and long and also gradually decreasing in height, a surface of the crushing punch having a coefficient of friction when the magnetic material plastically flows in a first direction from the bridge part to the holes smaller than that when the magnetic material plastically flows in a second direction perpendicular to the first direction.SELECTED DRAWING: Figure 6

Description

本開示は、回転電機ロータ製造装置に係り、詳しくは、ロータコアの製造用金型に関する。   The present disclosure relates to a rotating electrical machine rotor manufacturing apparatus, and more particularly, to a mold for manufacturing a rotor core.

埋込磁石型(Interior Permanent Magnet)回転電機のロータコアは、永久磁石を配置するための磁石挿入孔が設けられたコア片を複数枚積層した積層体を形成し、各磁石挿入孔に永久磁石を挿入して埋め込むことで製造される。矩形断面の永久磁石の場合、磁石挿入孔は、永久磁石より大きめの矩形孔とされるが、矩形孔の両端を延ばして隣接する磁石挿入孔の間の磁気通路を狭くしてブリッジ部を形成し、隣接する永久磁石間での磁束の漏れを抑制することが行われる。ブリッジ部は磁性体材料の幅の狭い部分であるので、機械的強度が十分でないことがあり、ロータが回転するときの遠心力等で変形しないような配慮が必要である。   The rotor core of an interior permanent magnet rotating electrical machine forms a laminate in which a plurality of core pieces each having a magnet insertion hole for arranging a permanent magnet are laminated, and a permanent magnet is placed in each magnet insertion hole. Manufactured by inserting and embedding. In the case of a permanent magnet with a rectangular cross section, the magnet insertion hole is a rectangular hole larger than the permanent magnet, but the both ends of the rectangular hole are extended to narrow the magnetic path between adjacent magnet insertion holes to form a bridge portion Then, the leakage of magnetic flux between adjacent permanent magnets is suppressed. Since the bridge portion is a narrow portion of the magnetic material, mechanical strength may not be sufficient, and consideration must be given so that the bridge portion is not deformed by centrifugal force or the like when the rotor rotates.

特許文献1には、回転電機のロータのコア片の製造方法として、ブリッジ部の応力集中が生じる部分に段差を設けるプレス加工等を行って加工硬化させ強度向上を図ることが開示されている。   Patent Document 1 discloses a method of manufacturing a core piece of a rotor of a rotating electrical machine by performing press hardening or the like for providing a step at a portion where stress concentration occurs in a bridge portion to improve the strength.

特許文献2では、回転電機のロータのコア片の製造方法として、ブリッジ部において、板厚を磁石挿入孔の端部から連続的に薄く変化させた傾斜部を設けることが開示されている。ここでは、板厚を連続的に薄く変化させるときに他の部分に余肉が移動してその部分の板厚が増加することを防止するために、ブリッジ部の近傍に逃げ穴を設け、次にコイニング加工によって傾斜部を形成し、その後、磁石挿入孔を打ち抜く手順が開示されている。   In Patent Document 2, as a method for manufacturing a core piece of a rotor of a rotating electrical machine, it is disclosed that an inclined portion in which a plate thickness is continuously changed from an end portion of a magnet insertion hole is provided in a bridge portion. Here, in order to prevent the surplus thickness from moving to another part and increasing the thickness of the part when the sheet thickness is continuously reduced, an escape hole is provided in the vicinity of the bridge part. Discloses a procedure for forming an inclined portion by coining and then punching out a magnet insertion hole.

特開2005−094940号公報Japanese Patent Laying-Open No. 2005-094940 特開2005−185081号公報JP 2005-185081 A

ロータコアに用いる磁性体薄板における隣接する孔の間のブリッジ部を強化するために金型を用いて塑性加工を行うと、磁性体材料の塑性流動の滞留等によって、磁性体薄板の塑性加工を受けた部分と塑性加工を受けていない部分との境界に応力集中が生じやすい。応力集中が生じると、その部分の機械的強度が低下する。そこで、ブリッジ部の強化のための塑性加工を行ったときの磁性体薄板における応力集中を緩和できるロータコアの製造用金型が要望される。   When plastic working is performed using a mold to strengthen the bridge between adjacent holes in the magnetic thin plate used for the rotor core, the magnetic thin plate is subjected to plastic working due to the retention of plastic flow of the magnetic material. Stress concentration is likely to occur at the boundary between the bent portion and the portion not subjected to plastic working. When stress concentration occurs, the mechanical strength of the portion decreases. Therefore, there is a demand for a mold for manufacturing a rotor core that can alleviate stress concentration in a magnetic thin plate when plastic working for strengthening a bridge portion is performed.

本開示に係るロータコアの製造用金型は、ロータコアに用いられ複数の孔を有する磁性体薄板の裏面を支持するダイス部と、ダイス部に支持された磁性体薄板の隣接する孔の間に細長く延びるブリッジ部に対応して細長く延びブリッジ部を上面側から押し潰して塑性流動させる潰しパンチを有するパンチ部と、を備え、潰しパンチは、細長く延びる先端側に行くにつれ幅寸法が徐々に狭くなると共に高さ寸法が徐々に低くなる円弧状傾斜部を有し、潰しパンチの表面は、ブリッジ部から孔に向かう第一方向に磁性体材料が塑性流動するときの摩擦係数が、第一方向に垂直な第二方向に磁性体材料が塑性流動するときの摩擦係数よりも小さい。   A rotor core manufacturing mold according to the present disclosure is elongated between a die portion that is used for a rotor core and supports a back surface of a magnetic thin plate having a plurality of holes, and an adjacent hole of the magnetic thin plate supported by the die portion. And a punch portion having a crushing punch that is elongated corresponding to the extending bridge portion and plastically flows by crushing the bridge portion from the upper surface side, and the crushing punch gradually narrows in width as it goes to the elongated end side. And the surface of the crushing punch has a friction coefficient when the magnetic material plastically flows in the first direction from the bridge part to the hole in the first direction. It is smaller than the friction coefficient when the magnetic material plastically flows in the second perpendicular direction.

本開示に係るロータコアの製造用金型によれば、潰しパンチの先端側に円弧状傾斜部を有し、潰しパンチの表面の方向によって摩擦係数の大小を付けるので、ブリッジ部から孔に向かう第一方向に磁性体材料が塑性流動しやすい。これによって、磁性体材料の塑性流動の滞留が抑制され、磁性体薄板における応力集中を緩和できる。   According to the rotor core manufacturing die according to the present disclosure, the crushing punch has the arc-shaped inclined portion on the tip side, and the friction coefficient is increased or decreased depending on the direction of the surface of the crushing punch. Magnetic material tends to plastically flow in one direction. Thereby, the stay of the plastic material in the plastic flow is suppressed, and the stress concentration in the magnetic thin plate can be alleviated.

本実施の形態に係るロータコアの製造用金型を示す図である。図1(a)は、ロータコアの製造用金型のダイス部とパンチ部とワークである磁性体薄板との配置図であり、(b)は、ロータコアの製造用金型からパンチ部を開いて、パンチ部の上面に配置される潰しパンチを示す図である。It is a figure which shows the metal mold | die for manufacture of the rotor core which concerns on this Embodiment. FIG. 1A is an arrangement view of a die portion, a punch portion, and a magnetic thin plate as a workpiece of a rotor core manufacturing die, and FIG. 1B is a view showing a state where the punch portion is opened from the rotor core manufacturing die. It is a figure which shows the crushing punch arrange | positioned on the upper surface of a punch part. 本実施の形態に係るロータコアの製造用金型が適用される磁性体薄板における複数の孔と、パンチ部の潰しパンチとの関係を示す図である。図2(a)は、孔が形成された磁性体薄板の上面図であり、(b)は、(a)の1磁極分の拡大図である。(c)は、パンチ部の上面図であり、(d)は、(c)の1磁極分の拡大図である。It is a figure which shows the relationship between the several hole in the magnetic body thin plate with which the metal mold | die for rotor core manufacture which concerns on this Embodiment is applied, and the crushing punch of a punch part. FIG. 2A is a top view of a magnetic thin plate in which holes are formed, and FIG. 2B is an enlarged view of one magnetic pole of FIG. (C) is a top view of a punch part, (d) is an enlarged view for one magnetic pole of (c). 図2(d)に示す潰しパンチの斜視図である。It is a perspective view of the crushing punch shown in FIG.2 (d). 図3の潰しパンチの拡大図である。It is an enlarged view of the crushing punch of FIG. 本実施の形態に係るロータコアの製造用金型を用いて、ブリッジ部にブリッジ部強化処理を行ったときの加工硬化面を示す斜視図である。It is a perspective view which shows the work hardening surface when a bridge | bridging part reinforcement | strengthening process is performed to the bridge | bridging part using the metal mold | die for rotor core manufacture which concerns on this Embodiment. 本実施の形態に係るロータコアの製造用金型の潰しパンチの表面に施された凹凸溝を示す図である。It is a figure which shows the uneven | corrugated groove | channel provided on the surface of the crushing punch of the metal mold | die for rotor core manufacture which concerns on this Embodiment. 図6の凹凸溝を形成する加工工具と加工方向とを示す図である。It is a figure which shows the processing tool and processing direction which form the uneven | corrugated groove | channel of FIG. 図6の潰しパンチを用いたときのブリッジ部の加工硬化面を示す図である。It is a figure which shows the work hardening surface of a bridge part when the crushing punch of FIG. 6 is used. 図4の潰しパンチが図6の加工硬化面に押し付けられた状態におけるA−A’線に沿った断面図である。FIG. 7 is a cross-sectional view taken along the line A-A ′ in a state where the crushing punch of FIG. 4 is pressed against the work hardening surface of FIG. 6. (a)は、図5の加工硬化面の境界においてブリッジ部の外形輪郭線に不連続部が生じているB部を示す図である。(b)は、(a)の不連続部を滑らかに加工処理した後を示す図である。(A) is a figure which shows the B section in which the discontinuous part has arisen in the external shape outline of a bridge | bridging part in the boundary of the work hardening surface of FIG. (B) is a figure which shows after processing the discontinuous part of (a) smoothly. 潰しパンチの他の形状の例を示す図である。図12(a)は、磁性体薄板における孔と、他の形状を有する潰しパンチとの関係を示す図であり、(b)は、(a)のB−B線に沿った断面図であり、(c)は(b)におけるC部の拡大図である。It is a figure which shows the example of the other shape of a crushing punch. FIG. 12A is a diagram showing the relationship between holes in the magnetic thin plate and crushing punches having other shapes, and FIG. 12B is a sectional view taken along line BB in FIG. (C) is the enlarged view of the C section in (b). 従来技術の潰しパンチの例を示す図である。It is a figure which shows the example of the crushing punch of a prior art. 図12の潰しパンチを用いて、ブリッジ部にブリッジ部強化処理を行ったときの応力分布図である。FIG. 13 is a stress distribution diagram when the bridge portion strengthening process is performed on the bridge portion using the crushing punch of FIG. 12. 図13のD−D線に沿った断面図を用いて、ブリッジ部断面における応力分布を示す図である。It is a figure which shows the stress distribution in a bridge | bridging part cross section using sectional drawing along the DD line | wire of FIG. 切欠半径の大小による応力集中の程度を示す図で、図15(a)は大きな切欠半径の場合の応力集中の程度を示す図で、(b)は小さな切欠半径の場合の応力集中の程度を示す図である。FIG. 15A is a diagram showing the degree of stress concentration in the case of a large notch radius, and FIG. 15B is a diagram showing the degree of stress concentration in the case of a small notch radius. FIG. 図9を用い、本実施の形態に係るロータコアの製造用金型の潰しパンチを用いてブリッジ部にブリッジ部強化処理を行ったときのブリッジ部断面における応力分布を示す図である。It is a figure which shows the stress distribution in the bridge | bridging part cross section when a bridge | bridging part reinforcement | strengthening process is performed to the bridge | bridging part using the crushing punch of the metal mold | die for rotor core manufacturing concerning this Embodiment using FIG.

以下に図面を用いて本実施の形態につき詳細に説明する。以下に述べる形状、寸法、角度、材質、孔の個数、磁極数等は、説明のための例示であって、回転電機のロータの仕様等により、適宜変更が可能である。また、以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, the present embodiment will be described in detail with reference to the drawings. The shapes, dimensions, angles, materials, the number of holes, the number of magnetic poles and the like described below are examples for explanation, and can be appropriately changed depending on the specifications of the rotor of the rotating electrical machine. In the following description, the same elements are denoted by the same reference symbols in all the drawings, and redundant description is omitted.

図1は、ロータコアの製造用金型40を示す図である。以下では、特に断らない限り、ロータコアの製造用金型40を、金型40と呼ぶ。金型40は、ロータコアの製造装置の一部である。ロータコアは、磁極を形成する複数の磁石挿入孔を有するコア片18(図2(a)参照)を所定枚数で積層したものである。ロータコアの製造装置は、コア片製造装置と、積層装置を含む。金型40は、コア片製造装置において用いられる。   FIG. 1 is a view showing a mold 40 for manufacturing a rotor core. Hereinafter, the rotor mold manufacturing mold 40 is referred to as a mold 40 unless otherwise specified. The mold 40 is a part of a rotor core manufacturing apparatus. The rotor core is formed by laminating a predetermined number of core pieces 18 (see FIG. 2A) having a plurality of magnet insertion holes forming magnetic poles. The rotor core manufacturing apparatus includes a core piece manufacturing apparatus and a stacking apparatus. The mold 40 is used in a core piece manufacturing apparatus.

コア片製造装置は、長尺のシート状の磁性体薄板10からコア片18を形成する装置で、複数の成形ステーションを有する順送プレス成形装置が用いられる。以下では、特に断らない限り、シート状の磁性体薄板10を、磁性体薄板10と呼ぶ。   The core piece manufacturing apparatus is an apparatus for forming the core piece 18 from the long sheet-like magnetic thin plate 10, and a progressive press molding apparatus having a plurality of molding stations is used. Hereinafter, unless otherwise specified, the sheet-like magnetic thin plate 10 is referred to as a magnetic thin plate 10.

磁性体薄板10は、コア片18の外径よりも十分大きなシート幅を有し、所定の板厚t0を有する。材質としては電磁鋼板が用いられる。磁性体薄板10の両面には、絶縁コート等の絶縁処理が施される。この絶縁コートによって、回転電機ロータに用いられるロータコアにおいて、積層された各コア片18の間が電気的に絶縁され、外部変動磁界により発生し得る渦電流が小さなループに分割されるので、渦電流損失を抑制することができる。   The magnetic thin plate 10 has a sheet width sufficiently larger than the outer diameter of the core piece 18 and has a predetermined plate thickness t0. A magnetic steel sheet is used as the material. Both surfaces of the magnetic thin plate 10 are subjected to insulation treatment such as insulation coating. By this insulation coating, the laminated core pieces 18 are electrically insulated from each other in the rotor core used in the rotating electrical machine rotor, and the eddy current that can be generated by the externally varying magnetic field is divided into small loops. Loss can be suppressed.

磁性体薄板10には、図示しないが、長手方向に沿って所定ピッチで複数の送り穴が配置され、その送り穴を用いて、磁性体薄板10が送り方向に順次送られ、各成形ステーションにおいて、所定の成形が順次行われる。図1では、紙面の手前側から向こう側に向かう方向が磁性体薄板10の送り方向である。各成形ステーションは、送り順に、孔抜きステーション、ブリッジ部強化ステーション、外形抜きステーションを含む。外形抜きステーションにおいて磁性体薄板10からコア片18が打ち抜かれ、打ち抜かれた複数のコア片18は、その後、積層装置において積層されロータコアとなる。   Although not shown in the drawing, the magnetic thin plate 10 is provided with a plurality of feed holes at a predetermined pitch along the longitudinal direction, and the magnetic thin plate 10 is sequentially fed in the feed direction using the feed holes. The predetermined molding is sequentially performed. In FIG. 1, the direction from the near side of the paper to the other side is the feeding direction of the magnetic thin plate 10. Each forming station includes a punching station, a bridge strengthening station, and an outline punching station in the feeding order. The core piece 18 is punched from the magnetic thin plate 10 at the outer shape punching station, and the plurality of punched core pieces 18 are then laminated in a laminating apparatus to become a rotor core.

上記では、3つのステーションを述べたが、これは例示であって、コア片18の仕様に応じて、仕上げ抜き等の付加加工用のステーションを別に設けてもよい。上記では、コア片製造装置として順送プレス成形装置を述べたが、これに代えて、孔抜きプレス装置、ブリッジ部強化プレス装置、外形抜きプレス装置等を個別に備えるものとしてもよい。   In the above, three stations have been described. However, this is merely an example, and additional processing stations such as finish punching may be separately provided according to the specifications of the core piece 18. In the above description, the progressive press forming apparatus is described as the core piece manufacturing apparatus, but instead of this, a hole punching press apparatus, a bridge portion strengthening press apparatus, an outer shape press apparatus, and the like may be individually provided.

金型40は、ブリッジ部強化ステーションで用いられる。ブリッジ部強化ステーションの前は、孔抜きステーションであるので、磁性体薄板10は、複数の孔が打ち抜かれた状態でブリッジ部強化ステーションに搬送されてくる。   The mold 40 is used at the bridge strengthening station. Since the front of the bridge portion strengthening station is a hole punching station, the magnetic thin plate 10 is conveyed to the bridge portion strengthening station in a state where a plurality of holes are punched out.

図1は、ブリッジ部強化ステーションにおける金型40を示す図である。磁性体薄板10は、金型40の構成要素ではないが、ブリッジ部強化処理の対象となるワークである。金型40は、磁性体薄板10の裏面を支持するダイス部42と、磁性体薄板10の上面に向かい合うパンチ部44とを含む。図1(a)は、磁性体薄板10を挟んで、ダイス部42とパンチ部44が配置されることを示す図である。   FIG. 1 is a view showing a mold 40 in the bridge portion strengthening station. The magnetic thin plate 10 is not a component of the mold 40, but is a workpiece to be subjected to the bridge portion strengthening process. The mold 40 includes a die portion 42 that supports the back surface of the magnetic thin plate 10 and a punch portion 44 that faces the upper surface of the magnetic thin plate 10. FIG. 1A is a diagram showing that the die part 42 and the punch part 44 are arranged with the magnetic thin plate 10 interposed therebetween.

磁性体薄板10のおもて面を上面STとし、上面STの反対側の面を磁性体薄板10の裏面SBとする。ダイス部42において、磁性体薄板10の裏面SBに向かい合う面をダイス部42の上面DTとし、上面DTとは反対側の面をダイス部42の下面DBとする。パンチ部44において、磁性体薄板10の上面STに向かい合う面をパンチ部44の上面PTとし、上面PTとは反対側の面をパンチ部44の下面PBとする。図1(a)では、紙面における上方側から下方側に向かって、(パンチ部44のPB)−(パンチ部のPT)−(磁性体薄板10のST)−(磁性体薄板10のSB)−(ダイス部42のDT)−(ダイス部42のDB)の順に配置される。   The front surface of the magnetic thin plate 10 is the upper surface ST, and the surface opposite to the upper surface ST is the rear surface SB of the magnetic thin plate 10. In the die portion 42, the surface facing the back surface SB of the magnetic thin plate 10 is defined as the upper surface DT of the die portion 42, and the surface opposite to the upper surface DT is defined as the lower surface DB of the die portion 42. In the punch portion 44, a surface facing the upper surface ST of the magnetic thin plate 10 is defined as an upper surface PT of the punch portion 44, and a surface opposite to the upper surface PT is defined as a lower surface PB of the punch portion 44. In FIG. 1A, from the upper side to the lower side in the drawing, (PB of punch portion 44) − (PT of punch portion) − (ST of magnetic thin plate 10) − (SB of magnetic thin plate 10). -(DT of the die part 42)-(DB of the die part 42) are arranged in this order.

図1(b)は、パンチ部44をダイス部42に対して矢印方向に開き、パンチ部44の上面PTを上方側に向けた状態の図である。パンチ部44の上面PTには、ブリッジ部強化のための潰しパンチ50,51が配置される。   FIG. 1B is a diagram showing a state in which the punch portion 44 is opened in the arrow direction with respect to the die portion 42 and the upper surface PT of the punch portion 44 is directed upward. On the upper surface PT of the punch portion 44, crushing punches 50 and 51 for reinforcing the bridge portion are arranged.

ブリッジ部強化処理は、磁性体薄板10について隣接する孔の間の磁気通路を狭くしたブリッジ部の機械的強度を向上させる処理である。具体的には、磁性体薄板10の裏面SBをダイス部42の上面DTで支持し、磁性体薄板10のブリッジ部の上面STに、パンチ部44の上面PTの潰しパンチ50,51を向い合せる。そして、ダイス部42に対し、パンチ部44を降下させ、潰しパンチ50,51で、ブリッジ部の上面ST側から磁性体薄板10の板厚方向に、所定の押し潰し圧力で所定の押し潰し形状となるように押し潰す。ブリッジ部において押し潰された部分は、塑性加工による加工硬化を生じ、機械的強度が向上する。これによってブリッジ部強化が実現される。   The bridge portion strengthening process is a process for improving the mechanical strength of the bridge portion in which the magnetic path between adjacent holes in the magnetic thin plate 10 is narrowed. Specifically, the back surface SB of the magnetic thin plate 10 is supported by the upper surface DT of the die portion 42, and the crushing punches 50 and 51 on the upper surface PT of the punch portion 44 face the upper surface ST of the bridge portion of the magnetic thin plate 10. . Then, the punch portion 44 is lowered with respect to the die portion 42, and the crushing punches 50 and 51 are used to crush a predetermined crushing shape with a predetermined crushing pressure in the thickness direction of the magnetic thin plate 10 from the upper surface ST side of the bridge portion. Crush it so that The portion that is crushed in the bridge portion undergoes work hardening by plastic working, and the mechanical strength is improved. As a result, the bridge portion is strengthened.

加工硬化を生じさせるために、磁性体薄板10の板厚方向に潰しパンチ50,51を所定の押し潰し圧力で押し付けると、押付部分において磁性体材料は塑性変形し流動化して板厚方向に薄くなるが、その部分の磁性体材料は他の箇所に移動する。押付部分の周りが磁性体材料で取り囲まれていると、磁性体材料の流動性が低下し、磁性体薄板10に反りが生じることがある。磁性体薄板10に反りが生じると、その後に打ち抜かれたコア片18が反った状態となり、ロータコアにおけるコア片18の占積率が低下し、また、積層処理に支障が生じる。   In order to cause work hardening, when the crushing punches 50 and 51 are pressed with a predetermined crushing pressure in the thickness direction of the magnetic thin plate 10, the magnetic material is plastically deformed and fluidized in the pressing portion and thinned in the thickness direction. However, the magnetic material of that part moves to another part. If the periphery of the pressing portion is surrounded by the magnetic material, the fluidity of the magnetic material may be reduced, and the magnetic thin plate 10 may be warped. When the magnetic thin plate 10 is warped, the core piece 18 punched thereafter is warped, the space factor of the core piece 18 in the rotor core is lowered, and the lamination process is hindered.

本実施の形態においては、1磁極当りの複数の孔をまとめて孔集合体12と呼ぶと、既に孔抜き処理されて磁極数分の複数の孔集合体12を有する磁性体薄板10に対してブリッジ部強化処理が行われる。つまり、潰しパンチ50,51の押付部分であるブリッジ部の両側は孔であるので、押付部分において塑性変形した磁性体材料は孔に向かって流動しやすい。この磁性体材料の流動性の向上によって、磁性体薄板10の反りが抑制され、ロータコアにおけるコア片18の占積率の低下が防止され、積層処理に支障が生じない。   In the present embodiment, when a plurality of holes per magnetic pole are collectively referred to as a hole assembly 12, the magnetic thin plate 10 that has already been subjected to the punching process and has a plurality of hole assemblies 12 corresponding to the number of magnetic poles. Bridge portion reinforcement processing is performed. That is, since both sides of the bridge portion that is the pressing portion of the crushing punches 50 and 51 are holes, the magnetic material plastically deformed in the pressing portion tends to flow toward the holes. By improving the fluidity of the magnetic material, the warpage of the magnetic thin plate 10 is suppressed, the space factor of the core piece 18 in the rotor core is prevented from being lowered, and the laminating process is not hindered.

図2は、ブリッジ部強化ステーションに磁性体薄板10が搬送されたが、ブリッジ部強化処理が行われる前において、パンチ部44を開いたときの状態を示す図である。図2(a),(b)は、磁性体薄板10の上面STを示す図であり、(c),(d)はパンチ部44の上面PTを示す図である。   FIG. 2 is a view showing a state where the punch portion 44 is opened before the bridge portion strengthening process is performed, although the magnetic thin plate 10 has been transported to the bridge portion strengthening station. 2A and 2B are views showing the upper surface ST of the magnetic thin plate 10, and FIGS. 2C and 2D are views showing the upper surface PT of the punch portion 44. FIG.

図2(a)は、磁性体薄板10において、既に複数の孔集合体12が孔抜き処理された状態を示す図である。複数の孔集合体12は、円環状に配置され、その配置数は、ロータの磁極数と同じである。図2(a)の例では、複数の孔集合体12の配置数=8であり、ロータの磁極数=8である。複数の孔集合体12に対してブリッジ部強化処理が行われると、その後に、外形抜き処理が行われる。図2(a)に、外形抜き処理において打ち抜かれる中心穴14と外形抜き穴16を二点鎖線で示す。外形抜きによって磁性体薄板10から打ち抜かれたものがコア片18である。中心穴14は、外形抜き処理でなくても、複数の孔集合体12を形成する孔抜き処理で行ってもよい。   FIG. 2A is a view showing a state in which a plurality of hole assemblies 12 have already been subjected to the punching process in the magnetic thin plate 10. The plurality of hole assemblies 12 are arranged in an annular shape, and the number of arrangements is the same as the number of magnetic poles of the rotor. In the example of FIG. 2 (a), the number of arrangements of the plurality of hole assemblies 12 is 8, and the number of magnetic poles of the rotor is 8. When the bridge portion strengthening process is performed on the plurality of hole assemblies 12, an outline removing process is performed thereafter. In FIG. 2A, the center hole 14 and the outer shape punched hole 16 punched in the outer shape removing process are indicated by a two-dot chain line. A core piece 18 is punched from the magnetic thin plate 10 by outer shape removal. The center hole 14 may be formed by a hole removing process for forming a plurality of hole assemblies 12 without using the outline removing process.

図2(b)は、(a)の1磁極分の拡大図である。1磁極分における複数の孔集合体12は、孔20,21,22,24及び符号を付さない2つの小孔を含む。孔20,21,24は、それぞれにロータの磁極を形成する永久磁石が挿入される磁石挿入孔であり、孔22と2つの小孔は磁気通路を狭めるためや軽量化のために設けられる孔である。磁極の中心線26に対し、孔20,21及び符号を付さない2つの小孔は線対称に配置され、孔22,24は、磁極の中心線26に対し線対称の形状を有する。   FIG. 2B is an enlarged view of one magnetic pole of FIG. The plurality of hole assemblies 12 for one magnetic pole include holes 20, 21, 22, 24 and two small holes that are not labeled. The holes 20, 21, and 24 are magnet insertion holes into which permanent magnets that form the magnetic poles of the rotor are inserted. The holes 22 and the two small holes are provided to narrow the magnetic path and reduce the weight. It is. The holes 20, 21 and the two small holes without reference numerals are arranged symmetrically with respect to the magnetic pole center line 26, and the holes 22, 24 have a shape symmetrical with respect to the magnetic pole center line 26.

ブリッジ部30は、孔22と孔20との間に細長く延びる磁気通路の狭い部分であり、ブリッジ部31は、孔22と孔21との間に細長く延びる磁気通路の狭い部分である。ブリッジ部30,31も磁極の中心線26に対し線対称に配置される。1磁極当り2つのブリッジ部30,31があるので、1つのコア片18当たりでは、8組のブリッジ部30,31がある。各ブリッジ部30,31の長手方向の長さL0は、磁気通路が他の部分より細くなった領域の長さで、ブリッジ部30,31の幅寸法が一定のW0である領域の長さよりも長い。   The bridge portion 30 is a narrow portion of the magnetic passage extending elongated between the hole 22 and the hole 20, and the bridge portion 31 is a narrow portion of the magnetic passage extending elongated between the hole 22 and the hole 21. The bridge portions 30 and 31 are also arranged symmetrically with respect to the center line 26 of the magnetic pole. Since there are two bridge portions 30 and 31 per magnetic pole, there are eight sets of bridge portions 30 and 31 per core piece 18. The length L0 in the longitudinal direction of each of the bridge portions 30 and 31 is the length of the region where the magnetic path is narrower than the other portions, and is longer than the length of the region where the width of the bridge portions 30 and 31 is constant W0. long.

図2(c),(d)は、磁性体薄板10の上面STに向かい合うパンチ部44の上面PTを示す図である。(c)はパンチ部44の上面図であり、(d)は、1磁極分の拡大図である。これらにおいて、孔集合体12、中心穴14、外形抜き穴16の配置位置を二点鎖線で示す。パンチ部44の上面PTに設けられる潰しパンチ50,51は、磁性体薄板10のブリッジ部30,31に対応する位置に配置され、細長く延びるブリッジ部30,31に対応して細長く延びる。1磁極当り1組の潰しパンチ50,51が設けられるので、1つのコア片18当たりでは、パンチ部44全体では、8組の潰しパンチ50,51が設けられる。   2C and 2D are views showing the upper surface PT of the punch portion 44 facing the upper surface ST of the magnetic thin plate 10. (C) is a top view of the punch portion 44, and (d) is an enlarged view of one magnetic pole. In these, the arrangement positions of the hole assembly 12, the center hole 14, and the outer shape punching hole 16 are indicated by two-dot chain lines. The crushing punches 50 and 51 provided on the upper surface PT of the punch portion 44 are disposed at positions corresponding to the bridge portions 30 and 31 of the magnetic thin plate 10 and extend elongated corresponding to the elongated bridge portions 30 and 31. Since one set of crushing punches 50 and 51 is provided per magnetic pole, eight sets of crushing punches 50 and 51 are provided in the entire punch portion 44 per one core piece 18.

各潰しパンチ50,51の長手方向の長さL1は、ブリッジ部30,31の長手方向の長さL0よりも短く、(ブリッジ部30,31の幅寸法が一定のW0である領域の長さ)に(金型40と磁性体薄板10との間の位置決め精度)を考慮した長さに設定される。潰しパンチ50,51の幅W1は、潰しパンチ50,51のPTを基準とした高さhpをh1として、潰しパンチ50,51のそれぞれの幅の両側にhpの余裕を有することが好ましい。そこで、潰しパンチ50,51の幅W1は、W0≦W1≦(W0+2h1)の範囲に設定することがよい。   The length L1 in the longitudinal direction of each crushing punch 50, 51 is shorter than the length L0 in the longitudinal direction of the bridge portions 30, 31 (the length of the region where the width dimension of the bridge portions 30, 31 is constant W0). ) Is set in consideration of (positioning accuracy between the mold 40 and the magnetic thin plate 10). The width W1 of the crushing punches 50 and 51 preferably has a margin of hp on both sides of each width of the crushing punches 50 and 51, with the height hp based on the PT of the crushing punches 50 and 51 being h1. Therefore, the width W1 of the crushing punches 50 and 51 is preferably set in a range of W0 ≦ W1 ≦ (W0 + 2h1).

図2(d)に、パンチ部44において、径方向、周方向と共に、潰しパンチ50,51の高さhpの方向を示す。径方向は、磁極の中心線26に沿った方向で、外周側に向かう方向を正方向(+)、内周側に向かう方向を負方向(−)とする。周方向は、円環状のコア片18の周方向であり、パンチ部44の上面PTにおいて時計方向回りを正方向(+)、反時計方向回りを負方向(−)とする。図2(d)では、磁極の中心線26の右方向が周方向の正方向(+)で、左方向が周方向の負方向(−)である。潰しパンチ50,51の高さhpの方向は、パンチ部44の上面PTを基準として上面PTの上方側を正方向(+)とする。パンチ部44の上面PTは高さhp=0であり、潰しパンチ50,51は上面PTよりも高さhp=h1で突き出すので、潰しパンチ50,51の高さhpは、hp=h1>0である。   FIG. 2D shows the direction of the height hp of the crushing punches 50 and 51 as well as the radial direction and the circumferential direction in the punch portion 44. The radial direction is a direction along the center line 26 of the magnetic pole, and a direction toward the outer peripheral side is a positive direction (+), and a direction toward the inner peripheral side is a negative direction (−). The circumferential direction is the circumferential direction of the annular core piece 18, and in the upper surface PT of the punch portion 44, the clockwise direction is the positive direction (+) and the counterclockwise direction is the negative direction (−). In FIG. 2D, the right direction of the center line 26 of the magnetic pole is the positive direction (+) in the circumferential direction, and the left direction is the negative direction (−) in the circumferential direction. As for the direction of the height hp of the crushing punches 50 and 51, the upper side of the upper surface PT is defined as the positive direction (+) with reference to the upper surface PT of the punch portion 44. The upper surface PT of the punch portion 44 has a height hp = 0, and the crushing punches 50 and 51 protrude at a height hp = h1 from the upper surface PT. Therefore, the height hp of the crushing punches 50 and 51 is hp = h1> 0. It is.

図2(b)に戻り、磁性体薄板10における径方向、周方向と共に、ブリッジ部30,31における潰し深さhsの方向を示す。径方向は、磁極の中心線26に沿った方向で、外周側に向かう方向を正方向(+)、内周側に向かう方向を負方向(−)とする。これは、パンチ部44における径方向の向きと同じである。   Returning to FIG. 2 (b), the direction of the crushing depth hs in the bridge portions 30 and 31 is shown together with the radial direction and the circumferential direction in the magnetic thin plate 10. The radial direction is a direction along the center line 26 of the magnetic pole, and a direction toward the outer peripheral side is a positive direction (+), and a direction toward the inner peripheral side is a negative direction (−). This is the same as the radial direction of the punch portion 44.

磁性体薄板10における周方向は、円環状のコア片18の周方向であるが、磁性体薄板10の上面STはパンチ部44の上面PTと向かい合う関係になるので、パンチ部44の周方向の向きを基準とすると、磁性体薄板10の周方向の向きは逆向きになる。すなわち、磁性体薄板10の上面STにおける時計方向回りが負方向(−)となり、反時計方向回りが正方向(+)となる。図2(b)では、磁極の中心線26の左方向が周方向の正方向(+)で、右方向が周方向の負方向(−)である。この関係によって、磁性体薄板10の上面STにおいて磁極の中心線26に対し左側にあるブリッジ部30に対応するのは、パンチ部44の上面PTにおいて磁極の中心線26に対し右側にある潰しパンチ50となる。同様に、磁性体薄板10の上面STにおいて磁極の中心線26に対し右側にあるブリッジ部31に対応するのは、パンチ部44の上面PTにおいて磁極の中心線26に対し左側にある潰しパンチ51となる。   The circumferential direction of the magnetic thin plate 10 is the circumferential direction of the annular core piece 18, but the upper surface ST of the magnetic thin plate 10 faces the upper surface PT of the punch portion 44. When the direction is a reference, the circumferential direction of the magnetic thin plate 10 is reversed. That is, the clockwise direction on the upper surface ST of the magnetic thin plate 10 is the negative direction (−), and the counterclockwise direction is the positive direction (+). In FIG. 2B, the left direction of the center line 26 of the magnetic pole is the positive direction (+) in the circumferential direction, and the right direction is the negative direction (−) in the circumferential direction. Due to this relationship, the bridge portion 30 on the left side of the magnetic pole center line 26 on the upper surface ST of the magnetic thin plate 10 corresponds to the crushing punch on the right side of the magnetic pole center line 26 on the upper surface PT of the punch portion 44. 50. Similarly, the crushing punch 51 located on the left side of the magnetic pole center line 26 on the upper surface PT of the punch portion 44 corresponds to the bridge portion 31 on the right side of the magnetic pole center line 26 on the upper surface ST of the magnetic thin plate 10. It becomes.

磁性体薄板10において、ブリッジ部30,31の潰し深さhsの方向は、磁性体薄板10の板厚を減少させる方向であるので、磁性体薄板10の上面STから裏面SBに向かう方向を正方向(+)とする。ブリッジ部30,31の潰し深さhsは、潰しパンチ50,51の高さhpと同じである。磁性体薄板10の上面STの潰し深さhs=0であり、ブリッジ部30,31の潰し深さhsは、hs=hp>0である。hs>0は、磁性体薄板10の板厚t0を減少させる方向である。   In the magnetic thin plate 10, the direction of the crushing depth hs of the bridge portions 30 and 31 is a direction in which the plate thickness of the magnetic thin plate 10 is reduced. Therefore, the direction from the upper surface ST of the magnetic thin plate 10 toward the back surface SB is normal. Direction (+). The crushing depth hs of the bridge portions 30 and 31 is the same as the height hp of the crushing punches 50 and 51. The crushing depth hs of the upper surface ST of the magnetic thin plate 10 is 0, and the crushing depth hs of the bridge portions 30 and 31 is hs = hp> 0. hs> 0 is a direction in which the thickness t0 of the magnetic thin plate 10 is decreased.

図2に示すように、複数の孔集合体12とブリッジ部30,31とが磁極の中心線26に対し線対称であるので、潰しパンチ50,51も磁極の中心線26に対し線対称に配置される。潰しパンチ50,51は同じ構造であるので、以下では、ブリッジ部30に対応する潰しパンチ50について述べる。   As shown in FIG. 2, since the plurality of hole assemblies 12 and the bridge portions 30 and 31 are axisymmetric with respect to the magnetic pole center line 26, the crushing punches 50 and 51 are also symmetrical with respect to the magnetic pole center line 26. Be placed. Since the crushing punches 50 and 51 have the same structure, the crushing punch 50 corresponding to the bridge portion 30 will be described below.

図3は、潰しパンチ50の斜視図である。潰しパンチ50は、潰しパンチ50の径方向に沿って延びるパンチ中心線32Pに線対称に配置され、パンチ部44の上面PTから突き出す2つの立体的形状のパンチ面52P,54Pを含む。パンチ面52Pは、ブリッジ部30における孔20側の部分に対応して設けられ、パンチ面54Pは、ブリッジ部30における孔22側の部分に対応して設けられる。パンチ中心線32Pは、ブリッジ部30の径方向に沿って延びるブリッジ中心線32S(図5参照)に対応する位置に配置される。パンチ面52Pとパンチ面54Pとに挟まれパンチ中心線32Pに沿って延びる平坦面53Pは、パンチ部44の上面PTの一部である。   FIG. 3 is a perspective view of the crushing punch 50. The crushing punch 50 includes two three-dimensionally shaped punch surfaces 52 </ b> P and 54 </ b> P that are arranged symmetrically with respect to the punch center line 32 </ b> P extending along the radial direction of the crushing punch 50 and project from the upper surface PT of the punch portion 44. The punch surface 52P is provided corresponding to the portion of the bridge portion 30 on the hole 20 side, and the punch surface 54P is provided corresponding to the portion of the bridge portion 30 on the hole 22 side. The punch center line 32P is disposed at a position corresponding to the bridge center line 32S (see FIG. 5) extending along the radial direction of the bridge portion 30. A flat surface 53P sandwiched between the punch surface 52P and the punch surface 54P and extending along the punch center line 32P is a part of the upper surface PT of the punch portion 44.

パンチ面52P,54Pは、径方向に沿って細長く延びる平坦段差部56Pと、平坦段差部56Pの両側先端部分の円弧状傾斜部58Pとを有する。円弧状傾斜部58Pは、細長く延びる先端側に行くにつれ幅寸法が徐々に狭くなると共に高さ寸法が徐々に低くなる形状を有する。両側の円弧状傾斜部58Pの形状は、平坦段差部56Pを挟んで対称形である。以下では、パンチ面52P,54Pについて、径方向に沿った全長L1のうち、負方向(−)側の半分の部分について述べる。   The punch surfaces 52P and 54P have a flat stepped portion 56P that extends elongated along the radial direction, and arcuate inclined portions 58P at both end portions of the flat stepped portion 56P. The arcuate inclined portion 58P has a shape in which the width dimension gradually narrows and the height dimension gradually decreases as it goes toward the elongated tip end. The arcuate inclined portions 58P on both sides are symmetrical with respect to the flat stepped portion 56P. Below, about the punch surfaces 52P and 54P, the half part of the negative direction (-) side is described among the full length L1 along a radial direction.

図4は、図3の潰しパンチ50について、径方向に沿った全長L1のうち、径方向における負方向(−)側の半分の部分の拡大図である。潰しパンチ50は、径方向に沿って正方向(+)側の平坦段差部56Pと、平坦段差部56Pよりも径方向の負方向(−)側の円弧状傾斜部58Pとを含む。潰しパンチ50を構成するパンチ面52P,54Pは、パンチ中心線32Pに対し線対称の形状であるので、以下では、パンチ面52Pについて述べる。パンチ面52Pとパンチ面54Pとにおいてそれぞれ対応する構成要素には同一の符号を用いて、重複する説明を省略する。   FIG. 4 is an enlarged view of a half portion on the negative direction (−) side in the radial direction of the full length L1 along the radial direction with respect to the crushing punch 50 in FIG. 3. The crushing punch 50 includes a flat step portion 56P on the positive direction (+) side along the radial direction and an arcuate inclined portion 58P on the negative direction (−) side in the radial direction with respect to the flat step portion 56P. Since the punch surfaces 52P and 54P constituting the crushing punch 50 are symmetrical with respect to the punch center line 32P, the punch surface 52P will be described below. Constituent elements corresponding to each of the punch surface 52P and the punch surface 54P are denoted by the same reference numerals, and redundant description is omitted.

パンチ面52Pにおける平坦段差部56Pは、上面PTから立ち上がる段差壁面60P、段差壁面60Pの頂部の天井面に相当する平坦面62P、及び、平坦面62Pからパンチ中心線32P側に傾斜して下がり上面PTに達する中心線側傾斜面64Pを含む。平坦面62Pの高さhpは、hp=h1>0である。   The flat stepped portion 56P on the punch surface 52P has a stepped wall surface 60P rising from the upper surface PT, a flat surface 62P corresponding to the ceiling surface of the top of the stepped wall surface 60P, and a lower surface inclined from the flat surface 62P toward the punch center line 32P. A center line side inclined surface 64P reaching PT is included. The height hp of the flat surface 62P is hp = h1> 0.

パンチ面52Pにおける平坦段差部56Pと円弧状傾斜部58Pの境界点として、Q1P,Q2P,Q3Pを示す。Q1PとQ2Pは、平坦面62P上の点で、径方向の位置が同じで、上面PTからの高さhpも共にhp=h1である。Q3Pは、上面PT上の点で、Q1P,Q2Pと径方向の位置が同じであり、Q2Pから中心線側傾斜面64Pに沿って下がり、上面PTに達した点である。   Q1P, Q2P, and Q3P are shown as boundary points between the flat step portion 56P and the arc-shaped inclined portion 58P on the punch surface 52P. Q1P and Q2P have the same radial position at a point on the flat surface 62P, and the height hp from the upper surface PT is hp = h1. Q3P is a point on the upper surface PT and has the same radial position as Q1P and Q2P, and is lowered from Q2P along the centerline-side inclined surface 64P and reaches the upper surface PT.

円弧状傾斜部58Pは、径方向の負方向(−)側の先端点Q4Pと、Q1P,Q2P,Q3Pを結ぶ円弧状傾斜面である。Q4Pは、上面PT上の点で、Q1Pと周方向の位置が同じであり、Q1Pから傾斜して下がり、上面PTに達した点である。   The arcuate inclined portion 58P is an arcuate inclined surface connecting the tip point Q4P on the negative (−) side in the radial direction and Q1P, Q2P, and Q3P. Q4P is a point on the upper surface PT, the position in the circumferential direction is the same as that of Q1P, is a point inclined downward from Q1P and reaches the upper surface PT.

円弧状傾斜部58Pは、段差壁面66Pと、円弧状曲面68Pと、円弧状曲面70Pとを含む。段差壁面66Pは、Q1P,Q4Pを含み、パンチ部44の上面PTから立ち上がる壁面である。円弧状曲面68Pは、Q1P,Q2P,Q4Pを含む曲面である。円弧状曲面70Pは、Q2P,Q3P,Q4Pを含む曲面である。   The arc-shaped inclined portion 58P includes a step wall surface 66P, an arc-shaped curved surface 68P, and an arc-shaped curved surface 70P. The step wall surface 66P includes Q1P and Q4P, and is a wall surface that rises from the upper surface PT of the punch portion 44. The arcuate curved surface 68P is a curved surface including Q1P, Q2P, and Q4P. The arcuate curved surface 70P is a curved surface including Q2P, Q3P, and Q4P.

円弧状曲面70Pは、円弧状曲面68Pから周方向に沿った傾斜角度θ1で傾斜して下がり、上面PTに向かう傾斜曲面である。円弧状曲面70Pと円弧状曲面68Pとの境界には、半径R1の丸みが設けられる。これによって、円弧状曲面68Pと円弧状曲面70Pは滑らかに接続される。   The arcuate curved surface 70P is an inclined curved surface that is inclined downward from the arcuate curved surface 68P at an inclination angle θ1 along the circumferential direction and heads toward the upper surface PT. A roundness of radius R1 is provided at the boundary between the arcuate curved surface 70P and the arcuate curved surface 68P. Thereby, the arcuate curved surface 68P and the arcuate curved surface 70P are smoothly connected.

円弧状曲面68Pと円弧状曲面70Pとは、平坦段差部56Pの径方向に沿った負方向(−)側で、径方向に沿って先端側のQ4Pに行くにつれ、高さhpがhp=h1からhp=0まで低く徐変した曲面である。また、円弧状曲面68Pと円弧状曲面70Pとは、径方向に沿って先端側に行くにつれ、周方向に沿ってQ2P,Q3Pの位置からQ4Pの位置まで幅寸法が次第に狭く徐変した曲面でもある。このように、円弧状曲面68Pと円弧状曲面70Pとは、段差壁面でなく、径方向に沿って先端側に行くにつれ、高さが次第に低く徐変し、周方向に沿って幅寸法が次第に狭く徐変した曲面である。   The arcuate curved surface 68P and the arcuate curved surface 70P are on the negative direction (−) side along the radial direction of the flat stepped portion 56P, and the height hp becomes hp = h1 as it goes to Q4P on the distal end side along the radial direction. To hp = 0. Further, the arcuate curved surface 68P and the arcuate curved surface 70P are curved surfaces whose width dimension gradually and gradually changes from the position of Q2P, Q3P to the position of Q4P along the circumferential direction as it goes to the tip side along the radial direction. is there. Thus, the arc-shaped curved surface 68P and the arc-shaped curved surface 70P are not stepped wall surfaces, but gradually change in height gradually toward the tip side along the radial direction, and the width dimension gradually increases along the circumferential direction. The curved surface is narrow and gradually changed.

図5は、ブリッジ部30の上面ST側から磁性体薄板10の板厚方向に向かって所定の押し潰し圧力で潰しパンチ50を押し付けたときに押し潰されたブリッジ部30の立体的形状を示す図である。ここでは、図4に対応して、ブリッジ部30について、径方向に延びる全長L0のうち、径方向における負方向(−)側の半分の部分の拡大図を示す。   FIG. 5 shows a three-dimensional shape of the bridge portion 30 that is crushed when the crushing punch 50 is pressed with a predetermined crushing pressure from the upper surface ST side of the bridge portion 30 toward the plate thickness direction of the magnetic thin plate 10. FIG. Here, the enlarged view of the half part by the side of the negative direction (-) in radial direction is shown among the full length L0 extended in radial direction about the bridge part 30 corresponding to FIG.

潰しパンチ50によるブリッジ部30の押し潰し深さhsは、ブリッジ部30の上面STから板厚の減少方向に向かって、潰しパンチ50の高さhpと同じ大きさである。つまり、ブリッジ部30の押し潰された立体的形状は、潰しパンチ50の立体的形状を転写した形状であり、凹凸の方向が異なるだけで実質的にパンチ面52P,54Pの立体的形状と同じである。以下では、パンチ面52P,54Pの立体的形状の符号に付した「P」の添え字を「S」の添え字に代えて、ブリッジ部30の立体的形状の符号とする。例えば、ブリッジ部30における平坦面62Sは、パンチ面52Pの平坦面62Pによって押し潰された対応面を示す。   The crushing depth hs of the bridge portion 30 by the crushing punch 50 is the same size as the height hp of the crushing punch 50 from the upper surface ST of the bridge portion 30 in the decreasing direction of the plate thickness. That is, the crushed three-dimensional shape of the bridge portion 30 is a shape obtained by transferring the three-dimensional shape of the crushing punch 50, and is substantially the same as the three-dimensional shape of the punch surfaces 52P and 54P only in the direction of the unevenness. It is. In the following description, the suffix “P” attached to the three-dimensional shape of the punch surfaces 52P and 54P is replaced with the suffix “S” and used as the three-dimensional shape of the bridge portion 30. For example, the flat surface 62S in the bridge portion 30 indicates a corresponding surface that is crushed by the flat surface 62P of the punch surface 52P.

潰しパンチ50は、パンチ中心線32Pに対し線対称に配置される2つの立体的に突き出した形状のパンチ面52P,54Pを含む。これに対応し、ブリッジ部30もブリッジ中心線32Sに対し線対称に配置される2つの立体的に窪んだ形状の加工硬化面52S,54Sを含む。   The crushing punch 50 includes two three-dimensionally protruding punch surfaces 52P and 54P arranged symmetrically with respect to the punch center line 32P. Correspondingly, the bridge portion 30 also includes two three-dimensionally recessed work hardening surfaces 52S and 54S arranged symmetrically with respect to the bridge center line 32S.

加工硬化面52S,54Sは、潰しパンチ50によって転写された面であるが、転写では周方向の正方向(+)と負方向(−)が入れ替わる。図4、図5を参照して、孔20,22の周方向に対する配置が逆となるが、加工硬化面52Sはパンチ面52Pによって転写された面とし、加工硬化面54Sはパンチ面54Pによって転写された面とする。加工硬化面52Sは、ブリッジ部30において孔20側の部分に設けられ、加工硬化面54Sは、ブリッジ部30において孔22側の部分に設けられる。加工硬化面52Sと加工硬化面54Sとに挟まれブリッジ中心線32Sに沿って延びる平坦面53Sは、磁性体薄板10の上面STの一部である。   The work hardened surfaces 52S and 54S are surfaces transferred by the crushing punch 50, but the positive direction (+) and the negative direction (-) in the circumferential direction are switched in the transfer. 4 and 5, the circumferential arrangement of the holes 20 and 22 is reversed, but the work hardened surface 52S is a surface transferred by the punch surface 52P, and the work hardened surface 54S is transferred by the punch surface 54P. It is assumed that The work hardening surface 52S is provided in a portion on the hole 20 side in the bridge portion 30, and the work hardening surface 54S is provided in a portion on the hole 22 side in the bridge portion 30. A flat surface 53S sandwiched between the work hardened surface 52S and the work hardened surface 54S and extending along the bridge center line 32S is a part of the upper surface ST of the magnetic thin plate 10.

加工硬化面52S,54Sは、ブリッジ中心線32Sに対し線対称の形状であるので、以下では、パンチ面54Pによって押し潰される加工硬化面54Sについて述べる。加工硬化面54Sと加工硬化面52Sとにおいてそれぞれ対応する構成要素には同一の符号を用いて、重複する説明を省略する。   Since the work hardened surfaces 52S and 54S are line symmetrical with respect to the bridge center line 32S, the work hardened surface 54S to be crushed by the punch face 54P will be described below. Constituent elements corresponding to the work hardened surface 54S and the work hardened surface 52S are denoted by the same reference numerals, and redundant description is omitted.

加工硬化面54Sは、ブリッジ部30の孔22側の部分に設けられるので、図5において、孔22のブリッジ部30側の側面22Sを示す。加工硬化面54Sは、径方向に沿って、平坦段差部56Sと、平坦段差部56Sに接続する円弧状傾斜部58Sとを有する。平坦段差部56Sと円弧状傾斜部58Sは、それぞれ、パンチ面54Pの平坦段差部56Pと円弧状傾斜部58Pがブリッジ部30に転写された部分である。   Since the work hardening surface 54S is provided in a portion of the bridge portion 30 on the hole 22 side, the side surface 22S of the hole 22 on the bridge portion 30 side is shown in FIG. The work hardening surface 54S includes a flat stepped portion 56S and an arcuate inclined portion 58S connected to the flat stepped portion 56S along the radial direction. The flat step portion 56S and the arc-shaped inclined portion 58S are portions where the flat step portion 56P and the arc-shaped inclined portion 58P of the punch surface 54P are transferred to the bridge portion 30, respectively.

なお、潰しパンチ50の幅W1は、潰しパンチ50の上面PTからの高さhpをh1として、W0≦W1≦(W0+2h1)の範囲に設定されるので、図4で述べた段差壁面60Pはブリッジ部30に接触しない。したがって、潰しパンチ50の段差壁面60Pに対応する転写面はブリッジ部30の孔22側に現われない。   The width W1 of the crushing punch 50 is set in a range of W0 ≦ W1 ≦ (W0 + 2h1), where the height hp from the upper surface PT of the crushing punch 50 is h1, so that the stepped wall surface 60P described in FIG. It does not touch the part 30. Therefore, the transfer surface corresponding to the stepped wall surface 60 </ b> P of the crushing punch 50 does not appear on the hole 22 side of the bridge portion 30.

平坦段差部56Sは、平坦面62Sと、中心線側傾斜面64Sとを含む。平坦面62Sは、ブリッジ中心線32Sに沿ったブリッジ部30の上面STから傾斜して潰し深さhs=h1まで押し潰された底面である。中心線側傾斜面64Sは、ブリッジ中心線32Sに沿って延びるブリッジ部30の上面STから平坦面62Sに向かって傾斜して下がる面である。平坦面62Sと中心線側傾斜面64Sは、それぞれ、パンチ面54Pの平坦面62Pと中心線側傾斜面64Pがブリッジ部30に転写された部分である。   The flat step portion 56S includes a flat surface 62S and a centerline side inclined surface 64S. The flat surface 62S is a bottom surface that is inclined from the upper surface ST of the bridge portion 30 along the bridge center line 32S and is crushed to a crushing depth hs = h1. The centerline side inclined surface 64S is a surface that is inclined downward from the upper surface ST of the bridge portion 30 extending along the bridge centerline 32S toward the flat surface 62S. The flat surface 62S and the centerline side inclined surface 64S are portions where the flat surface 62P and the centerline side inclined surface 64P of the punch surface 54P are transferred to the bridge portion 30, respectively.

平坦面62Sは、ブリッジ中心線32Sの反対側の端面において、孔22の側面22Sに接続する。平坦面62Sの端部における孔22の側面22Sの高さ方向の寸法は、{(磁性体薄板10の板厚t0)−(潰し深さhs=h1)}の磁性体厚さに相当する。この磁性体厚さが、ブリッジ部強化処理が行われた後のブリッジ部厚さである。ブリッジ部強化処理によるブリッジ部30の板厚方向に沿った圧縮率は、[{(磁性体薄板10の板厚t0)−(潰し深さhs=h1)}/t0]×100(%)である。圧縮率の大きさは、ブリッジ部30の幅W0、長さL0、磁気抵抗、材質、機械的強度等の仕様に基づいて設定される。圧縮率の一例を挙げると、約80%〜95%程度の範囲である。これは説明のための例示であり、上記の仕様等に基づいて適宜変更が可能である。   The flat surface 62S is connected to the side surface 22S of the hole 22 at the end surface opposite to the bridge center line 32S. The dimension in the height direction of the side surface 22S of the hole 22 at the end of the flat surface 62S corresponds to the magnetic material thickness of {(plate thickness t0 of the magnetic thin plate 10)-(crushing depth hs = h1)}. This magnetic body thickness is the thickness of the bridge portion after the bridge portion strengthening process is performed. The compressibility along the thickness direction of the bridge portion 30 by the bridge portion strengthening process is [{(plate thickness t0 of the magnetic thin plate 10) − (crushing depth hs = h1)} / t0] × 100 (%). is there. The magnitude of the compression rate is set based on specifications such as the width W0, the length L0, the magnetic resistance, the material, and the mechanical strength of the bridge portion 30. An example of the compression rate is in the range of about 80% to 95%. This is an illustrative example, and can be changed as appropriate based on the above specifications.

加工硬化面54Sにおける平坦段差部56Sと接続する円弧状傾斜部58Sの境界点として、Q1S,Q2S,Q3Sを示し、円弧状傾斜部58Sの径方向の負方向(−)側の先端点としてQ4Sを示す。Q1S,Q2S,Q3S,Q4Sは、それぞれパンチ面54PのQ1P,Q2P,Q3P,Q4Pがブリッジ部30に転写された点である。   Q1S, Q2S, and Q3S are shown as boundary points of the arc-shaped inclined portion 58S connected to the flat stepped portion 56S on the work hardening surface 54S, and Q4S is used as the tip point on the negative (−) side in the radial direction of the arc-shaped inclined portion 58S. Indicates. Q1S, Q2S, Q3S, and Q4S are points where Q1P, Q2P, Q3P, and Q4P on the punch surface 54P are transferred to the bridge portion 30, respectively.

Q1SとQ2Sは、平坦面62S上の点で、径方向の位置が同じで、上面STからの潰し深さhsも共にhs=h1>0である。Q3Sは、上面ST上の点で、Q1S,Q2Sと径方向の位置が同じであり、Q2Sから中心線側傾斜面64Sに沿って上がり、上面STに達した点である。   Q1S and Q2S have the same radial position at the point on the flat surface 62S, and the crushing depth hs from the upper surface ST is also hs = h1> 0. Q3S is a point on the upper surface ST, has the same radial position as Q1S and Q2S, is raised from Q2S along the centerline-side inclined surface 64S, and reaches the upper surface ST.

円弧状傾斜部58Sは、径方向の負方向(−)側の先端点Q4Sと、Q1S,Q2S,Q3Sを結ぶ円弧状傾斜面である。Q4Sは、上面ST上の点で、Q1Sと周方向の位置が同じであり、Q1Sから傾斜して上がり、上面STに達した点である。   The arcuate inclined portion 58S is an arcuate inclined surface connecting the tip point Q4S on the negative (−) side in the radial direction and Q1S, Q2S, Q3S. Q4S is a point on the upper surface ST, the position in the circumferential direction is the same as that of Q1S, is inclined up from Q1S, and reaches the upper surface ST.

これにより、孔22の側面22Sの高さは、潰し深さhs=h1を有するQ1Sから、潰し深さhs=0である上面ST上のQ4Sに向かって傾斜して高くなる。図5では、側面22Sが高くなって上面STに達する面を三角形面22S’で示す。   As a result, the height of the side surface 22S of the hole 22 increases from Q1S having the crushing depth hs = h1 to Q4S on the upper surface ST where the crushing depth hs = 0. In FIG. 5, the surface where the side surface 22S becomes higher and reaches the upper surface ST is indicated by a triangular surface 22S '.

円弧状傾斜部58Sは、円弧状曲面68Sと、円弧状曲面70Sとを含む。円弧状曲面68Sは、Q1S,Q2S,Q4Sを含む曲面である。円弧状曲面70Sは、Q2S,Q3S,Q4Sを含む曲面である。   The arcuate inclined portion 58S includes an arcuate curved surface 68S and an arcuate curved surface 70S. The arcuate curved surface 68S is a curved surface including Q1S, Q2S, and Q4S. The arcuate curved surface 70S is a curved surface including Q2S, Q3S, and Q4S.

円弧状曲面70Sは、円弧状曲面68Sから周方向に沿った傾斜角度θ1で傾斜してブリッジ部30の上面PTに向かう傾斜曲面である。円弧状曲面70Sと円弧状曲面68Sとの境界には、半径R1の丸みが設けられる。これによって、円弧状曲面68Sと円弧状曲面70Sは滑らかに接続される。   The arcuate curved surface 70S is an inclined curved surface that is inclined from the arcuate curved surface 68S at an inclination angle θ1 along the circumferential direction toward the upper surface PT of the bridge portion 30. A roundness having a radius R1 is provided at the boundary between the arcuate curved surface 70S and the arcuate curved surface 68S. Thus, the arcuate curved surface 68S and the arcuate curved surface 70S are smoothly connected.

なお、潰しパンチ50の幅W1は、W0≦W1≦(W0+2h1)の範囲に設定されるので、図4で述べた潰しパンチ50の段差壁面66Pはブリッジ部30に接触せず、段差壁面66Pに対応する転写面はブリッジ部30の孔22側に現われない。代わりに、段差壁面66Pの傾斜に対応して、三角形面22S’が現われる。   Since the width W1 of the crushing punch 50 is set in a range of W0 ≦ W1 ≦ (W0 + 2h1), the stepped wall surface 66P of the crushing punch 50 described with reference to FIG. The corresponding transfer surface does not appear on the hole 22 side of the bridge portion 30. Instead, a triangular surface 22S 'appears corresponding to the inclination of the step wall surface 66P.

円弧状曲面68Sと円弧状曲面70Sとは、平坦段差部56Sの径方向に沿った負方向(−)側で、径方向に沿って先端側のQ4Sに行くにつれ、潰し深さhsがhs=h1からhs=0まで徐変した曲面である。また、円弧状曲面68Sと円弧状曲面70Sとは、径方向に沿って先端側に行くにつれ、周方向に沿ってQ2S,Q3Sの位置からQ4Sの位置まで幅寸法が次第に狭く徐変した曲面でもある。このように、円弧状曲面68Sと円弧状曲面70Sは、段差壁面でなく、径方向に沿って先端側に行くにつれ、潰し深さhsが次第に浅く徐変し、周方向に沿って幅寸法が次第に狭く徐変した曲面である。   The arcuate curved surface 68S and the arcuate curved surface 70S are on the negative direction (−) side along the radial direction of the flat stepped portion 56S, and the crushing depth hs becomes hs = as it goes to Q4S on the tip side along the radial direction. The curved surface gradually changes from h1 to hs = 0. Further, the arc-shaped curved surface 68S and the arc-shaped curved surface 70S are curved surfaces whose width dimension gradually and gradually changes from the position of Q2S, Q3S to the position of Q4S along the circumferential direction as it goes to the tip side along the radial direction. is there. As described above, the arcuate curved surface 68S and the arcuate curved surface 70S are not stepped wall surfaces, but gradually change in the crushing depth hs gradually toward the tip side along the radial direction, and the width dimension increases along the circumferential direction. The curved surface gradually and gradually changes.

ブリッジ部強化処理は、ダイス部42とパンチ部44の潰しパンチ50との間にブリッジ部30を挟み、潰しパンチ50をブリッジ部30の上面STに押し付けて行われる。これにより、ブリッジ部30の磁性体材料は、塑性変形し、流動化して、ブリッジ部30側から他の方向に向かって流れる。潰しパンチ50の表面には、ブリッジ部30から孔20,22に向かう第一方向に磁性体材料が塑性流動するときの摩擦係数が、第一方向と垂直方向に磁性体材料が塑性流動するときの摩擦係数よりも小さくなる加工が施される。具体的には、潰しパンチ50のパンチ面52P,54Pには、ブリッジ部30側から孔20,22に向かう方向に沿って延びる加工目として、細かい凹凸溝が設けられる。   The bridge portion strengthening process is performed by sandwiching the bridge portion 30 between the die portion 42 and the crushing punch 50 of the punch portion 44 and pressing the crushing punch 50 against the upper surface ST of the bridge portion 30. Thereby, the magnetic material of the bridge part 30 is plastically deformed and fluidized, and flows from the bridge part 30 side toward the other direction. When the magnetic material plastically flows in the direction perpendicular to the first direction on the surface of the crushing punch 50, the friction coefficient when the magnetic material plastically flows in the first direction from the bridge portion 30 toward the holes 20 and 22. A process smaller than the friction coefficient is applied. Specifically, fine concavo-convex grooves are provided on the punch surfaces 52P and 54P of the crushing punch 50 as processing marks extending along the direction from the bridge portion 30 side toward the holes 20 and 22.

図6に、潰しパンチ50のパンチ面52P,54Pに設けられる細かい凹凸溝80Pを示す。凹凸溝80Pの延びる方向を示す黒塗矢印82P,84Pは、ブリッジ中心線32Sに対応するパンチ中心線32P側から、孔20,22に向かう方向を示す。平坦段差部56Pにおける黒塗矢印82Pの方向は、パンチ中心線32Pに対し直角方向である。円弧状傾斜部58Pにおける黒塗矢印84Pの方向は、平坦段差部56P側から径方向に沿った先端側に行くに従って、パンチ中心線32Pに対し、次第に傾斜する方向となる。黒塗矢印82P,84Pの方向は、ブリッジ部30から孔20,22に向かう第一方向であり、黒塗矢印82P,84Pの方向に垂直な方向が第二方向である。   FIG. 6 shows fine concave and convex grooves 80 </ b> P provided on the punch surfaces 52 </ b> P and 54 </ b> P of the crushing punch 50. Black arrows 82P and 84P indicating the extending direction of the concave and convex grooves 80P indicate directions from the punch center line 32P side corresponding to the bridge center line 32S toward the holes 20 and 22. The direction of the black arrow 82P in the flat step portion 56P is a direction perpendicular to the punch center line 32P. The direction of the black arrow 84P in the arc-shaped inclined portion 58P is a direction that is gradually inclined with respect to the punch center line 32P from the flat stepped portion 56P side to the tip side along the radial direction. The directions of the black arrows 82P and 84P are the first direction from the bridge portion 30 toward the holes 20 and 22, and the direction perpendicular to the directions of the black arrows 82P and 84P is the second direction.

図7は、凹凸溝80Pの形成方法を示す図である。ここでは、適当な先端丸みを有する加工工具86を、潰しパンチ50のパンチ面52P,54Pの表面に押し当て、黒塗矢印82P,84Pの方向である第一方向に平行な方向を加工方向として移動させる。   FIG. 7 is a diagram illustrating a method of forming the concave and convex groove 80P. Here, a processing tool 86 having an appropriate rounded end is pressed against the surfaces of the punch surfaces 52P and 54P of the crushing punch 50, and the direction parallel to the first direction, which is the direction of the black arrows 82P and 84P, is defined as the processing direction. Move.

凹凸溝80Pは、パンチ面52P,54Pの表面に対し垂直に凹凸する段差溝であってもよいが、パンチ面52P,54Pの表面に対し適当な傾斜角度を有して凹凸する傾斜凹凸溝が好ましい。また、図7に示されるように、凹凸の山部と谷部とは適当な丸みを有することが好ましい。凹凸溝80Pの凹凸深さは、所定の押し潰し圧力の下で塑性変形し流動化した磁性体材料の塑性流動に対する摩擦係数に異方性が生じる程度でよい。塑性流動に対する摩擦係数の異方性とは、(黒塗矢印82P,84Pの方向である第一方向に沿った摩擦係数)>(黒塗矢印82P,84Pの方向に垂直な第二方向に沿った摩擦係数)である。凹凸深さはパンチ面52P,54Pの表面粗さとなるが、一例を挙げると、約1μm以下の表面粗さとなる凹凸深さでよい。好ましくは、200nm程度の表面深さとなる凹凸深さがよい。   The concavo-convex groove 80P may be a step groove that concavo-convex perpendicularly to the surfaces of the punch surfaces 52P, 54P. preferable. Moreover, as shown in FIG. 7, it is preferable that the ridges and valleys of the unevenness have appropriate roundness. The concave / convex depth of the concave / convex groove 80P may be such that anisotropy occurs in the coefficient of friction against plastic flow of a magnetic material that is plastically deformed and fluidized under a predetermined crushing pressure. The anisotropy of the friction coefficient with respect to the plastic flow is (the friction coefficient along the first direction which is the direction of the black arrows 82P and 84P)> (along the second direction perpendicular to the directions of the black arrows 82P and 84P) Friction coefficient). The unevenness depth is the surface roughness of the punch surfaces 52P and 54P. For example, the unevenness depth may be approximately 1 μm or less. Preferably, the depth of unevenness is about 200 nm.

図7では、加工方向に沿って連続する凹凸溝80Pを示したが、塑性流動に対する摩擦係数に異方性があればよいので、加工方向を長手方向とし、加工方向に垂直な方向を短手方向とする細長い凹凸窪みを多数設けてもよい。凹凸溝80Pの形成方法は、図7に示す加工工具86を用いる方法以外でもよい。例えば、予め凹凸溝を形成した母型を用いて、転写によってパンチ面52P,54Pに凹凸溝80Pを形成してもよい。あるいは、適当な条件の下でのショットピーニング、エッチング等の技術を用いてもよい。   In FIG. 7, the concave and convex grooves 80P continuous along the processing direction are shown. However, since it is sufficient that the friction coefficient with respect to plastic flow is anisotropic, the processing direction is the longitudinal direction and the direction perpendicular to the processing direction is short. You may provide many elongate uneven | corrugated hollows made into a direction. The method for forming the uneven groove 80P may be other than the method using the processing tool 86 shown in FIG. For example, the concave and convex grooves 80P may be formed on the punch surfaces 52P and 54P by transfer using a mother die on which concave and convex grooves are formed in advance. Alternatively, techniques such as shot peening and etching under appropriate conditions may be used.

図8は、図6の潰しパンチ50を用いて形成されたブリッジ部30を示す図である。潰しパンチ50のパンチ面52P,54Pの表面に設けられた凹凸溝80Pに対応して、ブリッジ部30の加工硬化面52S,54Sに凹凸溝80Sが形成されている。凹凸溝80Sは、黒塗矢印82S,84Sの方向に延びる。黒塗矢印82S,84Sの方向は、パンチ面52P,54Pにおける黒塗矢印82P,84Pの方向である第一方向に対応する。したがって、加工硬化面52S,54Sにおいて所定の押し潰し圧力の下で塑性変形し流動化した磁性体材料は、第一方向である黒塗矢印82S,84Sの方向に延びて、孔20,22に向かって流動していることが示される。   FIG. 8 is a view showing the bridge portion 30 formed using the crushing punch 50 of FIG. Corrugated grooves 80S are formed on the work hardened surfaces 52S and 54S of the bridge portion 30 corresponding to the concave and convex grooves 80P provided on the surfaces of the punch surfaces 52P and 54P of the crushing punch 50. The concave / convex groove 80S extends in the direction of the black arrows 82S and 84S. The direction of the black arrows 82S and 84S corresponds to the first direction which is the direction of the black arrows 82P and 84P on the punch surfaces 52P and 54P. Accordingly, the magnetic material that has been plastically deformed and fluidized under a predetermined crushing pressure on the work hardened surfaces 52S and 54S extends in the direction of the black arrows 82S and 84S, which is the first direction, to the holes 20 and 22. It is shown that it is flowing.

図9は、ブリッジ部強化処理において、互いに押し付け合った状態のパンチ面54Pと加工硬化面54Sとの状態を示す断面図である。図9は、円弧状傾斜部58Sにおいて、周方向に平行なA−A’線(図4、図5参照)に沿った断面である。円弧状傾斜部58Sは、加工硬化面54Sにおいて径方向に沿って細長く延びた先端部で、後述する従来技術の矩形形状の加工硬化面で応力集中が生じやすい短辺部分(図12から図14参照)に対応する部分である。   FIG. 9 is a cross-sectional view showing the state of the punch surface 54P and the work hardened surface 54S that are pressed against each other in the bridge portion strengthening process. FIG. 9 is a cross section along the A-A ′ line (see FIGS. 4 and 5) parallel to the circumferential direction in the arc-shaped inclined portion 58 </ b> S. The arcuate inclined portion 58S is a tip end portion extending along the radial direction on the work hardening surface 54S, and a short side portion (FIGS. 12 to 14) in which stress concentration easily occurs on a rectangular work hardening surface of the prior art described later. This corresponds to the reference).

図9に示すように、加工硬化面54Sは、パンチ面54Pの転写面に相当し、円弧状傾斜部58Sにおいて、潰し深さhsを有する円弧状曲面68Sから、潰し深さhs=0の上面STに向かって、板厚方向に傾斜角度θ1で徐変する円弧状曲面70Sを有する。傾斜が始まる位置では、半径R1の丸みを有する。このように、加工硬化面52Sは、円弧状傾斜部58Sにおいて、潰し深さhsが傾斜角度θ1で板厚方向に徐変する。板厚が徐変することで磁性体材料が流動化して移動するときの流動方向は黒塗矢印84Sで示す方向である。   As shown in FIG. 9, the work hardened surface 54S corresponds to a transfer surface of the punch surface 54P, and the upper surface of the crushing depth hs = 0 from the arcuate curved surface 68S having a crushing depth hs in the arcuate inclined portion 58S. An arcuate curved surface 70S that gradually changes at an inclination angle θ1 in the plate thickness direction toward the ST is provided. At the position where the inclination starts, it has a radius R1. As described above, in the arc-shaped inclined portion 58S, the crushing depth hs of the work hardened surface 52S gradually changes in the plate thickness direction at the inclination angle θ1. The flow direction when the magnetic material fluidizes and moves as the plate thickness gradually changes is the direction indicated by the black arrow 84S.

傾斜角度θ1は、小さいほど応力集中を緩和できるが、加工硬化面52Sの長さが長くなる。傾斜角度θ1が大きいと加工硬化面52Sの長さを短くできるが、応力集中が大きくなる。その兼ね合いで傾斜角度θ1が決定される。一例を挙げると、傾斜角度θ1を約15度から30度の範囲とすることがよい。半径R1の丸みは、傾斜角度θ1が小さいほど半径を大きくする。一例を挙げると、半径R1は、約0.2mmである。これらは、説明のための例示であり、金型40の仕様によって適宜変更が可能である。   As the inclination angle θ1 is smaller, the stress concentration can be reduced, but the length of the work hardened surface 52S becomes longer. When the inclination angle θ1 is large, the length of the work hardened surface 52S can be shortened, but the stress concentration becomes large. The inclination angle θ1 is determined based on this balance. As an example, the inclination angle θ1 may be in the range of about 15 degrees to 30 degrees. As for the roundness of the radius R1, the smaller the inclination angle θ1, the larger the radius. As an example, the radius R1 is about 0.2 mm. These are examples for explanation, and can be appropriately changed depending on the specifications of the mold 40.

図10は、ブリッジ部30において、ブリッジ部強化処理を受けた加工硬化面54Sと、ブリッジ部強化処理を受けていない上面STとの境界部を示す図である。図10(a)は、図5のB部の平面図である。加工硬化面54Sは、パンチ面54Pが押し付けられることで磁性体材料が塑性加工によって流動化し、孔22へ向かって流動し、ブリッジ部30の元々の外形輪郭線より孔22の側にエッジ状に突き出る。そのために、磁性体材料が流動化しない上面STとの境界部であるB部において、ブリッジ部30の外形輪郭線90に凹状の不連続部92が生じる。   FIG. 10 is a diagram illustrating a boundary portion between the work hardened surface 54S that has undergone the bridge portion strengthening process and the upper surface ST that has not undergone the bridge portion strengthening process. FIG. 10A is a plan view of a portion B in FIG. The work hardened surface 54S is fluidized by plastic working due to the pressing of the punch surface 54P and flows toward the hole 22, and has an edge shape toward the hole 22 from the original outline of the bridge portion 30. Stick out. Therefore, a concave discontinuous portion 92 is generated in the outer contour line 90 of the bridge portion 30 in the B portion which is a boundary portion with the upper surface ST where the magnetic material is not fluidized.

図10(b)は、(a)の不連続部92を滑らかにする加工処理を行った後のブリッジ部30の外形輪郭線94を示す図である。不連続部92を滑らかにする加工処理としては、ブリッジ部強化処理の後に、孔集合体12について仕上げ抜きを行う方法、仕上げ抜きに代えて、不連続部92について研磨処理や押し潰し処理等を行ってもよい。   FIG. 10B is a diagram showing the outer contour 94 of the bridge portion 30 after the processing for smoothing the discontinuous portion 92 in FIG. As the processing for smoothing the discontinuous portion 92, after the bridge portion strengthening processing, a method of performing the finish removal for the hole aggregate 12, a polishing treatment or a crushing treatment for the discontinuous portion 92, instead of the finish removal, etc. You may go.

上記では、潰しパンチ50の幅W1は、潰しパンチ50のPTからの高さhpをh1として、W0≦W1≦(W0+2h1)の範囲に設定されるので、ブリッジ部30の幅W0とほぼ同じ寸法である。そのために潰しパンチ50は、図6に示すように、細長い形状となり、幅W1の寸法の管理が必要である。ブリッジ部30の両側は孔20,24であるので、潰しパンチ50の幅を広げられる余裕がある。図11に、幅広の潰しパンチ100の例を示す。   In the above description, the width W1 of the crushing punch 50 is set to a range of W0 ≦ W1 ≦ (W0 + 2h1), where the height hp from the PT of the crushing punch 50 is h1, so that the width W1 is substantially the same as the width W0 of the bridge portion 30. It is. For this purpose, the crushing punch 50 has an elongated shape as shown in FIG. 6, and it is necessary to manage the dimension of the width W1. Since both sides of the bridge portion 30 are the holes 20 and 24, there is a margin for expanding the width of the crushing punch 50. FIG. 11 shows an example of a wide crushing punch 100.

図11(a)は、幅広の潰しパンチ100の下面PBを示す図である。幅広の潰しパンチ100は、パンチ中心線32Pに対し線対称に配置される2つのパンチ面102P,104Pを有する。図11(a)に示す二点鎖線は、ブリッジ部30の外形輪郭線で、ブリッジ中心線32Sをパンチ中心線32Pに合わせてある。2つのパンチ面102P,104Pは、ブリッジ部30の外形輪郭線を超えて、孔20,22の側に延び、潰しパンチ100の幅W2は、図4の潰しパンチ50の幅W1よりも広い。幅W2が幅W1より広いことを除けば、潰しパンチ100の立体的形状の基本構造は潰しパンチ50と同様で、2つのパンチ面102P,104Pは、径方向に沿って、中央部の平坦段差部106Pと、平坦段差部106Pの両側の円弧状傾斜部108Pとを有する。   FIG. 11A is a view showing the lower surface PB of the wide crushing punch 100. The wide crushing punch 100 has two punch surfaces 102P and 104P arranged symmetrically with respect to the punch center line 32P. A two-dot chain line shown in FIG. 11A is an outline contour line of the bridge portion 30, and the bridge center line 32S is aligned with the punch center line 32P. The two punch surfaces 102P and 104P extend beyond the outline of the bridge portion 30 toward the holes 20 and 22, and the width W2 of the crushing punch 100 is wider than the width W1 of the crushing punch 50 in FIG. Except for the fact that the width W2 is wider than the width W1, the basic structure of the three-dimensional shape of the crushing punch 100 is the same as that of the crushing punch 50, and the two punch surfaces 102P and 104P have a flat step at the center along the radial direction. Part 106P and arcuate inclined parts 108P on both sides of flat stepped part 106P.

図11(b)は、(a)のB−B線に沿った断面図である。ここでは、パンチ面104Pと、ダイス部42とが示される。(c)は、(b)のC部の拡大図で、円弧状傾斜部108Pにおける円弧状曲面の傾斜が示される。図11の潰しパンチ100を用いても、図4の潰しパンチ50と同様なブリッジ部強化処理を行うことができ、同様の加工硬化面52S,54Sを得ることができる。   FIG.11 (b) is sectional drawing along the BB line of (a). Here, the punch surface 104P and the die part 42 are shown. (C) is an enlarged view of part C of (b), showing the inclination of the arcuate curved surface in the arcuate inclined part 108P. Even if the crushing punch 100 of FIG. 11 is used, the bridge part reinforcement | strengthening process similar to the crushing punch 50 of FIG. 4 can be performed, and the same work hardening surfaces 52S and 54S can be obtained.

上記では、パンチ部44を基準に、磁性体薄板10、ブリッジ部30、潰しパンチ50、加工硬化面52S,54S等の径方向、周方向の正方向と負方向を述べたが、潰しパンチ50を単独で考えるときは、径方向は、細長く延びる方向であり、周方向は、幅方向である。そこで、本実施の形態に係るロータコアの製造用金型40は、ロータコアに用いられ複数の孔を有する磁性体薄板10の裏面SBを支持するダイス部42を備える。それと共に、ダイス部42に支持された磁性体薄板10の隣接する孔20,22の間に細長く延びるブリッジ部30に対応して細長く延びブリッジ部30を上面ST側から押し潰して塑性流動させる潰しパンチ50を有するパンチ部を備える。そして、潰しパンチ50は、細長く延びる先端側に行くにつれ幅寸法が徐々に狭くなると共に高さ寸法であるhpが徐々に低くなる円弧状傾斜部58Pを有する。さらに、潰しパンチ50の表面は、ブリッジ部30から孔20,22に向かう第一方向に磁性体材料が塑性流動するときの摩擦係数が、第一方向に垂直な第二方向に磁性体材料が塑性流動するときの摩擦係数よりも小さい。   In the above description, the radial direction of the magnetic thin plate 10, the bridge portion 30, the crushing punch 50, the work hardening surfaces 52S and 54S, the positive direction and the negative direction in the circumferential direction are described with reference to the punch portion 44. Is considered as a direction in which the radial direction extends and the circumferential direction is the width direction. Therefore, the rotor core manufacturing mold 40 according to the present embodiment includes a die portion 42 that is used for the rotor core and supports the back surface SB of the magnetic thin plate 10 having a plurality of holes. At the same time, the bridge 30 is elongated corresponding to the bridge 30 extending between the adjacent holes 20 and 22 of the magnetic thin plate 10 supported by the die 42, and the bridge 30 is crushed from the upper surface ST side to cause plastic flow. The punch part which has the punch 50 is provided. The crushing punch 50 has an arcuate inclined portion 58P in which the width dimension is gradually narrowed and the height hp is gradually lowered as it goes to the elongated end. Furthermore, the surface of the crushing punch 50 has a coefficient of friction when the magnetic material plastically flows in the first direction from the bridge portion 30 toward the holes 20 and 22, and the magnetic material is in the second direction perpendicular to the first direction. It is smaller than the friction coefficient when plastically flowing.

上記構成の作用効果について、従来技術の潰しパンチを用いてブリッジ部強化処理を行う例と比較して、以下に図12から図16を用い、さらに詳細に説明する。   The operation and effect of the above configuration will be described in more detail below with reference to FIGS. 12 to 16 as compared to an example in which the bridge portion strengthening process is performed using a conventional crushing punch.

図12は、従来技術の潰しパンチ110の斜視図である。本実施の形態に係る図4の潰しパンチ50と同様に、従来技術の潰しパンチ110は、2つのパンチ面112P,114Pを含む。潰しパンチ110の幅W3と長さL3は、それぞれ、図4の潰しパンチ50の幅W1と長さW1とほぼ同じで、パンチ部44の上面PTからの高さhpは、図4の潰しパンチ50の高さhp=h1と同じである。図4の潰しパンチ50と潰しパンチ110との間の大きな相違点は、円弧状傾斜部58Pの有無である。潰しパンチ110は、2つのパンチ面112P,114Pの平面形状が細長い長方形で、長方形の短辺部分の端面は、ピン角116Pと呼ばれるが、パンチ部44の上面PTからほぼ垂直に立ち上がる壁面である。   FIG. 12 is a perspective view of a conventional crushing punch 110. Similar to the crushing punch 50 of FIG. 4 according to the present embodiment, the crushing punch 110 of the prior art includes two punch surfaces 112P and 114P. The width W3 and the length L3 of the crushing punch 110 are substantially the same as the width W1 and the length W1 of the crushing punch 50 of FIG. 4, respectively, and the height hp from the upper surface PT of the punch portion 44 is the crushing punch of FIG. A height of 50 is the same as hp = h1. A major difference between the crushing punch 50 and the crushing punch 110 in FIG. 4 is the presence or absence of the arc-shaped inclined portion 58P. In the crushing punch 110, the two punch surfaces 112P and 114P have an elongated rectangular planar shape, and the end surface of the short side portion of the rectangle is called a pin angle 116P, and is a wall surface that rises substantially vertically from the upper surface PT of the punch portion 44. .

図13は、潰しパンチ110を用いてブリッジ部強化処理を行ったときに、ブリッジ部30の磁性体材料に生じる応力分布を、ブリッジ部30の平面図上に示す図である。ここでは、応力集中が強い領域を黒塗で示し、応力集中が生じるが比較的弱い領域を斜線で示し、応力集中が生じない領域には黒塗も斜線も付さずに示す。図13に示すように、潰しパンチ110のピン角116Pに対応するピン角116Sの領域に強い応力集中が生じる。   FIG. 13 is a diagram illustrating a stress distribution generated in the magnetic material of the bridge portion 30 on the plan view of the bridge portion 30 when the bridge portion strengthening process is performed using the crushing punch 110. Here, a region where the stress concentration is strong is indicated by black, a region where stress concentration occurs but is relatively weak is indicated by hatching, and a region where stress concentration does not occur is indicated by neither black coating nor hatching. As shown in FIG. 13, a strong stress concentration occurs in the region of the pin angle 116 </ b> S corresponding to the pin angle 116 </ b> P of the crushing punch 110.

図14は、図13のD−D線に沿ったブリッジ部30の断面図である。ブリッジ部30は、ピン角116Sにおいて、上面STから潰しパンチ110の高さhp=h1だけ垂直に圧縮されている。圧縮されて平坦な底面における板厚は、{(磁性体薄板10の板厚t0)−(潰しパンチ110の高さhp=h1)}である。図14では、ブリッジ部30の断面図における磁性体材料に生じる応力集中の程度を、応力集中が大きくなるにつれて、白地から斜線、二重斜線、黒塗に順次変わるように、4段階で示す。断面形状が板厚方向で急変するピン角116S近傍で応力集中が最も強く生じ、そこから板厚方向にかなり強い応力集中の広がりが生じていることが分かる。   FIG. 14 is a cross-sectional view of the bridge portion 30 taken along line DD in FIG. The bridge portion 30 is compressed vertically by the height hp = h1 of the crushing punch 110 from the upper surface ST at the pin angle 116S. The plate thickness at the flat bottom surface after compression is {(plate thickness t0 of magnetic thin plate 10)-(height hp = h1 of crushing punch 110)}. In FIG. 14, the degree of stress concentration generated in the magnetic material in the cross-sectional view of the bridge portion 30 is shown in four stages so that the stress concentration gradually increases from a white background to diagonal lines, double diagonal lines, and black paint. It can be seen that the stress concentration is the strongest in the vicinity of the pin angle 116S where the cross-sectional shape changes abruptly in the plate thickness direction, and that a fairly strong stress concentration spread occurs in the plate thickness direction therefrom.

図15は、切欠半径の大小による応力集中の程度を示す図である。図15(a)は大きな切欠半径の場合の応力集中の程度を示す図で、(b)は小さな切欠半径の場合の応力集中の程度を示す図である。各図において、横軸に深さ方向、縦軸に正規化した応力の大きさを示す。(a),(b)を比較すると、小さな切欠半径の場合に、深さ方向に急峻な応力変化が生じていることが分かる。この効果は、窪み深さを切欠として、切欠効果と呼ばれる。従来技術の潰しパンチ110のピン角116Sでは断面形状が急変し、切欠半径が小さいので、切欠効果が顕著に現れ、その箇所で機械的強度が低下する。また、切欠半径が小さいので、深さ方向に応力集中が拡がりやすいことになる。   FIG. 15 is a diagram showing the degree of stress concentration depending on the size of the notch radius. FIG. 15A is a diagram showing the degree of stress concentration in the case of a large notch radius, and FIG. 15B is a diagram showing the degree of stress concentration in the case of a small notch radius. In each figure, the horizontal axis indicates the depth direction, and the vertical axis indicates the normalized stress magnitude. Comparing (a) and (b), it can be seen that a steep stress change occurs in the depth direction in the case of a small notch radius. This effect is called a notch effect, with the depth of the recess as a notch. At the pin angle 116S of the prior art crushing punch 110, the cross-sectional shape changes suddenly and the notch radius is small, so that the notch effect appears remarkably and the mechanical strength decreases at that point. Further, since the notch radius is small, the stress concentration tends to spread in the depth direction.

図16は、本実施の形態に係る金型40における潰しパンチ50を用いたときのブリッジ部30の断面図である図9を用いて、図14と同様な4段階で応力集中の程度を示す図である。図9では、従来技術のピン角116Pに相当する部分が、切欠半径の大きな円弧状傾斜部58Pとなっており、ブリッジ部30の断面形状が板厚方向に徐変している。さらに、磁性体材料も黒塗矢印84Sに示すように、ブリッジ部30側から孔22に向かって流動しやすくなっているので、応力集中の度合いも斜線レベルで留まっている。このように、本実施の形態に係るロータコアの製造用金型40を用いることで、従来技術に比べ、磁性体材料の塑性流動の滞留が抑制され、磁性体薄板における応力集中を緩和できる。   FIG. 16 shows the degree of stress concentration in four stages similar to FIG. 14, using FIG. 9 which is a cross-sectional view of the bridge portion 30 when the crushing punch 50 in the mold 40 according to the present embodiment is used. FIG. In FIG. 9, the portion corresponding to the pin angle 116P of the prior art is an arc-shaped inclined portion 58P having a large notch radius, and the cross-sectional shape of the bridge portion 30 gradually changes in the plate thickness direction. Furthermore, since the magnetic material is easy to flow from the bridge portion 30 side toward the hole 22 as indicated by the black arrow 84S, the degree of stress concentration remains at the hatched level. Thus, by using the rotor core manufacturing mold 40 according to the present embodiment, the retention of the plastic flow of the magnetic material can be suppressed and the stress concentration in the magnetic thin plate can be alleviated as compared with the prior art.

10 (シート状の)磁性体薄板、12 孔集合体、14 中心穴、16 外形抜き穴、18 コア片、20,21,22,24 孔、22S 側面、22S’三角形面、26 磁極の中心線、30,31 ブリッジ部、32P パンチ中心線、32S ブリッジ中心線、40 (ロータコアの製造用)金型、42 ダイス部、44 パンチ部、44 加工硬化面、50,51,100,110 潰しパンチ、52P,54P,102P,104P,112P,114P パンチ面、52S,54S 加工硬化面、53P,53S,62P,62S 平坦面、56P,56S,106P 平坦段差部、58P,58S,108P 円弧状傾斜部、60P,66P 段差壁面、64P,64S 中心線側傾斜面、68P,68S,70P,70S 円弧状曲面、80P,80S 凹凸溝、82S,84S,82P,84P 黒塗矢印、86 加工工具、90,94 外形輪郭線、92 不連続部、116P,116S ピン角。   10 (sheet-like) magnetic thin plate, 12 hole assembly, 14 center hole, 16 outer punch hole, 18 core piece, 20, 21, 22, 24 hole, 22S side surface, 22S ′ triangle surface, 26 magnetic pole center line , 30, 31 Bridge part, 32P Punch center line, 32S Bridge center line, 40 (for manufacturing rotor core) Die, 42 Dies part, 44 Punch part, 44 Work hardened surface, 50, 51, 100, 110 Crushing punch, 52P, 54P, 102P, 104P, 112P, 114P Punch surface, 52S, 54S Work hardening surface, 53P, 53S, 62P, 62S Flat surface, 56P, 56S, 106P Flat stepped portion, 58P, 58S, 108P Arc-shaped inclined portion, 60P, 66P stepped wall surface, 64P, 64S centerline side inclined surface, 68P, 68S, 70P, 70S arcuate curved surface, 0P, 80S uneven grooves, 82S, 84S, 82P, 84P filled arrow, 86 machining tool, 90, 94 the contour, 92 discontinuities, 116P, 116S pin angle.

Claims (1)

ロータコアに用いられ複数の孔を有する磁性体薄板の裏面を支持するダイス部と、
前記ダイス部に支持された前記磁性体薄板の隣接する前記孔の間に細長く延びるブリッジ部に対応して前記細長く延びブリッジ部を上面側から押し潰して塑性流動させる潰しパンチを有するパンチ部と、
を備え、
前記潰しパンチは、前記細長く延びる先端側に行くにつれ幅寸法が徐々に狭くなると共に高さ寸法が徐々に低くなる円弧状傾斜部を有し、
前記潰しパンチの表面は、前記ブリッジ部から前記孔に向かう第一方向に磁性体材料が塑性流動するときの摩擦係数が、前記第一方向に垂直な第二方向に前記磁性体材料が塑性流動するときの摩擦係数よりも小さい、ロータコアの製造用金型。
A die portion used for the rotor core and supporting the back surface of the magnetic thin plate having a plurality of holes;
A punch part having a crushing punch that plastically flows by crushing the elongated bridge part from the upper surface side corresponding to the elongated bridge part between the adjacent holes of the magnetic thin plate supported by the die part; and
With
The crushing punch has an arcuate inclined portion in which the width dimension is gradually narrowed and the height dimension is gradually lowered as it goes to the elongated extending end side,
The surface of the crushing punch has a coefficient of friction when the magnetic material plastically flows in the first direction from the bridge portion toward the hole, and the magnetic material flows plastically in the second direction perpendicular to the first direction. A mold for manufacturing the rotor core, which is smaller than the friction coefficient.
JP2016135743A 2016-07-08 2016-07-08 Mold for manufacturing rotor core Expired - Fee Related JP6555202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135743A JP6555202B2 (en) 2016-07-08 2016-07-08 Mold for manufacturing rotor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135743A JP6555202B2 (en) 2016-07-08 2016-07-08 Mold for manufacturing rotor core

Publications (2)

Publication Number Publication Date
JP2018007518A true JP2018007518A (en) 2018-01-11
JP6555202B2 JP6555202B2 (en) 2019-08-07

Family

ID=60949942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135743A Expired - Fee Related JP6555202B2 (en) 2016-07-08 2016-07-08 Mold for manufacturing rotor core

Country Status (1)

Country Link
JP (1) JP6555202B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007943A (en) * 2002-04-25 2004-01-08 Nissan Motor Co Ltd Magnetic steel sheet formation for rotor core, rotor for permanent magnet containing rotary electric machine using the same, permanent magnet containing rotary electric machine and method of producting magnetic steel sheet member for rotor core
JP2009226441A (en) * 2008-03-24 2009-10-08 Kasatani:Kk Metallic mold and forming method using the metallic mold
JP2010052006A (en) * 2008-08-28 2010-03-11 Nippon Steel Corp Coining method after punching and coining punch
WO2014156090A1 (en) * 2013-03-25 2014-10-02 パナソニック株式会社 Permanent-magnet-embedded electric motor and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007943A (en) * 2002-04-25 2004-01-08 Nissan Motor Co Ltd Magnetic steel sheet formation for rotor core, rotor for permanent magnet containing rotary electric machine using the same, permanent magnet containing rotary electric machine and method of producting magnetic steel sheet member for rotor core
JP2009226441A (en) * 2008-03-24 2009-10-08 Kasatani:Kk Metallic mold and forming method using the metallic mold
JP2010052006A (en) * 2008-08-28 2010-03-11 Nippon Steel Corp Coining method after punching and coining punch
WO2014156090A1 (en) * 2013-03-25 2014-10-02 パナソニック株式会社 Permanent-magnet-embedded electric motor and method for manufacturing same

Also Published As

Publication number Publication date
JP6555202B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
CN109314412B (en) Powder pressing core, stator core and stator
JP4043644B2 (en) Method for manufacturing hydrodynamic bearing device
WO2010140243A1 (en) Split stator and manufacturing method therefor
WO2006098183A1 (en) Cylindrical shaft and method of manufacturing the same
CN105576914B (en) The manufacture method of rotor
EP2768119B1 (en) Method for producing a laminated rotor core
JP2015053764A (en) Rotor with permanent magnets and method for manufacturing the same
KR20140042921A (en) Manufacturing device for magnet body for field pole and manufacturing method for same
JP6555202B2 (en) Mold for manufacturing rotor core
JP2014195374A (en) Rotary electric machine and manufacturing method therefor
JP2015226460A (en) Molding mold apparatus for rotor of motor
US10487845B2 (en) Fan structure and manufacturing method thereof
JP2004357349A (en) Manufacturing method of iron core piece
JP2006025533A (en) Caulking structure of laminated iron core
JP2010089101A (en) Method for manufacturing bent member, rotary electric machine, and method and device for manufacturing the same
WO2020184480A1 (en) Method for manufacturing formed material, and forming metal mold
JP5862927B2 (en) Green compact mold equipment for curved plate parts
WO2018012599A1 (en) Rotor core steel sheet, method for manufacturing said rotor core steel sheet, and rotor
JP2021126695A (en) Progressive press working method
JP2016220412A (en) Core for magnetic field system and method of manufacturing magnetic field system
JP6737607B2 (en) Method of manufacturing plate with frame
JP2008278685A (en) Stator and manufacturing method thereof
JP6822003B2 (en) Manufacturing method of rotor steel sheet
JP4407196B2 (en) Rotor core steel plate and rotor
JPWO2018124254A1 (en) Metal plate burring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6555202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees