JP2018006601A - Insulating tape for high-temperature superconductive wire material, high-temperature superconductive wire material, and high-temperature superconducting coil - Google Patents

Insulating tape for high-temperature superconductive wire material, high-temperature superconductive wire material, and high-temperature superconducting coil Download PDF

Info

Publication number
JP2018006601A
JP2018006601A JP2016132625A JP2016132625A JP2018006601A JP 2018006601 A JP2018006601 A JP 2018006601A JP 2016132625 A JP2016132625 A JP 2016132625A JP 2016132625 A JP2016132625 A JP 2016132625A JP 2018006601 A JP2018006601 A JP 2018006601A
Authority
JP
Japan
Prior art keywords
temperature
temperature superconducting
insulating tape
superconducting wire
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016132625A
Other languages
Japanese (ja)
Inventor
靖子 西口
Yasuko Nishiguchi
靖子 西口
進 沖原
Susumu Okihara
進 沖原
堤 正幸
Masayuki Tsutsumi
正幸 堤
山中 淳彦
Atsuhiko Yamanaka
淳彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016132625A priority Critical patent/JP2018006601A/en
Publication of JP2018006601A publication Critical patent/JP2018006601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulating Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an insulating tape for a high-temperature superconductive wire material, which has flexibility, achieves good workability, and has high thermal conductivity; a high-temperature superconductive wire material arranged by use of the insulating tape; and a high-temperature superconducting coil superior in stability.SOLUTION: An insulating tape for a high-temperature superconductive wire material is 1.5 W/mK or more in thermal conductivity in at least one direction at 77 K, and is composed of a film of an organic polymer represented by the general formula (Chem.1). The insulating tape is used as an insulator to obtain a high-temperature superconductive wire material and a high-temperature superconducting coil superior in stability. The organic polymer includes, as a repeating unit, a benzazole ring represented by (Chem.1). In the general formula (Chem.1), "n" is a real number of 0 to 1, "X" represents S atom, O atom or NH group, "Y" represents at least one kind selected from a phenylene group, a biphenylene group and a naphthalene group, provided that it may include them in an appropriate proportion, and "R" represents at least one kind selected from a halogen atom, and an alkyl group with C1-C6.SELECTED DRAWING: None

Description

本発明は、電気絶縁性高熱伝導性有機高分子シート材からなる高温超電導線材用絶縁テープ及び、これを用いた高安定性高温超電導線材、さらには該高温超電導線材からなる安定性に優れた高温超電導コイルに関する。   The present invention relates to an insulating tape for a high-temperature superconducting wire composed of an electrically insulating high thermal conductive organic polymer sheet material, a high-stability high-temperature superconducting wire using the same, and a high-temperature excellent in stability composed of the high-temperature superconducting wire. The present invention relates to a superconducting coil.

ビスマス系酸化物やイットリウム系酸化物を主体とするが酸化物超電導体は、金属系超伝導体に比べ高い超電導転移温度を有する。そのため従来液体ヘリウム温度に冷却しないと使用できなかった金属系超電導材に対し、高温超電導体と呼ばれ、これまで実用化が難しかった交流超電導技術の要素技術として期待されている。しかし高温超電導と呼ばれるこれら酸化物超伝導体は、熱伝導率が大幅に低いため冷却効率の向上や交流損失熱の除熱が応用開発上の重要な課題である。   Oxide superconductors mainly composed of bismuth-based oxides and yttrium-based oxides have a higher superconducting transition temperature than metal-based superconductors. For this reason, metal superconducting materials that could not be used without cooling to the liquid helium temperature are called high-temperature superconductors, and are expected as an elemental technology of AC superconducting technology that has been difficult to put into practical use. However, these oxide superconductors called high-temperature superconductivity have significantly low thermal conductivity, so improvement in cooling efficiency and removal of AC loss heat are important issues in application development.

特に酸化物超電導線材を用いたコイルでは、通電時のわずかな発熱も蓄積され、これが急激な温度上昇を招き、超電導機能を喪失するばかりか、超電導線材の熱劣化を招くこともある。これを「熱暴走」といい、高温超電導分野では、実用化のために解決しなければならない最も重要な問題である。(特許文献1, 非特許文献1)   In particular, in a coil using an oxide superconducting wire, a slight amount of heat generated during energization is accumulated, which causes a rapid temperature rise, which not only loses the superconducting function, but also may cause thermal deterioration of the superconducting wire. This is called “thermal runaway” and is the most important problem that must be solved for practical use in the field of high-temperature superconductivity. (Patent Document 1, Non-Patent Document 1)

熱暴走問題解決の手段として高温超電導線材に接触する部品から熱を奪う方法が挙げられる。即ち放熱材料を配した高温超電導コイルの作製である。高温超電導コイルにおいて高温超電導線材に接触する部品としては、絶縁テープ、コイルボビン、スペーサが挙げられる。    As a means of solving the thermal runaway problem, there is a method of depriving the heat from the parts in contact with the high temperature superconducting wire. That is, a high temperature superconducting coil with a heat dissipation material is produced. Examples of the parts that come into contact with the high-temperature superconducting wire in the high-temperature superconducting coil include an insulating tape, a coil bobbin, and a spacer.

絶縁テープ用材料としてはポリイミドが一般的であるが、熱伝導率は低いため除熱効果が低く、熱暴走問題解決には期待できない。除熱材料としては、高熱伝導性材料が必要であり、一般的にはアルミ、銅といった金属類が高い熱伝導性であるが、これらの金属類は導電性であり絶縁性を要求される高温超電導線材に接触する部品に直接使用することは出来ない(特許文献2)。 Polyimide is generally used as an insulating tape material, but since the thermal conductivity is low, the heat removal effect is low, and it cannot be expected to solve the thermal runaway problem. High heat conductivity materials are required as heat removal materials. Generally, metals such as aluminum and copper have high thermal conductivity, but these metals are conductive and require high insulation. It cannot be used directly on parts that come into contact with superconducting wires (Patent Document 2).

高温超電導コイルにおける高温超電導線材に接触する部品からの除熱を考える場合、これらは電気絶縁材料であることが必要である。従って電気絶縁性高熱伝導材料が必要である。   When considering the heat removal from the parts in contact with the high-temperature superconducting wire in the high-temperature superconducting coil, these must be electrically insulating materials. Therefore, an electrically insulating high heat conductive material is necessary.

絶縁性に優れた高熱伝導材料としては、チッカアルミや窒化ホウ素の様な一部のセラミックスが挙げられる。しかしこれらは脆く、加工性が悪いため取扱いが困難であり、フレキシビリティーが求められる絶縁テープには不向きである(特許文献1)。 Examples of highly heat conductive materials having excellent insulating properties include some ceramics such as ticker aluminum and boron nitride. However, these are fragile and difficult to handle because of poor processability, and are not suitable for insulating tapes that require flexibility (Patent Document 1).

高熱伝導絶縁部品としては、絶縁テープ以外にコイルボビン・スペーサが挙げられ、これらにはフレキシビリティーは要求されない。しかし、前述のセラミックス製高熱伝導材は加工性が悪いため、複雑形状のボビンには適用できない。また硬くて脆いセラミックスは高温超電導材を傷つける可能性が高いため、適用できない。   Examples of the high thermal conductive insulating parts include coil bobbins and spacers other than the insulating tape, and these do not require flexibility. However, since the above-mentioned ceramic high thermal conductive material has poor workability, it cannot be applied to a bobbin having a complicated shape. Hard and brittle ceramics are not applicable because they are likely to damage the high-temperature superconducting material.

高熱伝導性電気絶縁性を有する超電導コイル用ボビン、及びスペーサ材料としては、高強度高熱伝導性高分子繊維強化複合材料が挙げられる。例えば、絶縁性に優れる有機繊維で熱伝導性が高い繊維として超高分子量ポリエチレンやPBO繊維が知られている(特許文献3、4、非特許文献1, 2)。
超高分子量ポレエチレン繊維は、熱伝導性が高く冷却効率が高いため冷感寝具等に使用されている(特許文献5, 非特許文献3)が、一方、これらを強化繊維とする繊維強化複合材料とすることにより、高熱伝導プラスチックを作製することもできる(非特許文献2)。これらは繊維強化複合材料の成形技術により、超伝導マグネット用のコイルボビンやスペーサ―に作製して使用でき、その熱伝導性により超電導コイルの熱暴走防止に貢献している。(特許文献1、6、7、非特許文献1)。
Examples of the superconducting coil bobbin having high thermal conductivity and electrical insulation and the spacer material include high strength and high thermal conductivity polymer fiber reinforced composite materials. For example, ultrahigh molecular weight polyethylene and PBO fibers are known as organic fibers having excellent insulating properties and high thermal conductivity (Patent Documents 3 and 4, Non-Patent Documents 1 and 2).
Ultra-high molecular weight polyethylene fibers are used for cold bedding because of their high thermal conductivity and high cooling efficiency (Patent Document 5, Non-Patent Document 3). On the other hand, fiber reinforced composite materials using these as reinforcing fibers By doing so, it is also possible to produce a high thermal conductive plastic (Non-patent Document 2). These can be manufactured and used for coil bobbins and spacers for superconducting magnets by molding technology of fiber reinforced composite materials, and their thermal conductivity contributes to the prevention of thermal runaway of superconducting coils. (Patent Documents 1, 6, 7 and Non-Patent Document 1).

しかしながら、コイルボビンやスペーサ等による除熱は、コイルの形状・構造に大きく依存し、コイルの設計段階から「除熱構造」を考慮する必要がある。また、これら有機高分子高熱伝導繊維を用いてなる高熱伝導絶縁材は耐衝撃性に優れるため、取扱い性についてはセラミクスよりも優れている(非特許文献4、5)ものの、これら高熱伝導繊維は高強度性を有するため切削加工が困難であるという問題点がある。即ち、作製できるコイルボビンやスペーサの構造・形状に制限が生じる。よって、高熱伝導性有機高分子繊維強化複合材料からなるコイルボビン・スペーサによる高温超電導コイルからの除熱は、効果は認められるものの、適用できる条件には制限がある。   However, heat removal by a coil bobbin, a spacer, or the like largely depends on the shape / structure of the coil, and it is necessary to consider the “heat removal structure” from the coil design stage. Moreover, since the high thermal conductive insulating material using these organic polymer high thermal conductive fibers is excellent in impact resistance, the handling property is superior to that of ceramics (Non-Patent Documents 4 and 5). Since it has high strength, there is a problem that cutting is difficult. That is, the structure and shape of the coil bobbin and spacer that can be manufactured are limited. Therefore, although the heat removal from the high temperature superconducting coil by the coil bobbin / spacer made of the high thermal conductive organic polymer fiber reinforced composite material is recognized, there are limitations on the applicable conditions.

次に上述のコイルボビン・スペーサに用いられる有機高分子高熱伝導繊維を絶縁テープに使用する場合を考えると、電気絶縁を担うためテープ状であることが求められ、よってこれら繊維形状の高熱伝導有機高分子は、複合材料化等何らかの加工を施す必要がある。しかしたとえば繊維素材を樹脂で固めてシート状にし、これをテープ状に切出す方法が考えられるが、繊維切断を要する加工は困難であり、製造にコストがかかる。また、一方繊維・樹脂間は折れ曲がりにより破損するおそれがある。   Next, considering the case where the organic polymer high thermal conductive fiber used for the coil bobbin / spacer described above is used for the insulating tape, it is required to be in the form of a tape in order to carry out electrical insulation. The molecule needs to be subjected to some kind of processing such as making a composite material. However, for example, a method of consolidating a fiber material with a resin to form a sheet and cutting the sheet into a tape is conceivable. However, processing that requires fiber cutting is difficult, and manufacturing costs are high. On the other hand, the fiber / resin may be broken due to bending.

以上のように、ポリイミドシートのごとくフレキシブルであり、且つ高熱伝導性を有する単一物質からなる電気絶縁テープが求められている。   As described above, there is a demand for an electrical insulating tape made of a single material that is flexible like a polyimide sheet and has high thermal conductivity.

P2001-307915P2001-307915 P2003-166178P2003-166178 P2004-285522P2004-285522 P2004-225170P2004-225170 P2010-236130P2010-236130 P2001-326117P2001-326117 P2014-090089P2014-090089 P2005-330470P2005-330470

山中淳彦、高尾智明, 繊維学会誌, 68, no.4, p111-117 (2012)Yasuhiko Yamanaka, Tomoaki Takao, Journal of the Textile Society of Japan, 68, no.4, p111-117 (2012) H. Fujishiroら(他3名)、Japan Journal of Applied Physics, p5633-5637 (1997)H. Fujishiro et al. (3 others), Japan Journal of Applied Physics, p5633-5637 (1997) 前田徳一,繊維学会誌,68,p184-187 (2012)Tokuichi Maeda, Journal of the Textile Society of Japan, 68, p184-187 (2012) 野村幸弘,日本複合材料学会誌, 33,p191-195(2007)Yukihiro Nomura, Journal of the Japan Society for Composite Materials, 33, p191-195 (2007) 安田 浩、山中淳彦,大阪ケミカルマーケティングシリーズ,3,p123−133(1991)Hiroshi Yasuda, Yasuhiko Yamanaka, Osaka Chemical Marketing Series, 3, p123-133 (1991)

本発明は、従来、低熱伝導性のため交流損失熱を放熱できなかった高温超電導体の放熱性を高めるため、電気絶縁性と高熱伝導性を有する加工性とフレキシビリティーに優れた高温超電導線材用絶縁テープ、これを用いた安定性に優れた高温超電導線材および高温超電導コイルを提供しようとするものである。   The present invention is a conventional high-temperature superconducting wire having excellent electrical workability and flexibility, which has high electrical conductivity and high thermal conductivity, in order to enhance the heat dissipation of high-temperature superconductors that could not dissipate AC loss heat due to low thermal conductivity. It is intended to provide a high-temperature superconducting wire and a high-temperature superconducting coil excellent in stability using the insulating tape.

本発明は、上記課題を解決すべく鋭意研究を重ねた結果到達できたものであり、以下の構成を採用するものである。すなわち、
1. 77Kにおける少なくとも一方向の熱伝導率が1.5W/mK以上である有機高分子フィルムからなることを特徴とする高温超電導線材用絶縁テープで、該有機高分子は下記一般式(化1)で示されるベンザゾール環を繰り返し単位として含有することを特徴とする高熱伝導シート。但し、下記一般式(化1)においてnは0以上、1以下の実数、XはS,O原子又はNH基を指し、Yは、フェニレン基、ビフェニレン基、又はナフタレン基から選択される少なくとも1種であり、これらが任意の割合で含まれてもよい。Rはハロゲン原子、炭素原子数1〜6のアルキル基から選択される少なくとも1種である。


2. 前記有機高分子がポリパラフェニレンベンゾビスオキサゾールであることを特徴とする1記載の高温超電導線材用絶縁テープ
3. 前記一般式(化1)におけるRがメチル基であることを特徴とする、1または2記載の高温超電導線材用絶縁テープ。
4. 1〜3のいすれかに記載の高温超電導線材用絶縁テープを用いてなることを特徴とする高温超電導線材。
5. 1〜3のいずれかに記載の高温超電導線材用絶縁テープまたは4記載の高温超電導線材を用いてなることを特徴とする高温超電導コイル。

本発明は、熱伝導率が金属なみに高く、ポリイミド並みのフレキシビリティーと加工性をもつ有機高分子テープを用いて除熱性の高い高温超電導線材用絶縁テープ及びこれを用いることにより、熱暴走確率が低く安定に通電できる高温超電導線材・高温超電導コイルを提供できた。
The present invention has been achieved as a result of intensive research to solve the above-described problems, and employs the following configuration. That is,
1. An insulating tape for a high-temperature superconducting wire characterized by comprising an organic polymer film having a thermal conductivity of at least 1.5 W / mK at 77K in at least one direction. The organic polymer is represented by the following general formula (Formula 1) A highly heat-conductive sheet comprising a benzazole ring as a repeating unit. However, in the following general formula (Formula 1), n is a real number of 0 or more and 1 or less, X represents an S, O atom or NH group, and Y is at least 1 selected from a phenylene group, a biphenylene group or a naphthalene group. Seeds, which may be included in any proportion. R is at least one selected from a halogen atom and an alkyl group having 1 to 6 carbon atoms.


2. 2. The insulating tape for high-temperature superconducting wire according to 1, wherein the organic polymer is polyparaphenylene benzobisoxazole. The insulating tape for high-temperature superconducting wires according to 1 or 2, wherein R in the general formula (Formula 1) is a methyl group.
4). A high-temperature superconducting wire comprising the insulating tape for a high-temperature superconducting wire according to any one of 1 to 3.
5. A high-temperature superconducting coil comprising the insulating tape for a high-temperature superconducting wire according to any one of 1 to 3 or the high-temperature superconducting wire according to 4.

The present invention is a high-temperature superconducting wire insulating tape with high heat removal using an organic polymer tape having high thermal conductivity similar to that of a metal and having flexibility and workability similar to polyimide, and thermal runaway by using this. We were able to provide high-temperature superconducting wires and high-temperature superconducting coils that have low probability and can be energized stably.

本発明によると高熱伝導性を有する加工性とフレキシビリティーに優れた高温超電導線材用絶縁テープ、これを用いた高温超電導線材および安定性に優れた高温超電導コイルの作製が可能になる。 According to the present invention, it becomes possible to produce a high-temperature superconducting wire insulating tape having high thermal conductivity and excellent workability and flexibility, a high-temperature superconducting wire using the same, and a high-temperature superconducting coil excellent in stability.

図1は 絶縁テープを酸化物高温超電導線材に巻回してなる高温超電導線材の概略図である。FIG. 1 is a schematic view of a high-temperature superconducting wire obtained by winding an insulating tape around an oxide high-temperature superconducting wire. 図2は 絶縁テープと酸化物超電導線材との接合体としてなる高温超電導線材の概略説明図である。FIG. 2 is a schematic explanatory view of a high-temperature superconducting wire as a joined body of an insulating tape and an oxide superconducting wire. 図3は熱伝導率測定方法を示した概略図である。FIG. 3 is a schematic view showing a thermal conductivity measurement method.

以下に本発明を詳細に説明する。
本発明の高温超電導線材用絶縁テープは77Kにおいて少なくとも一方向の熱伝導率が1.5W/mK以上である、好ましくは2.0W/mK以上である少なくとも1種類の有機高分子フィルムを用いてなり、該有機高分子は下記一般式(化1)で示されるベンザゾール環を繰返し単位として含有することを特徴とする。本フィルムの少なくとも面内の一方向の熱伝導率が1.5W/mK未満の場合、高温超電導線材用絶縁テープとして要求される除熱量が不足し、その機能を果たさなくなる。以下本シートを熱伝導シートという。
The present invention is described in detail below.
The insulating tape for a high-temperature superconducting wire of the present invention comprises at least one organic polymer film having a thermal conductivity of at least one direction at 1.5 K / mK of 77 W, preferably 2.0 W / mK or more, The organic polymer is characterized by containing a benzazole ring represented by the following general formula (Formula 1) as a repeating unit. When the thermal conductivity in at least one direction of the film is less than 1.5 W / mK, the heat removal amount required for the insulating tape for high-temperature superconducting wire is insufficient, and the function cannot be performed. Hereinafter, this sheet is referred to as a heat conductive sheet.

本発明の絶縁テープを構成する77Kにおいて少なくとも一方向の熱伝導率が1.5W/mK以上である、好ましくは2.0W/mK以上である少なくとも1種類の有機高分子フィルムとは、高結晶化度、高配向性を有し、さらに高耐熱性を有するもので、その有機高分子としては一般式(化1)に記載されるポリベンザソール(PBZ)が挙げられる。有機高分子の熱伝導率は結晶化度と分子鎖配向に大きく依存することが知られている。これは電気絶縁物の熱伝導がフォノンによる熱伝播によるからである。そのため剛直高分子であり、かつ液晶高分子であるPBZは高配向し、他の有機高分子フィルムでは発現不可能な高熱伝導性を発現することができる。ポリベンザゾールとしてはポリパラフェニレンベンゾビスオキサゾール(PBO)、ポリベンザチアゾール(PBZT)、ポリベンズイミダゾール(PBI)が挙げられる。またあるいはベンザソール環にメチル基を有するポリメチルパラフェニレンベンゾビスオキサゾール、さらに一般式(化1)のRとして、エチル基、プロピル基、tert−ブチル基などの炭素数1〜6のアルキル基やハロゲン基などの置換基(側鎖)を有するPBZなどが挙げられるが、これらに限る物ではない。一般式(化学1)に示される繰返し単位Yは下記式(化2)で示される基が望ましい。これらが任意の割合で含まれていてもよい。本発明におけるPBZの構造、製法については例えば特許文献8に示されているが、これに限るものではない。
At least one organic polymer film having a thermal conductivity of at least 1.5 W / mK, preferably at least 2.0 W / mK at 77K constituting the insulating tape of the present invention is a high crystallinity. The organic polymer has high orientation and high heat resistance, and examples of the organic polymer include polybenzazole (PBZ) described in the general formula (Chemical Formula 1). It is known that the thermal conductivity of organic polymers greatly depends on crystallinity and molecular chain orientation. This is because the heat conduction of the electrical insulator is due to heat propagation by phonons. Therefore, PBZ, which is a rigid polymer and a liquid crystal polymer, is highly oriented and can exhibit high thermal conductivity that cannot be expressed by other organic polymer films. Examples of polybenzazole include polyparaphenylene benzobisoxazole (PBO), polybenzathiazole (PBZT), and polybenzimidazole (PBI). Alternatively, polymethylparaphenylenebenzobisoxazole having a methyl group on the benzazole ring, and R in the general formula (Chemical Formula 1) as an alkyl group having 1 to 6 carbon atoms such as ethyl group, propyl group, tert-butyl group, or halogen Examples thereof include PBZ having a substituent (side chain) such as a group, but are not limited thereto. The repeating unit Y represented by the general formula (Chemical 1) is preferably a group represented by the following formula (Chemical Formula 2). These may be included in any ratio. The structure and production method of PBZ in the present invention are disclosed in, for example, Patent Document 8, but are not limited thereto.

前記絶縁テープの厚みは1mm以下、好ましくは200μm以下、更に好ましくは、50μm以下である。シート厚みが1mmを越すと、超電導線材間の線間に挿入して使用するとコイルの厚みが大きくなり過ぎる。 The insulating tape has a thickness of 1 mm or less, preferably 200 μm or less, and more preferably 50 μm or less. When the sheet thickness exceeds 1 mm, the coil becomes too thick when inserted and used between the wires between the superconducting wires.

本発明の絶縁テープの形状は、幅が1mm以上、15mm以下のテープ状でもよい。また幅1m以上幅広テープでもよい。即ち形状に特に制限はない。   The shape of the insulating tape of the present invention may be a tape having a width of 1 mm or more and 15 mm or less. Further, a tape having a width of 1 m or more may be used. That is, the shape is not particularly limited.

本発明の絶縁テープは、その熱伝導性発現を有機高分子フィルムによって得るものである。よって、熱伝導性付与のための無機粒子混入、金属メッキなどを行わないため、柔軟性に富んだ取扱い性に優れた絶縁テープが得られる。   The insulating tape of the present invention obtains its thermal conductivity with an organic polymer film. Therefore, since mixing of inorganic particles for imparting thermal conductivity, metal plating, and the like are not performed, an insulating tape with excellent flexibility and handleability can be obtained.

絶縁テープを構成するフィルムの種類としては前記熱伝導有機高分子フィルムの他に有機高分子がコートされていてもよい。他の有機高分子としてはポリエステル、ナイロン、アクリレート、ウレタン、セルロース、ポリイミドなどが挙げられる。高熱伝導性フィルムの構成比率としては厚み比率において30%以上が好ましく、より好ましくは50%以上である。   As a kind of the film constituting the insulating tape, an organic polymer may be coated in addition to the heat conducting organic polymer film. Other organic polymers include polyester, nylon, acrylate, urethane, cellulose, polyimide, and the like. The constituent ratio of the high thermal conductive film is preferably 30% or more, more preferably 50% or more in the thickness ratio.

本発明の高温超電導線材とは、酸化物超電導線材と上記絶縁テープからなるものである。   The high temperature superconducting wire of the present invention comprises an oxide superconducting wire and the above insulating tape.

上記酸化物超電導線材とは、ビスマス系酸化物超電導体、たとえばBi2212、 Bi2223でも、イットリウム系酸化物超電導体、たとえばYBCOでもよい。また超電導線の形状はテープ状でも線材でもよいが、テープ状が望ましい。   The oxide superconducting wire may be a bismuth-based oxide superconductor such as Bi2212 or Bi2223, or an yttrium-based oxide superconductor such as YBCO. The shape of the superconducting wire may be a tape or a wire, but a tape is desirable.

上記高温超電導線材とは、上記酸化物超電導線材を上記絶縁テープと組合せたものであり、その組合せ方としては、酸化物超電導線材に上記絶縁テープを巻回してなるもの、上面または下面に接着してなるもの、側面も含めて接着してなるもの等があるが、そのいずれでもよい。これらの組合せ構造例を図1、図2に示す。   The high-temperature superconducting wire is a combination of the oxide superconducting wire and the insulating tape. The combination is made by winding the insulating tape around the oxide superconducting wire, and bonding it to the upper or lower surface. There are those that are bonded together including the side surfaces, and any of them may be used. Examples of these combination structures are shown in FIGS.

本発明における高温超電導コイルとは、上記高温超電導テープを用いてなるコイルであり、パンケーキ型コイル、円筒型コイル、ソレノイドコイル、基盤蒸着型コイルなどを意味する。   The high-temperature superconducting coil in the present invention is a coil using the above-mentioned high-temperature superconducting tape, and means a pancake type coil, a cylindrical coil, a solenoid coil, a substrate evaporation type coil, or the like.

本発明における高温超電導コイルの高温超電導線材巻回状態としては、酸化物超電導線材層間に上記絶縁テープを挟みながら巻回されてなるもの、また上記のごとく、酸化物超電導線材と上記絶縁テープを既に組合せてなる高温超電導線材が巻回されてなるものが挙げられるが、そのいずれでもよい。   As the high temperature superconducting wire winding state of the high temperature superconducting coil in the present invention, the oxide superconducting wire is wound while sandwiching the insulating tape between the layers, and as described above, the oxide superconducting wire and the insulating tape have already been wound. Although the thing formed by winding the high temperature superconducting wire formed in combination is mentioned, any of them may be used.

本発明における高温超電導コイルの冷却方法は、液体窒素等冷媒による直接冷却方法でもよい。また伝導冷却方式、冷媒層との熱接触による方式を含む間接冷却方式でもよい。さらにまたコンジットチューブを用いる強制冷却方式でもよい。
本発明における高温超電導コイルに流す電流は、直流、交流、パルスである。
The method for cooling the high-temperature superconducting coil in the present invention may be a direct cooling method using a refrigerant such as liquid nitrogen. Further, an indirect cooling method including a conduction cooling method and a method by thermal contact with the refrigerant layer may be used. Furthermore, a forced cooling method using a conduit tube may be used.
The currents flowing through the high temperature superconducting coil in the present invention are direct current, alternating current, and pulse.

本発明の側鎖にアルキル基を付加したポリベンザソールは、電子線などの活性エネルギー線を照射することにより、架橋反応を生じ、力学物性を改良することが出来る。これを応用して、側鎖にアルキル基を付加したポリベンザソールフィルムを樹脂被覆した状態で活性エネルギー照射を行うことによりポリベンザソールフィルムと樹脂成分との間に架橋が生じ、接着性の向上が期待できる。   The polybenzazole having an alkyl group added to the side chain of the present invention is capable of improving the mechanical properties by causing a crosslinking reaction by irradiation with an active energy ray such as an electron beam. By applying this, active energy irradiation is performed with resin coated polybenzazole film with alkyl group added to the side chain, resulting in cross-linking between polybenzazole film and resin component, improving adhesion Can be expected.

以下、実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、前・後記の主旨を逸脱しない範囲で変更実施することはすべて本発明の技術範囲に包含される。なお各特性値の測定方法は以下のとおりである。    Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and all modifications may be made within the scope of the present invention without departing from the gist of the preceding and following descriptions. Is done. In addition, the measuring method of each characteristic value is as follows.

本発明で用いた実験方法を以下に示す。
(実験方法)
The experimental method used in the present invention is shown below.
(experimental method)

(1)固有粘度の測定
メタンスルホン酸を溶媒として、0.5g/lの濃度に調製したポリマー溶液の粘度を、オストワルド粘度計を用いて25℃恒温槽中で測定し、算出した。
(1) Measurement of Intrinsic Viscosity The viscosity of a polymer solution prepared to a concentration of 0.5 g / l using methanesulfonic acid as a solvent was measured and calculated using a Ostwald viscometer in a 25 ° C. constant temperature bath.

(2)熱伝導率の測定
熱伝導率はヘリウム冷凍機付きの温度制御装置をもつシステム(図3)にて定常熱流法により測定した。フィルム試料の場合、試料長は約25mm、幅5mmに切ったシートを20枚貼り合せた。試料台の固定にはスタイキャストGTを使用した。温度測定にはAu−クロメル熱電対を用いた。ヒーターには1kΩ抵抗を用い、これを試料端にワニスで接着した。測定温度領域は27℃とした。測定は断熱性を保つため10−3Paの真空中で行った。なお測定は試料を乾燥状態にするため10−3Paの真空状態で24時間経過した後開始した。熱伝導率の測定はヒーターに2点間Lの温度差ΔTが1Kとなるように一定の電流を流して行った。これを図3に示す。ここで試料の断面積をS、熱電対間の距離をLヒーターにより与えた熱量をQ、熱電対間の温度差をΔTとすると求める熱伝導率eはe(W/mK)=(Q/ΔT)(L/S)で算出した。
(2) Measurement of thermal conductivity Thermal conductivity was measured by a steady heat flow method using a system (Fig. 3) with a temperature controller with a helium refrigerator. In the case of a film sample, 20 sheets cut to a sample length of about 25 mm and a width of 5 mm were bonded. Stycast GT was used for fixing the sample stage. An Au-chromel thermocouple was used for temperature measurement. A 1 kΩ resistor was used for the heater, and this was adhered to the end of the sample with varnish. The measurement temperature range was 27 ° C. The measurement was performed in a vacuum of 10 −3 Pa in order to maintain heat insulation. The measurement was started after 24 hours had elapsed in a vacuum state of 10 −3 Pa to make the sample dry. The thermal conductivity was measured by passing a constant current through the heater so that the temperature difference ΔT between the two points L was 1K. This is shown in FIG. Here, the thermal conductivity e obtained when the cross-sectional area of the sample is S, the distance between the thermocouples by the L heater is Q, and the temperature difference between the thermocouples is ΔT is e (W / mK) = (Q / ΔT) (L / S).

(3) テープのフレキシビリティー(耐折り曲げ特性)
試料フィルムを直角に折り曲げ、これを元に戻す。この作業を10回繰り返した後に1で述べた手法で折り曲げ線に垂直方向の熱伝導率を測定し、折り曲げ前の熱伝導率との比率を求めた。
(3) Flexibility of tape (bending resistance)
Bend the sample film at a right angle and put it back. After repeating this operation 10 times, the thermal conductivity in the direction perpendicular to the fold line was measured by the method described in 1 above, and the ratio with the thermal conductivity before folding was determined.

(4) テープの切断性
紙工作用文房具鋏による切断の可否を観測した。新品の紙工作用文房具鋏を使用し、10cm長の切断を50回行い、1回目と50回目の切断状況を、毛羽なし(切断状態良好:○)、毛羽あり(△)、切断不可(×)の3種類に分類した。
(4) The cutting ability of the tape was observed to determine whether or not it could be cut by a paper stationery. Using a new paperwork stationery jar, cut 10cm long 50 times, and the first and 50th cuts are as follows: No fluff (good cutting condition: ○), fluff present (△), uncut (× ).

(5)高温超電導コイルの作製方法
高温超電導コイルの作製は、以下の実施例に従って幅4mm, 厚み0.15mmのBi2223高温超電導テープ線材を用いて行った。作製したコイル諸元を表1に示す。
(5) Manufacturing Method of High-Temperature Superconducting Coil A high-temperature superconducting coil was manufactured using a Bi2223 high-temperature superconducting tape wire having a width of 4 mm and a thickness of 0.15 mm according to the following example. Table 1 shows the manufactured coil specifications.

(6)高温超電導コイルの評価方法
作製した高温超電導コイルはGM20K冷凍機を用いて70Kまで冷却し、60Hzで交流通電を行い、安定性を測定した。
(6) Evaluation Method for High-Temperature Superconducting Coil The produced high-temperature superconducting coil was cooled to 70K using a GM20K refrigerator, subjected to alternating current at 60 Hz, and measured for stability.

以下に実施例を示す。
(実施例1)
116%のポリリン酸44.71gに窒素気流下テレフタル酸7.097g、4,6−ジアミノレゾルシン二塩酸9.147g、五酸化リン13.608gを混合し、反応器内70℃で15分攪拌混合した。さらに120℃まで昇温させ、3.5時間攪拌混合し、脱塩酸を行い、135℃まで昇温させ16時間攪拌し、オリゴマー化した。その後、200℃に昇温して重合し、PBOポリマードープを得た。固有粘度は40dL/gであった。得られたドープをポリテトラフロオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフロオロエチレン製シートから剥し、蒸留水1000mlに15時間浸漬し、リン酸を抽出し、一辺が1mの金枠に固定し、80℃で4時間乾燥させた。得られたフィルムは厚みが25μmであった。これから幅4mm、長さ1mのテープを2500本切出した。該テープを表1のコイル諸元に示す高温超電導テープ線材(Bi2223)に45°の角度で巻きつけて、周囲と絶縁した超電導コイル用テープ線材を作製した。これを用いて表1に示すパンケーキ型高温超電導コイルを作製した。
Examples are shown below.
(Example 1)
In a nitrogen stream, 7.097 g of terephthalic acid, 9.147 g of 4,6-diaminoresorcin dihydrochloride, and 13.608 g of phosphorus pentoxide are mixed with 44.71 g of 116% polyphosphoric acid, and the mixture is stirred and mixed at 70 ° C. for 15 minutes. did. The temperature was further raised to 120 ° C., stirred and mixed for 3.5 hours, dehydrochlorination was performed, the temperature was raised to 135 ° C. and stirred for 16 hours, and oligomerized. Then, it heated up at 200 degreeC and superposed | polymerized and obtained the PBO polymer dope. Intrinsic viscosity was 40 dL / g. The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours, extracted with phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 4 hours. The obtained film had a thickness of 25 μm. From this, 2500 pieces of tape 4mm wide and 1m long were cut out. The tape was wound around a high-temperature superconducting tape wire (Bi2223) shown in the coil specifications in Table 1 at an angle of 45 ° to produce a superconducting coil tape wire insulated from the surroundings. Using this, the pancake type high temperature superconducting coil shown in Table 1 was produced.

(実施例2)
116%のポリリン酸27.0gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩4.9g、2−メチル−4,6−ジアミノレゾルシン二塩酸塩0.6g、テレフタル酸4.3gおよび五酸化リン8.1gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が10モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は21dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが25μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 2)
6.9 g of 4,6-diaminoresorcin dihydrochloride, 0.6 g of 2-methyl-4,6-diaminoresorcin dihydrochloride, 0.6 g of terephthalic acid, 5 g 8.1 g of phosphorus oxide was added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Thereafter, the temperature was raised to 200 ° C. to polymerize to obtain a PBO polymer dope in which 10 mol% of a methyl group-substituted benzazole ring was copolymerized. The color of the polymer dope was yellow and the intrinsic viscosity was 21 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 25 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例3)
116%のポリリン酸27.1gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩3.8g、2−メチル−4,6−ジアミノレゾルシン二塩酸塩1.7g、テレフタル酸4.2gおよび五酸化リン8.0gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ19時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が30モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は21dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが36μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 3)
116% polyphosphoric acid 27.1 g under nitrogen stream, 4,6-diaminoresorcinol dihydrochloride 3.8 g, 2-methyl-4,6-diaminoresorcinol dihydrochloride 1.7 g, terephthalic acid 4.2 g and five 8.0 g of phosphorus oxide was added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 19 hours to oligomerize. Then, it heated up at 200 degreeC and superposed | polymerized and the PBO polymer dope by which 30 mol% of methyl group substituted benzazole rings were copolymerized was obtained. The color of the polymer dope was yellow and the intrinsic viscosity was 21 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 36 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例4)
116%のポリリン酸27.2gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩2.7g、2−メチル−4,6−ジアミノレゾルシン二塩酸塩2.8g、テレフタル酸4.1gおよび五酸化リン7.9gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ20時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が50モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は22dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが60μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
Example 4
In 27.2 g of 116% polyphosphoric acid, 2.7 g of 4,6-diaminoresorcin dihydrochloride, 2.8 g of 2-methyl-4,6-diaminoresorcin dihydrochloride, 4.1 g of terephthalic acid and five 7.9 g of phosphorus oxide was added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. The temperature was further raised to 120 ° C., stirred and mixed for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 20 hours to oligomerize. Thereafter, the temperature was raised to 200 ° C. to polymerize to obtain a PBO polymer dope in which 50 mol% of a methyl group-substituted benzazole ring was copolymerized. The color of the polymer dope was yellow and the intrinsic viscosity was 22 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 60 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例5)
116%のポリリン酸27.3gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩1.6g、2−メチル−4,6−ジアミノレゾルシン二塩酸塩3.9g、テレフタル酸4.1gおよび五酸化リン7.8gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ24時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が70モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は20dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが25μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 5)
116% polyphosphoric acid 27.3 g under nitrogen flow, 1.6 g of 4,6-diaminoresorcin dihydrochloride, 3.9 g of 2-methyl-4,6-diaminoresorcin dihydrochloride, 4.1 g of terephthalic acid and five 7.8 g of phosphorus oxide was added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. The temperature was further raised to 120 ° C., mixed with stirring for 3.5 hours, dehydrochlorination was performed, and the temperature was raised to 135 ° C. and stirred for 24 hours to oligomerize. Thereafter, the temperature was raised to 200 ° C. for polymerization to obtain a PBO polymer dope in which 70 mol% of a methyl group-substituted benzazole ring was copolymerized. The color of the polymer dope was yellow and the intrinsic viscosity was 20 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 25 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例6)
116%のポリリン酸27.5gに窒素気流下、2−メチル−4,6−ジアミノレゾルシン二塩酸塩5.5g、テレフタル酸4.0gおよび五酸化リン7.6gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ30時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、PBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は18dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが47μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 6)
Under nitrogen flow, 5.5 g of 2-methyl-4,6-diaminoresorcin dihydrochloride, 4.0 g of terephthalic acid and 7.6 g of phosphorus pentoxide were added to 27.5 g of 116% polyphosphoric acid. Stir and mix at 15 ° C. for 15 minutes. The temperature was further raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 30 hours to oligomerize. Then, it heated up at 200 degreeC and superposed | polymerized and obtained the PBO polymer dope. The color of the polymer dope was yellow and the intrinsic viscosity was 18 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 47 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例7)
116%のポリリン酸27.4gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩3.7g、2−クロロ−4,6−ジアミノレゾルシン二塩酸塩1.8g、テレフタル酸4.1gおよび五酸化リン7.7gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、塩素置換ベンザゾール環が30モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は20dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが25μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 7)
116% polyphosphoric acid, 27.4 g, under nitrogen flow, 3.7 g of 4,6-diaminoresorcin dihydrochloride, 1.8 g of 2-chloro-4,6-diaminoresorcin dihydrochloride, 4.1 g of terephthalic acid and five 7.7 g of phosphorus oxide was added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Thereafter, the temperature was raised to 200 ° C. and polymerization was performed to obtain a PBO polymer dope in which 30 mol% of a chlorine-substituted benzazole ring was copolymerized. The color of the polymer dope was yellow and the intrinsic viscosity was 20 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 25 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例8)
116%のポリリン酸27.3gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩3.7g、2−エチル−4,6−ジアミノレゾルシン二塩酸塩1.8g、テレフタル酸4.1gおよび五酸化リン7.8gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、エチル基置換ベンザゾール環が30モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は23dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが23μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 8)
116% polyphosphoric acid 27.3 g under nitrogen flow 3.7 g 4,6-diaminoresorcin dihydrochloride 1.8 g 2-ethyl-4,6-diaminoresorcin dihydrochloride 4.1 g terephthalic acid and five 7.8 g of phosphorus oxide was added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Thereafter, the temperature was raised to 200 ° C. to polymerize to obtain a PBO polymer dope in which 30 mol% of an ethyl group-substituted benzazole ring was copolymerized. The color of the polymer dope was yellow and the intrinsic viscosity was 23 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 23 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例9)
116%のポリリン酸29.9gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩2.9g、2−メチル−4,6−ジアミノレゾルシン二塩酸塩1.3g、4,4’−ビフェニルジカルボン酸4.6gおよび五酸化リン5.6gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が30モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は22dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが25μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
Example 9
116% polyphosphoric acid 29.9 g under nitrogen flow, 4,6-diaminoresorcinol dihydrochloride 2.9 g, 2-methyl-4,6-diaminoresorcinol dihydrochloride 1.3 g, 4,4′-biphenyldicarboxylic acid The acid 4.6g and the phosphorus pentoxide 5.6g were added, and it stirred and mixed in the reactor at 70 degreeC for 15 minutes. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Then, it heated up at 200 degreeC and superposed | polymerized and the PBO polymer dope by which 30 mol% of methyl group substituted benzazole rings were copolymerized was obtained. The color of the polymer dope was yellow and the intrinsic viscosity was 22 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 25 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例10)
116%のポリリン酸29.1gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩3.1g、2−メチル−4,6−ジアミノレゾルシン二塩酸塩1.4g、2,6−ナフタレンジカルボン酸4.5gおよび五酸化リン6.3gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が30モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は22dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが60μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 10)
116% polyphosphoric acid 29.1 g under nitrogen flow, 4,6-diaminoresorcinic dihydrochloride 3.1 g, 2-methyl-4,6-diaminoresorcinic dihydrochloride 1.4 g, 2,6-naphthalenedicarboxylic acid 4.5 g and 6.3 g of phosphorus pentoxide were added, and the mixture was stirred and mixed in the reactor at 70 ° C. for 15 minutes. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Then, it heated up at 200 degreeC and superposed | polymerized and the PBO polymer dope by which 30 mol% of methyl group substituted benzazole rings were copolymerized was obtained. The color of the polymer dope was yellow and the intrinsic viscosity was 22 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 60 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例11)
116%のポリリン酸28.5gに窒素気流下、1,3−ジメルカプト−4,6−ジアミノベンゼン二塩酸塩3.8g、1,3−ジメルカプト−2−メチル−4,6−ジアミノベンゼン二塩酸塩1.7g、テレフタル酸3.7gおよび五酸化リン6.7gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が30モル%共重合されたPBZTポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は21dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが25μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 11)
116% polyphosphoric acid 28.5 g, 1,3-dimercapto-4,6-diaminobenzene dihydrochloride 3.8 g, 1,3-dimercapto-2-methyl-4,6-diaminobenzene dihydrochloride under nitrogen flow 1.7 g of salt, 3.7 g of terephthalic acid and 6.7 g of phosphorus pentoxide were added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Thereafter, the temperature was raised to 200 ° C. for polymerization to obtain a PBZT polymer dope in which 30 mol% of a methyl group-substituted benzazole ring was copolymerized. The color of the polymer dope was yellow and the intrinsic viscosity was 21 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 25 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例12)
116%のポリリン酸27.0gに窒素気流下、1,2,4,5−テトラアミノベンゼン四塩酸塩5.1g、3−メチル−1,2,4,5−テトラアミノベンゼン四塩酸塩2.3g、テレフタル酸4.2gおよび五酸化リン8.1gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が30モル%共重合されたPBIポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は21dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが23μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 12)
116% polyphosphoric acid 27.0 g under nitrogen flow, 1,2,4,5-tetraaminobenzene tetrahydrochloride 5.1 g, 3-methyl-1,2,4,5-tetraaminobenzene tetrahydrochloride 2 .3 g, 4.2 g of terephthalic acid and 8.1 g of phosphorus pentoxide were added and stirred and mixed in the reactor at 70 ° C. for 15 minutes. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Thereafter, the temperature was raised to 200 ° C. for polymerization to obtain a PBI polymer dope in which 30 mol% of a methyl group-substituted benzazole ring was copolymerized. The color of the polymer dope was yellow and the intrinsic viscosity was 21 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 23 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(実施例13)
116%のポリリン酸27.1gに窒素気流下、4,6−ジアミノレゾルシン二塩酸塩3.8g、2−メチル−4,6−ジアミノレゾルシン二塩酸塩1.7g、テレフタル酸4.2gおよび五酸化リン8.0gを加え、反応器内、70℃で15分撹拌混合した。さらに120℃まで昇温させ、3.5時間撹拌混合し脱塩酸を行い、135℃まで昇温させ16時間撹拌しオリゴマー化した。その後、200℃に昇温して重合し、メチル基置換ベンザゾール環が30モル%共重合されたPBOポリマードープを得た。ポリマードープの色は黄色であり、固有粘度は21dL/gであった。
得られたドープをポリテトラフルオロエチレン製シートに挟み、ヒートプレス機でプレス板温度170℃、圧力150kgf/cmでプレスした。取り出したドープシートをポリテトラフルオロエチレン製シートから剥がし、蒸留水1000mlに15時間浸しリン酸を抽出し、一辺が1mの金枠に固定し、80℃で1時間乾燥させた。得られたフィルムは厚みが53μmであった。以下実施例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Example 13)
116% polyphosphoric acid 27.1 g under nitrogen stream, 4,6-diaminoresorcinol dihydrochloride 3.8 g, 2-methyl-4,6-diaminoresorcinol dihydrochloride 1.7 g, terephthalic acid 4.2 g and five 8.0 g of phosphorus oxide was added, and the mixture was stirred and mixed at 70 ° C. for 15 minutes in the reactor. Further, the temperature was raised to 120 ° C., mixed with stirring for 3.5 hours to remove hydrochloric acid, heated to 135 ° C. and stirred for 16 hours to oligomerize. Then, it heated up at 200 degreeC and superposed | polymerized and the PBO polymer dope by which 30 mol% of methyl group substituted benzazole rings were copolymerized was obtained. The color of the polymer dope was yellow and the intrinsic viscosity was 21 dL / g.
The obtained dope was sandwiched between polytetrafluoroethylene sheets and pressed with a heat press machine at a press plate temperature of 170 ° C. and a pressure of 150 kgf / cm 2 . The taken-out dope sheet was peeled off from the polytetrafluoroethylene sheet, immersed in 1000 ml of distilled water for 15 hours to extract phosphoric acid, fixed on a metal frame having a side of 1 m, and dried at 80 ° C. for 1 hour. The obtained film had a thickness of 53 μm. Thereafter, a pancake type high temperature superconducting coil was produced in the same manner as in Example 1.

(比較例)
以下に比較例を示す。
(Comparative example)
A comparative example is shown below.

(比較例1)
ポリプロピレンフィルム(厚み60μm)を用いて幅4mmの絶縁テープを作成した。該テープを表1のコイル諸元に示す高温超電導テープ線材(Bi2223)に45°の角度で巻きつけて、周囲と絶縁した超電導コイル用テープ線材を作製した。これを用いて表1に示すパンケーキ型高温超電導コイルを作製した。
(Comparative Example 1)
An insulating tape having a width of 4 mm was produced using a polypropylene film (thickness 60 μm). The tape was wound around a high-temperature superconducting tape wire (Bi2223) shown in the coil specifications in Table 1 at an angle of 45 ° to produce a superconducting coil tape wire insulated from the surroundings. Using this, the pancake type high temperature superconducting coil shown in Table 1 was produced.

(比較例2)
ポリイミドフィルム(厚み60μm)を用いて幅4mmの絶縁テープを作成した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 2)
An insulating tape having a width of 4 mm was prepared using a polyimide film (thickness 60 μm). Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例3)
ポリアミドイミドフィルム(厚み25μm)を用いて幅4mmの絶縁テープを作成した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 3)
An insulating tape having a width of 4 mm was prepared using a polyamideimide film (thickness 25 μm). Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例4)
ポリエチレンテレフタレート(厚み60μm)を用いて幅4mmの絶縁テープを作成した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 4)
An insulating tape having a width of 4 mm was prepared using polyethylene terephthalate (thickness: 60 μm). Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例5)
ナイロン66(厚み35μm)を用いて幅4mmの絶縁テープを作成した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 5)
An insulating tape having a width of 4 mm was prepared using nylon 66 (thickness: 35 μm). Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例6)
ポリエチレンフィルム(厚み23μm)を用いて幅4mmの絶縁テープを作成した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 6)
An insulating tape having a width of 4 mm was prepared using a polyethylene film (thickness: 23 μm). Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例7)
高強度ポリエチレン繊維(東洋紡、イザナス、SK−60)からなる1320dtexのヤーンを縦/横各々15本/1インチに配した平織の織物1枚にエポキシ樹脂(三菱化学 エピコート827/日立化成 HN5500/三菱化学 エポメートBMI23=100/85/1(重量比))を含浸し、120℃×5時間でプレス成型して1m×1m、厚み290μmのシートを得た。これから幅4mm、長さ1mのテープを2500本切出した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 7)
Epoxy resin (Mitsubishi Chemical Epicoat 827 / Hitachi Kasei HN5500 / Mitsubishi) on a piece of plain weave with 1320 dtex yarns made of high-strength polyethylene fibers (Toyobo, Izanas, SK-60) arranged vertically / laterally at 15 pieces / inch each. Chemical impomate BMI23 = 100/85/1 (weight ratio)) was press molded at 120 ° C. for 5 hours to obtain a sheet of 1 m × 1 m and a thickness of 290 μm. From this, 2500 pieces of tape 4mm wide and 1m long were cut out. Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例8)
高強度ポリエチレン繊維(東洋紡、イザナス、SK−60)からなる165dtexのヤーンを縦/横各々60本/1インチ配した平織の織物1枚にエポキシ樹脂(三菱化学 エピコート827/日立化成 HN5500/三菱化学 エポメートBMI23=100/85/1(重量比))を含浸し、120℃×5時間でプレス成型して1m×1m、厚み170μmのシートを得た。これから幅4mm、長さ1mのテープを2500本切出した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 8)
Epoxy resin (Mitsubishi Chemical Epicoat 827 / Hitachi Kasei HN5500 / Mitsubishi Chemical) one plain weave fabric with 165 dtex yarns made of high-strength polyethylene fibers (Toyobo, Izanas, SK-60) arranged vertically / horizontally 60 per inch Epomate BMI23 = 100/85/1 (weight ratio)) and press-molded at 120 ° C. for 5 hours to obtain a sheet of 1 m × 1 m and a thickness of 170 μm. From this, 2500 pieces of tape 4mm wide and 1m long were cut out. Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例9)
高強度PBO繊維(東洋紡、ザイロンHM)からなる545dtexのヤーンを縦/横各々33本/インチ配した平織の織物1枚にエポキシ樹脂(三菱化学 エピコート827/日立化成 HN5500/三菱化学 エポメートBMI23=100/85/1(重量比))を含浸し、120℃×5時間でプレス成型して1m×1m、厚み190μmのシートを得た。これから幅4mm、長さ1mのテープを2500本切出した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。
(Comparative Example 9)
Epoxy resin (Mitsubishi Chemical Epicoat 827 / Hitachi Kasei HN5500 / Mitsubishi Chemical Epomate BMI23 = 100) on a plain woven fabric with 545 dtex yarns made of high-strength PBO fibers (Toyobo, Zylon HM) arranged in length / width 33 / inch each / 85/1 (weight ratio)) and press-molded at 120 ° C. for 5 hours to obtain a sheet of 1 m × 1 m and a thickness of 190 μm. From this, 2500 pieces of tape 4mm wide and 1m long were cut out. Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1.

(比較例10)
チッカアルミニウム粒子(トクヤマ製、Hグレード, 粒径1μm)をポリイミドに混入して厚み100μm、1m×1mのシートを得た。これから幅4mm、長さ1mのテープを2500本切出した。以下比較例1と同様にしてパンケーキ型高温超電導コイルを作製した。なお、チッカアルミ/ポリイミドの混合率は20/80(体積比)とした。
以上の評価結果を表2に示す。
(Comparative Example 10)
Chikka aluminum particles (Tokuyama, H grade, particle size 1 μm) were mixed in polyimide to obtain a sheet having a thickness of 100 μm and 1 m × 1 m. From this, 2500 pieces of tape 4mm wide and 1m long were cut out. Thereafter, a pancake type high-temperature superconducting coil was produced in the same manner as in Comparative Example 1. The mixing ratio of ticker aluminum / polyimide was 20/80 (volume ratio).
The above evaluation results are shown in Table 2.


本発明は、高熱伝導性を有する加工性とフレキシビリティーに優れた高温超電導線材用絶縁テープ、これを用いた高温超電導線材および安定性に優れた高温超電導コイルとして有用に利用できる。
INDUSTRIAL APPLICABILITY The present invention can be usefully used as an insulating tape for high temperature superconducting wires having high heat conductivity and excellent flexibility, a high temperature superconducting wire using the same, and a high temperature superconducting coil having excellent stability.

(1)高温超電導線材
(2)絶縁テープ
(3)冷却ヘッド
(4)無酸素銅製試料台
(5)熱電対温度計
(6)試料
(7)接着剤
(8)ヒーター
(9)測定距離:L
(1) High-temperature superconducting wire (2) Insulating tape (3) Cooling head (4) Oxygen-free copper sample stage (5) Thermocouple thermometer (6) Sample (7) Adhesive (8) Heater (9) Measuring distance: L

Claims (5)

77Kにおける少なくとも一方向の熱伝導率が1.5W/mK以上である有機高分子フィルムからなることを特徴とする高温超電導線材用絶縁テープで、該有機高分子は下記一般式(化1)で示されるベンザゾール環を繰り返し単位として含有することを特徴とする高熱伝導シート。但し、下記一般式(化1)においてnは0以上、1以下の実数、XはS,O原子又はNH基を指し、Yは、フェニレン基、ビフェニレン基、又はナフタレン基から選択される少なくとも1種であり、これらが任意の割合で含まれてもよい。Rはハロゲン原子、炭素原子数1〜6のアルキル基から選択される少なくとも1種である。

An insulating tape for a high-temperature superconducting wire characterized by comprising an organic polymer film having a thermal conductivity of at least 1.5 W / mK at 77K in at least one direction. The organic polymer is represented by the following general formula (Formula 1) A highly heat-conductive sheet comprising a benzazole ring as a repeating unit. However, in the following general formula (Formula 1), n is a real number of 0 or more and 1 or less, X represents an S, O atom or NH group, and Y is at least 1 selected from a phenylene group, a biphenylene group or a naphthalene group. Seeds, which may be included in any proportion. R is at least one selected from a halogen atom and an alkyl group having 1 to 6 carbon atoms.

前記有機高分子がポリパラフェニレンベンゾビスオキサゾールであることを特徴とする請求項1記載の高温超電導線材用絶縁テープ 2. The insulating tape for high-temperature superconducting wire according to claim 1, wherein the organic polymer is polyparaphenylene benzobisoxazole. 前記一般式(化1)におけるRがメチル基であることを特徴とする、請求項1または2に記載の高温超電導線材用絶縁テープ。 The insulating tape for high-temperature superconducting wire according to claim 1, wherein R in the general formula (Formula 1) is a methyl group. 請求項1〜3のいずれかに記載の高温超電導線材用絶縁テープを用いてなることを特徴とする高温超電導線材。 A high-temperature superconducting wire comprising the insulating tape for a high-temperature superconducting wire according to any one of claims 1 to 3. 上記請求項1〜3のいずれかに記載の高温超電導線材用絶縁テープまたは請求項4記載の高温超電導線材を用いてなることを特徴とする高温超電導コイル。 5. A high-temperature superconducting coil comprising the insulating tape for a high-temperature superconducting wire according to any one of claims 1 to 3 or the high-temperature superconducting wire according to claim 4.
JP2016132625A 2016-07-04 2016-07-04 Insulating tape for high-temperature superconductive wire material, high-temperature superconductive wire material, and high-temperature superconducting coil Pending JP2018006601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132625A JP2018006601A (en) 2016-07-04 2016-07-04 Insulating tape for high-temperature superconductive wire material, high-temperature superconductive wire material, and high-temperature superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132625A JP2018006601A (en) 2016-07-04 2016-07-04 Insulating tape for high-temperature superconductive wire material, high-temperature superconductive wire material, and high-temperature superconducting coil

Publications (1)

Publication Number Publication Date
JP2018006601A true JP2018006601A (en) 2018-01-11

Family

ID=60949819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132625A Pending JP2018006601A (en) 2016-07-04 2016-07-04 Insulating tape for high-temperature superconductive wire material, high-temperature superconductive wire material, and high-temperature superconducting coil

Country Status (1)

Country Link
JP (1) JP2018006601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142874A1 (en) 2018-01-18 2019-07-25 Fujikura Ltd. Cable drum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142874A1 (en) 2018-01-18 2019-07-25 Fujikura Ltd. Cable drum

Similar Documents

Publication Publication Date Title
EP2587493B1 (en) Coated high-temperature superconducting wire and high-temperature superconducting coil including the same
JP4743150B2 (en) Superconducting coil and superconducting conductor used therefor
US7973243B2 (en) Coil insulator, armature coil insulated by the coil insulator and electrical rotating machine having the armature coil
US8993485B2 (en) Methods of splicing 2G rebco high temperature superconductors using partial micro-melting diffusion pressurized splicing by direct face-to-face contact of high temperature superconducting layers and recovering superconductivity by oxygenation annealing
Nagaya et al. Development of high strength pancake coil with stress controlling structure by REBCO coated conductor
US20150027132A1 (en) Cooling device including an electrocaloric composite
US8565845B2 (en) Superconducting coil and superconducting conductor for use therein
Markiewicz et al. 33.8 Tesla with a YBa 2 Cu 3 O 7− x superconducting test coil
CN106867256B (en) A kind of graphene fabric-modifying anisotropic thermal Kapton, preparation method and application
AU2021240133A1 (en) High temperature superconductor magnet
JP2013128984A (en) Method for joining super-conducting material
JP2013012645A (en) Oxide superconducting coil and superconducting apparatus
JP2018006601A (en) Insulating tape for high-temperature superconductive wire material, high-temperature superconductive wire material, and high-temperature superconducting coil
Awaji et al. Upgrading design to a 25 T cryogen-free superconducting magnet based on low temperature and high magnetic field properties of the practical CVD processed coated conductors
Bagrets et al. Thermal properties of ReBCO copper stabilized superconducting tapes
Nishijima et al. Transport characteristics of CVD-YBCO coated conductor under hoop stress
JP5728365B2 (en) Oxide superconducting coil, superconducting equipment, and oxide superconducting coil manufacturing method
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
CN105226863A (en) A kind of city rail vehicle linear electric motor primary coil high heat conductive insulating structure
JP2012214329A (en) Superconductive bulk body and method for manufacturing the same, and superconductive bulk magnet
JP2016060785A (en) High thermal conductive sheet
CN110993248B (en) High-temperature superconducting coil and curing method thereof
JP2008306092A (en) Superconducting coil
RU178606U1 (en) HOLDER FOR HIGH TEMPERATURE SUPERCONDUCTIVE TAPE
Tasaki et al. Development of a Bi2223 insert coil for a conduction-cooled 19 T superconducting magnet