JP2018006100A - Ultraviolet ray irradiation apparatus and vacuum vessel equipment - Google Patents

Ultraviolet ray irradiation apparatus and vacuum vessel equipment Download PDF

Info

Publication number
JP2018006100A
JP2018006100A JP2016129550A JP2016129550A JP2018006100A JP 2018006100 A JP2018006100 A JP 2018006100A JP 2016129550 A JP2016129550 A JP 2016129550A JP 2016129550 A JP2016129550 A JP 2016129550A JP 2018006100 A JP2018006100 A JP 2018006100A
Authority
JP
Japan
Prior art keywords
ultraviolet light
sample
light emitting
emitting surface
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016129550A
Other languages
Japanese (ja)
Other versions
JP6804882B2 (en
Inventor
岡野 誠
Makoto Okano
誠 岡野
光俊 吉川
Mitsutoshi Yoshikawa
光俊 吉川
恭一 神野
Kyoichi Jinno
恭一 神野
秀則 岡崎
Hidenori Okazaki
秀則 岡崎
小林 剛
Takeshi Kobayashi
剛 小林
芹澤 和泉
Izumi Serizawa
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Orc Manufacturing Co Ltd
Original Assignee
Jeol Ltd
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Orc Manufacturing Co Ltd filed Critical Jeol Ltd
Priority to JP2016129550A priority Critical patent/JP6804882B2/en
Publication of JP2018006100A publication Critical patent/JP2018006100A/en
Application granted granted Critical
Publication of JP6804882B2 publication Critical patent/JP6804882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively remove contaminants on a sample surface in the observation, analysis, etc. of a sample.SOLUTION: A spot irradiation type excimer lamp 100 is arranged in a sample chamber 40 of a scanning electron microscope 10, and mounted to a sample chamber side wall 40S by a support member 120 that comprises a fixed part 122 and a connecting part 124. The mounting position of the excimer lamp 100 is adjusted such that a light emitting surface 105 of the excimer lamp faces a sample surface 50S.SELECTED DRAWING: Figure 1

Description

本発明は、走査型電子顕微鏡などによって観察、分析される試料に付着する汚染物を除去する装置に関し、特に、紫外線照射による汚染物除去に関する。   The present invention relates to an apparatus for removing contaminants attached to a sample to be observed and analyzed by a scanning electron microscope or the like, and more particularly to contaminant removal by ultraviolet irradiation.

走査型電子顕微鏡などを用いて試料(例えば、半導体集積回路、レチクルなど)を観察、分析する場合、試料を真空容器である試料室内に配置して観察、分析を行う。このとき、大気中での試料放置、真空容器からのガス拡散、あるいは一次電子の照射などに起因して、炭素化合物などの汚染物が試料表面に付着、堆積する。汚染物付着(コンタミネーション)が生じると観察、分析の障害となるため、汚染物を除去する必要がある。   When a sample (for example, a semiconductor integrated circuit, a reticle, or the like) is observed and analyzed using a scanning electron microscope or the like, the sample is placed in a sample chamber that is a vacuum vessel and observed and analyzed. At this time, contaminants such as carbon compounds adhere to and accumulate on the sample surface due to the sample being left in the atmosphere, gas diffusion from the vacuum container, or irradiation of primary electrons. If contamination (contamination) occurs, it becomes an obstacle to observation and analysis, so it is necessary to remove the contamination.

汚染物の除去方法としては、紫外光を試料に照射する方法が知られている(特許文献1参照)。そこでは、試料室とは別の真空容器を設けて試料を配置し、この真空容器に隣接するように紫外光を照射するランプユニットを配置する。そして、真空容器の照射窓を介して紫外光を試料室内に照射する。   As a method for removing contaminants, a method of irradiating a sample with ultraviolet light is known (see Patent Document 1). There, a vacuum container different from the sample chamber is provided, a sample is arranged, and a lamp unit for irradiating ultraviolet light is arranged adjacent to the vacuum container. Then, ultraviolet light is irradiated into the sample chamber through the irradiation window of the vacuum vessel.

紫外線を試料表面に照射することにより、汚染物の分子結合が切断されるとともに、真空容器内に残留する酸素が活性化し、オゾンが発生することで、汚染物が除去される。試料を支持する支持台は昇降可能に設置されており、試料に応じてその高さ、すなわちランプユニットとの距離が調整される。   By irradiating the sample surface with ultraviolet rays, molecular bonds of contaminants are broken, oxygen remaining in the vacuum vessel is activated, and ozone is generated, thereby removing contaminants. The support for supporting the sample is installed so that it can be raised and lowered, and its height, that is, the distance from the lamp unit is adjusted according to the sample.

特開2002−195965号公報JP 2002-195965 A

試料室外部から照射窓を通じて試料室内を照射する場合、汚染物が付着していない部分にも紫外線を照射することにより、紫外光が減衰して汚染物除去昨日が低下する。また、試料表面の照射対象領域外や汚染物が付着していない部分にも、紫外光を照射することになり、不要なガス発生、試料損傷などが生じる。さらに、試料室内に設置された試料台などの部品に対しても紫外線が照射することとなり、不要なガス放出や部品劣化を生じさせる。   When the sample chamber is irradiated from the outside of the sample chamber through the irradiation window, the ultraviolet light is attenuated by irradiating the portion where the contaminants are not attached, and the contamination removal yesterday is reduced. In addition, ultraviolet light is also irradiated to the part of the sample surface outside the irradiation target area and to which no contaminant is attached, causing unnecessary gas generation and sample damage. Furthermore, ultraviolet rays are irradiated to components such as a sample stage installed in the sample chamber, causing unnecessary gas emission and component deterioration.

したがって、紫外線照射による試料汚染物の除去処理において、汚染物除去機能の低下なく、試料損傷、不要ガス発生などを抑えることが求められる。   Therefore, it is required to suppress sample damage and generation of unnecessary gas without lowering the contaminant removal function in the sample contaminant removal process by ultraviolet irradiation.

本発明の紫外線照射装置は、紫外光放射面から紫外光を放射する紫外光源と、試料が配置される試料室と、紫外光放射面が試料を向くように、紫外光源を支持する支持部材とを備え、紫外光放射面が、試料室内において、試料室内壁よりも試料に近い位置で露出している。   The ultraviolet irradiation device of the present invention includes an ultraviolet light source that emits ultraviolet light from an ultraviolet light emitting surface, a sample chamber in which a sample is disposed, and a support member that supports the ultraviolet light source so that the ultraviolet light emitting surface faces the sample. The ultraviolet light radiation surface is exposed in the sample chamber at a position closer to the sample than the sample chamber wall.

紫外光源が試料室を全体的に放射するような照明の代わりに、所望する範囲に照射可能となる紫外光源照射の構成を提供することで、適切な範囲で紫外光を照射することが可能となる。例えば、汚染物除去部分のみ紫外光を照射することを考えれば、紫外光源を、試料表面の所定領域に紫外光を照射するように位置決めすることが可能である。   Instead of illumination where the ultraviolet light source radiates the sample chamber as a whole, it is possible to irradiate ultraviolet light in an appropriate range by providing a configuration for irradiating the desired range. Become. For example, considering that the ultraviolet light is irradiated only on the contaminant removal portion, it is possible to position the ultraviolet light source so as to irradiate a predetermined region of the sample surface with the ultraviolet light.

紫外光源の配置は、放射面が試料室内部に曝け出していることを条件として任意である。例えば、紫外光源を前記試料室内に設置すればよく、支持部材が、試料室の内壁と接続するように構成することが可能である。   The arrangement of the ultraviolet light source is arbitrary on condition that the radiation surface is exposed to the inside of the sample chamber. For example, an ultraviolet light source may be installed in the sample chamber, and the support member can be configured to connect to the inner wall of the sample chamber.

紫外光源の構成としては任意の光源を適用することが可能であり、一方向に向く紫外光放射面を備えた光源を適用することが可能である。例えば、紫外光源は、紫外光放射面を底部とする有底筒状の外側管を有し、紫外光をランプ軸に沿って紫外光放射面から放射するエキシマランプによって構成することが可能である。   As a configuration of the ultraviolet light source, any light source can be applied, and a light source having an ultraviolet light emitting surface facing in one direction can be applied. For example, the ultraviolet light source can be constituted by an excimer lamp having a bottomed cylindrical outer tube with the ultraviolet light emitting surface as a bottom and emitting ultraviolet light from the ultraviolet light emitting surface along the lamp axis. .

このようなエキシマランプに対しては、紫外線照射中のランプ加熱、効率的な紫外線照射などを考慮し、外側管を囲むとともに、導電性、紫外光反射特性、熱伝導性の少なくともいずれか1つを有するランプ取付部材を備えるように構成することができる。ランプと試料との間に遮る部材が存在せず、ランプからの紫外光が直接試料表面に照射されるようにするために真空容器である試料室内部にランプを配設すると、真空により断熱されてランプが過熱状態となることによって発光効率が低下し、汚染物除去機能が低下する。そこで、導電性、紫外光反射特性、熱伝導性の少なくともいずれか1つ備えることにより、ランプ過熱状態を防ぐことができる。ランプ取り付け部材は、例えばハウジング、収容器など、ランプ部分を覆ったり収容するような部材で構成することが可能である。なお、エキシマランプ以外の光源についても、そのような取り付け部材を設けることが可能である。   For such an excimer lamp, in consideration of lamp heating during ultraviolet irradiation, efficient ultraviolet irradiation, and the like, the outer tube is surrounded, and at least one of conductivity, ultraviolet light reflection characteristics, and thermal conductivity is included. It can comprise so that it may provide the lamp attachment member which has these. There is no blocking member between the lamp and the sample, and if the lamp is placed inside the sample chamber, which is a vacuum vessel, so that ultraviolet light from the lamp is directly irradiated onto the sample surface, it is insulated by vacuum. As a result, the luminous efficiency is lowered due to the overheating of the lamp, and the contaminant removal function is lowered. Therefore, by providing at least one of conductivity, ultraviolet light reflection characteristics, and thermal conductivity, it is possible to prevent the lamp from being overheated. The lamp mounting member can be formed of a member that covers or houses the lamp portion, such as a housing or a container. In addition, it is possible to provide such an attachment member also about light sources other than an excimer lamp.

エキシマランプの構成を簡易化することを考慮すれば、ランプ取付部材を、導電性を有し、前記エキシマランプの外側電極として構成することが可能である。また、紫外光放射面から効率よく光を導出するため、ランプ取付部材にその内面に紫外光反射部材を設けてもよい。また、ランプの過熱を防ぐことを考慮し、ランプ取付部材に熱伝導性部材を設けてもよい。さらに、ランプ取付部材を覆うように断熱性部材を設けるようにしてもよい。   In consideration of simplifying the configuration of the excimer lamp, the lamp mounting member can be configured as an outer electrode of the excimer lamp having conductivity. Further, in order to efficiently derive light from the ultraviolet light emitting surface, an ultraviolet light reflecting member may be provided on the inner surface of the lamp mounting member. In consideration of preventing the lamp from overheating, a heat conductive member may be provided on the lamp mounting member. Furthermore, a heat insulating member may be provided so as to cover the lamp mounting member.

支持部材の構成は任意であり、効果的に紫外光放射面を試料に向ける光源姿勢に調整できることが望ましい。支持部材において、試料表面に対する紫外光放射面の向きと、紫外光放射面の試料表面に対する距離間隔のうち少なくともいずれか一方を変更させることが可能な調節機構を設けることが可能である。   The configuration of the supporting member is arbitrary, and it is desirable that the supporting member can be effectively adjusted to a light source posture in which the ultraviolet light emitting surface is directed to the sample. In the support member, it is possible to provide an adjustment mechanism capable of changing at least one of the direction of the ultraviolet light emitting surface with respect to the sample surface and the distance between the ultraviolet light emitting surface and the sample surface.

例えば支持部材は、試料室の内壁に対する紫外光源の角度を調整可能なように、紫外光源を支持することができる。また、試料室の内壁に固定される固定部と、光源保持部を試料室の内壁に接続させる連結部とを備えた支持部材を構成し、紫外光源を、連結部に対する角度が調整可能に、連結部によって支持するようにしてもよい。   For example, the support member can support the ultraviolet light source so that the angle of the ultraviolet light source with respect to the inner wall of the sample chamber can be adjusted. In addition, a support member having a fixing portion fixed to the inner wall of the sample chamber and a connecting portion for connecting the light source holding portion to the inner wall of the sample chamber is configured, and the angle of the ultraviolet light source with respect to the connecting portion can be adjusted. You may make it support by a connection part.

本発明の他の態様における紫外線照射による試料汚染物除去方法は、試料が配置される試料室に対し、紫外光を紫外光放射面から放射するエキシマランプを、紫外光放射面が試料を向くように設置し、紫外光放射面が試料室の内壁よりも試料に近い位置で試料室の内部空間に露出する状態で、紫外光を紫外光放射面から試料に向けて照射させる。このような試料汚染物除去方法は、電子顕微鏡など試料室、真空容器を備えた様々な装置に適用可能である。   According to another aspect of the present invention, there is provided a sample contaminant removal method by ultraviolet irradiation, wherein an excimer lamp that emits ultraviolet light from an ultraviolet light emitting surface is directed to a sample chamber in which the sample is disposed, In the state where the ultraviolet light emitting surface is exposed to the internal space of the sample chamber at a position closer to the sample than the inner wall of the sample chamber, ultraviolet light is irradiated from the ultraviolet light emitting surface toward the sample. Such a sample contaminant removal method can be applied to various apparatuses including a sample chamber such as an electron microscope and a vacuum vessel.

本発明の他の態様における真空容器を備えた装置(真空容器装置)は、電子顕微鏡など試料室を備えた様々な装置に適用可能であって、試料が配置される真空容器と、紫外光を紫外光放射面から放射する紫外光源と、紫外光放射面が前記真空容器に配置された試料を向くように、紫外光源を支持する支持部材とを備え、紫外光放射面が、真空容器内において、真空容器の内壁よりも試料に近い位置で露出している。   An apparatus (vacuum container apparatus) provided with a vacuum container according to another aspect of the present invention can be applied to various apparatuses including a sample chamber such as an electron microscope, and includes a vacuum container in which a sample is disposed and ultraviolet light. An ultraviolet light source that radiates from the ultraviolet light emitting surface; and a support member that supports the ultraviolet light source so that the ultraviolet light emitting surface faces the sample disposed in the vacuum container. It is exposed at a position closer to the sample than the inner wall of the vacuum vessel.

本発明によれば、試料の観察、分析などにおいて、試料汚染物を効果的に除去することができる。   According to the present invention, sample contaminants can be effectively removed in sample observation, analysis, and the like.

本実施形態である走査型電子顕微鏡の試料室を中心とした概略的構成を示した図である。It is the figure which showed the schematic structure centering on the sample chamber of the scanning electron microscope which is this embodiment. エキシマランプを光放射面側から見た平面図である。It is the top view which looked at the excimer lamp from the light emission surface side. 図2のIII−III’に沿ったエキシマランプの断面図である。FIG. 3 is a cross-sectional view of an excimer lamp along III-III ′ in FIG. 2. 図3IV−IV’に沿ったエキシマランプの断面図である。FIG. 3 is a cross-sectional view of the excimer lamp along IV-IV ′.

以下では、図面を参照して本発明の実施形態である紫外線照射装置を備えた電子顕微鏡について説明する。   Hereinafter, an electron microscope equipped with an ultraviolet irradiation device according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態である走査型電子顕微鏡の試料室を中心とした概略的構成を示した図である。図2は、エキシマランプを光放射面側から見た平面図である。   FIG. 1 is a diagram showing a schematic configuration centering on a sample chamber of a scanning electron microscope according to the present embodiment. FIG. 2 is a plan view of the excimer lamp viewed from the light emitting surface side.

走査型電子顕微鏡10は、電子銃、集束レンズ、走査用偏向器、対物レンズ(いずれも図示せず)などを備えた鏡筒20と、二次電子検出器30と、試料室40とを備え、試料室40には、観察対象となる試料(例えばレチクルや半導体回路など)50が支持台60に搭載されている。   The scanning electron microscope 10 includes a lens barrel 20 including an electron gun, a focusing lens, a scanning deflector, an objective lens (all not shown), a secondary electron detector 30, and a sample chamber 40. In the sample chamber 40, a sample (for example, a reticle or a semiconductor circuit) 50 to be observed is mounted on a support base 60.

一次電子線を放出する鏡筒20は、その先端部20Bが試料室40の上壁40Aの中央部に嵌入した状態で取り付けられている。試料50から放出される二次電子を検出する二次電子検出器30は、上壁40Aを貫通して鏡筒先端部20Bの傍に取り付けられている。   The lens barrel 20 that emits the primary electron beam is attached in a state in which the tip 20B is fitted in the center of the upper wall 40A of the sample chamber 40. The secondary electron detector 30 for detecting secondary electrons emitted from the sample 50 is attached to the side of the lens barrel tip 20B through the upper wall 40A.

試料室40の下壁40Bには、試料室40内を真空排気するための真空ポンプ(図示せず)と繋がる排気管42が設けられている、排気管42により、試料室40は一次電子線、二次電子線が通過可能な高真空状態に維持された真空容器となる。   The lower wall 40B of the sample chamber 40 is provided with an exhaust pipe 42 connected to a vacuum pump (not shown) for evacuating the inside of the sample chamber 40. The exhaust pipe 42 allows the sample chamber 40 to have a primary electron beam. The vacuum container is maintained in a high vacuum state through which the secondary electron beam can pass.

試料室40に隣接する予備排気室45は、試料室40の側壁40Sに形成された開口部41を介して試料室40と繋がっており、仕切弁(図示せず)が開口部41を開閉する。予備排気室45の側壁に形成された開口部46によって試料40の出し入れが可能となり、開閉弁(図示せず)により開口部46を開閉する。また、予備排気室45の下壁には、真空排気するための真空ポンプ(図示せず)と繋がる排気管47が形成されている。   The preliminary exhaust chamber 45 adjacent to the sample chamber 40 is connected to the sample chamber 40 via an opening 41 formed in the side wall 40S of the sample chamber 40, and a gate valve (not shown) opens and closes the opening 41. . The sample 40 can be taken in and out by the opening 46 formed in the side wall of the preliminary exhaust chamber 45, and the opening 46 is opened and closed by an on-off valve (not shown). An exhaust pipe 47 connected to a vacuum pump (not shown) for evacuating is formed on the lower wall of the preliminary exhaust chamber 45.

鏡筒20内の電子銃から放出される一次電子ビームは、集束レンズ、対物レンズを介して試料50の表面50Sに集束され、走査用偏向器によって試料表面50Sの所定領域に対して走査される。走査によって試料表面50Sから放出される二次電子は、二次電子検出器30によって検出される。検出された二次電子信号に対して従来公知の画像処理を施すことにより、試料50の表面形状が画像化され、試料イメージがモニタ(図示せず)に表示される。   The primary electron beam emitted from the electron gun in the lens barrel 20 is focused on the surface 50S of the sample 50 through the focusing lens and the objective lens, and is scanned with respect to a predetermined region of the sample surface 50S by the scanning deflector. . Secondary electrons emitted from the sample surface 50 </ b> S by scanning are detected by the secondary electron detector 30. By applying conventionally known image processing to the detected secondary electron signal, the surface shape of the sample 50 is imaged and the sample image is displayed on a monitor (not shown).

試料室40内部には、筒型のエキシマランプ100が配置されており、試料室側壁40Sに取り付けられた支持部材120によって支持されている。誘電体バリヤ放電あるいは静電容量型放電によって発光するエキシマランプ100は、ここでは単体光源で構成されており、172nmの紫外光を光放射面105からランプ軸に沿って一方向に照射するスポット照射型ランプとして構成されている。   A cylindrical excimer lamp 100 is disposed inside the sample chamber 40 and is supported by a support member 120 attached to the sample chamber side wall 40S. The excimer lamp 100 that emits light by dielectric barrier discharge or capacitive discharge is formed of a single light source here, and irradiates 172 nm ultraviolet light in one direction along the lamp axis from the light emitting surface 105. It is configured as a mold lamp.

エキシマランプ100は、鏡筒20からの電子ビーム照射、二次電子検出器30の二次電子検出の障害とならない上壁40Aの隅付近に配置されており、ここでは、光放射面105が試料表面50Sを向くように位置決めされている。すなわち、紫外光が試料表面50Sに対して斜め上方向から照射するようにエキシマランプ100が位置決めされている。   The excimer lamp 100 is disposed in the vicinity of the corner of the upper wall 40A that does not hinder the irradiation of the electron beam from the lens barrel 20 and the detection of the secondary electrons of the secondary electron detector 30. Here, the light emitting surface 105 is a sample. It is positioned so as to face the surface 50S. That is, the excimer lamp 100 is positioned so that the ultraviolet light is irradiated obliquely upward with respect to the sample surface 50S.

エキシマランプ100を支持する支持部材120は、試料室側壁40Sに固定される固定部122と、連結部124とを備え、アルミニウムなどの金属など熱伝導性のある素材によって成形されている。支持部材120は、エキシマランプ100の試料室40内における位置、姿勢を調整可能なように、エキシマランプ100を支持する。   The support member 120 that supports the excimer lamp 100 includes a fixing portion 122 that is fixed to the sample chamber side wall 40S and a connecting portion 124, and is formed of a material having thermal conductivity such as a metal such as aluminum. The support member 120 supports the excimer lamp 100 so that the position and posture of the excimer lamp 100 in the sample chamber 40 can be adjusted.

具体的には、連結部124は、固定部122に対して取り付け角度調整可能に固定されており、軸B1にネジ(図示せず)を締め付けることによって固定される。一方、連結部124は、エキシマランプ100をその側面片側で保持し、軸B2にネジ(図示せず)を締め付けることによってエキシマランプ100が連結部124に固定される。   Specifically, the connecting portion 124 is fixed to the fixing portion 122 so that the attachment angle can be adjusted, and is fixed by tightening a screw (not shown) on the shaft B1. On the other hand, the connecting portion 124 holds the excimer lamp 100 on one side surface thereof, and the excimer lamp 100 is fixed to the connecting portion 124 by tightening a screw (not shown) on the shaft B2.

したがって、2つの軸B1、B2回りに連結部124、エキシマランプ100の角度調整を行うことで、エキシマランプ100の試料室40内における姿勢、より具体的には光放射面105の試料表面50Sに対する角度およびその距離間隔が設定される。   Accordingly, by adjusting the angles of the connecting portion 124 and the excimer lamp 100 around the two axes B1 and B2, the attitude of the excimer lamp 100 in the sample chamber 40, more specifically, the light emitting surface 105 with respect to the sample surface 50S is adjusted. An angle and its distance interval are set.

エキシマランプ100は、その外周部分に筒状のランプ取付部材110を備え、光放射面105とその反対側の封止部100Bを除いてエキシマランプ100の光源部分を試料室40の内部空間40Tに露出させないようにしている。ランプ取付部材110は、ここでは一対の半円筒状部材を締め付けネジ(図示せず)によって一体化することで構成されている。   The excimer lamp 100 includes a cylindrical lamp mounting member 110 on the outer peripheral portion thereof, and the light source portion of the excimer lamp 100 is provided in the internal space 40T of the sample chamber 40 except for the light emitting surface 105 and the sealing portion 100B on the opposite side. I try not to expose it. Here, the lamp mounting member 110 is configured by integrating a pair of semi-cylindrical members with fastening screws (not shown).

図3は、図2のIII−III’に沿ったエキシマランプの断面図である。図4は、図3のIV−IV’に沿ったエキシマランプの断面図である。   FIG. 3 is a cross-sectional view of the excimer lamp taken along the line III-III 'of FIG. FIG. 4 is a cross-sectional view of the excimer lamp taken along IV-IV ′ in FIG. 3.

エキシマランプ100は、石英ガラスなどの誘電材料から成る内側管130および外側管140を備える。外側管140は、平坦な光放射面105と、外側管縮径によって内側管130と溶着、形成された封止部100Bを有し、管内部に内側管130を収容する。   Excimer lamp 100 includes an inner tube 130 and an outer tube 140 made of a dielectric material such as quartz glass. The outer tube 140 has a flat light emitting surface 105 and a sealing portion 100B formed by welding and forming with the inner tube 130 by the outer tube diameter, and accommodates the inner tube 130 inside the tube.

内側管130の内壁中心付近には、Moなどの帯状内側電極120’が埋設されており、内側電極120は給電線120Lと接続されている。内側管130、外側管140から構成される発光管は、放電空間135を形成し、Xeなどの希ガスもしくは希ガスとハロゲンガスの混合ガスが放電空間135に封入されている。   In the vicinity of the center of the inner wall of the inner tube 130, a strip-like inner electrode 120 'such as Mo is embedded, and the inner electrode 120 is connected to the feeder line 120L. The arc tube composed of the inner tube 130 and the outer tube 140 forms a discharge space 135, and a rare gas such as Xe or a mixed gas of a rare gas and a halogen gas is enclosed in the discharge space 135.

上述したエキシマランプ100のランプ取付部材110は、ここでは外側電極として構成されており、アース側に接続されている。ランプ取付部材110の内面は、アルミニウム膜などの薄膜状(箔状)の紫外線反射部材(図示せず)が設けられている。ランプ取付部材110は、アルミニウムや銅など、熱伝導性および導電性を有する金属などによって形成されている。   The lamp mounting member 110 of the excimer lamp 100 described above is configured as an outer electrode here, and is connected to the ground side. On the inner surface of the lamp mounting member 110, a thin-film (foil-shaped) ultraviolet reflecting member (not shown) such as an aluminum film is provided. The lamp mounting member 110 is made of a metal having thermal conductivity and conductivity, such as aluminum or copper.

エキシマランプ100は、図1に示す光源制御装置150によって点灯制御される。エキシマランプ100は、短時間の点灯/消灯を繰り返し行うことが可能であり、オペレータなどの入力操作に応じて点灯時間などを設定可能である。   Excimer lamp 100 is controlled to be turned on by light source control device 150 shown in FIG. The excimer lamp 100 can be repeatedly turned on and off for a short time, and the lighting time and the like can be set according to an input operation by an operator or the like.

以下、紫外光照射による試料汚染物除去について説明する。   Hereinafter, removal of sample contaminants by ultraviolet light irradiation will be described.

エキシマランプ100は、連結部124の固定部122に対する取り付け角度およびエキシマランプ100に対する取り付け角度を調整することによって、所望の位置に位置決めされる。具体的には、試料表面50Sに対して所定領域に紫外線が照射するように、その光放射面105の試料表面50Sに対する角度および距離間隔を所望する角度、距離間隔が定められる。また、試料室40内のガスに酸素を含有させるようにしておく。   The excimer lamp 100 is positioned at a desired position by adjusting the attachment angle of the connecting portion 124 to the fixed portion 122 and the attachment angle to the excimer lamp 100. Specifically, the desired angle and distance interval of the light emitting surface 105 with respect to the sample surface 50S are determined so that the predetermined area is irradiated with ultraviolet rays with respect to the sample surface 50S. Further, the gas in the sample chamber 40 is made to contain oxygen.

エキシマランプ100の外側電極(ランプ取付部材)110、内側電極120に対して電圧が印加されると、放電空間135において誘電体バリヤ放電(あるいは静電容量型放電)が生じる。上述したように、ランプ取付部材110内面はアルミニウム膜が形成されているため、径方向に放射する紫外光はそのアルミニウム膜によって反射を繰り返し、その結果、紫外光がエキシマランプ100の光放射面105からランプ軸に沿って放出され、試料表面50Sの所定領域に照射される。   When a voltage is applied to the outer electrode (lamp mounting member) 110 and the inner electrode 120 of the excimer lamp 100, dielectric barrier discharge (or capacitive discharge) occurs in the discharge space 135. As described above, since the aluminum film is formed on the inner surface of the lamp mounting member 110, the ultraviolet light radiated in the radial direction is repeatedly reflected by the aluminum film. As a result, the ultraviolet light is emitted from the light emitting surface 105 of the excimer lamp 100. Is emitted along the lamp axis and irradiated onto a predetermined region of the sample surface 50S.

エキシマランプ100が試料室40の内部空間40Tに配置されていることから、その光放射面105は内部空間40Tに露出している。すなわち、光放射面105は内部空間40Tに曝け出している。光放射面105と試料50との間に遮る部材が存在せず、紫外光が直接試料表面50Sに照射される。   Since the excimer lamp 100 is disposed in the internal space 40T of the sample chamber 40, the light emission surface 105 is exposed in the internal space 40T. That is, the light emitting surface 105 is exposed to the internal space 40T. There is no blocking member between the light emitting surface 105 and the sample 50, and the sample surface 50S is directly irradiated with ultraviolet light.

スポット照射型ランプであるエキシマランプ100を試料室40内の上壁40Aの隅付近に配置して紫外光を照射することにより、光放射面105と試料表面50Sの照射対象領域との間の空間に鏡筒先端部20Bなど他の試料室内部の部材が入り込むことがなく、紫外光は試料表面50Sの照射対象領域外に照射されない。   An excimer lamp 100, which is a spot irradiation lamp, is arranged near the corner of the upper wall 40A in the sample chamber 40 and irradiated with ultraviolet light, whereby a space between the light emitting surface 105 and the irradiation target region of the sample surface 50S is obtained. Thus, no other member inside the sample chamber such as the lens barrel tip 20B enters, and the ultraviolet light is not irradiated outside the irradiation target region of the sample surface 50S.

エキシマランプ100は、適切な温度で点灯することによって所望の波長(ここでは172nm)の紫外線を照射することができる。エキシマランプ100が過熱状態になると、汚染物除去機能が低下する。また、ランプ過熱により、封止部100Bに熱膨張差に起因するクラックが発生し、ランプ破損の恐れが生じる。   The excimer lamp 100 can be irradiated with ultraviolet rays having a desired wavelength (here, 172 nm) by being lit at an appropriate temperature. When the excimer lamp 100 is overheated, the contaminant removal function is degraded. Further, due to lamp overheating, cracks due to the difference in thermal expansion occur in the sealing portion 100B, and the lamp may be damaged.

しかしながら、エキシマランプ100のランプ取付部材110、およびそれに連結する支持部材120(固定部122、連結部124)がいずれも熱伝導性を有するため、ランプ点灯によって生じた熱は、ランプ取付部材110、連結部124、固定部122を介して試料室内壁40Sに速やかに伝達され、エキシマランプ100の過熱が防止される。   However, since both the lamp mounting member 110 of the excimer lamp 100 and the support member 120 (the fixing portion 122 and the connecting portion 124) connected thereto have thermal conductivity, the heat generated by the lamp lighting is generated by the lamp mounting member 110, The excimer lamp 100 is prevented from overheating by being quickly transmitted to the sample chamber inner wall 40S through the connecting portion 124 and the fixing portion 122.

エキシマランプ100をランプ軸方向に沿って一様放電させるためには、ランプ軸方向に沿って電気抵抗の影響を考慮する必要がない程度まで、内側電極120と外側電極110の導電率を高める(電気抵抗を小さくする)必要がある。本実施形態では、ランプ取付部材110を外部電極として構成し、内側電極120とランプ軸に沿って全体的に等距離間隔で対向しているため、紫外線照度が電気抵抗増大によって低くなるようなことがなく、紫外線照度が高められた状態になっている。   In order to discharge the excimer lamp 100 uniformly along the lamp axis direction, the conductivity of the inner electrode 120 and the outer electrode 110 is increased to such an extent that it is not necessary to consider the influence of electrical resistance along the lamp axis direction ( It is necessary to reduce the electrical resistance). In the present embodiment, the lamp mounting member 110 is configured as an external electrode, and is opposed to the inner electrode 120 along the lamp axis at an equal distance as a whole. There is no UV illuminance.

紫外線が試料表面50Sの所定領域に照射すると、活性酸素およびオゾンが、試料室40に残存する酸素によって試料表面50Sの近傍に生成し、また、紫外線照射によって汚染物の分子結合が切断される。この光分解作用によって分解された炭化水素などの分子が活性化酸素、オゾンと反応し、水、二酸化炭素となって除去される。   When ultraviolet rays are irradiated onto a predetermined region of the sample surface 50S, active oxygen and ozone are generated in the vicinity of the sample surface 50S by oxygen remaining in the sample chamber 40, and the molecular bonds of contaminants are broken by the ultraviolet irradiation. Molecules such as hydrocarbons decomposed by this photolytic action react with activated oxygen and ozone to be removed as water and carbon dioxide.

紫外線をスポット照射している間、エキシマランプ100の光放射面105から放射される紫外光は、鏡筒先端部20B、二次電子検出器30など試料室40内部にある機器、部材などに照射されない。そのため、不必要なガス放出や、部材劣化などが生じない。そして、エキシマランプ100の短時間照射を繰り返し行うことにより、活性酸素、オゾン生成を精密に制御し、照射所定領域に必要な時間だけ紫外線照射を行う。   During spot irradiation with ultraviolet rays, the ultraviolet light emitted from the light emitting surface 105 of the excimer lamp 100 is applied to devices, members, etc. in the sample chamber 40 such as the lens barrel tip 20B and the secondary electron detector 30. Not. Therefore, unnecessary gas release and member deterioration do not occur. Then, by repeatedly performing short-time irradiation of the excimer lamp 100, the generation of active oxygen and ozone is precisely controlled, and ultraviolet irradiation is performed for a required time in a predetermined irradiation region.

その結果、必要な量を超える活性酸素、オゾン発生によって不要なガス放出、試料表面50Sの汚染物が堆積していない部分の損傷などを抑えながら、汚染物が除去される。   As a result, pollutants are removed while suppressing unnecessary oxygen release due to generation of active oxygen exceeding the required amount, generation of ozone, damage to a portion of the sample surface 50S where the contaminants are not deposited, and the like.

ランプ取付部材については、その形状は円柱状に限定されない。また、エキシマランプ保持構造についても、試料室内壁に対する角度あるいはエキシマランプに対する角度のどちらか一方が角度調整可能にエキシマランプを支持するように構成してもよく、他の支持構造で試料室内壁に機械的、熱的、電気的に接続させてもよい。   The shape of the lamp mounting member is not limited to a cylindrical shape. Also, the excimer lamp holding structure may be configured to support the excimer lamp so that either the angle with respect to the sample chamber wall or the angle with respect to the excimer lamp can be adjusted. You may connect mechanically, thermally, and electrically.

ランプ取付部材の紫外光反射構造に関しては、ランプ取付部材内面にアルミ膜などの紫外光反射部材を設ける代わりに、ランプ取付部材内面を鏡面状に形成し、あるいは、外側電極の内周面を鏡面仕上げにすることも可能である。また、ランプ取付部材の導電性に関しては、ランプ取付部材内周面に設けた紫外光反射部材とランプ取付部材との間に外側電極を設けるようにしてもよい。熱伝導性、導電性、反射特性いずれか1つをもつようにランプ取付部材を設けることが可能である。   Regarding the ultraviolet light reflecting structure of the lamp mounting member, instead of providing an ultraviolet light reflecting member such as an aluminum film on the inner surface of the lamp mounting member, the inner surface of the outer electrode is mirror-finished. It can also be finished. Further, regarding the conductivity of the lamp mounting member, an outer electrode may be provided between the ultraviolet light reflecting member provided on the inner peripheral surface of the lamp mounting member and the lamp mounting member. The lamp mounting member can be provided so as to have any one of thermal conductivity, conductivity, and reflection characteristics.

ランプ熱の放熱に関しては、試料室内壁に熱を伝達させる代わりに、試料室外部へ熱を伝達させるように構成してもよい。さらに、ランプ取付部材の外周を断熱部材で覆うことによって、試料室内の部材が加熱されてガス放出するのを防ぐように構成してもよい。断熱部材としては、例えば、ポリイミド、ガラス、セラミックスなどがある。   Regarding the heat radiation of the lamp heat, the heat may be transmitted to the outside of the sample chamber instead of transmitting the heat to the sample chamber wall. Further, the outer periphery of the lamp mounting member may be covered with a heat insulating member to prevent the member in the sample chamber from being heated and releasing gas. Examples of the heat insulating member include polyimide, glass, and ceramics.

試料表面に対する照射領域に関しては、その一部領域を照射領域とせずに試料全体を照射領域にすることも可能である。スポット照射型エキシマランプの紫外光照射角度、試料表面との距離間隔を調整することにより、試料のサイズなどに応じて照射領域を設定すればよい。また、スポット照射型エキシマランプのサイズ、光放射面のサイズを調整することでも照射領域を適宜変更することが可能である。   With respect to the irradiation region on the sample surface, it is possible to make the entire sample an irradiation region without setting a partial region as the irradiation region. By adjusting the ultraviolet light irradiation angle of the spot irradiation type excimer lamp and the distance between the surface and the sample surface, the irradiation region may be set according to the size of the sample. Further, the irradiation region can be appropriately changed by adjusting the size of the spot irradiation type excimer lamp and the size of the light emitting surface.

エキシマランプ以外の紫外光放射光源を使用することも可能であり、光放射面から一定方向に照射するスポット照射型光源を用いることが可能である。さらに、エキシマランプなどの光源全体を試料室内部に配置する構成に限定されず、少なくとも光放射面が試料内壁よりも試料に近く(試料室壁面よりも内部空間側に突出し)、試料空間内部で露出、曝させるように構成すればよい。その光放射面が試料室内壁(照射窓など)に形成される構成ではないことで、光放射面を任意の位置に定めることが可能となる。   It is also possible to use an ultraviolet radiation source other than the excimer lamp, and it is possible to use a spot irradiation type light source that irradiates in a certain direction from the light emission surface. Further, the configuration is not limited to the configuration in which the entire light source such as an excimer lamp is arranged inside the sample chamber. At least the light emission surface is closer to the sample than the inner wall of the sample (projects toward the inner space side than the wall surface of the sample chamber) What is necessary is just to comprise so that exposure may be carried out. Since the light emitting surface is not configured to be formed on the sample chamber wall (irradiation window or the like), the light emitting surface can be determined at an arbitrary position.

本実施形態では、試料室内部にエキシマランプを配置する電子顕微鏡で構成されているが、試料室とは別に前処理室、あるいは専用紫外線照射室などを設け、そこで紫外線照射を行うように構成してもよく、また、電子顕微鏡以外の装置であって、試料を観察、分析、あるいは計測可能な装置や、紫外線照射処理やオゾン処理を行う真空容器装置に適用することも可能である。   In this embodiment, it is composed of an electron microscope in which an excimer lamp is arranged in the sample chamber. However, a pretreatment chamber or a dedicated ultraviolet irradiation chamber is provided separately from the sample chamber, and ultraviolet irradiation is performed there. In addition, the present invention can be applied to an apparatus other than an electron microscope that can observe, analyze, or measure a sample, or a vacuum container apparatus that performs ultraviolet irradiation treatment or ozone treatment.

このように本実施形態によれば、走査型電子顕微鏡10の試料室40内に、スポット照射型のエキシマランプ100を配置し、固定部122、連結部124から成る支持部材112によって試料室側壁40Sに取り付ける。そして、その光放射面105が試料表面50Sを向くように、エキシマランプ取り付け位置を調整する。光放射面105から放出した紫外光は、試料表面50Sの所定領域を照射する。試料損傷、試料室内の部材劣化、不要なガス放出を防ぐとともに、簡易な構成であるため、試料室周辺のスペースに制限のある電子顕微鏡などの装置、機器に対し、装備することが可能となる。   As described above, according to the present embodiment, the spot irradiation type excimer lamp 100 is arranged in the sample chamber 40 of the scanning electron microscope 10, and the sample chamber side wall 40 </ b> S is provided by the support member 112 including the fixing portion 122 and the connecting portion 124. Attach to. Then, the excimer lamp mounting position is adjusted so that the light emitting surface 105 faces the sample surface 50S. The ultraviolet light emitted from the light emitting surface 105 irradiates a predetermined region of the sample surface 50S. Prevents sample damage, deterioration of members in the sample chamber, unnecessary gas release, and simple configuration, so it can be installed in equipment and equipment such as an electron microscope with limited space around the sample chamber. .

10 走査型電子顕微鏡
40 試料室
50 試料
50S 試料表面
100 エキシマランプ(紫外光源)
105 光放射面(紫外光放射面)
110 ランプ取付部材
120 支持部材
122 固定部
124 連結部
10 Scanning electron microscope 40 Sample chamber 50 Sample 50S Sample surface 100 Excimer lamp (ultraviolet light source)
105 Light emitting surface (ultraviolet light emitting surface)
110 Lamp mounting member 120 Support member 122 Fixed portion 124 Connecting portion

Claims (15)

紫外光放射面から紫外光を放射する紫外光源と、
試料が配置される試料室と、
前記紫外光放射面が前記試料を向くように、前記紫外光源を支持する支持部材とを備え、
前記紫外光放射面が、前記試料室内において、前記試料室内壁よりも前記試料に近い位置で露出していることを特徴とする紫外線照射装置。
An ultraviolet light source that emits ultraviolet light from the ultraviolet light emitting surface;
A sample chamber in which the sample is placed;
A support member that supports the ultraviolet light source so that the ultraviolet light emitting surface faces the sample;
The ultraviolet irradiation apparatus, wherein the ultraviolet light emitting surface is exposed in the sample chamber at a position closer to the sample than the sample chamber wall.
前記紫外光源が、試料表面の所定領域に紫外光を照射するように位置決めされていることを特徴とする請求項1に記載の紫外線照射装置。   The ultraviolet irradiation apparatus according to claim 1, wherein the ultraviolet light source is positioned so as to irradiate a predetermined region of the sample surface with ultraviolet light. 前記紫外光源が、前記試料室内に設置され、
前記支持部材が、前記試料室の内壁と接続することを特徴とする請求項1又は2に記載の紫外線照射装置。
The ultraviolet light source is installed in the sample chamber;
The ultraviolet irradiation apparatus according to claim 1, wherein the support member is connected to an inner wall of the sample chamber.
前記紫外光源が、前記紫外光放射面を底部とする有底筒状の外側管を有し、紫外光をランプ軸に沿って前記紫外光放射面から放射するエキシマランプであることを特徴とする請求項1乃至3のいずれかに記載の紫外線照射装置。   The ultraviolet light source is an excimer lamp having a bottomed cylindrical outer tube with the ultraviolet light emitting surface as a bottom, and emitting ultraviolet light from the ultraviolet light emitting surface along a lamp axis. The ultraviolet irradiation device according to claim 1. 前記エキシマランプが、前記外側管を囲むとともに、導電性、紫外光反射特性、熱伝導性の少なくともいずれか1つを有するランプ取付部材を備えたことを特徴とする請求項4に記載の紫外線照射装置。   The ultraviolet irradiation according to claim 4, wherein the excimer lamp includes a lamp mounting member that surrounds the outer tube and has at least one of conductivity, ultraviolet light reflection characteristics, and thermal conductivity. apparatus. 前記ランプ取付部材が、導電性を有し、前記エキシマランプの外側電極として構成されることを特徴とする請求項5に記載の紫外線照射装置。   The ultraviolet irradiation device according to claim 5, wherein the lamp mounting member has conductivity and is configured as an outer electrode of the excimer lamp. 前記ランプ取付部材が、その内面に紫外光反射部材を設けていることを特徴とする請求項5又は6に記載の紫外線照射装置。   The ultraviolet irradiation device according to claim 5 or 6, wherein the lamp mounting member is provided with an ultraviolet light reflecting member on an inner surface thereof. 前記ランプ取付部材が、熱伝導性部材を有することを特徴とする請求項5乃至7のいずれかに記載の紫外線照射装置。   The ultraviolet irradiation device according to claim 5, wherein the lamp mounting member includes a heat conductive member. 前記ランプ取付部材を覆うように断熱性部材が設けられていることを特徴とする請求項5乃至8のいずれかに記載の紫外線照射装置。   The ultraviolet irradiation device according to claim 5, wherein a heat insulating member is provided so as to cover the lamp mounting member. 前記支持部材が、試料表面に対する前記紫外光放射面の向きと、前記紫外光放射面の試料表面に対する距離間隔のうち少なくともいずれか一方を変更させることが可能な調節機構を有することを特徴とする請求項1乃至9のいずれかに記載の紫外線照射装置。   The support member has an adjustment mechanism capable of changing at least one of an orientation of the ultraviolet light emitting surface with respect to a sample surface and a distance interval between the ultraviolet light emitting surface and the sample surface. The ultraviolet irradiation device according to claim 1. 前記支持部材が、前記試料室の内壁に対する前記紫外光源の角度を調整可能なように、前記紫外光源を支持することを特徴とする請求項10に記載の紫外線照射装置。   The ultraviolet irradiation apparatus according to claim 10, wherein the support member supports the ultraviolet light source so that an angle of the ultraviolet light source with respect to an inner wall of the sample chamber can be adjusted. 前記支持部材が、前記試料室の内壁に固定される固定部と、光源保持部を前記試料室の内壁に接続させる連結部とを有し、
前記紫外光源が、前記連結部に対する角度が調整可能に、前記連結部によって支持されていることを特徴とする請求項10又は11に記載の紫外線照射装置。
The support member has a fixed portion fixed to the inner wall of the sample chamber, and a connecting portion for connecting a light source holding portion to the inner wall of the sample chamber;
The ultraviolet irradiation device according to claim 10 or 11, wherein the ultraviolet light source is supported by the connecting portion such that an angle with respect to the connecting portion is adjustable.
試料が配置される試料室に対し、紫外光を紫外光放射面から放射するエキシマランプを、前記紫外光放射面が前記試料を向くように設置し、
前記紫外光放射面が前記試料室の内壁よりも前記試料に近い位置で前記試料室の内部空間に露出する状態で、紫外光を前記紫外光放射面から試料に向けて照射させることを特徴とする紫外線照射による試料汚染物除去方法。
For the sample chamber where the sample is placed, an excimer lamp that emits ultraviolet light from the ultraviolet light emitting surface is installed so that the ultraviolet light emitting surface faces the sample,
The ultraviolet light emitting surface is irradiated from the ultraviolet light emitting surface toward the sample while being exposed to the internal space of the sample chamber at a position closer to the sample than the inner wall of the sample chamber. Sample contaminant removal method by UV irradiation.
試料が配置される真空容器と、
紫外光を紫外光放射面から放射する紫外光源と、
前記紫外光放射面が前記真空容器に配置された試料を向くように、前記紫外光源を支持する支持部材とを備え、
前記紫外光放射面が、前記真空容器内において、前記真空容器の内壁よりも前記試料に近い位置で露出していることを特徴とする真空容器装置。
A vacuum vessel in which the sample is placed;
An ultraviolet light source that emits ultraviolet light from an ultraviolet light emitting surface;
A support member that supports the ultraviolet light source so that the ultraviolet light emitting surface faces a sample disposed in the vacuum vessel;
The vacuum container apparatus, wherein the ultraviolet light emitting surface is exposed in the vacuum container at a position closer to the sample than the inner wall of the vacuum container.
請求項14に記載された真空容器装置を備えたことを特徴とする電子顕微鏡。 An electron microscope comprising the vacuum container device according to claim 14.
JP2016129550A 2016-06-30 2016-06-30 UV irradiation device and vacuum container device Active JP6804882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016129550A JP6804882B2 (en) 2016-06-30 2016-06-30 UV irradiation device and vacuum container device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016129550A JP6804882B2 (en) 2016-06-30 2016-06-30 UV irradiation device and vacuum container device

Publications (2)

Publication Number Publication Date
JP2018006100A true JP2018006100A (en) 2018-01-11
JP6804882B2 JP6804882B2 (en) 2020-12-23

Family

ID=60949672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016129550A Active JP6804882B2 (en) 2016-06-30 2016-06-30 UV irradiation device and vacuum container device

Country Status (1)

Country Link
JP (1) JP6804882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043026A (en) * 2018-09-13 2020-03-19 東芝ライテック株式会社 Barrier discharge lamp
CN112010264A (en) * 2019-05-30 2020-12-01 株式会社Orc制作所 Ultraviolet irradiation device and ozone generation device
CN112133624A (en) * 2020-10-10 2020-12-25 罗璐 Excimer lamp with cooling air chamber on end face and beauty instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043026A (en) * 2018-09-13 2020-03-19 東芝ライテック株式会社 Barrier discharge lamp
JP7139808B2 (en) 2018-09-13 2022-09-21 東芝ライテック株式会社 barrier discharge lamp
CN112010264A (en) * 2019-05-30 2020-12-01 株式会社Orc制作所 Ultraviolet irradiation device and ozone generation device
CN112010264B (en) * 2019-05-30 2024-04-05 株式会社Orc制作所 Ultraviolet irradiation device and ozone generation device
CN112133624A (en) * 2020-10-10 2020-12-25 罗璐 Excimer lamp with cooling air chamber on end face and beauty instrument

Also Published As

Publication number Publication date
JP6804882B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
US7298826B2 (en) X-ray generator
JP5597251B2 (en) Substrate processing with fiber laser
JP6804882B2 (en) UV irradiation device and vacuum container device
JP2009164525A (en) Heat treatment apparatus
US20060263275A1 (en) Cabinet and sterilizing lamp
CN1357415A (en) Ultraviolet lamp system and method
KR20130076982A (en) System for broadband illumination and method of generating the broadband illumination
KR100379873B1 (en) Improving membrane quality
JP6920469B2 (en) Light irradiation device
JP2004097986A (en) Ultraviolet irradiation device
US8841625B2 (en) Method for the detection of the irradiance distribution in an extreme ultraviolet light source device and an extreme ultraviolet light source device
US8809779B2 (en) Method and system for heating substrate in vacuum environment and method and system for identifying defects on substrate
JP2006508346A (en) Optical inspection system and radiation source used in the inspection system
JP2011181578A (en) Method for heating part in processing chamber of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP5891255B2 (en) Heat treatment equipment
CN112673449A (en) Thermal field emission electron source and electron beam application device
KR100948649B1 (en) X-ray generating apparatus for using in both transmission form and directional form and X-ray inspecting system having the same
TWI410754B (en) A cap for shielding a portion of an arc lamp, arc lamp, and lithography apparatus
JP5349802B2 (en) Heat treatment equipment
US20240203714A1 (en) Plasma monitoring system
JP3974915B2 (en) Substrate heating device
CN220456352U (en) Irradiation device
JP2019537205A (en) Apparatus and method for operating a variable pressure shielded beam lamp
US7043148B1 (en) Wafer heating using edge-on illumination
JP4079503B2 (en) Analytical electron microscope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R150 Certificate of patent or registration of utility model

Ref document number: 6804882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250