JP2018004348A - Steel material potential measuring method - Google Patents

Steel material potential measuring method Download PDF

Info

Publication number
JP2018004348A
JP2018004348A JP2016128680A JP2016128680A JP2018004348A JP 2018004348 A JP2018004348 A JP 2018004348A JP 2016128680 A JP2016128680 A JP 2016128680A JP 2016128680 A JP2016128680 A JP 2016128680A JP 2018004348 A JP2018004348 A JP 2018004348A
Authority
JP
Japan
Prior art keywords
concrete structure
electrode
electrodes
corrosion
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016128680A
Other languages
Japanese (ja)
Other versions
JP6640664B2 (en
Inventor
敏幸 青山
Toshiyuki Aoyama
敏幸 青山
浩司 石井
Koji Ishii
浩司 石井
直利 深川
Naotoshi Fukagawa
直利 深川
和之 鳥居
Kazuyuki Torii
和之 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2016128680A priority Critical patent/JP6640664B2/en
Publication of JP2018004348A publication Critical patent/JP2018004348A/en
Application granted granted Critical
Publication of JP6640664B2 publication Critical patent/JP6640664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost for measurement of spontaneous potentials of a plurality of steel materials located at different heights in a concrete structure.SOLUTION: For measurement of electric potentials of a plurality of steel materials provided at different heights in a concrete structure 1, a reference electrode bundle 10 bundling a plurality of reference electrodes 10A, 10B which respectively have wire-shaped line electrodes 11A, 11B and insulation coatings 12A, 12B to coat the line electrodes 11A, 11B is prepared. The line electrodes 11A, 11B are exposed by removing the respective insulation coatings 12A, 12B of the tip parts of the reference electrodes 10A, 10B and the height of each of the tip parts is caused to match the height of a different steel material so as to be buried in the concrete structure 1. Then, each potential difference between each of the reference electrodes 10A, 10B and a standard electrode is measured.SELECTED DRAWING: Figure 1

Description

本発明は、コンクリート構造物内の鋼材の腐食状態を非破壊的に測定する鋼材電位測定方法に関する。   The present invention relates to a steel material potential measuring method for nondestructively measuring the corrosion state of a steel material in a concrete structure.

例えば鉄筋コンクリートなどのコンクリート構造物における鋼材の腐食が社会的な問題となっている。鋼材の腐食原因には、例えば、海岸近くの飛来塩分、寒冷地での凍結防止剤の散布などがある。コンクリート構造物内の鋼材が腐食すると、腐食部における鋼材の膨張圧によってかぶりコンクリートにひび割れが発生したり、錆汁が漏出したりすることによって、はじめて鋼材腐食状態が露見する。しかし、鋼材の腐食状態が露見した段階でのコンクリート構造物の補修・改修工事には大きな費用を要する。そこで、鋼材腐食が露見されていない段階で鋼材腐食状態を非破壊的に測定する技術が注目を集めつつある。   For example, corrosion of steel in concrete structures such as reinforced concrete has become a social problem. Causes of corrosion of steel materials include, for example, incoming salt near the coast and spraying of antifreezing agents in cold regions. When the steel material in the concrete structure is corroded, the corrosion condition of the steel material is revealed only when the cover concrete cracks due to the expansion pressure of the steel material in the corroded part or the rust juice leaks out. However, repair and renovation work of concrete structures at the stage where the corrosion state of steel materials is exposed requires a large cost. Therefore, a technique for nondestructively measuring a steel material corrosion state at a stage where the steel material corrosion is not exposed is attracting attention.

コンクリート構造物の鋼材腐食状態を非破壊的に測定する方法のひとつとして自然電位測定法がある。自然電位測定法とは、コンクリート構造物中の鋼材が腐食することによって変化する鋼材表面の電位を測定する方法であり、一般的には鋼材の腐食がすすむほど鋼材の電位は卑な方向(−側)に変化する。自然電位測定法では、照合電極と呼ばれる電極体と電位差計とが用いられ、電位差計の+端子を鋼材に結線し、−端子に照合電極のリード線を接続して、この照合電極をコンクリート面に当接させたり、コンクリート躯体内に埋め込んだりして測定が行われる。コンクリート面に当接されるタイプの照合電極は可搬式照合電極と呼ばれ、コンクリート躯体内に埋め込まれるタイプの照合電極は埋込式照合電極と呼ばれる(例えば特許文献1)。   One of the methods for nondestructively measuring the corrosion state of steel in concrete structures is a self-potential measurement method. The self-potential measurement method is a method of measuring the potential of the steel surface that changes due to corrosion of the steel material in the concrete structure. Generally, the potential of the steel material is in a base direction (− Side). In the natural potential measurement method, an electrode body called a reference electrode and a potentiometer are used, and the positive terminal of the potentiometer is connected to steel, the lead wire of the reference electrode is connected to the negative terminal, and this reference electrode is connected to the concrete surface. The measurement is performed by abutting on or embedded in a concrete frame. A type of verification electrode that is in contact with the concrete surface is called a portable verification electrode, and a type of verification electrode that is embedded in a concrete frame is called an embedded verification electrode (for example, Patent Document 1).

なお、自然電位測定法は、既成のコンクリート構造物の鋼材の腐食状態を測定する目的の他、電気防食工法の効果を確認するためにも用いられる(例えば特許文献2)。   The natural potential measurement method is used not only for the purpose of measuring the corrosion state of the steel material of an existing concrete structure, but also for confirming the effect of the cathodic protection method (for example, Patent Document 2).

また、細線状の貴金属被覆チタンワイヤを照合電極としてコンクリート構造物中に埋設して測定を行う技術も知られている(例えば特許文献3)。   A technique is also known in which measurement is performed by embedding a thin noble metal-coated titanium wire in a concrete structure as a reference electrode (for example, Patent Document 3).

特開昭61−124863号公報JP-A 61-124863 特開2013−224456号公報JP2013-224456A 特開2001−013100号公報JP 2001-013100 A

コンクリート構造物の鋼材の腐食には、特に、海岸付近での塩害、寒冷地での塩化ナトリウム、塩化カルシウムなどの凍結防止剤の路面散布による塩害が深くかかわっている。特に海岸付近での塩害は、コンクリート構造物の下側の鋼材からの腐食として現れ、凍結防止剤の路面散布による塩害は逆に上側の鋼材から次第にすすむ。   Corrosion of steel materials in concrete structures is particularly concerned with salt damage near the coast and salt damage caused by spraying anti-freezing agents such as sodium chloride and calcium chloride in cold regions. Particularly, salt damage near the coast appears as corrosion from the lower steel of the concrete structure, and salt damage caused by spraying the antifreeze on the road surface gradually proceeds from the upper steel.

可搬式照合電極を用いた測定方法では、コンクリート表面に照合電極を接触させて測定が行われるので、コンクリート表面寄りの鋼材しか腐食測定の対象にできないという制約がある。このため、上面側のコンクリート表面が路面工などによる覆われたコンクリート構造物の場合、可搬式照合電極を用いてコンクリート構造物の上部側(路面側)の鋼材の腐食測定を行うためには、路面切削によりコンクリート表面を露出させ、測定後、路面復旧作業を行う必要があるなど、手間がかかり、現実的には困難である。   In the measurement method using the portable verification electrode, since the measurement is performed by bringing the verification electrode into contact with the concrete surface, there is a restriction that only steel materials near the concrete surface can be subjected to corrosion measurement. For this reason, in the case of a concrete structure where the upper surface concrete surface is covered by road work, etc., in order to measure the corrosion of the steel material on the upper side (road surface side) of the concrete structure using a portable verification electrode, In practice, it is difficult to expose the concrete surface by road surface cutting and to perform road surface restoration work after measurement.

一方、埋込式照合電極を用いた測定方法では、コンクリート構造物における測定対象の鉄筋の位置に合わせて照合電極を埋め込むことが可能であるから、上面側のコンクリート表面が路面工などによる覆われたコンクリート構造物の上部側(路面側)の鋼材の腐食測定にも利用することが可能である。   On the other hand, in the measurement method using the embedded collating electrode, it is possible to embed the collating electrode in accordance with the position of the reinforcing bar to be measured in the concrete structure. It can also be used to measure the corrosion of steel on the upper side (road surface side) of concrete structures.

しかしながら、コンクリート構造物の上部と下部など、異なる高さ位置にある複数の鋼材を測定対象とした場合には、各鋼材の高さ位置に合わせて各照合電極を埋め込む必要があり、各照合電極を埋め込むための穿孔の切削に手間がかかる。さらにはコンクリート構造物に設ける穿孔数の増加により強度低下の懸念もある。   However, when multiple steel materials at different height positions such as the upper and lower parts of a concrete structure are to be measured, it is necessary to embed each reference electrode according to the height position of each steel material. It takes time to cut a hole for embedding. Furthermore, there is a concern that the strength may decrease due to an increase in the number of perforations provided in the concrete structure.

本発明の目的は、コンクリート構造物内の異なる高さに位置する複数の鋼材の自然電位を測定する場合のコストの低減を図ることのできる鋼材電位測定方法を提供することにある。   An object of the present invention is to provide a steel material potential measuring method capable of reducing the cost when measuring the natural potential of a plurality of steel materials located at different heights in a concrete structure.

上記の課題を解決するために、本発明に係る一形態の鋼材電位測定方法は、コンクリート構造物内の異なる高さに配設された複数の鋼材の電位を測定するにあたり、ワイヤ状のライン電極とこのライン電極を被覆する絶縁被覆を各々有する複数の照合電極を束ねた照合電極束を、各々の前記照合電極の先端部分の前記絶縁被覆を除去して前記ライン電極を露出させ、かつ各々の前記先端部分の高さを別々の前記鋼材の高さに合わせて前記コンクリート構造物内に埋め込み、個々の前記照合電極と基準電極との電位差を各々測定することを特徴とするものである。   In order to solve the above problems, a steel material potential measuring method according to one aspect of the present invention is a wire-like line electrode for measuring the potentials of a plurality of steel materials arranged at different heights in a concrete structure. And a collation electrode bundle in which a plurality of collation electrodes each having an insulation coating covering the line electrode are bundled, the insulation coating at the tip portion of each collation electrode is removed to expose the line electrode, and each The height of the tip portion is embedded in the concrete structure in accordance with the height of the different steel materials, and the potential difference between each of the reference electrode and the reference electrode is measured.

本発明によれば、複数の照合電極を束ねた照合電極束を、各々の照合電極の先端部分の絶縁被覆を除去してライン電極を露出させ、かつ各々の先端部分を別々の鋼材の高さに合わせてコンクリート構造物内に埋め込むことによって、複数の照合電極の埋め込み作業を効率的に行うことができる。   According to the present invention, a collation electrode bundle in which a plurality of collation electrodes are bundled, the line electrode is exposed by removing the insulation coating from the tip portion of each collation electrode, and each tip portion is provided with a height of a separate steel material. By embedding in the concrete structure according to the above, it is possible to efficiently embed a plurality of reference electrodes.

また、本発明に係る一形態の鋼材電位測定方法において、コンクリート構造物に照合電極束を埋め込むための穿孔を設ける場合には、この穿孔の数を最小限に抑えることができので、穿孔の切削コストを大幅に引き下げることができるとともに、コンクリート構造物の強度低下を抑制することができる。   Further, in the steel material potential measuring method according to one aspect of the present invention, when the perforation for embedding the reference electrode bundle is provided in the concrete structure, the number of the perforations can be minimized, so that the perforation cutting is performed. The cost can be greatly reduced, and the strength reduction of the concrete structure can be suppressed.

以上のように、本発明によれば、コンクリート構造物内の異なる高さに位置する複数の鋼材の自然電位を測定する場合のコストの低減を図ることができる。   As described above, according to the present invention, it is possible to reduce the cost when measuring the natural potential of a plurality of steel materials located at different heights in a concrete structure.

本発明に係る一実施形態である鉄筋腐食測定方法を説明するためにコンクリート構造物を側面方向から見た概略断面図である。It is the schematic sectional drawing which looked at the concrete structure from the side direction, in order to explain the reinforcing bar corrosion measuring method which is one embodiment concerning the present invention. 図1のコンクリート構造物のA−A'断面図である。It is AA 'sectional drawing of the concrete structure of FIG. 本実施形態の鉄筋腐食測定方法において用いられる照合電極束の例を示す図である。It is a figure which shows the example of the collation electrode bundle used in the reinforcing bar corrosion measuring method of this embodiment. 本実施形態の鉄筋腐食測定方法においてコンクリート構造物への照合電極束の埋め込み方法を示す概略断面図である。It is a schematic sectional drawing which shows the embedding method of the collation electrode bundle | flux in a concrete structure in the reinforcing bar corrosion measuring method of this embodiment. 同じく本実施形態の鉄筋腐食測定方法においてコンクリート構造物への照合電極束の埋め込み方法を示す概略断面図である。It is a schematic sectional drawing which similarly shows the embedding method of the collation electrode bundle | flux in a concrete structure in the reinforcing bar corrosion measuring method of this embodiment. 上側の鉄筋3の腐食測定を行う場合の電位差計20の接続方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the connection method of the potentiometer 20 in the case of measuring the corrosion of the upper rebar 3.

以下、本発明に係る実施形態を、図面を参照しながら説明する。
図1は本発明の鋼材電位測定方法を採用した鉄筋腐食測定方法の一実施形態を説明するためにコンクリート構造物1を側面方向から見た概略断面図、図2は図1のコンクリート構造物1のA−A'断面図である。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a concrete structure 1 viewed from the side in order to explain one embodiment of a steel bar corrosion measurement method employing the steel material potential measurement method of the present invention, and FIG. 2 is a concrete structure 1 of FIG. It is AA 'sectional drawing.

[本実施形態の鉄筋腐食測定方法の概要]
まず、本実施形態の鉄筋腐食測定方法の概要を説明すると、この鉄筋腐食測定方法は、コンクリート構造物1内の異なる高さに配設された複数の鉄筋2、3の腐食状態を自然電位測定方法により測定するにあたり、ワイヤ状のライン電極11A、11Bとライン電極11A、11Bを被覆する絶縁被覆12A、12Bを有する複数の照合電極10A、10Bを束ねた照合電極束10を、各々の照合電極10A、10Bの先端部分13A、13Bの絶縁被覆12A、12Bを除去してライン電極11A、11Bを露出させ、各々の先端部分13A、13Bの高さを別々の鉄筋2、3の高さに合わせてコンクリート構造物1内に埋め込み、個々の照合電極10A、10Bと基準電極との電位差を各々測定することを特徴とする。
[Outline of Rebar Corrosion Measurement Method of this Embodiment]
First, the outline of the reinforcing bar corrosion measuring method of this embodiment will be described. This reinforcing bar corrosion measuring method is a self-potential measurement of the corrosion state of a plurality of reinforcing bars 2 and 3 arranged at different heights in a concrete structure 1. In the measurement by the method, the reference electrode bundle 10 in which a plurality of reference electrodes 10A and 10B having wire-like line electrodes 11A and 11B and insulating coatings 12A and 12B covering the line electrodes 11A and 11B are bundled is used as each reference electrode. The insulating coatings 12A and 12B of the tip portions 13A and 13B of 10A and 10B are removed to expose the line electrodes 11A and 11B, and the heights of the tip portions 13A and 13B are adjusted to the heights of the separate reinforcing bars 2 and 3, respectively. And embedded in the concrete structure 1 to measure the potential difference between each reference electrode 10A, 10B and the reference electrode.

なお、基準電極の電位は、コンクリート構造物1内のいずれかの鉄筋の電位である。図1および図2では、例えば、下側の鉄筋2の電位を基準電極の電位として用いている。あるいは鉄筋3など、コンクリート構造物1内の他の鉄筋の電位を基準電極の電位として用いてもよい。   Note that the potential of the reference electrode is the potential of any of the reinforcing bars in the concrete structure 1. In FIG. 1 and FIG. 2, for example, the potential of the lower reinforcing bar 2 is used as the potential of the reference electrode. Alternatively, the potential of another reinforcing bar in the concrete structure 1 such as the reinforcing bar 3 may be used as the potential of the reference electrode.

以下、上記の鉄筋腐食測定方法をより詳細に説明する。
[照合電極束10の構成]
図3は、本実施形態の鉄筋腐食測定方法において用いられる照合電極束10の構成を示す側面図である。
Hereinafter, the above-mentioned method for measuring corrosion of reinforcing bars will be described in more detail.
[Configuration of Verification Electrode Bundle 10]
FIG. 3 is a side view showing the configuration of the verification electrode bundle 10 used in the reinforcing bar corrosion measurement method of the present embodiment.

同図に示すように、本実施形態の鉄筋腐食測定方法において用いられる照合電極束10は、細線状の2体の照合電極10A、10Bが例えば1以上の結束帯21などによって一つに束ねられて構成される。なお、2本の照合電極10A、10Bは互いに接着剤により束ねられてもよく、あるいは互いに撚り合わせて束ねられてもよい。   As shown in the figure, the collating electrode bundle 10 used in the reinforcing bar corrosion measuring method of the present embodiment has two thin collating electrodes 10A, 10B bundled together by, for example, one or more binding bands 21. Configured. The two verification electrodes 10A and 10B may be bundled together with an adhesive, or may be twisted together and bundled together.

照合電極束10における各々の照合電極10A、10Bの構成は基本的には同じである。一方の照合電極10Aは、ワイヤ状のライン電極11Aと、このライン電極11Aを被覆する絶縁被覆12Aと、リード線14Aと、接続部15Aを有する。他方の照合電極10Bも同様に、ワイヤ状のライン電極11Bと、このライン電極11Bを被覆する絶縁被覆12Bと、リード線14Bと、接続部15Bを有する。接続部15A、15Bは、ライン電極11A、11Bとリード線14A、14Bの端部同士を電気的に接続する部分である。各々の照合電極10A、10Bの主な差異は、その長さであり、言い換えれば、絶縁被覆12A、12Bが除去されてライン電極11A、11Bが露出状態にある先端部分13A、13Bの位置のみにある。   The configuration of each verification electrode 10A, 10B in the verification electrode bundle 10 is basically the same. One verification electrode 10A includes a wire-shaped line electrode 11A, an insulating coating 12A covering the line electrode 11A, a lead wire 14A, and a connecting portion 15A. Similarly, the other verification electrode 10B includes a wire-shaped line electrode 11B, an insulating coating 12B that covers the line electrode 11B, a lead wire 14B, and a connection portion 15B. The connecting portions 15A and 15B are portions that electrically connect the end portions of the line electrodes 11A and 11B and the lead wires 14A and 14B. The main difference between the respective verification electrodes 10A and 10B is the length thereof. In other words, only the positions of the tip portions 13A and 13B where the insulating coatings 12A and 12B are removed and the line electrodes 11A and 11B are exposed are provided. is there.

ライン電極11A、11Bはチタン(Ti)からなるワイヤと、このチタンのワイヤを被覆するイリジウム(Ir)、ルテニウム(Ru)、ハフニウム(Hf)又はロジウム(Rh)のいずれかからなる貴金属被覆で構成される。チタンは鉄に対して電位の高い安定した強度の大きい金属で、耐久性に富み、伸線が容易で、細線状の照合電極材料として適切である。ただし、チタンは酸化しやすいので、これを防止するために酸にもアルカリにも耐性のある上記の貴金属で被覆されることが望ましい。ライン電極11A、11Bの直径は1.0〜3.0mm程度である。   The line electrodes 11A and 11B are composed of a wire made of titanium (Ti) and a noble metal coating made of iridium (Ir), ruthenium (Ru), hafnium (Hf) or rhodium (Rh) covering the titanium wire. Is done. Titanium is a stable and strong metal with a high potential relative to iron, has high durability, is easy to draw, and is suitable as a thin wire-like reference electrode material. However, since titanium is easily oxidized, in order to prevent this, it is desirable to coat with the above-mentioned noble metal resistant to both acid and alkali. The diameters of the line electrodes 11A and 11B are about 1.0 to 3.0 mm.

[照合電極束10の埋め込み方法]
図4および図5は、コンクリート構造物1への照合電極束10の埋め込み方法を示す概略断面図である。
コンクリート構造物1への照合電極束10の埋め込みは、例えば、図4に示すように、コンクリート構造物1の下面1Aより切削などにより穿孔6を設け、図5に示すように、この穿孔6内に照合電極束10を挿入し、穿孔6内の隙間をモルタルなどの補修材7により埋めることによって行われる。穿孔6は、コンクリート構造物1の下面1Aから、測定対象である鉄筋2、3の向きに対して直交する鉛直方向あるいは略鉛直方向に沿って形成される。図2に示したように、穿孔6は、測定対象である鉄筋2、3に所定のコンクリート厚を挟んで近接する位置を通過するように形成される。
[Method of Embedding Verification Electrode Bundle 10]
4 and 5 are schematic cross-sectional views showing a method for embedding the reference electrode bundle 10 in the concrete structure 1. FIG.
For example, as shown in FIG. 4, the reference electrode bundle 10 is embedded in the concrete structure 1 by providing a perforation 6 by cutting or the like from the lower surface 1 </ b> A of the concrete structure 1, and as shown in FIG. 5, The reference electrode bundle 10 is inserted into the hole 6 and the gap in the perforation 6 is filled with a repair material 7 such as mortar. The perforations 6 are formed from the lower surface 1 </ b> A of the concrete structure 1 along a vertical direction or a substantially vertical direction orthogonal to the direction of the reinforcing bars 2 and 3 as a measurement target. As shown in FIG. 2, the perforation 6 is formed so as to pass through a position close to the reinforcing bars 2 and 3 to be measured with a predetermined concrete thickness interposed therebetween.

あるいは、コンクリート構造物1のコンクリート打設時に照合電極束10を埋め込んでもよい。あるいは、穿孔6を成形するための抜型をコンクリート打設の際に埋め込み、型枠解体時に型枠とともに抜型を除去して穿孔6を得るようにしてもよい。   Alternatively, the reference electrode bundle 10 may be embedded when the concrete structure 1 is placed in the concrete. Alternatively, a punching die for forming the perforations 6 may be embedded at the time of concrete placement, and the perforations 6 may be obtained by removing the punching die together with the mold at the time of disassembling the mold.

図1、図2および図5に示すように、コンクリート構造物1内に埋め込まれた照合電極束10において、一方の照合電極10Aは、コンクリート構造物1における下側の鉄筋2を腐食測定対象とするために、絶縁被覆12Aが除去されて露出したライン電極11Aの先端部分13Aを下側の鉄筋2の高さに合わせて配置される。同様に、他方のライン電極11Bは、コンクリート構造物1における上側の鉄筋3を腐食測定対象とするために、絶縁被覆12Bが除去されて露出したライン電極11Bの先端部分13Bを上側の鉄筋3の高さに合わせて配置される。より具体的には、例えば、ライン電極11Aの先端部分13Aの中心の高さが下側の鉄筋2の高さと一致し、ライン電極11Bの先端部分13Bの中心の高さが上側の鉄筋3の高さと一致していることが望ましい。   As shown in FIGS. 1, 2, and 5, in the verification electrode bundle 10 embedded in the concrete structure 1, one verification electrode 10 </ b> A has the lower rebar 2 in the concrete structure 1 as a corrosion measurement target. In order to do this, the tip portion 13A of the line electrode 11A exposed by removing the insulating coating 12A is arranged in accordance with the height of the lower reinforcing bar 2. Similarly, the other line electrode 11B has the tip portion 13B of the line electrode 11B exposed after the insulation coating 12B is removed so that the upper rebar 3 in the concrete structure 1 is subject to corrosion measurement. Arranged according to the height. More specifically, for example, the height of the center of the tip portion 13A of the line electrode 11A matches the height of the lower rebar 2 and the height of the center of the tip portion 13B of the line electrode 11B is the height of the upper rebar 3. It is desirable to match the height.

また、各々の照合電極10A、10Bは、各々の先端部分13A、13Bを除いて絶縁被覆12A、12Bによってライン電極11A、11Bが全体的に被覆されているので、各ライン電極11A、11B間は電気的には絶縁された関係にある。   Further, each of the verification electrodes 10A and 10B is entirely covered with the line electrodes 11A and 11B by the insulating coatings 12A and 12B except for the tip portions 13A and 13B. Electrically isolated.

さらに、図1、図2および図5に示したように、照合電極束10は、各々の照合電極10A、10Bのリード線14A、14Bがコンクリート構造物1の下面1Aより引き出された状態でコンクリート構造物1に埋め込まれる。なお、各々のリード線14A、14Bは、測定時の互いの導通を回避するために、ライン電極11A、11Bと同様に絶縁被膜により表面が覆われたものであることが好ましい。   Further, as shown in FIGS. 1, 2, and 5, the verification electrode bundle 10 is made of concrete in a state where the lead wires 14 </ b> A and 14 </ b> B of the respective verification electrodes 10 </ b> A and 10 </ b> B are drawn from the lower surface 1 </ b> A of the concrete structure 1. Embedded in the structure 1. Each lead wire 14A, 14B is preferably one whose surface is covered with an insulating film in the same manner as the line electrodes 11A, 11B in order to avoid mutual conduction during measurement.

[電位差計20を用いた測定]
次に、電位差計20を用いて、コンクリート構造物1内の各鉄筋2、3の腐食測定を行う方法を説明する。
[Measurement using potentiometer 20]
Next, a method for measuring corrosion of the reinforcing bars 2 and 3 in the concrete structure 1 using the potentiometer 20 will be described.

鉄筋2の腐食測定を行う場合、図1に示したように、電位差計20の+端子に、基準電極となる例えば鉄筋2を電気的に接続するとともに、コンクリート構造物1の下面から引き出されているリード線14Aを電位差計20の−端子に接続する。これにより、照合電極10Aと基準電極との電位差が下側の鉄筋2の測定対象部位の自然電位として測定される。   When performing corrosion measurement of the reinforcing bar 2, as shown in FIG. 1, for example, the reinforcing bar 2 serving as a reference electrode is electrically connected to the + terminal of the potentiometer 20, and is pulled out from the lower surface of the concrete structure 1. Connect the lead wire 14 </ b> A to the negative terminal of the potentiometer 20. Thereby, the potential difference between the verification electrode 10A and the reference electrode is measured as the natural potential of the measurement target portion of the lower reinforcing bar 2.

鉄筋3の腐食測定を行う場合には、図6に示すように、電位差計20の+端子に、基準電極となる例えば鉄筋2を電気的に接続するとともに、コンクリート構造物1の下面から引き出されているリード線14Bを電位差計20の−端子に接続する。これにより、照合電極10Bと基準電極との電位差が上側の鉄筋3の測定対象部位の自然電位として測定される。   When the corrosion of the reinforcing bar 3 is measured, as shown in FIG. 6, for example, the reinforcing bar 2 serving as a reference electrode is electrically connected to the + terminal of the potentiometer 20 and is pulled out from the lower surface of the concrete structure 1. Lead wire 14 </ b> B is connected to the minus terminal of potentiometer 20. Thereby, the potential difference between the verification electrode 10B and the reference electrode is measured as the natural potential of the measurement target portion of the upper rebar 3.

以上説明したように、本実施形態の鉄筋腐食測定方法によれば、複数の照合電極10A、10Bからなる照合電極束10を、各々の照合電極10A、10Bの先端部分13A、13Bの絶縁被覆12A、12Bを除去してライン電極11A、11Bを露出させ、各々の先端部分13A、13Bの高さを別々の鉄筋2、3の高さに合わせてコンクリート構造物1内に埋め込むことによって、コンクリート構造物1内の異なる高さの鉄筋2、3に対して、長さの異なる照合電極を別々に埋め込むような典型的な方法に比べ、照合電極の埋め込み作業を効率的に行うことができる。   As described above, according to the reinforcing bar corrosion measurement method of the present embodiment, the verification electrode bundle 10 composed of a plurality of verification electrodes 10A and 10B is connected to the insulating coating 12A of the tip portions 13A and 13B of the verification electrodes 10A and 10B. , 12B are exposed to expose the line electrodes 11A, 11B, and the height of each of the tip portions 13A, 13B is embedded in the concrete structure 1 in accordance with the height of the separate reinforcing bars 2, 3, thereby providing a concrete structure. Compared to a typical method of separately embedding the verification electrodes having different lengths in the reinforcing bars 2 and 3 having different heights in the object 1, the operation of embedding the verification electrodes can be performed efficiently.

また、本実施形態の鉄筋腐食測定方法によれば、照合電極10A、10Bを埋め込むための穿孔6の数を最小限に抑えることができる。特に、コンクリート構造物1の鉄筋2、3の複数部位の腐食状態を測定する場合に必要となる穿孔6の数を大幅に減らすことができるので、穿孔6の切削コストを大幅に引き下げることができるとともに、コンクリート構造物1の強度低下を抑制することができる。   Moreover, according to the reinforcing bar corrosion measurement method of the present embodiment, the number of perforations 6 for embedding the verification electrodes 10A and 10B can be minimized. In particular, since the number of perforations 6 required when measuring the corrosion state of the rebars 2 and 3 of the concrete structure 1 can be greatly reduced, the cutting cost of the perforations 6 can be greatly reduced. At the same time, a decrease in strength of the concrete structure 1 can be suppressed.

また、本実施形態の鉄筋腐食測定方法は、新設のコンクリート構造物内の鉄筋は勿論、既設のコンクリート構造物内の鉄筋の腐食測定に採用することができる。   Moreover, the reinforcing bar corrosion measuring method of this embodiment can be employed for the corrosion measurement of reinforcing bars in existing concrete structures as well as reinforcing bars in newly installed concrete structures.

なお、照合電極束10を構成する照合電極の数は、コンクリート構造物1内の測定対象である異なる高さの鉄筋の本数に応じて決められる。図1の例では、上側の鉄筋2と下側の鉄筋3の2本が測定対象とされているので、2本の照合電極10A、10Bが用いられるが、上側の鉄筋2と下側の鉄筋3との間の高さの鉄筋(図示せず)も測定対象とする場合には照合電極の数は3本以上となる。このように、本実施形態の鉄筋腐食測定方法は、コンクリート構造物1内の測定対象である異なる高さの鉄筋の本数の増加に対して、設けるべき穿孔6の数の変更を伴うことなく対応することが可能である。   Note that the number of verification electrodes constituting the verification electrode bundle 10 is determined according to the number of reinforcing bars having different heights, which are measurement targets in the concrete structure 1. In the example of FIG. 1, since the upper rebar 2 and the lower rebar 3 are the measurement objects, the two verification electrodes 10 </ b> A and 10 </ b> B are used, but the upper rebar 2 and the lower rebar are used. When a reinforcing bar (not shown) with a height between 3 is also a measurement object, the number of verification electrodes is 3 or more. As described above, the reinforcing bar corrosion measuring method of the present embodiment copes with an increase in the number of reinforcing bars having different heights to be measured in the concrete structure 1 without changing the number of perforations 6 to be provided. Is possible.

以上、新設または既設のコンクリート構造物の鉄筋腐食測定方法を述べたが、本発明の鋼材電位測定装置は、電気防食工法において、鋼材の電位を測定して効果を確認するための手段としても利用することが可能である。   As mentioned above, the method for measuring the rebar corrosion of a newly installed or existing concrete structure has been described. The steel potential measuring apparatus of the present invention is also used as a means for measuring the potential of a steel material and confirming the effect in the cathodic protection method. Is possible.

1…コンクリート構造物
2、3…鉄筋
6…穿孔
7…補修材
10…照合電極束
10A、10B…照合電極
11A、11B…ライン電極
12A、12B…絶縁被覆
13A、13B…先端部分
DESCRIPTION OF SYMBOLS 1 ... Concrete structure 2, 3 ... Rebar 6 ... Perforation 7 ... Repair material 10 ... Collation electrode bundle 10A, 10B ... Collation electrode 11A, 11B ... Line electrode 12A, 12B ... Insulation coating 13A, 13B ... Tip part

Claims (1)

コンクリート構造物内の異なる高さに配設された複数の鋼材の電位を測定するにあたり、
ワイヤ状のライン電極とこのライン電極を被覆する絶縁被覆を各々有する複数の照合電極を束ねた照合電極束を、各々の前記照合電極の先端部分の前記絶縁被覆を除去して前記ライン電極を露出させ、かつ各々の前記先端部分の高さを別々の前記鋼材の高さに合わせて前記コンクリート構造物内に埋め込み、個々の前記照合電極と基準電極との電位差を各々測定する
鋼材電位測定方法。
In measuring the potential of multiple steel materials arranged at different heights in a concrete structure,
A collating electrode bundle formed by bundling a plurality of collating electrodes each having a wire-shaped line electrode and an insulating coating covering the line electrode is removed, and the line electrode is exposed by removing the insulating coating from the tip portion of each collating electrode. And the height of each of the tip portions is embedded in the concrete structure in accordance with the height of the separate steel material, and the potential difference between each of the reference electrode and the reference electrode is measured.
JP2016128680A 2016-06-29 2016-06-29 Steel potential measurement method Active JP6640664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128680A JP6640664B2 (en) 2016-06-29 2016-06-29 Steel potential measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128680A JP6640664B2 (en) 2016-06-29 2016-06-29 Steel potential measurement method

Publications (2)

Publication Number Publication Date
JP2018004348A true JP2018004348A (en) 2018-01-11
JP6640664B2 JP6640664B2 (en) 2020-02-05

Family

ID=60945994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128680A Active JP6640664B2 (en) 2016-06-29 2016-06-29 Steel potential measurement method

Country Status (1)

Country Link
JP (1) JP6640664B2 (en)

Also Published As

Publication number Publication date
JP6640664B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
CA2969114C (en) Sacrificial anode construction including a wire for connection to a steel member in concrete for cathodic protection
JP2018004348A (en) Steel material potential measuring method
US7731875B2 (en) Sacrificial anodes in concrete patch repair
JP6756466B2 (en) Corrosion sensor and corrosion detection method
JP6691384B2 (en) Corrosion sensor and corrosion detection method
JP2014013173A (en) Metal corrosion testing device and metal corrosion testing method
JP6682348B2 (en) Method of accelerating corrosion of reinforcing bars in reinforced concrete columns and method of making utility poles for evaluation using the method
JP6652456B2 (en) Steel potential measurement method
KR101999313B1 (en) Ground contact part integral power pole
JP5946867B2 (en) Method for identifying corrosion location of steel material in concrete structure and potential difference measuring device for identifying corrosion location
NO20003386L (en) Connecting device for use in cathodic protection and method for its use
JP2019066300A (en) Method for detecting effects of electrolytic protection
JP6353733B2 (en) Spacer member having anti-corrosion function for steel in concrete and installation method thereof
JP5418407B2 (en) Construction method for concrete structures
JP2018004347A (en) Steel material potential measurement method
JP6784620B2 (en) Capacitive corrosion sensor
CN202957353U (en) Zinc-coated copper covered steel anode anticorrosion lightning protection and antistatic instrument and electrical ground system
JP2017179467A (en) Electrical protection structure for reinforced concrete structure and method for measuring effect of the same
JP2017128769A (en) Sacrificial anode unit and electric protection structure of concrete structure using the same
JP6764815B2 (en) How to check the soundness of the corrosion sensor
CN205582530U (en) Embossing alloy sheath railway through ground wire
KR20200051958A (en) Ground apparatus
RU2609121C2 (en) Method of underground structure steel section protection against electrochemical corrosion in aggressive environment
JP2015038824A (en) Rat-proof cable
JP4186219B2 (en) Anode device for cathodic protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6640664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350