JP2018003542A - Geothermal snow-melting facility - Google Patents

Geothermal snow-melting facility Download PDF

Info

Publication number
JP2018003542A
JP2018003542A JP2016135190A JP2016135190A JP2018003542A JP 2018003542 A JP2018003542 A JP 2018003542A JP 2016135190 A JP2016135190 A JP 2016135190A JP 2016135190 A JP2016135190 A JP 2016135190A JP 2018003542 A JP2018003542 A JP 2018003542A
Authority
JP
Japan
Prior art keywords
heat
geothermal
end side
radiator
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016135190A
Other languages
Japanese (ja)
Inventor
耕平 三分一
Kohei Miwakeichi
耕平 三分一
弘一 米倉
Koichi Yonekura
弘一 米倉
耕二 森本
Koji Morimoto
耕二 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2016135190A priority Critical patent/JP2018003542A/en
Publication of JP2018003542A publication Critical patent/JP2018003542A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Road Paving Structures (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a geothermal snow-melting facility requiring no electricity or water, which can be easily installed.SOLUTION: A geothermal snow-melting facility includes a plurality of thermally conductive rods 2 in a rod shape having a high thermal conductivity, which extend in the vertical direction to be installed in a ground G for conducting the geothermal heat collected at the lower end side 21 to the upper end side 22, and a radiator 3 having a high thermal conductivity, which is connected to the upper end side 22 of the thermally conductive rods 2 and disposed along the ground surface G1 so as to radiate the geothermal heat conducted from the thermally conductive rods 2.SELECTED DRAWING: Figure 2

Description

この発明は、雪を融かす融雪設備に関し、特に、地熱によって雪を融かす地熱式融雪設備に関する。   The present invention relates to a snow melting facility for melting snow, and more particularly to a geothermal snow melting facility for melting snow by geothermal heat.

例えば、電力施設において降雪があった場合、通路やフェンス扉周辺などを除雪機や人力で除雪しなければならず、多大な時間と労力とを要していた。そこで、除雪を不要にするために、電気による熱で雪を融かす融雪装置(例えば、特許文献1参照。)や、ポンプで汲み上げた流水を利用して雪を融かす融雪装置(例えば、特許文献2参照。)が知られている。   For example, when there is snow in an electric power facility, it has been necessary to remove snow around a passageway and fence doors with a snow remover and human power, which requires a lot of time and labor. Therefore, in order to eliminate the need for snow removal, a snow melting device that melts snow with heat generated by electricity (see, for example, Patent Document 1) and a snow melting device that melts snow using running water pumped by a pump (for example, patents). Reference 2) is known.

また、地熱を利用した融雪システムが知られている(例えば、特許文献3参照。)。すなわち、地中に人工熱源が埋設され、この人工熱源の直下から地盤までの間に、人工熱源の不作動時には地熱を吸収して蓄熱すると共に、人工熱源の作動時にはそれから放出される熱エネルギーの一部を吸収して蓄熱する蓄熱層が積層されている。また、この蓄熱層から地面までに、高熱伝導材が混入されて蓄熱層より熱伝導特性および熱放射特性に優れた放熱層が積層されているものである。   In addition, a snow melting system using geothermal heat is known (see, for example, Patent Document 3). In other words, an artificial heat source is buried in the ground, and from immediately below this artificial heat source to the ground, it absorbs geothermal heat when the artificial heat source is inactive and stores heat, and when the artificial heat source is activated, the heat energy released from it is stored. A heat storage layer that absorbs part of the heat and stores it is stacked. In addition, a high heat conductive material is mixed from the heat storage layer to the ground, and a heat dissipation layer having better heat conduction characteristics and heat radiation characteristics than the heat storage layer is laminated.

特開昭56−99991号公報JP 56-999991 A 特開昭57−1230612号公報JP 57-1230612 A 特開平11−222803号公報JP-A-11-222803

ところで、特許文献1に記載の融雪装置では、電気が必要なため、電気が供給されていない山間部などでは適用することができない。同様に、特許文献2に記載の融雪装置では、流水が必要なため、水道水や谷水、地下水などの水源がない場所では適用することができず、適用場所が限定される。しかも、融雪装置の配水管などが凍結して使用できない場合も生じ得る。さらに、特許文献1、2に記載の融雪装置では、電気代や水道代などのランニングコストがかかる。   By the way, in the snow melting apparatus of patent document 1, since electricity is required, it cannot apply in the mountain part etc. to which electricity is not supplied. Similarly, in the snow melting apparatus described in Patent Document 2, since running water is required, it cannot be applied in a place where there is no water source such as tap water, valley water, or groundwater, and the application place is limited. In addition, the water distribution pipe of the snow melting device may freeze and cannot be used. Furthermore, in the snow melting apparatus described in Patent Documents 1 and 2, running costs such as electricity bills and water bills are required.

また、特許文献3に記載の融雪システムでは、地中に人工熱源(電気ヒータ等)を埋設して、人工熱源の直下から地盤までの間に蓄熱層を積層し、さらに、蓄熱層から地面までに放熱層を積層しなければならない。このため、設置に大掛かりな工事を要し、多大な費用を要するばかりでなく、周囲の環境などによっては適用できない場合も生じ得る。   Further, in the snow melting system described in Patent Document 3, an artificial heat source (such as an electric heater) is embedded in the ground, and a heat storage layer is stacked between the area immediately below the artificial heat source and the ground, and further, from the heat storage layer to the ground. A heat dissipation layer must be laminated on the surface. For this reason, not only a large construction is required for installation, but also a great expense is required, and it may not be applicable depending on the surrounding environment.

そこでこの発明は、電気や水が不要で設置が容易な地熱式融雪設備を提供することを目的とする。   Therefore, an object of the present invention is to provide a geothermal snow melting facility that does not require electricity or water and is easy to install.

上記課題を解決するために、請求項1の発明は、棒状で高熱伝導性を有し、上下方向に延びて地中に埋設され、下端側で集熱した地熱を上端側に伝導する複数の熱伝導棒と、高熱伝導性を有し、前記熱伝導棒の上端側に接続され、地表に沿って配設され、前記熱伝導棒から伝導された地熱を放熱する放熱体と、を備えることを特徴とする地熱式融雪設備である。   In order to solve the above-mentioned problems, the invention of claim 1 is a rod-like and has high thermal conductivity, extends in the vertical direction, is buried in the ground, and conducts geothermal heat collected at the lower end side to conduct to the upper end side. A heat conduction rod, and a heat radiator that has high thermal conductivity, is connected to the upper end side of the heat conduction rod, is disposed along the ground surface, and dissipates the geothermal heat conducted from the heat conduction rod. This is a geothermal snow melting facility characterized by

この発明によれば、複数の熱伝導棒で集熱された地熱が、放熱体に伝導されて放熱体から放熱され、この地熱によって地表の雪が融ける。   According to this invention, the geothermal heat collected by the plurality of heat conducting rods is conducted to the heat radiating body and radiated from the heat radiating body, and the ground snow melts by this geothermal heat.

請求項2の発明は、請求項1に記載の地熱式融雪設備において、前記熱伝導棒の外周面は、下端側を除いて断熱材で覆われている、ことを特徴とする。   According to a second aspect of the present invention, in the geothermal snow melting facility according to the first aspect, the outer peripheral surface of the heat conducting rod is covered with a heat insulating material except for the lower end side.

請求項3の発明は、請求項1または2に記載の地熱式融雪設備において、前記放熱体は、地熱を放熱する複数の棒状の放熱棒が格子状に配設されて構成されている、ことを特徴とする。   According to a third aspect of the present invention, in the geothermal snow melting facility according to the first or second aspect, the heat radiator is configured by arranging a plurality of rod-shaped heat radiation rods that dissipate geothermal heat in a grid pattern. It is characterized by.

請求項1の発明によれば、地熱によって地表の雪を融かすため、電気や水が不要で、多様な場所に適用することができるとともに、ランニングコストを低減することができる。また、複数の熱伝導棒を地中に埋設して、地表に沿って放熱体を配設するだけでよいため、設置が容易で、設置費用を低く抑えることが可能となるとともに、多様な場所に適用することが可能となる。   According to the invention of claim 1, since snow on the surface is melted by geothermal heat, electricity and water are unnecessary, and it can be applied to various places and the running cost can be reduced. In addition, since it is only necessary to embed a plurality of heat conduction rods in the ground and dispose a radiator along the surface of the earth, it is easy to install and can reduce installation costs. It becomes possible to apply to.

請求項2の発明によれば、熱伝導棒の外周面が下端側を除いて断熱材で覆われているため、熱伝導棒の下端側で集熱された地熱が効率的・効果的に上端側および放熱体に伝導され、効果的に雪を融かすことができる。   According to the invention of claim 2, since the outer peripheral surface of the heat conducting rod is covered with the heat insulating material except for the lower end side, the geothermal heat collected on the lower end side of the heat conducting rod is efficiently and effectively upper end. Conducted by the side and the radiator, it can effectively melt snow.

請求項3の発明によれば、複数の放熱棒が格子状に配設されて放熱体が構成されているため、少ない材料で効果的に地熱を放熱することが可能となる。また、複数の放熱棒を連結自在にすることで、放熱棒の配設位置(レイアウト)を変えるだけで容易に、設置場所や周囲環境に適合した放熱体を構成することができ、利便性や自由度が高い。また、一部の放熱棒が損傷した場合には、その放熱棒のみを修理、交換等すればよいため、低費用で迅速かつ適正に対応することが可能となる。   According to the third aspect of the present invention, since the heat radiating body is configured by arranging the plurality of heat radiating rods in a lattice shape, it is possible to effectively radiate geothermal heat with a small amount of material. In addition, by making it possible to connect multiple heatsinks, it is possible to easily configure a heatsink suitable for the installation location and the surrounding environment simply by changing the location (layout) of the heatsink. High degree of freedom. Further, when some of the heat radiating rods are damaged, only the heat radiating rods need to be repaired or replaced, so that it is possible to respond quickly and appropriately at low cost.

この発明の実施の形態1に係る地熱式融雪設備を示す平面図である。1 is a plan view showing a geothermal snow melting facility according to Embodiment 1 of the present invention. 図1の地熱式融雪設備を示す断面図(側面図)である。It is sectional drawing (side view) which shows the geothermal snow-melting equipment of FIG. 図1の地熱式融雪設備において放熱棒同士を連結する、第1の例(a)と第2の例(b)を示す概略平面図である。It is a schematic plan view which shows the 1st example (a) and the 2nd example (b) which connect a radiation stick in the geothermal snow melting equipment of FIG. 図1の地熱式融雪設備において放熱体と熱伝導棒とを接続する、第1の例(a)と第2の例(b)を示す概略側面図である。It is a schematic side view which shows the 1st example (a) and 2nd example (b) which connect a heat radiator and a heat-conducting rod in the geothermal snow melting equipment of FIG. この発明の実施の形態2に係る地熱式融雪設備を示す平面図(a)と、そのA−A断面図(b)である。It is the top view (a) which shows the geothermal-type snow melting facility which concerns on Embodiment 2 of this invention, and its AA sectional drawing (b).

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

(実施の形態1)
図1および図2は、この実施の形態に係る地熱式融雪設備1を示す平面図と断面図である。この地熱式融雪設備1は、地熱によって雪Sを融かす設備であり、主として、複数の熱伝導棒2と放熱体3とを備える。
(Embodiment 1)
FIG. 1 and FIG. 2 are a plan view and a cross-sectional view showing a geothermal snow melting facility 1 according to this embodiment. The geothermal snow melting facility 1 is a facility that melts snow S by geothermal heat, and mainly includes a plurality of heat conducting rods 2 and a radiator 3.

熱伝導棒2は、棒状で高熱伝導性を有し、上下方向に延びて地中Gに埋設され、下端側21で集熱した地熱を上端側22に伝導するものである。すなわち、この実施の形態では、高い熱伝導性を有する銅やカーボンナノチューブで構成された丸棒体で、垂直に延びて地中Gに埋設され、上端側22の端面が地表G1近くに位置している。この熱伝導棒2の長さ、つまり、下端側21の深さは、周囲の地熱で地表G1の雪Sを融かせるように設定されており、例えば、下端側21の端面が地表G1から5mの深さに設定されている。   The heat conduction rod 2 has a rod shape and high thermal conductivity, extends in the vertical direction, is buried in the underground G, and conducts the geothermal heat collected at the lower end side 21 to the upper end side 22. That is, in this embodiment, it is a round bar made of copper or carbon nanotubes having high thermal conductivity, extends vertically and is buried in the underground G, and the end face of the upper end side 22 is located near the ground surface G1. ing. The length of the heat conduction rod 2, that is, the depth of the lower end side 21 is set so that the snow S on the ground surface G1 is melted by the surrounding geothermal heat. For example, the end surface of the lower end side 21 is 5 m from the ground surface G1. Set to a depth of.

また、この実施の形態では、下端側21の断面(外径)は、他の部分である伝導部よりも大きく、この下端側21の断面と長さ(集熱面積)は、集熱部である下端側21で集熱した地熱で地表G1の雪Sを融かせるように設定されており、例えば、下端側21の外径が10cmで長さが1mに設定されている。そして、下端側21で集熱した地熱が中央部を介して上端側22に伝導される。   Moreover, in this embodiment, the cross section (outer diameter) of the lower end side 21 is larger than that of the conductive portion which is another portion, and the cross section and length (heat collection area) of the lower end side 21 are the heat collection portion. It is set so that the snow S on the ground surface G1 is melted by the geothermal heat collected at a certain lower end side 21, for example, the outer diameter of the lower end side 21 is set to 10 cm and the length is set to 1 m. Then, the geothermal heat collected at the lower end side 21 is conducted to the upper end side 22 through the central portion.

このような熱伝導棒2の外周面は、下端側21を除いて断熱材4で覆われている。すなわち、下端側21で集熱された地熱が外部に逃げずに効率的に放熱体3に伝達されるように、熱伝導棒2の伝導部である中央部と上端側22の外周面が、発泡スチロールやグラスウールなどの断熱材4で覆われている。さらに、断熱材4が硬質のカバー(図示せず)で覆われて、熱伝導棒2と断熱材4とが一体的に構成され、埋設や搬送などの取り扱いがしやすいようになっている。   The outer peripheral surface of the heat conducting rod 2 is covered with the heat insulating material 4 except for the lower end side 21. That is, the outer peripheral surface of the central portion and the upper end side 22 of the conductive portion of the heat conducting rod 2 so that the geothermal heat collected at the lower end side 21 is efficiently transmitted to the radiator 3 without escaping to the outside. It is covered with a heat insulating material 4 such as polystyrene foam or glass wool. Furthermore, the heat insulating material 4 is covered with a hard cover (not shown), and the heat conducting rod 2 and the heat insulating material 4 are integrally formed so that handling such as embedding and transportation is easy.

放熱体3は、高熱伝導性、高熱放射性を有し、熱伝導棒2の上端側22に接続され、地表G1に沿って配設され、熱伝導棒2から伝導された地熱を放熱するものであり、地熱を放熱する複数の棒状の放熱棒31が格子状に配設されて構成されている。すなわち、この実施の形態では、高い熱伝導性つまり放熱性を有する銅やカーボンナノチューブで構成された角棒状の放熱棒31が、縦横に複数配設されて四角い升目の格子が形成され、さらに、対角線上に沿って放熱棒31が配設されて、格子板状の放熱体3が構成されている。   The radiator 3 has high thermal conductivity and high thermal radiation, is connected to the upper end side 22 of the thermal conduction rod 2, is disposed along the ground surface G1, and radiates the geothermal heat conducted from the thermal conduction rod 2. A plurality of rod-shaped heat radiation rods 31 that radiate geothermal heat are arranged in a grid pattern. That is, in this embodiment, a plurality of rectangular bar-shaped heat dissipation rods 31 made of copper or carbon nanotubes having high thermal conductivity, that is, heat dissipation, are arranged vertically and horizontally to form a square lattice grid, A radiator rod 31 is disposed along the diagonal line to constitute a lattice plate-like radiator 3.

ここで、別体である放熱棒31を組み合わせて(連結して)放熱体3を構成してもよいし、複数の放熱棒31から成る放熱体3を一体的に構成してもよいが、この実施の形態では、別体である放熱棒31を連結して放熱体3が構成されている。すなわち、銅やカーボンナノチューブの長尺体を所望の長さに切断して各放熱棒31を製作し、放熱棒31同士を連結・接合して放熱体3が構成されている。   Here, the heat radiating body 3 may be configured by combining (connecting) the heat radiating bars 31 as separate bodies, or the heat radiating body 3 including the plurality of heat radiating bars 31 may be integrally configured. In this embodiment, the radiator 3 is configured by connecting a separate radiator rod 31. That is, the heat radiator 3 is configured by cutting each long body of copper or carbon nanotube into a desired length to produce each heat dissipating rod 31 and connecting and joining the heat dissipating rods 31 to each other.

ここで、放熱棒31同士の連結・接合は、どのようなものであってもよいが、例えば、図3(a)に示すように、放熱棒31の側面同士を連結具51を介してボルト(締結部材)で着脱自在に連結してもよい。また、図3(b)に示すように、放熱棒31の平面(上面または下面であり、図では下面を示す)同士を連結具52を介してボルトで着脱自在に連結してもよい。あるいは、接合剤で放熱棒31同士を接合してもよい。   Here, the connecting and joining of the heat radiating bars 31 may be of any type. For example, as shown in FIG. 3A, the side surfaces of the heat radiating bars 31 are bolted via a connector 51. (Fastening member) may be detachably connected. Further, as shown in FIG. 3B, the flat surfaces (the upper surface or the lower surface, and the lower surface is shown in the drawing) of the heat dissipating rods 31 may be detachably connected with a bolt via a connector 52. Alternatively, the heat radiating bars 31 may be joined together with a joining agent.

このような放熱体3が各熱伝導棒2の上端側22の端面に接続され、放熱体3の上面が地表G1に沿うように配設されている。ここで、放熱体3と各熱伝導棒2との接続は、どのようなものであってもよく、接合剤で接合したり、連結具を介して連結したり、嵌合や係合によって連結したりしてもよい。例えば、図4(a)に示すように、放熱棒31の下面と熱伝導棒2の側面を連結具61を介してボルトで着脱自在に連結してもよいし、図4(b)に示すように、放熱棒31の下面に設けた嵌合穴62に、熱伝導棒2の上端面に設けた凸部63を着脱自在に嵌合させてもよい。   Such a radiator 3 is connected to the end face of the upper end side 22 of each heat conducting rod 2, and the upper surface of the radiator 3 is disposed along the ground surface G1. Here, the connection between the heat radiating body 3 and each of the heat conducting rods 2 may be any type, and may be connected by a bonding agent, connected through a connecting tool, or connected by fitting or engaging. You may do it. For example, as shown in FIG. 4A, the lower surface of the heat dissipating rod 31 and the side surface of the heat conducting rod 2 may be detachably connected with a bolt via a connector 61, or as shown in FIG. As described above, the protrusion 63 provided on the upper end surface of the heat conducting rod 2 may be detachably fitted in the fitting hole 62 provided on the lower surface of the heat radiating rod 31.

また、地表G1とは、上から降ってきた雪Sが当たる表面(降雪面)であり、地面に限らず建物のエントランスや舗装された通路などを含む。つまり、地熱式融雪設備1で融かしたい雪Sが積もる場所の表面である。   The ground surface G1 is a surface (snow surface) on which snow S falling from above hits, and includes not only the ground but also the entrance of a building, a paved passage, and the like. That is, the surface of the place where the snow S to be melted by the geothermal snow melting facility 1 is accumulated.

さらに、放熱体3の上面には、人が歩いたりするための天板(図示せず)が敷設されている。そして、熱伝導棒2から伝導された地熱が放熱体3から外部・周囲に放熱されるものであり、放熱棒31の大きさと配設数(放熱体3の放熱面積)は、放熱体3から放熱される地熱で地表G1(放熱体3の天板上)の雪Sを融かせるように設定されている。   Furthermore, a top plate (not shown) for a person to walk is laid on the upper surface of the radiator 3. And the geothermal heat conducted from the heat conducting rod 2 is radiated from the radiator 3 to the outside and the surroundings. The size and number of the radiator rods 31 (the heat radiation area of the radiator 3) are It is set so that the snow S on the ground surface G1 (on the top plate of the radiator 3) is melted by the radiated heat.

具体的には、まず、このような放熱体3からの放熱によって雪Sを融かせるように、単位面積あたりの熱伝導棒2の配設数が設定されている。例えば、熱伝導棒2がカーボンナノチューブ製で下端側21の外径を10cmとした場合、次のようにして算出、設定する。   Specifically, first, the number of the heat conductive rods 2 arranged per unit area is set so that the snow S is melted by the heat radiation from the heat radiator 3. For example, when the heat conducting rod 2 is made of carbon nanotubes and the outer diameter of the lower end side 21 is 10 cm, calculation and setting are performed as follows.

1本の熱伝導棒2に伝わる熱量Qは、次式で求められる。
Q=λ×S×(TH−TL)÷L
λ:熱伝導率(カーボンナノチューブの場合5,500W/(m・K))
S:熱伝導棒2の断面積(0.0079m
TH:高い方の温度(下端側21の温度で、10℃とする)
TL:低い方の温度(地表G1側の温度で、0°とする)
L:熱伝導棒2の長さ(5mとする)
Q=5,500×0.0079×(10−0)÷5=86.9J
=20.77cal/本
The amount of heat Q transmitted to one heat conducting rod 2 is obtained by the following equation.
Q = λ × S × (TH−TL) ÷ L
λ: thermal conductivity (5,500 W / (m · K) for carbon nanotube)
S: cross-sectional area of the heat conducting rod 2 (0.0079 m 2 )
TH: Higher temperature (the temperature at the lower end 21 is 10 ° C.)
TL: Lower temperature (temperature on the ground surface G1 side, 0 °)
L: Length of the heat conduction rod 2 (assumed to be 5 m)
Q = 5,500 × 0.0079 × (10−0) ÷ 5 = 86.9J
= 20.77 cal / book

1mに1時間で1cm積もる雪を融かすのに必要な熱量QLは、次式で求められる。
QL=80,000cal×M=80,000cal×(ρ×R)
80,000:氷の融解熱
M:単位面積当たりの降雪量
ρ:新雪の密度(60kg/mとする)
R:降雪量(0.01m/h)
QL=80,000×(60×0.01)=48,000cal
Heat QL required to comb the 1cm piled up snow 1 hour 1 m 2 is obtained by the following equation.
QL = 80,000 cal × M = 80,000 cal × (ρ × R)
80,000: Heat of melting of ice M: Amount of snowfall per unit area ρ: Density of fresh snow (assumed to be 60 kg / m 3 )
R: Snowfall (0.01m / h)
QL = 80,000 × (60 × 0.01) = 48,000cal

これを、熱伝導棒2の断面積当たりの熱量に換算すると、
48,000cal×0.0079m=379.2cal
従って、1mに1時間で1cm積もる雪を融かすのに必要な熱伝導棒2の本数は、
379.2cal÷20.77cal/本=18.26≒20本/m となる。
When this is converted into the amount of heat per sectional area of the heat conducting rod 2,
48,000 cal × 0.0079 m 2 = 379.2 cal
Therefore, the number of the heat conducting rods 2 necessary for melting snow that accumulates 1 cm per 1 m 2 in 1 hour is:
379.2 cal ÷ 20.77 cal / line = 18.26≈20 lines / m 2 .

そして、このような配設数の熱伝導棒2から放熱体3に伝導された地熱で雪Sを融かせるように、放熱棒31の大きさ(断面積、表面積)や配設数、配設位置が算出、設定されている。   And the size (cross-sectional area, surface area), the number of arrangements, and the arrangement of the radiation bars 31 so that the snow S is melted by the geothermal heat conducted from the heat conduction bars 2 with the number of arrangements to the radiator 3. The position is calculated and set.

このような構成の地熱式融雪設備1によれば、複数の熱伝導棒2の下端側21で集熱された地熱が、放熱体3に伝導されて放熱体3から放熱され、この地熱によって地表G1(放熱体3上)の雪Sが融ける。   According to the geothermal snow melting facility 1 having such a configuration, the geothermal heat collected on the lower end side 21 of the plurality of heat conducting rods 2 is conducted to the heat radiating body 3 and is radiated from the heat radiating body 3, and the ground surface is heated by this geothermal heat. The snow S on G1 (on the radiator 3) melts.

このように、地熱によって地表G1の雪Sを融かすため、電気や水が不要で、多様な場所に適用することができるとともに、ランニングコストを低減することができる。また、熱伝導棒2の外周面が下端側21を除いて断熱材4で覆われているため、熱伝導棒2の下端側21で集熱された地熱が効率的・効果的に上端側22および放熱体3に伝導され、効果的に雪Sを融かすことができる。そして、このような地熱式融雪設備1を電力施設の通路やフェンス扉周辺などに設けることで、緊急時に迅速かつ適正、円滑に対応することが可能となる。   Thus, since the snow S on the ground surface G1 is melted by geothermal heat, electricity and water are unnecessary, and it can be applied to various places, and the running cost can be reduced. Moreover, since the outer peripheral surface of the heat conducting rod 2 is covered with the heat insulating material 4 except for the lower end side 21, the geothermal heat collected on the lower end side 21 of the heat conducting rod 2 is efficiently and effectively the upper end side 22. And it is conducted to the radiator 3 and the snow S can be melted effectively. And by providing such a geothermal snow melting facility 1 around the passage of electric power facilities, fence doors, etc., it becomes possible to respond quickly, appropriately and smoothly in an emergency.

一方、複数の熱伝導棒2を地中Gに埋設して、地表G1に沿って放熱体3を配設するだけでよいため、設置が容易で、設置費用を低く抑えることが可能となるとともに、多様な場所に適用することが可能となる。すなわち、ドリルなどで地中Gに埋設孔を掘って(削孔して)熱伝導棒2を埋設すればよいため、地中Gを広く深く掘り返す必要がなく、容易に低費用で設置が行え、かつ、適用が周囲環境などによって制約されるということが軽減される。しかも、電気や水が不要で構成が簡易なため、故障の発生が低減され、メンテナンス費用を軽減することができる。   On the other hand, since it is only necessary to embed a plurality of heat conducting rods 2 in the underground G and dispose the radiator 3 along the ground surface G1, the installation is easy and the installation cost can be kept low. It becomes possible to apply to various places. In other words, since it is only necessary to dig a buried hole in the underground G with a drill or the like to embed the heat conduction rod 2, it is not necessary to dig up the underground G widely and deeply, and it can be easily installed at low cost. And it is reduced that the application is restricted by the surrounding environment or the like. Moreover, since electricity and water are not required and the configuration is simple, the occurrence of failures can be reduced, and maintenance costs can be reduced.

また、複数の放熱棒31が格子状に配設されて放熱体3が構成されているため、少ない材料で効果的に地熱を放熱することが可能となる。すなわち、表面積を増やして効果的に地熱を放熱することが可能で、全面にカーボンナノチューブなどを敷き詰める場合に比べて材料を抑えることができる。また、複数の放熱棒31が連結されて放熱体3が構成されているため、放熱棒31の配設位置(レイアウト)を変えるだけで容易に、設置場所や周囲環境に適合した放熱体3を構成することができ、利便性や自由度が高い。また、一部の放熱棒31が損傷した場合には、その放熱棒31のみを修理、交換等すればよいため、低費用で迅速かつ適正に対応することが可能となる。   In addition, since the radiator 3 is configured by arranging the plurality of radiator rods 31 in a lattice shape, it is possible to effectively radiate geothermal heat with a small amount of material. That is, it is possible to effectively dissipate geothermal heat by increasing the surface area, and the material can be suppressed as compared with the case where carbon nanotubes are spread over the entire surface. In addition, since the radiator 3 is configured by connecting the plurality of radiator rods 31, the radiator 3 suitable for the installation location and the surrounding environment can be easily changed by simply changing the arrangement position (layout) of the radiator rod 31. It can be configured and has high convenience and flexibility. Further, when some of the heat radiating rods 31 are damaged, only the heat radiating rods 31 need be repaired or replaced, so that it is possible to respond quickly and appropriately at low cost.

ところで、夏季などで外気温度が地熱温度よりも高い場合、放熱体3から熱伝導棒2に向って熱が伝導される。つまり、外気の熱が地中Gに伝導され、冷房効果を得ることができる。このため、例えば、作業が頻繁に行われる場所などにこの地熱式融雪設備1を設けることで、熱中症などを抑制することができる。   By the way, when the outside air temperature is higher than the geothermal temperature in summer or the like, heat is conducted from the radiator 3 toward the heat conducting rod 2. That is, the heat of the outside air is conducted to the underground G, and a cooling effect can be obtained. For this reason, for example, heat stroke etc. can be suppressed by providing this geothermal type snow melting facility 1 in the place where work is frequently performed.

(実施の形態2)
図5は、この実施の形態に係る地熱式融雪設備10を示す平面図(a)と、そのA−A断面図(b)である。この実施の形態では、放熱体3の形状が実施の形態1と異なり、実施の形態1と同等の構成については、同一符号を付することでその説明を省略する。
(Embodiment 2)
FIG. 5 is a plan view (a) showing the geothermal snow melting facility 10 according to this embodiment, and an AA cross-sectional view (b) thereof. In this embodiment, the shape of the heat radiating body 3 is different from that of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

この実施の形態の放熱体3は、平板状で、地熱を放熱する複数のパネル状(平板状)の放熱板35が、同一水平面上に配設されて構成されている。すなわち、放熱板35は、平面形状が略長方形で、下面の中央部に熱伝導棒2の上端側22を嵌合、接続するための嵌合穴35bが形成されている。また、放熱板35の対向する一対の側辺部には、段差部35aが形成され、隣接する放熱板35の段差部35a同士を重ねることで、複数の放熱板35が隙間なくかつずれることなく同一水平面上に配設されるようになっている。   The radiator 3 of this embodiment is a flat plate, and a plurality of panel-like (flat plate) heat radiating plates 35 that radiate geothermal heat are arranged on the same horizontal plane. That is, the heat radiation plate 35 has a substantially rectangular planar shape, and a fitting hole 35b for fitting and connecting the upper end side 22 of the heat conducting rod 2 is formed at the center of the lower surface. In addition, a stepped portion 35a is formed on a pair of opposite side portions of the heat radiating plate 35, and the stepped portions 35a of the adjacent radiating plates 35 are overlapped with each other so that the plurality of radiating plates 35 do not have a gap and are not displaced. They are arranged on the same horizontal plane.

このような放熱板35が融雪エリアに応じて所望数配設されて放熱体3が構成され、放熱体3が地表G1に沿って配設されている。また、各放熱板35の嵌合穴35bに熱伝導棒2の上端側22が嵌合されて、各熱伝導棒2と放熱体3とが接続されている。   A desired number of such heat radiating plates 35 are arranged in accordance with the snow melting area to form the heat radiating body 3, and the heat radiating body 3 is arranged along the ground surface G1. Further, the upper end side 22 of the heat conducting rod 2 is fitted into the fitting hole 35 b of each heat radiating plate 35, and each heat conducting rod 2 and the radiator 3 are connected.

このような実施の形態によれば、放熱体3が平板状で隙間を有さないため、熱伝導棒2からの地熱が放熱体3の全面にわたって平均的に伝導され、地表G1(放熱体3上)の雪Sをくまなく均等に融かすことが可能となる。   According to such an embodiment, since the radiator 3 is flat and does not have a gap, the ground heat from the heat conducting rod 2 is conducted on the entire surface of the radiator 3 on an average, and the ground surface G1 (the radiator 3). It becomes possible to melt the snow S of the top) evenly.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、熱伝導棒2と放熱体3を銅やカーボンナノチューブで構成しているが、その他の高熱伝導性材料で構成してもよく、また、銅とカーボンナノチューブなどを組み合わせて構成してもよい。例えば、主体をカーボンナノチューブで構成し、外殻や連結部など強度・剛性を要する部分を銅で構成してもよい。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the heat conducting rod 2 and the heat radiating body 3 are made of copper or carbon nanotubes, but may be made of other highly heat conductive materials, and copper and carbon nanotubes may be made of You may comprise combining. For example, the main body may be composed of carbon nanotubes, and the parts requiring strength and rigidity such as outer shells and connecting portions may be composed of copper.

1、10 地熱式融雪設備
2 熱伝導棒
21 下端側(集熱部)
22 上端側
3 放熱体
31 放熱棒
4 断熱材
S 雪
G 地中
G1 地表
1, 10 Geothermal snow melting equipment 2 Heat conduction rod 21 Lower end side (heat collecting part)
22 Upper end side 3 Radiator 31 Radiator 4 Heat insulation material S Snow G Underground G1 Ground surface

Claims (3)

棒状で高熱伝導性を有し、上下方向に延びて地中に埋設され、下端側で集熱した地熱を上端側に伝導する複数の熱伝導棒と、
高熱伝導性を有し、前記熱伝導棒の上端側に接続され、地表に沿って配設され、前記熱伝導棒から伝導された地熱を放熱する放熱体と、
を備えることを特徴とする地熱式融雪設備。
A plurality of heat conducting rods that have a high thermal conductivity in a rod shape, extend in the vertical direction and are embedded in the ground, and conduct geothermal heat collected at the lower end side to the upper end side;
A heat radiator having high thermal conductivity, connected to the upper end side of the heat conduction rod, arranged along the ground surface, and radiating the geothermal heat conducted from the heat conduction rod,
A geothermal snow melting facility characterized by comprising:
前記熱伝導棒の外周面は、下端側を除いて断熱材で覆われている、
ことを特徴とする請求項1に記載の地熱式融雪設備。
The outer peripheral surface of the heat conducting rod is covered with a heat insulating material except for the lower end side,
The geothermal snow melting facility according to claim 1.
前記放熱体は、地熱を放熱する複数の棒状の放熱棒が格子状に配設されて構成されている、
ことを特徴とする請求項1または2のいずれか1項に記載の地熱式融雪設備。
The radiator is configured by arranging a plurality of rod-shaped radiator rods that dissipate geothermal heat in a grid pattern,
The geothermal snow melting facility according to any one of claims 1 and 2.
JP2016135190A 2016-07-07 2016-07-07 Geothermal snow-melting facility Pending JP2018003542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135190A JP2018003542A (en) 2016-07-07 2016-07-07 Geothermal snow-melting facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135190A JP2018003542A (en) 2016-07-07 2016-07-07 Geothermal snow-melting facility

Publications (1)

Publication Number Publication Date
JP2018003542A true JP2018003542A (en) 2018-01-11

Family

ID=60947827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135190A Pending JP2018003542A (en) 2016-07-07 2016-07-07 Geothermal snow-melting facility

Country Status (1)

Country Link
JP (1) JP2018003542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230105123A (en) * 2022-01-03 2023-07-11 경북대학교 산학협력단 Ice and snow prevention system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230105123A (en) * 2022-01-03 2023-07-11 경북대학교 산학협력단 Ice and snow prevention system
KR102597648B1 (en) * 2022-01-03 2023-11-02 경북대학교 산학협력단 Ice and snow prevention system

Similar Documents

Publication Publication Date Title
US20070250025A1 (en) Composite structural/thermal mat system
JP2008025984A (en) Facility for storing and supplying solar/geothermal heat and method for supplying the same
CN104894944B (en) A kind of antifreeze road surface
JP2017015364A (en) Solar heat underground heat storage snow-melting system and its control method
JP5483673B2 (en) Data center cooling system
JP2018003542A (en) Geothermal snow-melting facility
JP2017032218A (en) Heat exchanger utilizing geothermal heat
JP6327648B2 (en) Water heat snow melting device, water heat snow melting system, and control method thereof
JP2008088652A (en) Snow-melting equipment
US20150009621A1 (en) Server tunnel
JP2015222154A (en) Heat radiation block and heat radiation system
JP4702556B2 (en) Solar heat underground heat storage method and equipment
JP2016023479A (en) Freezing preventive structure and freezing preventive sheet
KR20150109902A (en) A freezing removal system for road using solar photovoltaic power and electric conduction concrete
JP5269662B2 (en) Road thermoelectric power generation unit and system
JP3692355B2 (en) Snow melting equipment
JP2006307596A (en) Snow melting device of reinforced concrete floor slab bridge
JP3075530B2 (en) Snow melting system
KR20180080870A (en) A antifreezing divice for reducing the damages of freezing at tunnel lining
JP4052630B2 (en) Snow melting roof structure
JP5969851B2 (en) Building structure
CN104929015B (en) A kind of road body structure
Ryu et al. Small-Scale Experimental Study on Thermal Performance of Snow Melting System using Low Temperature Heat Source and Highly Thermal Conductive Concrete
TWI485303B (en) Electric heating structure for a structure
JP2013002237A (en) Road surface snow melting structure