JP2018003275A - Geothermal utilization system - Google Patents

Geothermal utilization system Download PDF

Info

Publication number
JP2018003275A
JP2018003275A JP2016126858A JP2016126858A JP2018003275A JP 2018003275 A JP2018003275 A JP 2018003275A JP 2016126858 A JP2016126858 A JP 2016126858A JP 2016126858 A JP2016126858 A JP 2016126858A JP 2018003275 A JP2018003275 A JP 2018003275A
Authority
JP
Japan
Prior art keywords
geothermal
steam
water
utilization system
separation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016126858A
Other languages
Japanese (ja)
Other versions
JP6694632B2 (en
Inventor
田 元 彰 盛
Motoaki Morita
田 元 彰 盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Marine Science and Technology NUC
Original Assignee
Tokyo University of Marine Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Marine Science and Technology NUC filed Critical Tokyo University of Marine Science and Technology NUC
Priority to JP2016126858A priority Critical patent/JP6694632B2/en
Publication of JP2018003275A publication Critical patent/JP2018003275A/en
Application granted granted Critical
Publication of JP6694632B2 publication Critical patent/JP6694632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a geothermal utilization system that suppresses precipitation of a scale on pipeline through which geothermal fluid flows and a heat exchanger and other external facilities, at the same time prolonging a maintenance frequency for the pipeline, etc.SOLUTION: A geothermal utilization system 1 according to an embodiment includes: an air-water separation tank 2 that separates a geothermal fluid that has flown out from an outlet port 11a of a geothermal fluid extraction pipe 11 into geothermal water and geothermal steam, at the same time maintaining carbon dioxide partial pressure of the geothermal steam at a partial pressure value of deaeration suppression or higher; and an aeration tank 3 for aerating the geothermal water that has flown in from the air-water separation tank 2 through a check valve 21, thus deaerating carbon dioxide contained in the geothermal water.SELECTED DRAWING: Figure 1

Description

本発明は、地熱利用システム、より詳しくは、源泉から取り出された地熱流体を利用するシステムに関する。   The present invention relates to a geothermal utilization system, and more particularly to a system that uses a geothermal fluid taken from a source.

従来、地中の源泉(生産井)から、地熱蒸気および地熱水を含む地熱流体を取り出し、地熱蒸気を発電等に利用する地熱利用システムが知られている(特許文献1参照)。また、地熱水を用いて低沸点媒体を加熱・蒸発させ、その蒸気でタービンを回すバイナリー発電を行う地熱利用システムも知られている。   Conventionally, a geothermal utilization system that takes out a geothermal fluid including geothermal steam and geothermal water from an underground source (production well) and uses the geothermal steam for power generation or the like is known (see Patent Document 1). In addition, a geothermal utilization system that performs binary power generation by heating and evaporating a low boiling point medium using geothermal water and rotating a turbine with the steam is also known.

特開2013−180912号公報JP2013-180912A

地熱利用システムでは、源泉から地熱流体を取り出す配管、地熱水を熱交換器等の外部設備に輸送する配管、および外部設備(以下、まとめて「配管等」ともいう。)の内壁にスケールが付着する。スケールとは、流体中に含まれる無機塩類が内壁に析出したもので、非常に硬く、水に溶けにくい性質を持つ。従来、地熱水のスケールとして、炭酸カルシウムやシリカが知られていたが、本発明者の研究により、ケイ酸マグネシウムもスケール成分に含まれることが明らかとなった。   In the geothermal utilization system, scales are provided on the inner wall of piping for extracting geothermal fluid from the source, piping for transporting geothermal water to external equipment such as a heat exchanger, and external equipment (hereinafter collectively referred to as “piping etc.”). Adhere to. The scale is a deposit of inorganic salts contained in the fluid on the inner wall, and is very hard and difficult to dissolve in water. Conventionally, calcium carbonate and silica have been known as scales for geothermal water. However, the inventors' research has revealed that magnesium silicate is also included in the scale components.

スケールが成長するに伴って配管や外部設備内の流路が狭くなるため、メンテナンスを行ってスケールを除去する必要がある。スケールの除去は、スケールを薬剤で溶かしたり、削り取ったり、叩き割る等の方法により行われる。いずれの方法を採るにせよ、メンテナンス中は配管等に流体を流すことができない。このため、例えば地熱流体を利用して発電を行う場合、メンテナンス期間中は運転を停止しなければならない。したがって、スケールの析出をできるだけ抑制することが求められている。   As the scale grows, the flow path in the piping and external equipment becomes narrower, so it is necessary to perform maintenance and remove the scale. The removal of the scale is performed by a method such as dissolving the scale with a chemical, scraping it, or crushing it. Regardless of which method is used, fluid cannot flow through the piping or the like during maintenance. For this reason, for example, when generating electricity using geothermal fluid, the operation must be stopped during the maintenance period. Therefore, it is required to suppress the precipitation of scale as much as possible.

そこで、本発明は、地熱流体が流れる配管や外部設備内にスケールが析出することを抑制し、配管等のメンテナンス周期を延ばすことが可能な地熱利用システムを提供することを目的とする。   Then, an object of this invention is to provide the geothermal utilization system which can suppress that a scale deposits in the piping and external equipment through which a geothermal fluid flows, and can extend the maintenance period of piping etc.

本発明に係る地熱利用システムは、
地熱流体取出管の流出口から流出した地熱流体を地熱水と地熱蒸気に分離するとともに、前記地熱蒸気の二酸化炭素分圧を脱気抑制分圧値以上に維持する気水分離槽と、
前記気水分離槽から逆流防止弁を通って流れ込んだ地熱水を曝気して、前記地熱水中の二酸化炭素を脱気する曝気槽と、
を備えることを特徴とする。
The geothermal utilization system according to the present invention is:
Separating the geothermal fluid flowing out from the outlet of the geothermal fluid outlet pipe into geothermal water and geothermal steam, and maintaining the carbon dioxide partial pressure of the geothermal steam above the deaeration suppression partial pressure value; and
An aeration tank for aeration of geothermal water flowing from the air / water separation tank through a backflow prevention valve to degas carbon dioxide in the geothermal water;
It is characterized by providing.

また、前記地熱利用システムにおいて、
前記曝気槽に貯留された地熱水を外部設備に輸送する熱水輸送管をさらに備え、前記熱水輸送管内を流動する前記地熱水の温度は、シリコン酸化物が析出しない温度以上に維持されるようにしてもよい。
In the geothermal utilization system,
The apparatus further comprises a hot water transport pipe for transporting geothermal water stored in the aeration tank to an external facility, and the temperature of the geothermal water flowing in the hot water transport pipe is maintained at a temperature higher than a temperature at which silicon oxide does not precipitate. You may be made to do.

また、前記地熱利用システムにおいて、
前記気水分離槽から排気される地熱蒸気の逆流を阻止し、前記気水分離槽の地熱蒸気の二酸化炭素分圧を一定値に保つ逆流防止弁をさらに備えてもよい。
In the geothermal utilization system,
A backflow prevention valve that prevents backflow of geothermal steam exhausted from the steam-water separation tank and keeps the carbon dioxide partial pressure of the geothermal steam in the steam-water separation tank at a constant value may be further provided.

また、前記地熱利用システムにおいて、
前記逆流防止弁が設けられ、前記気水分離槽の地熱蒸気を排気する蒸気排気管をさらに備えてもよい。
In the geothermal utilization system,
The said backflow prevention valve may be provided, and you may further provide the steam exhaust pipe which exhausts the geothermal steam of the said steam separation tank.

また、前記地熱利用システムにおいて、
前記地熱流体取出管の前記流出口は、前記気水分離槽の気相中に配置されていてもよい。
In the geothermal utilization system,
The outlet of the geothermal fluid outlet pipe may be disposed in the gas phase of the steam separator.

また、前記地熱利用システムにおいて、
前記地熱流体取出管の前記流出口には、前記地熱流体の圧力が急減することを防止する急減圧防止手段が設けられてもよい。
In the geothermal utilization system,
The outlet of the geothermal fluid outlet pipe may be provided with a sudden pressure reduction preventing means for preventing the geothermal fluid pressure from suddenly decreasing.

また、前記地熱利用システムにおいて、
前記地熱流体取出管の前記流出口は、前記気水分離槽の液相中に配置されていてもよい。
In the geothermal utilization system,
The outlet of the geothermal fluid outlet pipe may be disposed in the liquid phase of the steam / water separation tank.

また、前記地熱利用システムにおいて、
前記気水分離槽と前記曝気槽は、前記逆流防止弁が設けられた接続管を介して互いの液相を繋ぐように接続されていてもよい。
In the geothermal utilization system,
The steam / water separation tank and the aeration tank may be connected so as to connect the liquid phases to each other via a connection pipe provided with the backflow prevention valve.

また、前記地熱利用システムにおいて、
前記曝気槽では、前記地熱水中に溶解しているカルシウムイオンを不溶性の炭酸カルシウムとして析出させるとともに、前記地熱水中に溶解しているマグネシウムイオンを不溶性のケイ酸マグネシウムとして析出させてもよい。
In the geothermal utilization system,
In the aeration tank, calcium ions dissolved in the geothermal water may be precipitated as insoluble calcium carbonate, and magnesium ions dissolved in the geothermal water may be precipitated as insoluble magnesium silicate.

本発明では、気水分離槽では、地熱蒸気の二酸化炭素分圧を脱気抑制分圧値以上に維持することで、地熱水を酸性とし、炭酸カルシウムやケイ酸マグネシウムの析出を抑制する。これにより、地熱流体取出管にスケールが付着することを抑制できる。一方、曝気槽では、地熱水を曝気して二酸化炭素を脱気することで、地熱水をアルカリ性とし、炭酸カルシウムおよびケイ酸マグネシウムを強制的に析出させる。そして、熱水輸送管を介して地熱水を熱交換器等の外部設備に供給する。これにより、熱水輸送管や熱交換器等の外部設備内で炭酸カルシウムおよびケイ酸マグネシウムのスケールが析出することを抑制できる。   In the present invention, in the steam-water separation tank, the geothermal water is made acidic by maintaining the carbon dioxide partial pressure of the geothermal steam at or above the degassing suppression partial pressure value, and the precipitation of calcium carbonate and magnesium silicate is suppressed. Thereby, it can suppress that a scale adheres to a geothermal fluid extraction pipe. On the other hand, in the aeration tank, geothermal water is aerated to degas carbon dioxide, thereby making the geothermal water alkaline and forcing calcium carbonate and magnesium silicate to precipitate. And geothermal water is supplied to external facilities, such as a heat exchanger, via a hot water transport pipe. Thereby, it can suppress that the scale of calcium carbonate and magnesium silicate precipitates in external facilities, such as a hot-water transport pipe and a heat exchanger.

よって、本発明によれば、地熱流体が流れる配管や熱交換器等の外部設備内にスケールが析出することを抑制し、配管等のメンテナンス周期を大幅に延ばすことができる。   Therefore, according to this invention, it can suppress that a scale deposits in external facilities, such as piping and a heat exchanger with which a geothermal fluid flows, and can extend the maintenance period of piping etc. significantly.

本発明の実施形態に係る地熱利用システム1の概略的構成図である。1 is a schematic configuration diagram of a geothermal utilization system 1 according to an embodiment of the present invention. CO溶解度と二酸化炭素分圧(pCO2)の関係を示すグラフである。CO 2 is a graph showing the relationship between the solubility and carbon dioxide partial pressure (p CO2). (a)は炭酸カルシウムの温度−pH相関図であり、(b)はシリカ(SiO)の温度−pH相関図である。(A) is a temperature-pH correlation diagram of calcium carbonate, and (b) is a temperature-pH correlation diagram of silica (SiO 2 ). (a)および(b)はいずれも、ケイ酸マグネシウム(MgSiO・HO)の温度−pH相関図である。(A) and (b) are both temperature-pH correlation diagrams of magnesium silicate (MgSiO 3 .H 2 O).

以下、本発明の実施形態に係る地熱利用システムについて図面を参照しながら説明する。   Hereinafter, a geothermal utilization system according to an embodiment of the present invention will be described with reference to the drawings.

まず、地熱利用システムについて説明する前に、各種スケール(炭酸カルシウム、シリカおよびケイ酸マグネシウム)の析出条件について、図3(a)、図3(b)、図4(a)および図4(b)を参照して説明する。なお、図3(a)、図3(b)、図4(a)および図4(b)は、長崎県雲仙市の小浜温泉の温泉水の成分を用いて導出した結果であるが、以下に説明する傾向ないし特性は他の温泉水でも同様である。   First, before describing the geothermal utilization system, the deposition conditions of various scales (calcium carbonate, silica, and magnesium silicate) are shown in FIGS. 3 (a), 3 (b), 4 (a), and 4 (b). ) Will be described. In addition, although FIG. 3 (a), FIG.3 (b), FIG.4 (a) and FIG.4 (b) are the results derived | led-out using the component of the hot spring water of Obama hot spring of Unzen City, Nagasaki Prefecture, The tendencies and characteristics explained in the above are the same for other hot spring waters.

炭酸カルシウムの析出反応は、化学式(1)に示す通りである。
CaCO ⇔ Ca2++CO 2− ・・・(1)
The precipitation reaction of calcium carbonate is as shown in chemical formula (1).
CaCO 3 Ca Ca 2+ + CO 3 2− (1)

図3(a)は、炭酸カルシウムの温度とpHの関係を、飽和指数(SI:Saturation Index)をパラメータとして示したグラフの一例である。図3(a)から分かるように、pHが低下するにつれて炭酸カルシウムの析出は抑制される。   FIG. 3A is an example of a graph showing the relationship between the temperature and pH of calcium carbonate using the saturation index (SI) as a parameter. As can be seen from FIG. 3A, the precipitation of calcium carbonate is suppressed as the pH decreases.

シリカの析出反応は、化学式(2),(3)に示す通りである。
SiO+2HO ⇔ HSiO(aq) ・・・(2)
SiO+2HO ⇔ HSiO +H(aq) ・・・(3)
The precipitation reaction of silica is as shown in chemical formulas (2) and (3).
SiO 2 + 2H 2 O⇔H 2 SiO 4 (aq) (2)
SiO 2 + 2H 2 O⇔H 3 SiO 4 + H + (aq) (3)

図3(b)は、シリカ(SiO)の温度とpHの関係を、飽和指数をパラメータとして示したグラフの一例である。図3(b)から分かるように、地熱水の温度がある程度高い領域(例えば64℃以上)では、pHの値に関わらず、シリカの析出が抑制される。 FIG. 3B is an example of a graph showing the relationship between the temperature and pH of silica (SiO 2 ) using the saturation index as a parameter. As can be seen from FIG. 3B, in the region where the temperature of the geothermal water is high to some extent (for example, 64 ° C. or higher), the precipitation of silica is suppressed regardless of the pH value.

ケイ酸マグネシウムの析出反応は、化学式(4),(5)に示す通りである。
MgSiO・HO+HO ⇔ Mg2++HSiO +OH
・・・(4)
MgSi(OH)+6H ⇔ 3Mg2++2HSiO +H
・・・(5)
The precipitation reaction of magnesium silicate is as shown in chemical formulas (4) and (5).
MgSiO 3 .H 2 O + H 2 O⇔Mg 2+ + H 3 SiO 4 + OH
... (4)
Mg 3 Si 2 O 5 (OH) 4 + 6H + 3 3Mg 2+ + 2H 4 SiO 4 0 + H 2 O
... (5)

図4(a)は、ケイ酸マグネシウム(MgSiO・HO)の温度とpHの関係を、飽和指数をパラメータとして示したグラフの一例である。図4(b)は、ケイ酸マグネシウム(MgSi(OH))の温度とpHの関係を、飽和指数をパラメータとして示したグラフの一例である。図4(a)および図4(b)から分かるように、pHが低下するにつれてケイ酸マグネシウムの析出が抑制される。特に、MgSi(OH)は、図4(b)に示すように、pHに対して敏感である。 FIG. 4A is an example of a graph showing the relationship between the temperature and pH of magnesium silicate (MgSiO 3 .H 2 O) using the saturation index as a parameter. FIG. 4B is an example of a graph showing the relationship between the temperature and pH of magnesium silicate (Mg 3 Si 2 O 5 (OH 4 )) using the saturation index as a parameter. As can be seen from FIG. 4A and FIG. 4B, the precipitation of magnesium silicate is suppressed as the pH is lowered. In particular, Mg 3 Si 2 O 5 (OH 4 ) is sensitive to pH as shown in FIG.

次に、本実施形態に係る地熱利用システム1について説明する。   Next, the geothermal utilization system 1 according to the present embodiment will be described.

図1に示すように、地熱利用システム1は、気水分離槽2と、曝気槽3と、地熱流体取出管11と、熱水輸送管12と、接続管13と、蒸気排気管14とを備えている。   As shown in FIG. 1, the geothermal utilization system 1 includes an air / water separation tank 2, an aeration tank 3, a geothermal fluid extraction pipe 11, a hot water transport pipe 12, a connection pipe 13, and a steam exhaust pipe 14. I have.

地熱流体取出管11は、源泉(生産井)から地熱流体を取り出し、流出口11aから流出させる。この地熱流体は、地熱水および地熱蒸気から構成される。地熱水は、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)および炭酸水素イオン(HCO )を含み、地熱蒸気は二酸化炭素(CO)を含む。 The geothermal fluid take-out pipe 11 takes out a geothermal fluid from a source (production well) and causes it to flow out from the outlet 11a. This geothermal fluid is composed of geothermal water and geothermal steam. Geothermal water contains calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), and hydrogen carbonate ions (HCO 3 ), and geothermal steam contains carbon dioxide (CO 2 ).

本実施形態では、地熱流体取出管11は、図1に示すように、流出口11aが気水分離槽2の気相中に配置されている。これにより、蒸気排気管14を介して地熱蒸気を効率的に外部に取り出すことができる。取り出された地熱蒸気は蒸気タービン等に送られる。   In this embodiment, as shown in FIG. 1, the geothermal fluid outlet pipe 11 has an outlet 11 a arranged in the gas phase of the steam separator 2. Thereby, geothermal steam can be efficiently taken out via the steam exhaust pipe 14. The extracted geothermal steam is sent to a steam turbine or the like.

熱水輸送管12は、曝気槽3に貯留された地熱水を外部設備に輸送する。外部設備には、バイナリー発電の熱交換器や、調理器具、温泉などがある。   The hot water transport pipe 12 transports the geothermal water stored in the aeration tank 3 to external equipment. External facilities include binary power generation heat exchangers, cooking utensils, and hot springs.

接続管13は、図1に示すように、気水分離槽2と曝気槽3を接続する配管である。より詳しくは、気水分離槽2と曝気槽3は、接続管13を介して互いの液相を繋ぐように接続されている。また、接続管13には逆流防止弁21が設けられている。この逆流防止弁21は、曝気槽3から気水分離槽2への地熱水の逆流を阻止するための逆止弁である。逆流防止弁21により、気水分離槽2の地熱水中の二酸化炭素濃度が減少することを防ぐことができる。   As shown in FIG. 1, the connection pipe 13 is a pipe that connects the steam / water separation tank 2 and the aeration tank 3. More specifically, the steam separation tank 2 and the aeration tank 3 are connected to each other via the connection pipe 13 so as to connect the liquid phases. The connection pipe 13 is provided with a backflow prevention valve 21. The check valve 21 is a check valve for preventing the backflow of geothermal water from the aeration tank 3 to the steam separation tank 2. The backflow prevention valve 21 can prevent the concentration of carbon dioxide in the geothermal water of the steam / water separation tank 2 from decreasing.

次に、気水分離槽2について詳しく説明する。   Next, the steam / water separation tank 2 will be described in detail.

気水分離槽2は、地熱流体取出管11の流出口11aから流出した地熱流体を地熱水と地熱蒸気に分離する。地熱水は気水分離槽2内に貯留され、地熱蒸気は蒸気排気管14を通って蒸気タービン等の外部装置に導かれる。   The steam-water separation tank 2 separates the geothermal fluid flowing out from the outlet 11a of the geothermal fluid outlet pipe 11 into geothermal water and geothermal steam. The geothermal water is stored in the steam / water separation tank 2, and the geothermal steam is led to an external device such as a steam turbine through the steam exhaust pipe 14.

気水分離槽2は、地熱蒸気の二酸化炭素分圧(pCO2)を脱気抑制分圧値以上に維持する。地熱蒸気の二酸化炭素分圧が脱気抑制分圧値以上に維持されることで、気水分離槽2の地熱水から二酸化炭素が脱気することを抑制できる。二酸化炭素の脱気を抑制することで、気水分離槽2内の地熱水のpHが低下する。 The steam-water separation tank 2 maintains the carbon dioxide partial pressure (p CO2 ) of the geothermal steam at or above the degassing suppression partial pressure value. By maintaining the carbon dioxide partial pressure of the geothermal steam at or above the degassing suppression partial pressure value, it is possible to suppress degassing of carbon dioxide from the geothermal water in the steam-water separation tank 2. By suppressing the deaeration of carbon dioxide, the pH of the geothermal water in the steam separator 2 is lowered.

なお、脱気抑制分圧値は、CO溶解度とCO分圧の関係を示すグラフ(図2参照)を用いて、地熱水中の炭酸水素イオン濃度(HCO 濃度)の実測値から求めることが可能である。例えば、地熱水中の炭酸水素イオン濃度が2.7×10−3mol/Lの場合、脱気抑制分圧値は、図2のグラフを用いて、約0.2〜0.25atmと求まる。 Incidentally, degassed suppression value of the partial pressure, with a graph showing the relationship between CO 2 solubility and CO 2 partial pressure (see FIG. 2), bicarbonate ion concentration of the geothermal water - obtained from measured values of (HCO 3 concentration) It is possible. For example, when the bicarbonate ion concentration in the geothermal water is 2.7 × 10 −3 mol / L, the degassing suppression partial pressure value is obtained as about 0.2 to 0.25 atm using the graph of FIG.

上記のように気水分離槽2内の地熱蒸気の二酸化炭素分圧を脱気抑制分圧値以上に維持して、気水分離槽2において二酸化炭素の脱気を抑制することで、地熱水のpHが酸性になる(例えば、pH=4.5〜6.5)。これにより、図3(a)、図4(a)および図4(b)から分かるように、炭酸カルシウムおよびケイ酸マグネシウムの析出が抑制される。その結果、これらの物質からなるスケールが地熱流体取出管11の内部や流出口11aに付着することを抑制できる。なお、地熱流体取出管11および気水分離槽2では地熱水が高温であるため、シリカの析出は抑制される。   By maintaining the carbon dioxide partial pressure of the geothermal steam in the steam-water separation tank 2 at or above the degassing suppression partial pressure value as described above, suppressing the degassing of carbon dioxide in the steam-water separation tank 2, The pH of the water becomes acidic (for example, pH = 4.5 to 6.5). Thereby, as can be seen from FIGS. 3A, 4A, and 4B, precipitation of calcium carbonate and magnesium silicate is suppressed. As a result, it can suppress that the scale which consists of these substances adheres to the inside of the geothermal fluid extraction pipe | tube 11, and the outflow port 11a. In addition, since geothermal water is high temperature in the geothermal fluid extraction pipe | tube 11 and the steam-water separation tank 2, precipitation of a silica is suppressed.

図1に示すように、本実施形態では、二酸化炭素分圧を一定に保つため、逆流防止弁22が設けられている。この逆流防止弁22は、気水分離槽2から排気される地熱蒸気の逆流を阻止し、気水分離槽2の地熱蒸気の二酸化炭素分圧を一定値に保つように構成されている。本実施形態では、逆流防止弁22は、気水分離槽2の地熱蒸気を排気する蒸気排気管14に設けられている。なお、逆流防止弁22は、蒸気排気管14に限らず、気水分離槽2の気相部分(天面、側面上部等)に設けられてもよい。   As shown in FIG. 1, in this embodiment, a backflow prevention valve 22 is provided to keep the carbon dioxide partial pressure constant. The backflow prevention valve 22 is configured to prevent the backflow of the geothermal steam exhausted from the steam-water separation tank 2 and keep the carbon dioxide partial pressure of the geothermal steam in the steam-water separation tank 2 at a constant value. In the present embodiment, the backflow prevention valve 22 is provided in the steam exhaust pipe 14 that exhausts the geothermal steam in the steam separation tank 2. In addition, the backflow prevention valve 22 may be provided not only in the steam exhaust pipe 14 but in the gas phase part (top surface, upper side surface, etc.) of the steam-water separation tank 2.

次に、曝気槽3について詳しく説明する。   Next, the aeration tank 3 will be described in detail.

曝気槽3は、気水分離槽2から逆流防止弁21を通って流れ込んだ地熱水を曝気して、地熱水中の二酸化炭素を脱気する。これにより、地熱水中に溶解しているカルシウムイオンおよびマグネシウムイオンをスケールとして強制的に析出させる。すなわち、曝気槽3は、地熱水中に溶解しているカルシウムイオンを不溶性の炭酸カルシウムとして析出させるとともに、地熱水中に溶解しているマグネシウムイオンを不溶性のケイ酸マグネシウムとして析出させる。その結果、地熱水中のスケール成分が低減する。   The aeration tank 3 aerates geothermal water flowing from the steam / water separation tank 2 through the backflow prevention valve 21 to degas carbon dioxide in the geothermal water. Thereby, calcium ions and magnesium ions dissolved in the geothermal water are forcibly deposited as scales. That is, the aeration tank 3 precipitates calcium ions dissolved in the geothermal water as insoluble calcium carbonate and precipitates magnesium ions dissolved in the geothermal water as insoluble magnesium silicate. As a result, scale components in geothermal water are reduced.

より詳しくは、曝気槽3において、気水分離槽2から流れ込んだ地熱水中の二酸化炭素の脱気を行うことで、曝気槽3の地熱水はアルカリ性(例えば、pH=8〜9)となる。これにより、図3(a)、図4(a)および図4(b)から分かるように、炭酸カルシウムおよびケイ酸マグネシウムの析出反応が促進される。なお、シリカについては、地熱水がアルカリ性のため、図3(b)から分かるように、析出反応が抑制される。   More specifically, in the aeration tank 3, the geothermal water in the aeration tank 3 becomes alkaline (for example, pH = 8 to 9) by performing deaeration of carbon dioxide in the geothermal water flowing from the air / water separation tank 2. . Thereby, as can be seen from FIGS. 3A, 4A, and 4B, the precipitation reaction of calcium carbonate and magnesium silicate is promoted. In addition, about a silica, since geothermal water is alkaline, precipitation reaction is suppressed so that FIG.3 (b) may show.

曝気槽3の地熱水は、熱水輸送管12を通ってバイナリー発電の熱交換器等の外部設備に輸送される。曝気槽3において炭酸カルシウムやケイ酸マグネシウムが既に析出しているため、炭酸カルシウムやケイ酸マグネシウムのスケールが熱水輸送管12や外部設備に析出することが抑制される。   The geothermal water in the aeration tank 3 is transported to an external facility such as a binary power generation heat exchanger through the hot water transport pipe 12. Since calcium carbonate and magnesium silicate are already deposited in the aeration tank 3, the scale of calcium carbonate and magnesium silicate is suppressed from being deposited on the hot water transport pipe 12 and external equipment.

なお、熱水輸送管12内におけるシリカの析出も抑制するために、熱水輸送管12内を流動する地熱水の温度を所定の温度とすることが好ましい。すなわち、熱水輸送管12内を流動する地熱水の温度は、シリコン酸化物(SiO)が析出しない温度以上(例えば64℃以上)に維持されることが好ましい。例えば、熱水輸送管12の外周を断熱材で被覆することで、熱水輸送管12内の地熱水の温度をシリコン酸化物が析出しない程度の温度に保つ。温度は、例えば、70℃〜100℃に保つ。これにより、シリカについても熱水輸送管12内に析出することを抑制できる。 In order to suppress the precipitation of silica in the hot water transport pipe 12, it is preferable that the temperature of the geothermal water flowing in the hot water transport pipe 12 is set to a predetermined temperature. That is, the temperature of the geothermal water flowing in the hot water transport pipe 12 is preferably maintained at a temperature not lower than the temperature at which silicon oxide (SiO 2 ) does not precipitate (for example, 64 ° C. or higher). For example, by covering the outer periphery of the hot water transport pipe 12 with a heat insulating material, the temperature of the geothermal water in the hot water transport pipe 12 is maintained at a temperature at which silicon oxide does not precipitate. The temperature is maintained at 70 ° C. to 100 ° C., for example. Thereby, it can suppress that silica also precipitates in the hot water transport pipe 12.

上記のように、本実施形態に係る地熱利用システム1では、気水分離槽2では、地熱蒸気の二酸化炭素分圧を脱気抑制分圧値以上に維持することで、地熱水を酸性とし、炭酸カルシウムやケイ酸マグネシウムの析出を抑制する。地熱水が高温であるため、シリカの析出も抑制される。これにより、地熱流体取出管11にスケールが付着することを抑制できる。曝気槽3では、地熱水を曝気して二酸化炭素を脱気することで、地熱水をアルカリ性とし、炭酸カルシウムおよびケイ酸マグネシウムを強制的に析出させる。地熱水がアルカリ性であるため、シリカの析出も抑制される。そして、熱水輸送管12を介して地熱水を熱交換器等の外部設備に供給する。これにより、熱水輸送管12内及び外部設備で炭酸カルシウムおよびケイ酸マグネシウムのスケールが析出することを抑制できる。さらに、熱水輸送管12内の地熱水の温度をシリコン酸化物が析出しない程度の温度に保つことで、熱水輸送管12内にシリカが析出することも抑制できる。   As described above, in the geothermal utilization system 1 according to the present embodiment, in the steam-water separation tank 2, the geothermal water is made acidic by maintaining the carbon dioxide partial pressure of the geothermal steam at or above the degassing suppression partial pressure value. Inhibits precipitation of calcium carbonate and magnesium silicate. Since geothermal water is high temperature, silica precipitation is also suppressed. Thereby, it can suppress that a scale adheres to the geothermal fluid extraction pipe | tube 11. FIG. In the aeration tank 3, the geothermal water is aerated and the carbon dioxide is deaerated to make the geothermal water alkaline and forcibly precipitate calcium carbonate and magnesium silicate. Since geothermal water is alkaline, precipitation of silica is also suppressed. Then, geothermal water is supplied to external equipment such as a heat exchanger via the hot water transport pipe 12. Thereby, it can suppress that the scale of calcium carbonate and magnesium silicate precipitates in the hot-water transport pipe 12 and external equipment. Furthermore, by keeping the temperature of the geothermal water in the hot water transport pipe 12 at such a temperature that silicon oxide does not precipitate, it is possible to suppress the precipitation of silica in the hot water transport pipe 12.

以上説明したように、本実施形態の地熱利用システムによれば、地熱流体が流れる配管や熱交換器等の外部設備にスケールが析出することを抑制し、配管等のメンテナンス周期を大幅に延ばすことができる。例えば、従来2ヶ月周期で行っていた配管メンテナンスを1年周期にすることができる。   As described above, according to the geothermal utilization system of the present embodiment, the scale is prevented from depositing on the external equipment such as the piping and heat exchanger through which the geothermal fluid flows, and the maintenance cycle of the piping and the like is greatly extended. Can do. For example, piping maintenance, which has been conventionally performed every two months, can be made one year.

なお、本発明に係る地熱利用システムは上記の実施形態に限られない。例えば、地熱流体取出管11の流出口11aは、気水分離槽2の液相中に配置されてもよい。これにより、気水分離槽2に貯留された地熱水中の二酸化炭素濃度が高くなるため、炭酸カルシウムの析出をさらに抑制できる。   In addition, the geothermal utilization system which concerns on this invention is not restricted to said embodiment. For example, the outflow port 11 a of the geothermal fluid extraction pipe 11 may be arranged in the liquid phase of the steam-water separation tank 2. Thereby, since the carbon dioxide concentration in the geothermal water stored in the steam-water separation tank 2 becomes high, precipitation of calcium carbonate can be further suppressed.

また、地熱流体取出管11の流出口11aには、地熱流体の圧力が急減することを防止する急減圧防止手段25が設けられていてもよい。これにより、地熱流体が地熱流体取出管11から流出する際の急な減圧が防止され、流出口11aに炭酸カルシウム等のスケールが析出することを抑制できる。急減圧防止手段25として、例えば、流出口11aを覆うように設けられた網状部材や、流出口11aの口径を絞るための絞り部材などが挙げられる。   In addition, the outlet 11a of the geothermal fluid extraction pipe 11 may be provided with a sudden pressure reduction preventing means 25 for preventing the pressure of the geothermal fluid from rapidly decreasing. Thereby, sudden pressure reduction when the geothermal fluid flows out from the geothermal fluid take-out pipe 11 is prevented, and precipitation of scale such as calcium carbonate at the outlet 11a can be suppressed. Examples of the sudden pressure reduction preventing means 25 include a net-like member provided so as to cover the outlet 11a and a throttle member for reducing the diameter of the outlet 11a.

また、上記の実施形態では気水分離槽2と曝気槽3とが接続管13で接続されていたが、接続管13を用いずに、気水分離槽2と曝気槽3とが直接隣接配置されてもよい。この場合、逆流防止弁21は、気水分離槽2と曝気槽3とが共有する壁面に設けられることになる。これにより、接続管13のメンテナンス作業を不要とすることができる。   In the above embodiment, the steam / water separation tank 2 and the aeration tank 3 are connected by the connection pipe 13. However, the steam / water separation tank 2 and the aeration tank 3 are arranged directly adjacent to each other without using the connection pipe 13. May be. In this case, the backflow prevention valve 21 is provided on the wall surface shared by the steam separation tank 2 and the aeration tank 3. Thereby, the maintenance work of the connecting pipe 13 can be made unnecessary.

上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した実施形態に限定されるものではない。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。   Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the above-described embodiments. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.

1 地熱利用システム
2 気水分離槽
3 曝気槽
11 地熱流体取出管
11a 流出口
12 熱水輸送管
13 接続管
14 蒸気排気管
21,22 逆流防止弁
25 急減圧防止手段
DESCRIPTION OF SYMBOLS 1 Geothermal utilization system 2 Steam / water separation tank 3 Aeration tank 11 Geothermal fluid extraction pipe 11a Outlet 12 Hot water transport pipe 13 Connection pipe 14 Steam exhaust pipe 21, 22 Backflow prevention valve 25 Rapid decompression prevention means

Claims (9)

地熱流体取出管の流出口から流出した地熱流体を地熱水と地熱蒸気に分離するとともに、前記地熱蒸気の二酸化炭素分圧を脱気抑制分圧値以上に維持する気水分離槽と、
前記気水分離槽から逆流防止弁を通って流れ込んだ地熱水を曝気して、前記地熱水中の二酸化炭素を脱気する曝気槽と、
を備えることを特徴とする地熱利用システム。
Separating the geothermal fluid flowing out from the outlet of the geothermal fluid outlet pipe into geothermal water and geothermal steam, and maintaining the carbon dioxide partial pressure of the geothermal steam above the deaeration suppression partial pressure value; and
An aeration tank for aeration of geothermal water flowing from the air / water separation tank through a backflow prevention valve to degas carbon dioxide in the geothermal water;
A geothermal utilization system characterized by comprising:
前記曝気槽に貯留された地熱水を外部設備に輸送する熱水輸送管をさらに備え、前記熱水輸送管内を流動する前記地熱水の温度は、シリコン酸化物が析出しない温度以上に維持されることを特徴とする請求項1に記載の地熱利用システム。   The apparatus further comprises a hot water transport pipe for transporting geothermal water stored in the aeration tank to an external facility, and the temperature of the geothermal water flowing in the hot water transport pipe is maintained at a temperature higher than a temperature at which silicon oxide does not precipitate. The geothermal utilization system according to claim 1, wherein 前記気水分離槽から排気される地熱蒸気の逆流を阻止し、前記気水分離槽の地熱蒸気の二酸化炭素分圧を一定値に保つ逆流防止弁をさらに備えることを特徴とする請求項1または2に記載の地熱利用システム。   The backflow prevention valve which prevents the backflow of the geothermal steam exhausted from the said steam-water separation tank, and keeps the carbon dioxide partial pressure of the geothermal steam of the said steam-water separation tank at a fixed value is further provided. 2. The geothermal utilization system according to 2. 前記逆流防止弁が設けられ、前記気水分離槽の地熱蒸気を排気する蒸気排気管をさらに備えることを特徴とする請求項3に記載の地熱利用システム。   The geothermal heat utilization system according to claim 3, further comprising a steam exhaust pipe that is provided with the backflow prevention valve and exhausts the geothermal steam of the steam-water separation tank. 前記地熱流体取出管の前記流出口は、前記気水分離槽の気相中に配置されていることを特徴とする請求項1〜4のいずれかに記載の地熱利用システム。   The geothermal heat utilization system according to any one of claims 1 to 4, wherein the outlet of the geothermal fluid outlet pipe is disposed in a gas phase of the steam separation tank. 前記地熱流体取出管の前記流出口には、前記地熱流体の圧力が急減することを防止する急減圧防止手段が設けられていることを特徴とする請求項5に記載の地熱利用システム。   6. The geothermal utilization system according to claim 5, wherein a sudden pressure reduction preventing means for preventing a sudden decrease in the pressure of the geothermal fluid is provided at the outlet of the geothermal fluid outlet pipe. 前記地熱流体取出管の前記流出口は、前記気水分離槽の液相中に配置されていることを特徴とする請求項1〜4のいずれかに記載の地熱利用システム。   The geothermal heat utilization system according to any one of claims 1 to 4, wherein the outlet of the geothermal fluid outlet pipe is disposed in a liquid phase of the steam separator. 前記気水分離槽と前記曝気槽は、前記逆流防止弁が設けられた接続管を介して互いの液相を繋ぐように接続されていることを特徴とする請求項1〜7のいずれかに記載の地熱利用システム。   The said steam-water separation tank and the said aeration tank are connected so that a mutual liquid phase may be connected through the connection pipe provided with the said backflow prevention valve. The geothermal utilization system described. 前記曝気槽では、前記地熱水中に溶解しているカルシウムイオンを不溶性の炭酸カルシウムとして析出させるとともに、前記地熱水中に溶解しているマグネシウムイオンを不溶性のケイ酸マグネシウムとして析出させることを特徴とする請求項1〜8のいずれかに記載の地熱利用システム。   The aeration tank deposits calcium ions dissolved in the geothermal water as insoluble calcium carbonate and precipitates magnesium ions dissolved in the geothermal water as insoluble magnesium silicate. The geothermal utilization system in any one of claim | item 1 -8.
JP2016126858A 2016-06-27 2016-06-27 Geothermal system Active JP6694632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126858A JP6694632B2 (en) 2016-06-27 2016-06-27 Geothermal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126858A JP6694632B2 (en) 2016-06-27 2016-06-27 Geothermal system

Publications (2)

Publication Number Publication Date
JP2018003275A true JP2018003275A (en) 2018-01-11
JP6694632B2 JP6694632B2 (en) 2020-05-20

Family

ID=60944827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126858A Active JP6694632B2 (en) 2016-06-27 2016-06-27 Geothermal system

Country Status (1)

Country Link
JP (1) JP6694632B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750554A (en) * 2020-05-29 2020-10-09 万江新能源集团有限公司 Deep heat exchange system of geothermal recharge well
CN113511699A (en) * 2021-07-23 2021-10-19 何李杨 Geothermal water degassing device
CN114735834A (en) * 2022-03-02 2022-07-12 东北石油大学 Gas-liquid-solid separation device for geothermal water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119887A (en) * 1979-03-09 1980-09-13 Idemitsu Kosan Co Method of washing hot effluent soil containing scaleemaking composite substance
US4244190A (en) * 1978-10-23 1981-01-13 Union Oil Company Of California Process for integrating treatment of and energy derivation from geothermal brine
JPH09294973A (en) * 1995-12-28 1997-11-18 Union Oil Co Calif Method for regulating ph of geothermal brine using acid containing sulfur
JPH10205266A (en) * 1997-01-28 1998-08-04 Japan Metals & Chem Co Ltd Method of treating hot water flowing out from geothermal steam sampling well
JP2006167669A (en) * 2004-12-20 2006-06-29 Ouj Kk Scale control and removal method and its apparatus
JP2009279535A (en) * 2008-05-23 2009-12-03 National Institute Of Advanced Industrial & Technology Method and apparatus for transporting hot spring water or geothermal water causing no carbonate scale trouble
CN201909485U (en) * 2011-01-07 2011-07-27 徐毅 System for adopting membrane separation technology to remove impurities of geothermal water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244190A (en) * 1978-10-23 1981-01-13 Union Oil Company Of California Process for integrating treatment of and energy derivation from geothermal brine
JPS55119887A (en) * 1979-03-09 1980-09-13 Idemitsu Kosan Co Method of washing hot effluent soil containing scaleemaking composite substance
JPH09294973A (en) * 1995-12-28 1997-11-18 Union Oil Co Calif Method for regulating ph of geothermal brine using acid containing sulfur
JPH10205266A (en) * 1997-01-28 1998-08-04 Japan Metals & Chem Co Ltd Method of treating hot water flowing out from geothermal steam sampling well
JP2006167669A (en) * 2004-12-20 2006-06-29 Ouj Kk Scale control and removal method and its apparatus
JP2009279535A (en) * 2008-05-23 2009-12-03 National Institute Of Advanced Industrial & Technology Method and apparatus for transporting hot spring water or geothermal water causing no carbonate scale trouble
CN201909485U (en) * 2011-01-07 2011-07-27 徐毅 System for adopting membrane separation technology to remove impurities of geothermal water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750554A (en) * 2020-05-29 2020-10-09 万江新能源集团有限公司 Deep heat exchange system of geothermal recharge well
CN113511699A (en) * 2021-07-23 2021-10-19 何李杨 Geothermal water degassing device
CN114735834A (en) * 2022-03-02 2022-07-12 东北石油大学 Gas-liquid-solid separation device for geothermal water

Also Published As

Publication number Publication date
JP6694632B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6694632B2 (en) Geothermal system
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
JP2012013279A (en) Method of operating steam boiler
JP6182342B2 (en) Steam plant and operating method thereof
JP2012230078A (en) Decontamination device, decontamination method, nuclear power plant, and reconstruction method therefor
CN204201873U (en) A kind of boiler deoxidizing method equipment of novel energy-conserving
JP2016164395A (en) Geothermal power generation system and geothermal power generation method
JP5218895B2 (en) Method and apparatus for transporting hot spring water or geothermal water that does not cause carbonate scale failure
JP6213216B2 (en) Boiler system
JP2013213660A (en) Steam plant and method for operating the same
JP2009168377A (en) Power generation facility and water quality management method for power generation facility
CN207893739U (en) The deep exploitation system of distributed busbar protection boiler blowdown water waste heat
JP5578125B2 (en) Non-condensable gas processing equipment
JP4735363B2 (en) Operation method of boiler device and boiler device
CN206970319U (en) A kind of temporary hardness boiler feed water corrosion-mitigation scale-inhibition water treatment system
KR20130090297A (en) Method for isolating carbon dioxide contained in exhaust gases into the bottom of the sea depths
JP2015090147A (en) Geothermal power generation system and geothermal power generation system scale prevention method
JP4735615B2 (en) Steam boiler equipment
JP2006283988A (en) Deaerating system
JP2018146225A (en) Cooling tower system
JP2018146226A (en) Cooling tower system
JP2018146224A (en) Cooling tower system
CN215886685U (en) Negative pressure reinforced scale separating device on hot spring well
Alsaadi Corrosion Study of the Injection Equipments in Water in Al-Ahdeb Wells‐Iraq
JP4672450B2 (en) Liquid pumping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200408

R150 Certificate of patent or registration of utility model

Ref document number: 6694632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250