JP5578125B2 - Non-condensable gas processing equipment - Google Patents

Non-condensable gas processing equipment Download PDF

Info

Publication number
JP5578125B2
JP5578125B2 JP2011074455A JP2011074455A JP5578125B2 JP 5578125 B2 JP5578125 B2 JP 5578125B2 JP 2011074455 A JP2011074455 A JP 2011074455A JP 2011074455 A JP2011074455 A JP 2011074455A JP 5578125 B2 JP5578125 B2 JP 5578125B2
Authority
JP
Japan
Prior art keywords
gas
water
condensed
condensable gas
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011074455A
Other languages
Japanese (ja)
Other versions
JP2012207605A (en
Inventor
謙年 林
直行 古本
聖二 福田
忠彦 松村
貴臣 夕部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2011074455A priority Critical patent/JP5578125B2/en
Publication of JP2012207605A publication Critical patent/JP2012207605A/en
Application granted granted Critical
Publication of JP5578125B2 publication Critical patent/JP5578125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、非凝縮ガス処理装置に係り、特に地熱発電において蒸気と共に噴出される非凝縮ガスを、還元井を通して地中に還元する際に適用して好適な非凝縮ガス処理装置に関する。   The present invention relates to a non-condensable gas processing apparatus, and more particularly to a non-condensable gas processing apparatus suitable for application when reducing non-condensable gas ejected together with steam in geothermal power generation into the ground through a reduction well.

従来、地熱発電では、地下深部にある高温の地熱流体層に対して地上から生産井を掘削し、蓄積されている地熱流体をこの生産井を通じて地上に自噴させ、該地熱流体が保有している熱エネルギーでタービンを回転させることによって発電している。   Conventionally, in geothermal power generation, a production well is excavated from the ground with respect to a high-temperature geothermal fluid layer in the deep underground, and the accumulated geothermal fluid is self-injected to the ground through this production well, and the geothermal fluid holds it. Electricity is generated by rotating the turbine with thermal energy.

その際、地熱流体を気水分離器により蒸気と熱水とに分離し、該蒸気で蒸気タービンを直接回転させる場合もあれば、該蒸気と該熱水を他の作動媒体と熱交換させることによりその保有エネルギーを該作動媒体に受け渡し、該作動媒体でタービンを回転させる場合もある。また、熱水や蒸気が凝縮した復水は、還元井を介して地下に還元される場合が多い。   At that time, the geothermal fluid may be separated into steam and hot water by a steam separator, and the steam turbine may be directly rotated by the steam, or the steam and the hot water may be heat exchanged with another working medium. In some cases, the stored energy is transferred to the working medium and the turbine is rotated by the working medium. In addition, condensate condensed with hot water or steam is often returned to the ground via a reduction well.

このような地熱発電設備においては、気水分離された一方の蒸気に含まれる非凝縮ガスは発電の妨げになるため分離抽出されて大気放散されるのが一般的であるが、近年の環境意識の高まりから、他方の熱水と共に所定の圧力を保持したまま地下還元する方法が提案されている。   In such a geothermal power generation facility, the non-condensable gas contained in one steam separated from the water is generally separated and extracted and released to the atmosphere because it hinders power generation. As a result of this increase, a method has been proposed for underground reduction while maintaining a predetermined pressure together with the other hot water.

例えば、特許文献1には、図1に示すように、垂直下降管からなる還元井101に対して、地下から排出された排水Qeをポンプ102により上部から供給すると共に、地表面103より上方の地上部分に非凝縮ガスQgを送風機104により供給し、排水(液相)に同伴させることにより、地下深部へ還元する技術が開示されている。この場合、非凝縮ガスの供給圧力は概略還元井の頂上圧となる。   For example, in Patent Document 1, as shown in FIG. 1, drainage Qe discharged from the underground is supplied from above to a reduction well 101 made of a vertical downcomer by a pump 102, and above the ground surface 103. A technique is disclosed in which non-condensable gas Qg is supplied to the ground portion by a blower 104 and is accompanied by drainage (liquid phase) to reduce the depth to the deep underground. In this case, the supply pressure of the non-condensable gas is approximately the top pressure of the reducing well.

このように非凝縮ガスを排水に同伴させる場合には、非凝縮ガス(気相)が還元井内を上方に逆流してこないようにすることが肝要であり、そのために特許文献1では液相と気相の見掛けの流速を、それぞれ規定の関係に維持することにより、気液混合点以降の流動態様を図2に示すように、気相の体積が大きいフロス流からスラグ流、更には気相が細い気泡流となるようにして、下降する液相に気相を同伴させることができるようになるとしている。   Thus, when entraining the non-condensable gas in the drainage, it is important to prevent the non-condensable gas (gas phase) from flowing back upward in the reduction well. By maintaining the apparent flow velocity of the gas phase in a specified relationship, the flow mode after the gas-liquid mixing point is changed from a floss flow having a large gas phase volume to a slag flow, as shown in FIG. It is said that the gas phase can be entrained in the descending liquid phase so that the flow becomes a thin bubble flow.

また、特許文献2には、還元井の地下深部まで非凝縮ガスを圧縮した状態で供給するために、図3に示すように、還元井201内を地下深部まで降下させたエジェクター202を介して還元層にできるだけ近い深い位置に注入する技術が開示されている。   Further, in Patent Document 2, in order to supply the non-condensed gas in a compressed state to the deep depth of the reduction well, as shown in FIG. 3, the ejector 202 is lowered to the deep underground as shown in FIG. A technique for injecting into a deep position as close as possible to the reducing layer is disclosed.

特開平2−101351号公報Japanese Patent Laid-Open No. 2-101351 特開平9−177507号公報JP-A-9-177507

“Two-Phase Flow Patterns and Void Fractions in Downward Flow”, Int. J. Multiphase Flow Vol.11, No.6, 1985“Two-Phase Flow Patterns and Void Fractions in Downward Flow”, Int. J. Multiphase Flow Vol.11, No.6, 1985

しかしながら、前記特許文献1に開示されている技術には以下の問題がある。   However, the technique disclosed in Patent Document 1 has the following problems.

一般に、地熱生産井における蒸気、熱水、非凝縮ガスの各流量及びその比率は、発電所毎、更には各井戸毎にそれぞれ異なる値となるが、各井戸における時間的な変動は比較的少ないために、各井戸毎には概略決まった値となっている。   In general, the flow rates and ratios of steam, hot water, and non-condensable gas in geothermal production wells are different for each power plant and for each well, but the temporal fluctuations in each well are relatively small. Therefore, the value is roughly determined for each well.

従って、地下に還元する液相(還元水)の液量が決まっている場合、液相の還元流速は還元井の管径を適正に選ぶことにより規定流速以上に保つことは可能であるが、その際に同伴させる気相の流速は、前記特許文献1に開示されている技術の構成では、それぞれの井戸での地熱流体の比率(蒸気量、熱水量、非凝縮ガス量)で一義的に決まってしまうために、特許文献1に示されているような規定の関係を維持するように制御することは不可能である。   Therefore, when the amount of liquid phase (reduced water) to be reduced to the underground is determined, the liquid phase reduction flow rate can be kept above the specified flow rate by properly selecting the diameter of the reduction well. The flow velocity of the gas phase entrained at that time is uniquely determined by the ratio of the geothermal fluid in each well (the amount of steam, the amount of hot water, the amount of non-condensed gas) in the configuration of the technique disclosed in Patent Document 1. Therefore, it is impossible to perform control so as to maintain the prescribed relationship as shown in Patent Document 1.

特許文献1では排水の見かけの流速Veoを1m/s以上とし、さらにガスの見かけの流速VgoをVgo<1.33Veo−0.41の範囲に抑えるとしている。還元水の量に応じてガスの見かけの流速Vgo、即ち還元処理可能な非凝縮ガス量の上限が決まってしまうため、例えば非凝縮ガス量の比率が高い地熱発電所の場合には、前記規定の流速条件を満足することができないことになる。   In Patent Document 1, the apparent flow velocity Veo of the waste water is set to 1 m / s or more, and the apparent flow velocity Vgo of the gas is further suppressed to a range of Vgo <1.33Veo−0.41. The apparent flow velocity Vgo of gas, that is, the upper limit of the amount of non-condensable gas that can be reduced, is determined according to the amount of reducing water. For example, in the case of a geothermal power plant with a high ratio of non-condensable gas, Therefore, the flow rate condition of cannot be satisfied.

これを回避するためには、足りない分の水を追加して液相の流量を増やすことが考えられるが、地熱発電所の立地の制約上、井戸等から追加の水を確保することは容易ではないという別の問題が生じる。   To avoid this, it may be possible to increase the liquid flow rate by adding insufficient water, but it is easy to secure additional water from wells due to geothermal power plant location constraints. Another problem arises.

また、前記特許文献2の技術には、還元層にできるだけ近い深い位置に注入するとしているが、その位置が深ければ深いほど高い水圧がかかることになるため、非凝縮ガスを圧縮するために大きな動力を要することになるという問題がある。   Further, in the technique of Patent Document 2, it is assumed that the injection is performed at a deep position as close as possible to the reducing layer, but the deeper the position is, the higher the water pressure is applied. There is a problem of requiring power.

本発明は、前記従来の問題点を解決するべくなされたもので、任意の地熱生産井において、新たに水を追加することなく、できるだけ少ない動力で非凝縮ガスを還元井深部まで還元することができる非凝縮ガス処理装置を提供することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and in any geothermal production well, non-condensable gas can be reduced to the deep part of the reduction well with as little power as possible without adding new water. It is an object of the present invention to provide a non-condensable gas treatment apparatus that can be used.

本発明は、地熱生産井から熱水と共に生産される蒸気から分離された非凝縮ガスを、還元水に供給管の開口部から供給・混合した後、該還元水と共に還元井内を下降させて地下に還元する非凝縮ガス処理装置において、前記供給管の開口部を、該開口部から排出される気相の非凝縮ガスが、液相の還元水と混合された気液混相状態の下で、気液体積比率(気相容積/(気相容積+液相容積))が20%以下となる水圧が加わる水深位置に設置したことにより、前記課題を解決したものである。 The present invention is to supply non-condensable gas separated from steam produced together with hot water from a geothermal production well to the reducing water through the opening of the supply pipe, and then descend the reducing well together with the reducing water to underground. in the non-condensable gas treatment device for reducing the opening of the supply pipe, the non-condensable gas of the gas phase discharged from the opening portion, under mixed gas-liquid mixed phase with reduced water liquid phase, The above-mentioned problem is solved by installing the gas- liquid volume ratio (gas phase volume / (gas phase volume + liquid phase volume)) at a water depth where water pressure is 20% or less.

本発明においては、前記還元井の上流位置に、前記非凝縮ガスを通過させ、該非凝縮ガスに含まれている被吸収成分を除去する吸収塔が配設されているようにしてもよく、その際には前記吸収塔が、物理吸収及び化学吸収の少なくとも一方の吸収能を有しているようにしてもよい。更に、前記還元水が、前記熱水及び/又は前記蒸気を凝縮して得られる凝縮水を含むようにしてもよい。 In the present invention, the upstream position before Symbol reinjection wells, the non-condensable gas is passed through, may also be absorption tower to remove the absorbing component contained in the non-condensable gas is disposed, In that case, you may make it the said absorption tower have at least one absorption ability of a physical absorption and a chemical absorption. Furthermore, the reduced water may include condensed water obtained by condensing the hot water and / or the steam.

本発明によれば、非凝縮ガスを還元井内の還元水に供給する供給管の開口部を、該開口部から排出・供給された非凝縮ガスを流下する還元水に確実に同伴させることが可能な気液の体積比率となる水深位置に設置するようにしたので、任意の気液比率の地熱流体、即ち任意の生産井から生産される地熱流体について、蒸気から分離される非凝縮ガスを、水を追加することなく、できるだけ少ない動力で確実に地下深部まで還元することが可能となる。   According to the present invention, the opening of the supply pipe that supplies the non-condensable gas to the reducing water in the reducing well can be reliably accompanied by the reducing water flowing down the non-condensed gas discharged and supplied from the opening. Since the geothermal fluid having an arbitrary gas-liquid ratio, that is, the geothermal fluid produced from an arbitrary production well, non-condensable gas separated from the steam is installed. Without adding water, it is possible to reliably return to the deep underground with as little power as possible.

特許文献1に開示されている還元井の概要を示す説明図Explanatory drawing which shows the outline | summary of the reduction | restoration well currently disclosed by patent document 1 特許文献1による作用・効果を示す説明図Explanatory drawing which shows the effect | action and effect by patent document 1 特許文献2に開示されている還元井の概要を示す説明図Explanatory drawing which shows the outline | summary of the reduction | restoration well currently disclosed by patent document 2 本発明に係る一実施形態の非凝縮ガス処理装置を含む地熱発電設備の要部を示す概略構成図The schematic block diagram which shows the principal part of the geothermal power generation equipment containing the non-condensable gas processing apparatus of one Embodiment which concerns on this invention. 水深を決める手順の一例を示すフローチャートFlow chart showing an example of the procedure for determining the water depth

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図4は、本発明に係る一実施形態の非凝縮ガス処理装置の概要を、その周辺設備と共に示す概略構成図である。   FIG. 4 is a schematic configuration diagram showing an outline of a non-condensed gas processing apparatus according to an embodiment of the present invention together with peripheral equipment.

本実施形態の非凝縮ガス処理装置は、図示しない地熱生産井から熱水と共に生産される蒸気から分離された非凝縮ガスGを、該熱水を含む還元水Hに供給管2の開口部2Aから排出・供給した後、該還元水Hと共に還元井4内を下降させて地下に還元する機能を有している。   The non-condensed gas processing apparatus of the present embodiment is configured so that the non-condensed gas G separated from the steam produced together with hot water from a geothermal production well (not shown) is supplied to the reducing water H containing the hot water. After being discharged / supplied, it has a function of lowering the inside of the reduction well 4 together with the reduced water H and returning it to the underground.

本実施形態においては、前記生産井から生産される熱水10が、アルカリ溶液14が注加される混合槽16に供給されてアルカリ性混合水H’に調製された後、前記還元井4の上流に位置する、物理及び化学の両吸収能を有する吸収塔18に導入される。なお、ここでは、熱水10に加えて、二点鎖線で示すように追加水12を還元水の一部として追加してもよい。   In this embodiment, after the hot water 10 produced from the production well is supplied to the mixing tank 16 to which the alkaline solution 14 is poured and prepared into the alkaline mixed water H ′, the hot water 10 is upstream of the reducing well 4. Introduced into an absorption tower 18 having both physical and chemical absorption capabilities. Here, in addition to the hot water 10, the additional water 12 may be added as part of the reduced water as indicated by a two-dot chain line.

また、前記生産井から生産される蒸気20は、地熱発電設備22に設置されている、例えば2段式の熱交換機24A、24Bに順次供給され、発電用タービン(図示せず)を回転させるための、例えばペンタン等の有機溶媒からなる作動媒体を液体から気体にする熱源として使用された後、凝縮水H”となって熱交換器24Bから排出されるとともに、蒸気20に含まれていた非凝縮ガスG’は熱交換器24A内から抽気される。ここで、非凝縮ガスG’は被吸収成分を含有している。   Further, the steam 20 produced from the production well is sequentially supplied to, for example, two-stage heat exchangers 24A and 24B installed in the geothermal power generation facility 22, and rotates a power generation turbine (not shown). After being used as a heat source for converting a working medium made of an organic solvent such as pentane into a gas from a liquid, it becomes condensed water H ″ and is discharged from the heat exchanger 24B and is not contained in the vapor 20 The condensed gas G ′ is extracted from the heat exchanger 24A, where the non-condensed gas G ′ contains an absorbed component.

抽気された前記非凝縮ガスG’は、例えば0.6MPaのゲージ圧、160℃の下で前記吸収塔18に供給されている前記アルカリ性混合水H’中を通過され、物理吸収と化学吸収により二酸化硫黄や炭酸ガス、硫化水素等の被吸収成分が除去された非凝縮ガスGとして、圧縮機26により、例えば3.0MPaのゲージ圧の下で前記供給管2に上部から圧入して供給される。   The non-condensed gas G ′ extracted is passed through the alkaline mixed water H ′ supplied to the absorption tower 18 under a gauge pressure of 0.6 MPa, 160 ° C., for example, and is absorbed by physical absorption and chemical absorption. As the non-condensable gas G from which absorbed components such as sulfur dioxide, carbon dioxide gas, hydrogen sulfide and the like are removed, the compressor 26 is supplied by being press-fitted into the supply pipe 2 from above at a gauge pressure of, for example, 3.0 MPa. The

一方、前記凝縮水H”は復水として前記吸収塔18から排出される混合水H’と混合され、前記還元水Hとしてポンプ28により前記還元井4内に導入される。   On the other hand, the condensed water H ″ is mixed with the mixed water H ′ discharged from the absorption tower 18 as condensate and introduced into the reducing well 4 by the pump 28 as the reducing water H.

本実施形態においては、前記供給管2が、前記還元井4に導入されている還元水Hの水面下で水深Lの位置に、該還元水Hに非凝縮ガスGを排出・供給するための開口部2Aが一致するように該還元井4内に配設されている。   In the present embodiment, the supply pipe 2 discharges and supplies the non-condensable gas G to the reduced water H at a position at a water depth L below the surface of the reduced water H introduced into the reducing well 4. It arrange | positions in this reducing well 4 so that the opening part 2A may correspond.

従って、この供給管2の開口部2Aには、ヘッド圧として水深Lに相当する水圧が加わっているので、非凝縮ガスGはそのヘッド圧に抗して該開口部2Aから排出されることになるため、該ヘッド圧と同等以上に圧縮された状態で還元井4内に供給されることになる。   Therefore, since the water pressure corresponding to the water depth L is applied as the head pressure to the opening 2A of the supply pipe 2, the non-condensable gas G is discharged from the opening 2A against the head pressure. Therefore, it is supplied into the reduction well 4 in a state compressed to be equal to or higher than the head pressure.

本実施形態では、供給管2の開口部2Aの水深Lを、還元すべき非凝縮ガスGの標準状態における体積と還元水Hの体積の比率に応じて決定する。具体的には、非凝縮ガスGを気相、還元水Hを液相とした場合に、次式で表される気液の体積比率(ボイド率)で設定する。   In the present embodiment, the water depth L of the opening 2A of the supply pipe 2 is determined according to the ratio of the volume of the non-condensable gas G to be reduced in the standard state to the volume of the reduced water H. Specifically, when the non-condensable gas G is a gas phase and the reduced water H is a liquid phase, the volume ratio (void ratio) of the gas and liquid expressed by the following equation is set.

ボイド率=気相容積/(気相容積+液相容積) …(1)     Void ratio = gas phase volume / (gas phase volume + liquid phase volume) (1)

いま、ボイド率=αであったとしたときの水深Lの計算方法について説明する。   Now, a calculation method of the water depth L when the void ratio = α will be described.

水深が変化、即ち水圧が変化したとしても、気液混相状態を構成する液相の体積は変化しない。そこで、液相の体積を基準の1とし、この体積1の還元水(熱水+凝縮水)から分離された気相の水深Lにおける体積がVPであったとすると、前記(1)式は次式となる。 Even if the water depth changes, that is, the water pressure changes, the volume of the liquid phase constituting the gas-liquid mixed phase state does not change. Therefore, assuming that the volume of the liquid phase is 1, and the volume at the water depth L of the gas phase separated from the reduced water (hot water + condensed water) of volume 1 is VP , the equation (1) is The following formula.

P/(VP+1)=α …(2) V P / (V P +1) = α (2)

この(2)式からVP=α/(1−α)となることから、ボイド率をα以下とするためには、水深Lでは気相の体積を液相のα/(1−α)以下にする必要がある。 From this equation (2), V P = α / (1-α). Therefore, in order to make the void ratio less than α, the volume of the gas phase at the water depth L is α / (1-α) of the liquid phase. Must be:

従って、仮に体積1の還元水から分離された気相の標準状態(1気圧=0.1013MPa)における体積がVSであったとすると、これを液相のα/(1−α)(=VP)に圧縮するための圧縮率n=(VS/VP)は、VP=VS/n=α/(1−α)から、n=VS(1−α)/αとなる。 Accordingly, if the volume in the standard state of the gas phase separated from the volume of reducing water (1 atm = 0.1013 MPa) is V S , this is expressed as α / (1-α) (= V compression ratio for compressing the P) n = (V S / V P) becomes a V P = V S / n = α / (1-α), n = V S (1-α) / α .

また、水圧は10m毎に1気圧増大することから、水深Lは次式で設定される。   Further, since the water pressure increases by 1 atmosphere every 10 m, the water depth L is set by the following equation.

L=[VS(1−α)/α]×10[m] …(3) L = [V S (1−α) / α] × 10 [m] (3)

仮に1m3の還元水から標準状態で1m3の非凝縮ガスが分離されたとすると、前記開口部2Aは[(1−α)/α]×10mの水深以下に設置することになる。 Assuming that 1 m 3 of non-condensable gas is separated from 1 m 3 of reduced water in a standard state, the opening 2A is installed at a depth of [(1-α) / α] × 10 m or less.

従って、任意の地熱発電所で生産された地熱流体から分離された非凝縮ガス(気相)については、図5のフローチャートにしたがって、ボイド率=αに対応する水深Lを決定することができる。   Therefore, for the non-condensable gas (gas phase) separated from the geothermal fluid produced at any geothermal power plant, the water depth L corresponding to the void ratio = α can be determined according to the flowchart of FIG.

先ず、生産された地熱流体を気相と液相(熱水+凝縮水)に分離し(ステップS1)、分離された単位体積当たりの液相に対する気相の標準状態下における体積VSを算出する(ステップS2)。 First, the produced geothermal fluid is separated into a gas phase and a liquid phase (hot water + condensed water) (step S1), and a volume V S under the standard state of the gas phase with respect to the liquid phase per unit volume is calculated (Step S2).

次いで、ボイド率がαのときの気相の体積VPを前記(2)式から算出し(ステップS3)、求めたVPから圧縮率nを算出し(ステップS4)、その圧縮率から前記(3)式により水深Lを算出する(ステップS5)。 Next, the volume V P of the gas phase when the void ratio is α is calculated from the equation (2) (step S3), the compression rate n is calculated from the obtained V P (step S4), and the compression rate n is calculated from the compression rate. The water depth L is calculated from the equation (3) (step S5).

次いで、具体例を挙げて説明する。   Next, a specific example will be described.

ボイド率=20%以下に設定する場合には、前記(3)式は次の(3’)式となる。   When the void ratio is set to 20% or less, the above expression (3) becomes the following expression (3 ').

L=4VS×10[m] …(3’) L = 4V S × 10 [m] (3 ′)

これより、仮に1m3の還元水から標準状態で1m3の非凝縮ガスが分離されたとすると、前記開口部2Aは4×10mの水深以下に設置することになる。 Thus, if 1 m 3 of non-condensable gas is separated from 1 m 3 of reduced water in a standard state, the opening 2A is installed at a depth of 4 × 10 m or less.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

供給管2の開口部2Aから還元水Hに排出される非凝縮ガスGの容積(体積)は、ヘッド圧(水圧)に応じて小さくなる。従って、このヘッド圧により、液相中に排出された気相の液相に対する体積比率(ボイド率)を制御することができる。   The volume (volume) of the non-condensed gas G discharged from the opening 2A of the supply pipe 2 to the reduced water H decreases according to the head pressure (water pressure). Therefore, the volume ratio (void ratio) of the gas phase discharged into the liquid phase to the liquid phase can be controlled by this head pressure.

これは即ち、前記特許文献1に開示されている技術における気相の見掛け流速を制御することに相当する。従って、供給管2の開口部2Aの水深Lを適切に設定することにより、還元井4において非凝縮ガスGの逆流を生じさせることなく、気相(非凝縮ガスG)を気液混相状態で液相に同伴させつつ地下深部に還元することが可能となる。   This corresponds to controlling the apparent flow velocity of the gas phase in the technique disclosed in Patent Document 1. Therefore, by appropriately setting the water depth L of the opening 2A of the supply pipe 2, the gas phase (non-condensable gas G) can be brought into a gas-liquid mixed phase state without causing a backflow of the non-condensable gas G in the reduction well 4. It becomes possible to reduce to the deep underground while being accompanied by the liquid phase.

水深Lを適切に設定するとは、開口部2Aに気液の体積比率が、例えば20%以下になるようなヘッド圧(水圧)がかかる水深にすることであり、このように設定することにより前記特許文献1でいう気相の見掛け流速を十分に小さくすることが可能となり、流動状態として前記図2に示した(c)気泡流状態を維持できることになると考えられる。なお、気液体積比率が20%以下にすることが、気泡流状態の維持に有効であることは、例えば非特許文献1に記載されている。   Properly setting the water depth L is to set the water depth at which the head pressure (water pressure) is applied such that the volume ratio of the gas and liquid is 20% or less in the opening 2A. It is considered that the apparent flow velocity of the gas phase referred to in Patent Document 1 can be made sufficiently small, and the (c) bubble flow state shown in FIG. 2 can be maintained as the flow state. For example, Non-Patent Document 1 describes that setting the gas-liquid volume ratio to 20% or less is effective for maintaining the bubble flow state.

なお、気液体積比率を20%より小さくすればするほど非凝縮ガスGの逆流抑制には有効であり、例えば前記特許文献2に開示されている技術のように、還元井4の井戸底にかかる圧力まで非凝縮ガスGを圧縮すれば、ガス圧入によりそのまま地下還元することは当然可能であるが、この場合はガスを圧縮するために多大な動力を要することになる。そこで、気液体積比率は5%程度までを下限とすることが動力の過大な消費を回避する上で有効である。   In addition, it is effective for the backflow suppression of the non-condensed gas G, so that a gas-liquid volume ratio is made smaller than 20%, for example, like the technique currently disclosed by the said patent document 2, it is in the well bottom of the reduction well 4. If the non-condensable gas G is compressed to such a pressure, it is naturally possible to reduce it underground by gas injection, but in this case, a large amount of power is required to compress the gas. Therefore, it is effective to avoid excessive consumption of power by setting the gas / liquid volume ratio to a lower limit of up to about 5%.

本実施形態では、各発電所、各井戸毎の地熱流体の流量と気液比率に応じて、非凝縮ガスGを気液混相状態で同伴下降搬送可能な水深の水圧程度に圧縮して還元水(液相)中に供給することにより、最小限の圧縮に留めることが可能となることから、ガス圧縮動力を削減しつつ、非凝縮ガス全量を地下還元することが可能となる。   In this embodiment, according to the flow rate and gas-liquid ratio of the geothermal fluid for each power plant and each well, the non-condensable gas G is compressed to a water pressure of a water depth that can be transported downward in the gas-liquid mixed phase state and reduced water. By supplying it into the (liquid phase), it is possible to keep the compression to a minimum, so that the total amount of non-condensable gas can be reduced underground while reducing the gas compression power.

また、本実施形態においては、圧縮機26の前段で非凝縮ガスの一部を物理吸収及び化学吸収するようにしているので、これにより炭酸ガス等の被吸収成分ガスを除去できることから、圧縮機26により処理するガス量を更に削減することができ、また前記(3)式におけるVSを削減することに相当することから圧縮率の低減にもつながり、圧縮動力を大幅に削減することが可能となっている。その上、腐食性の強いガス、例えば二酸化硫黄や硫化水素を前記物理/化学吸収工程で選択的に吸収するようにできることから、圧縮機26の腐食を抑制できるメリットも得られる。 Further, in the present embodiment, since a part of the non-condensable gas is physically absorbed and chemically absorbed in the previous stage of the compressor 26, the absorbed component gas such as carbon dioxide gas can be removed thereby, so that the compressor the amount of gas treated by 26 further can be reduced, also the (3) also lead to a reduction in the compression ratio because it is equivalent to reducing the V S in the equation, it is possible to significantly reduce the compression power It has become. In addition, since a corrosive gas such as sulfur dioxide or hydrogen sulfide can be selectively absorbed in the physical / chemical absorption step, the advantage that corrosion of the compressor 26 can be suppressed is also obtained.

なお、前記実施形態では、熱水と凝縮水を還元水として用いる例を示したが、熱水のみもしくは凝縮水のみを還元水としてもよい。また、前記図4に二点鎖線で併記した追加水として井水などを加えてももちろんよい。また、還元井の上流、即ち圧縮機の前段に吸収塔を設ける例を示したが、これに限定されない。更には、生産される蒸気が、発電タービンを回転させる作動媒体の加熱に使用される例を示したが、該蒸気を直接発電タービンの回転に供する設備であってもよいことは言うまでもない。   In addition, although the example which uses hot water and condensed water as reduced water was shown in the said embodiment, it is good also considering only hot water or only condensed water as reduced water. Further, it is of course possible to add well water or the like as the additional water shown together with a two-dot chain line in FIG. Moreover, although the example which provides an absorption tower upstream of a reduction well, ie, the front | former stage of a compressor, was shown, it is not limited to this. Furthermore, although the example in which the produced steam is used for heating the working medium that rotates the power generation turbine has been shown, it goes without saying that the steam may be directly supplied to the rotation of the power generation turbine.

2…供給管
2A…開口部
4…還元井
10…熱水
12…追加水
14…アルカリ溶液
16…混合槽
18…吸収塔
20…蒸気
22…地熱発電設備
24A、24B…熱交換機
26…圧縮機
28…ポンプ
G…非凝縮ガス
H…還元水
H’…アルカリ性混合水
H”…凝縮水
DESCRIPTION OF SYMBOLS 2 ... Supply pipe 2A ... Opening part 4 ... Reduction well 10 ... Hot water 12 ... Additional water 14 ... Alkaline solution 16 ... Mixing tank 18 ... Absorption tower 20 ... Steam 22 ... Geothermal power generation equipment 24A, 24B ... Heat exchanger 26 ... Compressor 28 ... Pump G ... Non-condensable gas H ... Reduced water H '... Alkaline mixed water H "... Condensed water

Claims (4)

地熱生産井から熱水と共に生産される蒸気から分離された非凝縮ガスを、還元水に供給管の開口部から供給・混合した後、該還元水と共に還元井内を下降させて地下に還元する非凝縮ガス処理装置において、
前記供給管の開口部を、該開口部から排出される気相の非凝縮ガスが、液相の還元水と混合された気液混相状態の下で、気液体積比率(気相容積/(気相容積+液相容積))が20%以下となる水圧が加わる水深位置に設置したことを特徴とする非凝縮ガス処理装置。
The non-condensable gas separated from the steam produced with the hot water from the geothermal production well is supplied to and mixed with the reduced water from the opening of the supply pipe, and then the reduced well is lowered with the reduced water and reduced to the underground. In the condensed gas processing device,
The gas- liquid volume ratio (gas phase volume / (gas phase volume / ()) is formed in the opening of the supply pipe under a gas-liquid mixed phase state in which a gas phase non-condensable gas discharged from the opening is mixed with liquid reducing water. A non-condensed gas processing apparatus, characterized in that it is installed at a water depth position where water pressure is applied so that the gas phase volume + liquid phase volume)) is 20% or less.
前記還元井の上流位置に、前記非凝縮ガスを通過させ、該非凝縮ガスに含まれている被吸収成分を除去する吸収塔が配設されていることを特徴とする請求項1に記載の非凝縮ガス処理装置。 2. The non-condensation tower according to claim 1, wherein an absorption tower that allows the non-condensable gas to pass therethrough and removes the components to be absorbed contained in the non-condensed gas is disposed upstream of the reducing well. Condensed gas treatment device. 前記吸収塔が、物理吸収及び化学吸収の少なくとも一方の吸収能を有していることを特徴とする請求項に記載の非凝縮ガス処理装置。 The non-condensable gas processing apparatus according to claim 2 , wherein the absorption tower has at least one of absorptivity of physical absorption and chemical absorption. 前記還元水が、前記熱水及び/又は前記蒸気を凝縮して得られる凝縮水を含むことを特徴とする請求項1乃至のいずれかに記載の非凝縮ガス処理装置。 The non-condensed gas processing apparatus according to any one of claims 1 to 3 , wherein the reducing water includes condensed water obtained by condensing the hot water and / or the steam.
JP2011074455A 2011-03-30 2011-03-30 Non-condensable gas processing equipment Active JP5578125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074455A JP5578125B2 (en) 2011-03-30 2011-03-30 Non-condensable gas processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074455A JP5578125B2 (en) 2011-03-30 2011-03-30 Non-condensable gas processing equipment

Publications (2)

Publication Number Publication Date
JP2012207605A JP2012207605A (en) 2012-10-25
JP5578125B2 true JP5578125B2 (en) 2014-08-27

Family

ID=47187546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074455A Active JP5578125B2 (en) 2011-03-30 2011-03-30 Non-condensable gas processing equipment

Country Status (1)

Country Link
JP (1) JP5578125B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268752B2 (en) * 2013-05-24 2018-01-31 株式会社大林組 Steam generation apparatus for geothermal power generation, steam generation method for geothermal power generation, and geothermal power generation system
CN104785073A (en) * 2015-04-30 2015-07-22 中国华能集团清洁能源技术研究院有限公司 Carbon dioxide capture, power generation and sequestration system utilizing terrestrial heat
FR3087475B1 (en) 2018-10-22 2021-05-07 Ifp Energies Now BASEMENT GAS INJECTION METHOD AND SYSTEM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632601A (en) * 1985-11-01 1986-12-30 Kuwada James T System and method for disposal of noncondensable gases from geothermal wells
JP3920365B2 (en) * 1994-04-28 2007-05-30 オルマット インダストリーズ リミテッド Apparatus and method for treating non-condensable gases in geothermal fluids
JP2001120949A (en) * 1999-10-28 2001-05-08 Nishi Nippon Gijutsu Kaihatsu Kk Hydrogen sulfide removing method

Also Published As

Publication number Publication date
JP2012207605A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
US11255576B2 (en) Closed loop energy production from producing geothermal wells
Farajzadeh et al. On the sustainability of CO2 storage through CO2–Enhanced oil recovery
Gallup Production engineering in geothermal technology: a review
CN107735624B (en) Method for utilizing internal energy of aquifer fluid in geothermal equipment
Sigfússon et al. 2014 JRC geothermal energy status report
US8354087B2 (en) Method for removal of hydrogen sulfide from geothermal steam and condensate
US4132269A (en) Generation of electricity during the injection of a dense fluid into a subterranean formation
JP5578125B2 (en) Non-condensable gas processing equipment
JP6808630B2 (en) Mitigation of corrosion in geothermal systems
CN108590623B (en) Same-well reinjection process pipe column and method
Mills et al. Habanero pilot project—Australia’s first EGS power plant
Zendehboudi et al. Droplets evolution during ex situ dissolution technique for geological CO2 sequestration: Experimental and mathematical modelling
US20230392485A1 (en) Extraction and integration of waste heat from enhanced geologic hydrogen production
US10718510B2 (en) Deaerator (options)
CN106499375A (en) A kind of turbine fume afterheat cyclic utilization system
WO2014140756A2 (en) A system for processing brines
JP6098241B2 (en) Non-condensable gas retention method and apparatus
JP2015090147A (en) Geothermal power generation system and geothermal power generation system scale prevention method
Ingimundarson et al. Design of a H2S absorption column at the Hellisheiði Powerplant
US20070039728A1 (en) Hydrogeneration as an end product of a closed loop gaslift process employing LNG
Elíasson Power generation from high-enthalpy geothermal resources
JP2015158348A (en) Deaeration system and steam turbine plant
JP7094047B1 (en) Geothermal turbine blade scale removal method and geothermal power generation method
Beliveau Solution Gas Production Profiling
Gallup Combination flash-bottoming cycle geothermal power generation: a case history

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5578125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350