JP2018002983A - Polyacetal resin, and method for producing the same - Google Patents
Polyacetal resin, and method for producing the same Download PDFInfo
- Publication number
- JP2018002983A JP2018002983A JP2016136183A JP2016136183A JP2018002983A JP 2018002983 A JP2018002983 A JP 2018002983A JP 2016136183 A JP2016136183 A JP 2016136183A JP 2016136183 A JP2016136183 A JP 2016136183A JP 2018002983 A JP2018002983 A JP 2018002983A
- Authority
- JP
- Japan
- Prior art keywords
- polyacetal resin
- relaxation time
- intermediate phase
- less
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229930182556 Polyacetal Natural products 0.000 title claims abstract description 56
- 229920006324 polyoxymethylene Polymers 0.000 title claims abstract description 56
- 229920005989 resin Polymers 0.000 title claims abstract description 53
- 239000011347 resin Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title description 2
- 239000013078 crystal Substances 0.000 claims abstract description 24
- 238000002844 melting Methods 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- 239000011737 fluorine Substances 0.000 claims description 10
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 230000000740 bleeding effect Effects 0.000 abstract description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 49
- 238000006116 polymerization reaction Methods 0.000 description 22
- 125000004122 cyclic group Chemical group 0.000 description 18
- 239000002685 polymerization catalyst Substances 0.000 description 18
- 150000004292 cyclic ethers Chemical class 0.000 description 14
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 7
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- -1 imide compound Chemical class 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 5
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 229910015900 BF3 Inorganic materials 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920006038 crystalline resin Polymers 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- AUAGGMPIKOZAJZ-UHFFFAOYSA-N 1,3,6-trioxocane Chemical compound C1COCOCCO1 AUAGGMPIKOZAJZ-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- FGJLAJMGHXGFDE-UHFFFAOYSA-L disodium;2,3-dihydroxybutanedioate;dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C(O)C(O)C([O-])=O FGJLAJMGHXGFDE-UHFFFAOYSA-L 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002124 flame ionisation detection Methods 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000005704 oxymethylene group Chemical group [H]C([H])([*:2])O[*:1] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229940092162 sodium tartrate dihydrate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WPHQCIYLQCPBGU-UHFFFAOYSA-M triethyl(2-hydroxyethyl)azanium;formate Chemical compound [O-]C=O.CC[N+](CC)(CC)CCO WPHQCIYLQCPBGU-UHFFFAOYSA-M 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- MVJKXJPDBTXECY-UHFFFAOYSA-N trifluoroborane;hydrate Chemical compound O.FB(F)F MVJKXJPDBTXECY-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 150000004901 trioxanes Chemical class 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ポリアセタール樹脂、及びその製造方法に関する。 The present invention relates to a polyacetal resin and a method for producing the same.
ポリアセタール樹脂は、剛性や靭性等の機械的強度、摺動性、及びクリープ性等に優れた樹脂であり、自動車部品や電気・電子機器及び各種機構部品を中心に、広範にわたって使用されている。
近年、自動車部品等の分野を中心に、樹脂から発生する揮発性物質を低減することが重要となっている。揮発性物質とは、常温常圧で大気中に容易に揮発する有機化合物であり、ポリアセタール樹脂ではホルムアルデヒドが問題となっている。したがって、ポリアセタール樹脂からのホルムアルデヒドの揮発を低減する技術が求められている。
ポリアセタール樹脂からのホルムアルデヒドの揮発を低減する従来技術として、例えば、添加剤としてヒドラジド化合物とイミド化合物と立体障害フェノールを添加する技術が知られている(特許文献1)。また、ポリアセタールの末端を特定の構造に規定し、グアナミン化合物とエステル化合物を添加する技術が開示されている(特許文献2)。
Polyacetal resin is a resin excellent in mechanical strength such as rigidity and toughness, slidability, and creep properties, and is widely used mainly in automobile parts, electrical / electronic devices and various mechanical parts.
In recent years, it has become important to reduce volatile substances generated from resins, mainly in the field of automobile parts and the like. Volatile substances are organic compounds that easily volatilize in the atmosphere at normal temperature and pressure, and formaldehyde is a problem in polyacetal resins. Therefore, a technique for reducing volatilization of formaldehyde from the polyacetal resin is required.
As a conventional technique for reducing volatilization of formaldehyde from a polyacetal resin, for example, a technique of adding a hydrazide compound, an imide compound, and a sterically hindered phenol as additives is known (Patent Document 1). Moreover, the technique which prescribes | regulates the terminal of a polyacetal to a specific structure, and adds a guanamine compound and an ester compound is disclosed (patent document 2).
しかしながら、前記のホルムアルデヒドの揮発を低減する技術は、ホルムアルデヒドと反応する窒素化合物の添加によるものであり、その添加剤に由来する問題も多々発生している。例えば、射出成形時の金型への付着物(モールドデポジット、以下MDと略す場合がある)の発生や、成形片からの添加剤のブリードの発生などが挙げられる。このように、ホルムアルデヒドの揮発を低減しつつ、MDの発生を抑制し(以下、「MD性」と称す。)、ブリードの発生を低減する(以下、」ブリード性」と称す。)ことは困難であった。 However, the technique for reducing volatilization of formaldehyde is based on the addition of a nitrogen compound that reacts with formaldehyde, and there are many problems arising from the additive. For example, generation of deposits (mold deposit, which may be abbreviated as MD hereinafter) on the mold during injection molding, generation of additive bleeding from the molded piece, and the like can be mentioned. Thus, it is difficult to suppress the occurrence of MD while reducing the volatilization of formaldehyde (hereinafter referred to as “MD property”) and to reduce the occurrence of bleed (hereinafter referred to as “bleed property”). Met.
前記課題を解決するために本発明者らは鋭意検討した結果、ポリアセタール樹脂における結晶構造中の中間相の緩和時間を特定の範囲に制御することで、ホルムアルデヒドの揮発を低減できることを見出し、本発明に至った。 As a result of intensive investigations to solve the above problems, the present inventors have found that the volatilization of formaldehyde can be reduced by controlling the relaxation time of the intermediate phase in the crystal structure of the polyacetal resin within a specific range, and the present invention. It came to.
すなわち、本発明は以下の通りである。
[1]パルスNMRで測定した結晶構造中の中間相の緩和時間が0.037ms以下であり、中間相の緩和時間/結晶相の緩和時間が1.9以下で、融点が160℃〜170℃であるポリアセタール樹脂。
[2]パルスNMRで測定した結晶構造中の、中間相の緩和時間が0.035ms〜0.037msで、中間相の緩和時間/結晶相の緩和時間が1.6〜1.9である[1]に記載のポリアセタール樹脂。
[3]ポリアセタール樹脂中のフッ素量が10ppm以下である、[1]又は[2]に記載のポリアセタール樹脂。
[4][1]〜[3]のいずれかに記載のポリアセタール樹脂を含む成形体。
That is, the present invention is as follows.
[1] The relaxation time of the intermediate phase in the crystal structure measured by pulse NMR is 0.037 ms or less, the relaxation time of the intermediate phase / the relaxation time of the crystal phase is 1.9 or less, and the melting point is 160 ° C. to 170 ° C. A polyacetal resin.
[2] The relaxation time of the intermediate phase in the crystal structure measured by pulse NMR is 0.035 ms to 0.037 ms, and the relaxation time of the intermediate phase / relaxation time of the crystal phase is 1.6 to 1.9 [ 1].
[3] The polyacetal resin according to [1] or [2], wherein the amount of fluorine in the polyacetal resin is 10 ppm or less.
[4] A molded article comprising the polyacetal resin according to any one of [1] to [3].
本発明によると、ホルムアルデヒドの揮発が少なく、かつMD性及びブリード性に優れたポリアセタール樹脂を提供することができる。 According to the present invention, it is possible to provide a polyacetal resin with less formaldehyde volatilization and excellent MD and bleed properties.
以下、本発明を実施するための形態(以下、「本実施形態」という)について詳細に説明する。
なお、本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
In addition, this invention is not limited to the following description, In the range of the summary, various deformation | transformation can be implemented.
〔ポリアセタール樹脂〕
本実施形態においてポリアセタール樹脂とは、オキシメチレン構造を単位構造として有する高分子化合物をいい、中でもポリアセタールコポリマーが好ましい。
[Polyacetal resin]
In the present embodiment, the polyacetal resin refers to a polymer compound having an oxymethylene structure as a unit structure, and among them, a polyacetal copolymer is preferable.
ポリアセタールコポリマーの代表的なものとしては、トリオキサンと環状エーテル及び/又は環状ホルマールを重合触媒の存在下で共重合して得られるポリアセタール共重合体である。
トリオキサンとは、ホルムアルデヒドの環状3量体であり、一般的には酸性触媒の存在下でホルムアルデヒド水溶液を反応させることにより得られる。
このトリオキサンは、水、メタノール、蟻酸、蟻酸メチル等の連鎖移動剤として働く不純物を含有している場合があるので、例えば蒸留等の方法でこれら不純物を除去精製することが好ましい。
その場合、連鎖移動剤として働く不純物の合計量をトリオキサン1molに対して、1×10-3mol以下とすることが好ましく、より好ましくは5×10-4mol以下とする。
不純物の量を上記数値のように低減化することにより、生成したポリマーは優れた熱安定性(ホルムアルデヒドの揮発が少ない)を有する。また添加物等と混合した際のMD性及びブリード性が優れたものとなる。
A typical polyacetal copolymer is a polyacetal copolymer obtained by copolymerizing trioxane and cyclic ether and / or cyclic formal in the presence of a polymerization catalyst.
Trioxane is a cyclic trimer of formaldehyde and is generally obtained by reacting an aqueous formaldehyde solution in the presence of an acidic catalyst.
Since this trioxane may contain impurities that act as chain transfer agents such as water, methanol, formic acid, and methyl formate, it is preferable to remove and purify these impurities by a method such as distillation.
In that case, the total amount of impurities acting as a chain transfer agent is preferably 1 × 10 −3 mol or less, more preferably 5 × 10 −4 mol or less, relative to 1 mol of trioxane.
By reducing the amount of impurities as indicated above, the polymer produced has excellent thermal stability (less formaldehyde volatilization). Moreover, MD property and bleed property when mixed with additives and the like are excellent.
環状エーテル及び/又は環状ホルマールは、前記トリオキサンと共重合可能な成分であり、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、エピクロルヒドリン、エピブロモヒドリン、スチレンオキサイド、オキサタン、1,3−ジオキソラン、エチレングリコールホルマール、プロピレングリコールホルマール、ジエチレングリコールホルマール、トリエチレングリコールホルマール、1,4−ブタンジオールホルマール、1,5−ペンタンジオールホルマール、1,6−ヘキサンジオールホルマール等が挙げられる。
これらの中でも、特に1,3−ジオキソラン、1,4−ブタンジオールホルマールが好ましい。
これらは、1種のみを単独で使用してもよく、2種以上を併用してもよい。
環状エーテル及び/又は環状ホルマールの添加量は、前記トリオキサン1molに対して1.0×10-2mol以上7.0×10-2mol以下が好ましく、より好ましくは3.0×10-2mol以上6.0×10-2mol以下である。
環状エーテル及び/又は環状ホルマールの共重合割合をこの範囲にすると、中間相の緩和時間及び中間相の緩和時間/結晶相の緩和時間の値を後述の範囲に調整するのが容易になる。
Cyclic ether and / or cyclic formal is a component copolymerizable with the trioxane, such as ethylene oxide, propylene oxide, butylene oxide, epichlorohydrin, epibromohydrin, styrene oxide, oxatan, 1,3-dioxolane, ethylene. Examples include glycol formal, propylene glycol formal, diethylene glycol formal, triethylene glycol formal, 1,4-butanediol formal, 1,5-pentanediol formal, and 1,6-hexanediol formal.
Among these, 1,3-dioxolane and 1,4-butanediol formal are particularly preferable.
These may be used alone or in combination of two or more.
The addition amount of cyclic ether and / or cyclic formal is preferably 1.0 × 10 −2 mol or more and 7.0 × 10 −2 mol or less, more preferably 3.0 × 10 −2 mol, relative to 1 mol of trioxane. The amount is 6.0 × 10 −2 mol or less.
When the copolymerization ratio of the cyclic ether and / or the cyclic formal is within this range, it becomes easy to adjust the values of the relaxation time of the intermediate phase and the relaxation time of the intermediate phase / the relaxation time of the crystal phase to the ranges described later.
重合触媒としては、ルイス酸に代表されるホウ酸、スズ、チタン、リン、ヒ素及びアンチモン化物が挙げられ、特に、三フッ化ホウ素、三フッ化ホウ素系水和物、及び酸素原子又は硫黄原子を含む有機化合物と三フッ化ホウ素との配位錯化合物が好ましい。例えば、三フッ化ホウ素、三フッ化ホウ素ジエチルエーテラート、三フッ化ホウ素−ジ−n−ブチルエーテラートを好適例として挙げられる。
これらは、1種のみを単独で使用してもよく、2種以上を併用してもよい。
Examples of the polymerization catalyst include boric acid typified by Lewis acid, tin, titanium, phosphorus, arsenic and antimonide, especially boron trifluoride, boron trifluoride hydrate, and oxygen atom or sulfur atom. A coordination complex compound of an organic compound containing and boron trifluoride is preferable. For example, boron trifluoride, boron trifluoride diethyl etherate, and boron trifluoride-di-n-butyl etherate are preferable examples.
These may be used alone or in combination of two or more.
また、重合触媒は希釈して使用することが好ましく、希釈する溶媒としては、重合反応に関与したり悪影響を及ぼしたりするものでなければ特に限定されるものではない。例えば、環状構造を有する化合物として、ベンゼン、トルエン、キシレンのような芳香族炭化水素;シクロブタン、シクロペンタン、シクロヘキサン、のような脂肪族炭化水素;ジエチルエーテル、ジエチレングリコールジメチルエーテル、1,4−ジオキサンのようなエーテル類が挙げられ、
直鎖構造を有する化合物として、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカンのような脂肪族炭化水素;クロロホルム、ジクロロメタン、四塩化炭素のようなハロゲン化炭化水素が挙げられる。
これらの中でも、安価であるという観点から、脂肪族炭化水素が好ましく、環状構造を有する化合物としてはシクロヘキサン、直鎖構造を有する化合物としてはn−ヘプタン、n−ヘキサンを好適例として挙げることができる。
特に、環状構造を有する脂肪族炭化水素と、直鎖構造を有する脂肪族炭化水素を併用すると、得られるポリセタール樹脂の結晶構造中の中間相の緩和時間が小さくなり、ホルムアルデヒドの揮発が少なくなる傾向にある。
また添加物等と混合した際のMD性及びブリード性が優れたものとなる。
The polymerization catalyst is preferably used after being diluted, and the solvent for dilution is not particularly limited as long as it does not participate in the polymerization reaction or exert an adverse effect. For example, as a compound having a cyclic structure, aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; diethyl ether, diethylene glycol dimethyl ether and 1,4-dioxane Ethers,
Compounds having a linear structure include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; halogens such as chloroform, dichloromethane and carbon tetrachloride And hydrocarbons.
Among these, aliphatic hydrocarbons are preferable from the viewpoint of low cost, and examples of the compound having a cyclic structure include cyclohexane, and examples of the compound having a linear structure include n-heptane and n-hexane. .
In particular, when an aliphatic hydrocarbon having a cyclic structure and an aliphatic hydrocarbon having a straight chain structure are used in combination, the relaxation time of the intermediate phase in the crystal structure of the resulting polycetal resin is reduced, and volatilization of formaldehyde tends to be reduced. It is in.
Moreover, MD property and bleed property when mixed with additives and the like are excellent.
重合触媒の添加量は、前記トリオキサン1molに対して1×10-6〜1×10-4molの範囲が好ましく、より好ましくは3×10-6〜5×10-5molの範囲であり、さらに好ましくは5×10-6〜4×10-5molの範囲である。
重合触媒の添加量が前記範囲内であるとき、安定して長時間の重合反応を実施することができる。
The addition amount of the polymerization catalyst is preferably in the range of 1 × 10 −6 to 1 × 10 −4 mol, more preferably in the range of 3 × 10 −6 to 5 × 10 −5 mol, relative to 1 mol of the trioxane. More preferably, it is the range of 5 * 10 < -6 > -4 * 10 <-5> mol.
When the addition amount of the polymerization catalyst is within the above range, a long-time polymerization reaction can be carried out stably.
本実施形態のポリアセタール樹脂は、パルスNMRで測定した結晶構造中の、中間相の緩和時間が0.037ms以下、中間相の緩和時間/結晶相の緩和時間が1.9以下であり、融点が160〜170℃である。中間相の緩和時間は0.035ms〜0.037msであることが好ましく、中間相の緩和時間/結晶相の緩和時間は1.6〜1.9であることが好ましい。 The polyacetal resin of the present embodiment has an intermediate phase relaxation time of 0.037 ms or less, an intermediate phase relaxation time / crystal phase relaxation time of 1.9 or less, and a melting point in the crystal structure measured by pulse NMR. It is 160-170 degreeC. The relaxation time of the intermediate phase is preferably from 0.035 ms to 0.037 ms, and the relaxation time of the intermediate phase / the relaxation time of the crystal phase is preferably from 1.6 to 1.9.
ここで、パルスNMRとは、固体NMRの一つであり、パルスに対する応答信号を検出し、試料の1H核磁気緩和時間(分子の運動性を表す指標)を求める手法である。パルスへの応答として、自由誘導減衰シグナル(free induction decay:FIDシグナル)が得られる。結晶性樹脂のように分子の運動性が異なる複数の成分を有する試料を測定すると、得られるFIDは緩和時間の異なる複数成分のFIDの和となり、これを最小二乗法を用いて分離することにより、各成分の緩和時間を検出することができる。
結晶性樹脂は、一般に緩和時間が0.01〜0.02msである成分、0.03〜0.1msである成分、0.1ms以上である成分の3つの成分に分離されることが多く、緩和時間が0.01〜0.02msである成分が結晶相、緩和時間が100ms以上である成分が非晶相に相当するとされ、緩和時間が0.03〜0.1msである成分は中間相とされる(ただしこれらの成分の量は、他の測定手段、例えばWAXSやDSC等の解析により得られる結晶化度とは値が異なるものである)。
上述のFID(各成分のFIDの和)は下記の式(1)で表され、結晶相の緩和時間がTc、中間相の緩和時間がTaで表される。
Here, pulse NMR is one of solid-state NMR, and is a technique for detecting a 1 H nuclear magnetic relaxation time (an index representing molecular mobility) of a sample by detecting a response signal to the pulse. In response to the pulse, a free induction decay (FID signal) is obtained. When a sample having a plurality of components having different molecular motility, such as a crystalline resin, is measured, the FID obtained is the sum of the FIDs of the plurality of components having different relaxation times, and this is separated by using the least square method. The relaxation time of each component can be detected.
In general, the crystalline resin is often separated into three components: a component having a relaxation time of 0.01 to 0.02 ms, a component having 0.03 to 0.1 ms, and a component having 0.1 ms or more, A component having a relaxation time of 0.01 to 0.02 ms corresponds to a crystalline phase, a component having a relaxation time of 100 ms or more corresponds to an amorphous phase, and a component having a relaxation time of 0.03 to 0.1 ms is an intermediate phase. (However, the amounts of these components are different from the crystallinity obtained by analysis of other measuring means such as WAXS and DSC).
The above-mentioned FID (sum of FID of each component) is represented by the following formula (1), and the relaxation time of the crystal phase is represented by Tc and the relaxation time of the intermediate phase is represented by Ta.
また、Waは中間相の減衰曲線を表すためのフィッティングパラメータである。bはプロトン配置の秩序性を反映するパラメータである。Waおよびbの値は測定対象によって異なり、本実施態様(ポリアセタール樹脂)においてはWa=1.2、b=170とする。
Wa is a fitting parameter for representing the attenuation curve of the intermediate phase. b is a parameter reflecting the order of proton arrangement. The values of Wa and b vary depending on the object to be measured. In this embodiment (polyacetal resin), Wa = 1.2 and b = 170.
結晶構造中の中間相の緩和時間および中間相の緩和時間/結晶相の緩和時間が前記範囲にあると、ホルムアルデヒドの揮発が低減でき、添加物等と混合した際のMD性及びブリード性が優れたものとなることが、本発明者らの研究により判明した。
結晶構造中の中間相の緩和時間および中間相の緩和時間/結晶相の緩和時間が前記範囲にあるとホルムアルデヒドの揮発が低減できる理由は明らかでないが、そのようなポリアセタール樹脂は、分子運動性に優れるため高温下における分解が抑制されるためと推察している。ただし、機序はこれによらない。
If the relaxation time of the intermediate phase in the crystal structure and the relaxation time of the intermediate phase / the relaxation time of the crystal phase are within the above ranges, the volatilization of formaldehyde can be reduced, and the MD property and bleeding property when mixed with an additive, etc. are excellent. It became clear by the present inventors' research.
The reason why the volatilization of formaldehyde can be reduced when the relaxation time of the intermediate phase in the crystal structure and the relaxation time of the intermediate phase / the relaxation time of the crystal phase are within the above ranges is not clear. However, such polyacetal resin has no molecular mobility. It is presumed that decomposition at high temperature is suppressed because of its superiority. However, the mechanism does not depend on this.
本実施形態のポリアセタール樹脂を得るための方法に限定はないが、例えば、前記環状エーテル及び/又は環状ホルマールの少なくとも一部を予め前記重合触媒とプレ混合してから、他のモノマー(例えば、トリオキサン)と重合させることが有効である。この際、環状エーテル及び/又は環状ホルマールは全量をプレ混合してもよいし、一部をプレ混合し残量を他のモノマー(トリオキサン)中に混合してもよい。
このプレ混合の際に使用する器具(例えば、配管や混合容器)の材質は、SUS304以上の耐酸性、耐孔食性を有するものが好ましい。そして、この器具の、環状エーテル及び/又は環状ホルマールと重合触媒に接触する内壁の表面粗さは3.1μm以上であることが好ましい。ここで表面粗さとは、JIS B0601−2013で規定された算術平均粗さ(Ra)である。具体的には、内壁について得られた粗さ曲線から、その平均線の方向に基準長さ(l)だけ抜き取り、この抜き取り部分の平均線から粗さ曲線までの偏差の絶対値を合計し平均した値であり、粗さ曲線をy=f(x)で表したときに下記式で表される値である。
The material of the instrument (for example, piping or mixing container) used in the pre-mixing preferably has acid resistance and pitting corrosion resistance of SUS304 or higher. And it is preferable that the surface roughness of the inner wall which contacts cyclic ether and / or cyclic formal and a polymerization catalyst of this instrument is 3.1 micrometers or more. Here, the surface roughness is an arithmetic average roughness (Ra) defined in JIS B0601-2013. Specifically, from the roughness curve obtained for the inner wall, a reference length (l) is extracted in the direction of the average line, and the absolute value of the deviation from the average line of the extracted portion to the roughness curve is summed and averaged. When the roughness curve is represented by y = f (x), it is a value represented by the following formula.
また、プレ混合時の重合触媒と環状エーテル及び/又は環状ホルマールの温度を、20~60℃とすることが好ましく、より好ましくは20~40℃である。
プレ混合温度を上記範囲とすることで、プレ混合時の重合触媒の分散性が向上し、中間相の緩和時間が小さい
ポリアセタール樹脂を得ることができる。
Further, the temperature of the polymerization catalyst and the cyclic ether and / or the cyclic formal during premixing is preferably 20 to 60 ° C, more preferably 20 to 40 ° C.
By setting the premixing temperature within the above range, it is possible to improve the dispersibility of the polymerization catalyst during premixing and to obtain a polyacetal resin having a short intermediate phase relaxation time.
上記のプレ混合工程以降、従来公知の重合工程、及び、必要に応じて失活、乾燥、末端安定化、安定剤配合等の工程を経て、本実施形態のポリアセタール樹脂が得られる。 After the pre-mixing step, the polyacetal resin of this embodiment is obtained through a conventionally known polymerization step and, if necessary, steps such as deactivation, drying, terminal stabilization, and stabilizer blending.
本実施形態のポリアセタール樹脂のメルトインデックス(MI)(ASTM−D−1238−57T、190℃、2.16kg)は0.5g/10min以上120.0g/10min未満が好ましく、より好ましくは1.0g/10min以上80.0g/10min、更に好ましくは2.0g/10min以上60.0g/10minである。
MIが前記範囲にあると、機械的強度や耐摩耗性など、ポリアセタール樹脂の従来持つ特性が十分に発現される。
The melt index (MI) (ASTM-D-1238-57T, 190 ° C., 2.16 kg) of the polyacetal resin of the present embodiment is preferably 0.5 g / 10 min or more and less than 120.0 g / 10 min, more preferably 1.0 g. / 10 min or more and 80.0 g / 10 min, more preferably 2.0 g / 10 min or more and 60.0 g / 10 min.
When MI is in the above range, the characteristics of polyacetal resin, such as mechanical strength and abrasion resistance, are sufficiently developed.
本実施形態のポリアセタール樹脂の融点は160℃〜170℃である。融点を160℃〜170℃とすることにより、より揮発成分を低減することができる。
本実施形態のポリアセタール樹脂は、フッ素量が10ppm以下であることが好ましい。フッ素は一般に重合触媒の残渣によるものであり、触媒失活や重合後の混練を十分に行うことによりフッ素量を低減することができる。フッ素量は少ない方がよく、下限値はないが、例えば、フッ素量は5ppm以上であれば問題となることは少ない。このような範囲とすることにより、結晶相と中間相の量を適度に制御することができる。
The melting point of the polyacetal resin of this embodiment is 160 ° C to 170 ° C. By setting the melting point to 160 ° C. to 170 ° C., volatile components can be further reduced.
The polyacetal resin of this embodiment preferably has a fluorine content of 10 ppm or less. Fluorine is generally due to the residue of the polymerization catalyst, and the amount of fluorine can be reduced by sufficiently performing catalyst deactivation and kneading after polymerization. A smaller amount of fluorine is better and there is no lower limit. For example, if the amount of fluorine is 5 ppm or more, there is little problem. By setting it as such a range, the quantity of a crystal phase and an intermediate phase can be controlled moderately.
本実施形態のポリアセタール樹脂は、本発明の効果を損なわない範囲で、従来のポリアセタール樹脂と組み合わせて使用されている添加剤、例えば、酸化防止剤、熱安定剤、耐光安定剤、離型剤、着色剤等、を添加してもよい。
これらは単独でも複数を組み合わせて用いてもよい。
The polyacetal resin of the present embodiment is an additive used in combination with a conventional polyacetal resin within a range not impairing the effects of the present invention, for example, an antioxidant, a heat stabilizer, a light stabilizer, a release agent, A colorant or the like may be added.
These may be used alone or in combination.
本実施形態のポリアセタール樹脂の成形体としては、特に限定されるものではないが、射出成形、押出し成形等により成形された成形体が挙げられ、例えば、自動車分野、家電OA分野、医療分野、工業材料分野に使用可能で、特に自動車分野、家電OA分野、医療分野に好適に使用できる。 Although it does not specifically limit as a molded object of the polyacetal resin of this embodiment, The molded object shape | molded by injection molding, extrusion molding etc. is mentioned, For example, a motor vehicle field, household appliances OA field | area, a medical field, industrial It can be used in the material field, and can be suitably used particularly in the automobile field, home appliance OA field, and medical field.
以下、具体的な実施例及び比較例を挙げて本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、実施例及び比較例中の用語及び特性の測定法は以下の通りとした。
Hereinafter, the present invention will be described in detail with specific examples and comparative examples, but the present invention is not limited to the following examples.
In addition, the measurement method of the term and characteristic in an Example and a comparative example was as follows.
<パルスNMRによる結晶構造中の中間相および結晶相の緩和時間の測定>
装置:Minispec MQ20(ブルカー・バイオスピン(株)製)
核種:1H
測定:T2
測定法:ソリッドエコー法
積算回数:256回
繰り返し時間:1.0sec
測定温度:30℃
上記の装置、条件にて、試料ペレット約900mgを10mmφの試料管に充填し、パルスNMRの測定を行うことにより、減衰曲線を得た。
得られた減衰曲線に対し、下記式(1)を用いてフィッティングを行い解析し、ポリアセタール樹脂中の結晶相および中間相の緩和時間を得た。なお、フィッティング及び解析は、上記測定装置に付属のソフトウェアを用いた。
Tc、Ta、Tmは、それぞれ結晶相、中間相、非晶相の緩和時間(ms)を表す。
Waは中間相の減衰曲線を表すためのフィッティングパラメータであり、Wa=1.2とした。bはプロトン配置の秩序性を反映するパラメータであり、b=170とした。
<Measurement of relaxation time of intermediate phase and crystal phase in crystal structure by pulse NMR>
Apparatus: Minispec MQ20 (Bruker Biospin Co., Ltd.)
Nuclide: 1 H
Measurement: T 2
Measurement method: Solid echo method Integration count: 256 times Repeat time: 1.0 sec
Measurement temperature: 30 ° C
Using the above apparatus and conditions, about 900 mg of sample pellets were filled in a 10 mmφ sample tube, and pulse NMR was measured to obtain an attenuation curve.
The obtained attenuation curve was fitted and analyzed using the following formula (1) to obtain relaxation times of the crystal phase and the intermediate phase in the polyacetal resin. For fitting and analysis, software attached to the measurement apparatus was used.
T c , T a , and T m represent relaxation times (ms) of the crystalline phase, the intermediate phase, and the amorphous phase, respectively.
W a is a fitting parameter for representing the attenuation curve of the intermediate phase, and Wa = 1.2. b is a parameter reflecting the order of proton arrangement, and b = 170.
<ホルムアルデヒドの揮発量(mg/kg)の測定>
東芝機械(株)製100GN射出成形機を用いて、成形温度220℃、金型温度80℃にて、ポリアセタール樹脂ペレットから40mm×100mm、厚み3mmの試験片を成形した。得られた試験片を、温度23℃、湿度50%の環境下にて1日間放置した。その後、ドイツ工業協会(VDA)のVDA275試験に従い、60℃×3hrでのホルムアルデヒド発生量を測定した。
<Measurement of volatilization amount of formaldehyde (mg / kg)>
Using a 100GN injection molding machine manufactured by Toshiba Machine Co., Ltd., a test piece of 40 mm × 100 mm and a thickness of 3 mm was molded from the polyacetal resin pellets at a molding temperature of 220 ° C. and a mold temperature of 80 ° C. The obtained test piece was left for 1 day in an environment of a temperature of 23 ° C. and a humidity of 50%. Thereafter, the amount of formaldehyde generated at 60 ° C. × 3 hr was measured according to the VDA275 test of the German Industrial Association (VDA).
<MD性の評価>
東芝機械(株)製100GN射出成形機を用いて、成形温度200℃、金型温度30℃にて、ポリアセタール樹脂ペレットから40mm×100mm、厚み3mmの試験片を2000ショット連続成形した。2000ショット成形後の金型表面の状態を観察し、結果を下記の5段階で評価した。
ここで、「キャビ」とは、金型表面の成形枠を指す。
5・・付着物は観察されなかった。
4・・キャビ外に少量の付着物が観察された。キャビ内には付着物は観察されなかった。
3・・キャビ外に多量の付着物が観察された。キャビ内には付着物は観察されなかった。
2・・キャビ内に少量の付着物が観察された。
1・・キャビ内に多量の付着物が観察された。
<Evaluation of MD>
Using a 100GN injection molding machine manufactured by Toshiba Machine Co., Ltd., a test piece of 40 mm × 100 mm and a thickness of 3 mm was continuously molded from a polyacetal resin pellet at a molding temperature of 200 ° C. and a mold temperature of 30 ° C. for 2000 shots. The state of the mold surface after 2000 shot molding was observed, and the results were evaluated in the following five stages.
Here, “cavity” refers to a molding frame on the mold surface.
5. No deposit was observed.
4. A small amount of deposit was observed outside the cabinet. No deposits were observed in the cabinet.
3. A large amount of deposits were observed outside the cabinet. No deposits were observed in the cabinet.
2. A small amount of deposit was observed in the cabinet.
1. A large amount of deposits were observed in the cabinet.
<ブリード性の評価>
東芝機械(株)製100GN射出成形機を用いて、成形温度220℃、金型温度80℃にて、ポリアセタール樹脂ペレットから40mm×100mm、厚み3mmの試験片を成形した。この試験片を、温度80℃、湿度90%の環境下にて300時間放置し、試験片表面の状態を観察し、結果を下記の5段階で評価した。
ここで、「ブリード」とは、試験片表面への添加剤等の浮き出しの事である。
5・・ブリードは発生しなかった。
4・・試験片表面の1割未満にブリードが発生した。
3・・試験片表面の1割以上3割未満にブリードが発生した。
2・・試験片表面の3割以上6割未満にブリードが発生した。
1・・試験片の6割以上にブリードが発生した。
<Evaluation of bleeding>
Using a 100GN injection molding machine manufactured by Toshiba Machine Co., Ltd., a test piece of 40 mm × 100 mm and a thickness of 3 mm was molded from the polyacetal resin pellets at a molding temperature of 220 ° C. and a mold temperature of 80 ° C. The test piece was allowed to stand for 300 hours in an environment of a temperature of 80 ° C. and a humidity of 90%, the state of the surface of the test piece was observed, and the results were evaluated in the following five stages.
Here, “bleed” means that an additive or the like is raised on the surface of the test piece.
5. No bleed occurred.
4. Bleed occurred on less than 10% of the test piece surface.
3. Bleeding occurred on 10% or more and less than 30% of the test piece surface.
2. Bleed occurred on 30% or more and less than 60% of the test piece surface.
1. Bleed occurred in 60% or more of the test pieces.
<重合収率(wt%)の測定>
得られたポリアセタール樹脂の質量を、重合に用いたトリオキサン、環状エーテル及び環状ホルマールの合計質量で除して求めた。
<融点(℃)の測定>
ポリアセタール樹脂ペレットから樹脂を5mg採取し、下記条件にて融点を測定した。
・装置:パーキンエルマー(株)製DSC−7
・条件:80℃/minで200℃まで昇温し、2min間ホールド後、80℃/minで50℃まで降温し、2.5℃/minで200℃まで昇温させ融点を測定した。
<MI(g/10min)の測定>
ASTM D1238に従い、(株)東洋精機製作所製のMELT INDEXERを用いて、190℃、荷重2.16kgで測定した。
<Measurement of polymerization yield (wt%)>
The mass of the obtained polyacetal resin was determined by dividing by the total mass of trioxane, cyclic ether and cyclic formal used in the polymerization.
<Measurement of melting point (° C.)>
5 mg of resin was collected from the polyacetal resin pellets, and the melting point was measured under the following conditions.
・ Device: DSC-7 manufactured by PerkinElmer Co., Ltd.
Conditions: The temperature was raised to 200 ° C. at 80 ° C./min, held for 2 min, then lowered to 50 ° C. at 80 ° C./min, raised to 200 ° C. at 2.5 ° C./min, and the melting point was measured.
<Measurement of MI (g / 10 min)>
According to ASTM D1238, measurement was performed at 190 ° C. and a load of 2.16 kg using a MELT INDEXER manufactured by Toyo Seiki Seisakusho.
<フッ素量の測定>
測定はフッ素イオンメーターにて行った。
イオンメーター:HORIBA製イオンメーター
フッ素電極:HORIBA製フッ素イオン電極
a)測定サンプルの調製
ポリアセタール樹脂ペレット3g、1NのHCL15gを耐圧瓶に仕込み、130℃で3時間加熱分解させ、冷却後に、分解液8gに、純水32g、Buffer液60gを加えサンプル液を調製した。
b)Buffer液の調製
純水500mlに、トリス(ヒドロキシメチル)アミノメタン121g、トリス(ヒドロキシメチル)アミノメタン塩酸塩158g、酒石酸ナトリウム二水和物230gを加え溶解させる。その後、純水で全量が1Lとなるように調整した。
c)標準液の調製
濃度が既知の市販のフッ素標準液を3種類用意し、各々2gに、上記Buffer液60g、純水38gを加えてて3種類の標準液を調製し、これらを用いて検量線を作成した。
<Measurement of fluorine content>
The measurement was performed with a fluorine ion meter.
Ion meter: HORIBA's ion meter Fluorine electrode: HORIBA's fluorine ion electrode a) Preparation of measurement sample Polyacetal resin pellets 3g, 1N HCl 15g were charged in a pressure-resistant bottle, thermally decomposed at 130 ° C for 3 hours, cooled and then decomposed 8g A sample solution was prepared by adding 32 g of pure water and 60 g of Buffer solution.
b) Preparation of Buffer liquid To 500 ml of pure water, 121 g of tris (hydroxymethyl) aminomethane, 158 g of tris (hydroxymethyl) aminomethane hydrochloride, and 230 g of sodium tartrate dihydrate are added and dissolved. Thereafter, the total amount was adjusted to 1 L with pure water.
c) Preparation of standard solutions Three types of commercially available fluorine standard solutions with known concentrations are prepared, and each of 2 g is prepared by adding 60 g of the above Buffer solution and 38 g of pure water to prepare three types of standard solutions. A calibration curve was created.
〔実施例1〕
熱媒を通すことのできるジャケット付き2軸パドル型連続重合反応機((株)栗本鐵工所性、径2B、L/D=14.8)を80℃に調整した。
プレ混合として、重合触媒と環状エーテル及び/又は環状ホルマールを、T字配管(配管の内壁の算術平均粗さ4μm)を用いて両者が正面から衝突するように混合した。具体的には、重合触媒として三フッ化ホウ素−ジ−n−ブチルエーテラート0.18g/hrと、シクロヘキサン5.5g/hr及びn−ヘキサン1.0g/hrを連続的に混合したものと、環状エーテル及び/又は環状ホルマールとして1,3−ジオキソラン120.9g/hrを、上述のT字配管の各袖から連続的に導入し、両者を正面衝突させてプレ混合液を得た。プレ混合時の重合触媒と環状エーテル及び/又は環状ホルマールの温度は30℃とした。
このようにして得られたプレ混合液127.58g/hrと、トリオキサン3500g/hrに分子量調節剤としてメチラール2.1g/hrを配管にて連続的に混合した混合液とを、別々の配管から重合反応機に連続的に供給し、重合反応機設定温度80℃、重合ピーク温度110℃、重合時間(滞留時間)5分の条件で重合を行った。なお、トリオキサン中の不純物量は7×10-4mol/mol−トリオキサンであった。
重合反応機から排出されたものを、トリエチルアミン水溶液(0.5質量%)中に投入し重合触媒の失活を完全に行った後、濾過、洗浄、乾燥を行い粗ポリアセタール共重合体を得た。得られた粗ポリアセタール共重合体に第4級アンモニウム化合物としてトリエチル(2−ヒドロキシエチル)アンモニウム蟻酸塩を窒素の量に換算して10ppmになるように添加し。均一に混合した後120℃で乾燥した。
得られたポリアセタール樹脂(ポリアセタール共重合体)の重合収率は80%、融点は164℃であった。
次に、上記乾燥したポリアセタール樹脂100質量部に、トリエチレングリコールービスー[3−(3−tーブチルー5−メチルー4−ヒドロキシフェニル)プロピオネート]を0.35質量部を添加混合し、200℃に設定されたベント付の2軸押出し機(L/D=40)に、0.8質量%トリエチルアミン水溶液2質量部とともに供給し、21KPaで減圧脱気しながら分解安定化させ、ペレタイザーにてペレット化した。その後100℃で2hr乾燥を行い、安定なポリアセタール樹脂ペレットを得た。結果を表1に示す。
[Example 1]
A jacketed biaxial paddle type continuous polymerization reactor (Kurimoto Corporation, diameter 2B, L / D = 14.8) capable of passing a heat medium was adjusted to 80 ° C.
As premixing, the polymerization catalyst and cyclic ether and / or cyclic formal were mixed using a T-shaped pipe (arithmetic mean roughness of the inner wall of the pipe of 4 μm) so that both collided from the front. Specifically, boron trifluoride-di-n-butyl etherate 0.18 g / hr, cyclohexane 5.5 g / hr and n-hexane 1.0 g / hr continuously mixed as a polymerization catalyst 1,3-dioxolane 120.9 g / hr as a cyclic ether and / or cyclic formal was continuously introduced from each sleeve of the above-mentioned T-shaped pipe, and both were collided front to obtain a pre-mixed solution. The temperature of the polymerization catalyst and cyclic ether and / or cyclic formal during premixing was 30 ° C.
From the separate pipes, 127.58 g / hr of the pre-mixed liquid obtained in this way and a mixed liquid in which methylal 2.1 g / hr as a molecular weight regulator was continuously mixed with 3500 g / hr of trioxane in a pipe. The polymerization was continuously supplied to the polymerization reactor, and polymerization was carried out under the conditions of a polymerization reactor set temperature of 80 ° C., a polymerization peak temperature of 110 ° C., and a polymerization time (residence time) of 5 minutes. The amount of impurities in trioxane was 7 × 10 −4 mol / mol-trioxane.
What was discharged from the polymerization reactor was put into a triethylamine aqueous solution (0.5% by mass) to completely deactivate the polymerization catalyst, followed by filtration, washing and drying to obtain a crude polyacetal copolymer. . Triethyl (2-hydroxyethyl) ammonium formate as a quaternary ammonium compound was added to the obtained crude polyacetal copolymer so as to be 10 ppm in terms of the amount of nitrogen. After uniformly mixing, it was dried at 120 ° C.
The resulting polyacetal resin (polyacetal copolymer) had a polymerization yield of 80% and a melting point of 164 ° C.
Next, 0.35 parts by mass of triethylene glycol-bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is added to and mixed with 100 parts by mass of the dried polyacetal resin, and the mixture is heated to 200 ° C. It is supplied to a set twin-screw extruder with a vent (L / D = 40) together with 2 parts by weight of 0.8% by weight triethylamine aqueous solution, decomposed and stabilized while degassing under reduced pressure at 21 KPa, and pelletized by a pelletizer did. Thereafter, drying was performed at 100 ° C. for 2 hours to obtain stable polyacetal resin pellets. The results are shown in Table 1.
〔実施例2〕
プレ混合時の重合触媒と環状エーテル及び/又は環状ホルマールの温度を45℃とした以外は実施例1と同様の操作を行った。この時、重合収率は81%であった。結果を表1に示す。
〔実施例3〕
1,3−ジオキソラン量を43.2g/hrとした以外は実施例1と同様の操作を行った。この時、重合収率は81%であった。結果を表1に示す。
〔実施例4〕
重合触媒の希釈溶媒をシクロヘキサンのみ(6.5g/hr)
とした以外は実施例1と同様の操作を行った。この時、重合収率は80%であった。結果を表1に示す。
[Example 2]
The same operation as in Example 1 was performed except that the temperature of the polymerization catalyst and cyclic ether and / or cyclic formal at the time of premixing was 45 ° C. At this time, the polymerization yield was 81%. The results are shown in Table 1.
Example 3
The same operation as in Example 1 was performed except that the amount of 1,3-dioxolane was changed to 43.2 g / hr. At this time, the polymerization yield was 81%. The results are shown in Table 1.
Example 4
The diluting solvent for the polymerization catalyst is cyclohexane only (6.5 g / hr)
The same operation as in Example 1 was performed except that. At this time, the polymerization yield was 80%. The results are shown in Table 1.
〔比較例1〕
プレ混合の重合触媒と環状エーテル及び/又は環状ホルマールの温度を10℃とした以外は実施例1と同様の操作を行った。この時、重合収率は80%であった。結果を表1に示す。
〔比較例2〕
プレ混合を行わず、1,3−ジオキソランをトリオキサンに連続的に混合して供給し、かつ重合触媒量を0.18g/hrとした以外は実施例1と同様の操作を行った。この時、重合収率は79%であった。結果を表1に示す。
〔比較例3〕
1,3−ジオキソランの供給量を14.4g/hrとした以外は実施例1と同様の操作を行った。この時、重合収率は79%であった。結果を表1に示す。
〔比較例4〕
プレ混合を行う際に使用したT字配管の内壁の算術平均粗さを2.9μmとした以外は実施例1と同様の操作を行った。この時、重合収率は80%であった。結果を表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was performed except that the temperature of the premixed polymerization catalyst and cyclic ether and / or cyclic formal was 10 ° C. At this time, the polymerization yield was 80%. The results are shown in Table 1.
[Comparative Example 2]
The same operation as in Example 1 was performed, except that 1,3-dioxolane was continuously mixed and supplied to trioxane without performing premixing, and the amount of the polymerization catalyst was 0.18 g / hr. At this time, the polymerization yield was 79%. The results are shown in Table 1.
[Comparative Example 3]
The same operation as in Example 1 was performed except that the supply amount of 1,3-dioxolane was changed to 14.4 g / hr. At this time, the polymerization yield was 79%. The results are shown in Table 1.
[Comparative Example 4]
The same operation as in Example 1 was performed except that the arithmetic average roughness of the inner wall of the T-shaped pipe used for premixing was 2.9 μm. At this time, the polymerization yield was 80%. The results are shown in Table 1.
実施例1〜4のポリアセタール樹脂は比較例のものと比べ、ホルムアルデヒドの揮発が少なく、MD性、ブリード性が優れていた The polyacetal resins of Examples 1 to 4 had less formaldehyde volatilization and excellent MD and bleeding properties than those of the comparative examples.
本発明のポリアセタール樹脂は、ホルムアルデヒドの揮発が少なく、更にMD性やブリード性に優れているので、各種用途に使用することができる。特に、本発明のポリアセタール樹脂は、自動車部品や電気・電子機器等に好適に用いることができる。 Since the polyacetal resin of the present invention has little volatilization of formaldehyde and is excellent in MD property and bleeding property, it can be used for various applications. In particular, the polyacetal resin of the present invention can be suitably used for automobile parts, electrical / electronic devices and the like.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016136183A JP6886785B2 (en) | 2016-07-08 | 2016-07-08 | Polyacetal resin and its manufacturing method |
CN201710550517.1A CN107586371B (en) | 2016-07-08 | 2017-07-07 | Polyacetal resin and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016136183A JP6886785B2 (en) | 2016-07-08 | 2016-07-08 | Polyacetal resin and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018002983A true JP2018002983A (en) | 2018-01-11 |
JP6886785B2 JP6886785B2 (en) | 2021-06-16 |
Family
ID=60947670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016136183A Active JP6886785B2 (en) | 2016-07-08 | 2016-07-08 | Polyacetal resin and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6886785B2 (en) |
CN (1) | CN107586371B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019189697A1 (en) | 2018-03-30 | 2019-10-03 | 積水化学工業株式会社 | Poly(vinyl alcohol) film and production method for polarizing film |
WO2019189695A1 (en) | 2018-03-30 | 2019-10-03 | 積水化学工業株式会社 | Poly(vinyl alcohol) film and production method for polarizing film |
WO2019189687A1 (en) | 2018-03-30 | 2019-10-03 | 積水化学工業株式会社 | Poly(vinyl alcohol) film and production method for polarizing film |
WO2020203835A1 (en) | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Chlorinated vinyl chloride-based resin |
WO2020203858A1 (en) | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Chlorinated vinyl chloride resin |
WO2022158599A1 (en) | 2021-01-25 | 2022-07-28 | 積水テクノ成型株式会社 | Resin composition, resin molded article, and method for producing same |
EP4122978A1 (en) | 2021-07-20 | 2023-01-25 | Sekisui Alveo AG | Polyolefin-based closed-cell foams |
WO2023137185A1 (en) | 2022-01-14 | 2023-07-20 | Sekisui Specialty Chemicals America, Llc | Modified polyvinyl alcohol resin with improved solubility in alcohol mixtures |
WO2023171666A1 (en) | 2022-03-07 | 2023-09-14 | 積水化学工業株式会社 | Modified polyvinyl alcohol resin |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11255854A (en) * | 1998-03-09 | 1999-09-21 | Polyplastics Co | Continuous preparation of polyacetal resin |
JP2009046549A (en) * | 2007-08-16 | 2009-03-05 | Mitsubishi Gas Chem Co Inc | Polyacetal resin composition |
JP2013213136A (en) * | 2012-04-02 | 2013-10-17 | Asahi Kasei Chemicals Corp | Method for producing polyacetal copolymer |
JP2013213135A (en) * | 2012-04-02 | 2013-10-17 | Asahi Kasei Chemicals Corp | Method for producing polyacetal copolymer |
JP2013224378A (en) * | 2012-04-23 | 2013-10-31 | Asahi Kasei Chemicals Corp | Method of manufacturing polyacetal copolymer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101357973A (en) * | 2008-09-11 | 2009-02-04 | 四川大学 | Method for preparing thermal stable polyoxymethylene copolymer |
CN101910303B (en) * | 2008-10-28 | 2014-03-05 | 旭化成化学株式会社 | Polyacetal resin composition and method for producing same |
CN102993624A (en) * | 2011-09-16 | 2013-03-27 | 上海杰事杰新材料(集团)股份有限公司 | Thermal stability improved polyformaldehyde resin composition and preparation method thereof |
-
2016
- 2016-07-08 JP JP2016136183A patent/JP6886785B2/en active Active
-
2017
- 2017-07-07 CN CN201710550517.1A patent/CN107586371B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11255854A (en) * | 1998-03-09 | 1999-09-21 | Polyplastics Co | Continuous preparation of polyacetal resin |
JP2009046549A (en) * | 2007-08-16 | 2009-03-05 | Mitsubishi Gas Chem Co Inc | Polyacetal resin composition |
JP2013213136A (en) * | 2012-04-02 | 2013-10-17 | Asahi Kasei Chemicals Corp | Method for producing polyacetal copolymer |
JP2013213135A (en) * | 2012-04-02 | 2013-10-17 | Asahi Kasei Chemicals Corp | Method for producing polyacetal copolymer |
JP2013224378A (en) * | 2012-04-23 | 2013-10-31 | Asahi Kasei Chemicals Corp | Method of manufacturing polyacetal copolymer |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019189697A1 (en) | 2018-03-30 | 2019-10-03 | 積水化学工業株式会社 | Poly(vinyl alcohol) film and production method for polarizing film |
WO2019189695A1 (en) | 2018-03-30 | 2019-10-03 | 積水化学工業株式会社 | Poly(vinyl alcohol) film and production method for polarizing film |
WO2019189687A1 (en) | 2018-03-30 | 2019-10-03 | 積水化学工業株式会社 | Poly(vinyl alcohol) film and production method for polarizing film |
WO2020203835A1 (en) | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Chlorinated vinyl chloride-based resin |
WO2020203858A1 (en) | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Chlorinated vinyl chloride resin |
WO2022158599A1 (en) | 2021-01-25 | 2022-07-28 | 積水テクノ成型株式会社 | Resin composition, resin molded article, and method for producing same |
EP4122978A1 (en) | 2021-07-20 | 2023-01-25 | Sekisui Alveo AG | Polyolefin-based closed-cell foams |
WO2023137185A1 (en) | 2022-01-14 | 2023-07-20 | Sekisui Specialty Chemicals America, Llc | Modified polyvinyl alcohol resin with improved solubility in alcohol mixtures |
WO2023171666A1 (en) | 2022-03-07 | 2023-09-14 | 積水化学工業株式会社 | Modified polyvinyl alcohol resin |
Also Published As
Publication number | Publication date |
---|---|
JP6886785B2 (en) | 2021-06-16 |
CN107586371A (en) | 2018-01-16 |
CN107586371B (en) | 2020-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6886785B2 (en) | Polyacetal resin and its manufacturing method | |
JP5079265B2 (en) | Method for producing stabilized polyacetal resin | |
EP1637557B1 (en) | Polyacetal resin composition | |
JP2006257166A (en) | Treating agent for decomposing unstable terminal group, stabilized polyacetal resin using the same, production method, composition, and molded article | |
JP2009521537A (en) | Process for producing oxymethylene polymers, selected polymers, and uses thereof | |
US10738166B2 (en) | Method for producing polyoxymethylene resin composition | |
SA516371906B1 (en) | Method for producing polyacetal copolymer | |
US20230250211A1 (en) | Method for producing oxymethylene copolymer | |
JPWO2020250945A1 (en) | Method for Producing Oxymethylene Polymer and Oxymethylene Polymer Resin Composition | |
JP2006299107A (en) | Treating agent for decomposing unstable terminal group, and stabilized polyacetal resin, production process, composition and molded object using the same | |
JP6886784B2 (en) | Polyacetal resin and its manufacturing method | |
EP4393972A1 (en) | Method for producing oxymethylene copolymer and method for producing molded article | |
JP5225529B2 (en) | Process for producing polyacetal copolymer | |
JP5810649B2 (en) | Resin composition and molded body | |
US20130203958A1 (en) | Polyoxymethylene copolymers | |
JP7448571B2 (en) | Method for producing polyacetal polymer | |
US6426393B1 (en) | Polyacetal copolymer and method for producing the same | |
WO2019187983A1 (en) | Polyacetal resin composition | |
JP6673539B1 (en) | Process for producing oxymethylene copolymer | |
WO2024181258A1 (en) | Cationic polymerization initiator composition, and method for producing oxymethylene copolymer and molded article using same | |
JP2013129749A (en) | Resin composition and molding | |
JPS6112713A (en) | Production of oxymethylene copolymer | |
WO2023112450A1 (en) | Polyacetal resin composition used in applications for performing radiation sterilization, and method for improving radiation resistance in polyacetal resin | |
JP2004359757A (en) | Polyacetal copolymer | |
JP2019056118A (en) | Method for producing polyoxymethylene resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6886785 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |