JP2018001230A - Method and device for production of double tube - Google Patents

Method and device for production of double tube Download PDF

Info

Publication number
JP2018001230A
JP2018001230A JP2016132680A JP2016132680A JP2018001230A JP 2018001230 A JP2018001230 A JP 2018001230A JP 2016132680 A JP2016132680 A JP 2016132680A JP 2016132680 A JP2016132680 A JP 2016132680A JP 2018001230 A JP2018001230 A JP 2018001230A
Authority
JP
Japan
Prior art keywords
pipe
tube
steel pipe
water
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016132680A
Other languages
Japanese (ja)
Other versions
JP6751936B2 (en
Inventor
甫 中杉
Hajime Nakasugi
甫 中杉
平 李
Taira Ri
平 李
田中 利幸
Toshiyuki Tanaka
利幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP2016132680A priority Critical patent/JP6751936B2/en
Publication of JP2018001230A publication Critical patent/JP2018001230A/en
Application granted granted Critical
Publication of JP6751936B2 publication Critical patent/JP6751936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for efficiently producing a high-quality double tube having sufficient fitting stress by preventing evagination breaking of an inner tube or buckling of an outer tube.SOLUTION: A production method for a double tube comprises previously heat-expanding an outer steel tube 1, relatively layering an inner steel tube 2 into an outer steel tube 1, contacting the inner tube 2 with the inner face of the outer tube by hydraulic tube expansion of the inner tube 2 to integrate, and cooling and contracting the outer tube 1 to fasten the inner tube to fit in the outer tube. In the hydraulic tube expansion of the inner tube 2, an axial tension balance is adjusted by imparting an axial tension in a direction compensating the hydraulic axial tension generating accompanying the hydraulic tube expansion of the inner tube 2 to a slide head 11 slidable in an axial direction while supporting the inner tube 2 by an axial tension compensating cylinder 12.SELECTED DRAWING: Figure 3

Description

本発明は、外鋼管が主に炭素鋼、内鋼管が主に耐食性鋼管からなる、ラインパイプ、油井管、化学プラント用の耐食性鋼管などに使用される二重管の製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for producing a double pipe used for a line pipe, an oil well pipe, a corrosion resistant steel pipe for a chemical plant, etc., wherein an outer steel pipe is mainly made of carbon steel and an inner steel pipe is mainly made of a corrosion resistant steel pipe.

かかる二重管の製造においては、外鋼管と内鋼管との緊締嵌合面に適正な嵌合応力を付与する技術が難しく、二重管の全長にわたって均一かつ所定の嵌合応力を付与し、品質が優れた生産性の高い二重管製造方法及び二重管製造装置が求められている(以下、内鋼管を「内管」、また外鋼管を「外管」ともいう。)。   In the production of such a double pipe, it is difficult to apply a proper fitting stress to the tight fitting surface of the outer steel pipe and the inner steel pipe, and a uniform and predetermined fitting stress is given over the entire length of the double pipe, There is a demand for a double pipe manufacturing method and a double pipe manufacturing apparatus having excellent quality and high productivity (hereinafter, the inner steel pipe is also referred to as “inner pipe” and the outer steel pipe is also referred to as “outer pipe”).

図9及び図10は、二重管製造方法及び二重管製造装置に関する従来例を示すものであり、特公昭56−48255号公報(以下「特許文献1」という。)及び特公昭63−16210号公報(以下「特許文献2」という。)に開示されている。   9 and 10 show a conventional example of a double pipe manufacturing method and a double pipe manufacturing apparatus, which are described in Japanese Patent Publication No. 56-48255 (hereinafter referred to as “Patent Document 1”) and Japanese Patent Publication No. 63-16210. (Hereinafter referred to as “Patent Document 2”).

このうち図9は、特許文献1の第4図に示される実施例の説明図を模写したものである。ただし、特許文献1の符号は本発明の符号と重複するため、第4図の符号に10を頭に付して100番台とした。この特許文献1には、「内管103の両端を穴あき栓体105及び栓体105’によって内管の内部104を形成し、該内管202を外管101内に挿入させ、外管をコイルヒータ102によって加熱膨張させた後、穴あき栓体105の穴106から液体供給方向107に液体を供給して内部104に矢印で示す加圧方向108によって内管103を拡管し外管内面に添着し、次いで内管103への圧力を開放して外管101の熱収縮によって内管103と外管101とに所定の締め代が形成される」(第2頁右欄3行目〜38行目の要約)二重管製造方法が開示されている。しかし、特許文献1には上記した二重管製造方法の概念は開示されているが、該製造方法の対象となる内管及び外管のサイズ、拡管等の各種製造条件、締め代の品質などの開示が全くなく、また、拡管時における内管の軸方向の収縮への対応技術の開示もない。   Of these, FIG. 9 is a copy of the illustration of the embodiment shown in FIG. However, since the reference numeral of Patent Document 1 overlaps with the reference numeral of the present invention, the reference numeral of FIG. In this patent document 1, “both ends of the inner tube 103 are formed with an inner tube 104 by a plug body 105 and a plug body 105 ′, the inner tube 202 is inserted into the outer tube 101, and the outer tube is After being heated and expanded by the coil heater 102, the liquid is supplied from the hole 106 of the perforated plug body 105 in the liquid supply direction 107, and the inner tube 103 is expanded in the pressurizing direction 108 indicated by the arrow to the inner portion 104, so Then, the pressure on the inner tube 103 is released, and a predetermined tightening margin is formed on the inner tube 103 and the outer tube 101 by thermal contraction of the outer tube 101 ”(page 2, right column, lines 3 to 38). (Summary of line) A method of manufacturing a double pipe is disclosed. However, although the concept of the above-mentioned double pipe manufacturing method is disclosed in Patent Document 1, the size of the inner pipe and the outer pipe, the various manufacturing conditions such as pipe expansion, the quality of the fastening allowance, etc. There is no disclosure of the above, and there is no disclosure of a technique for dealing with the axial contraction of the inner tube during tube expansion.

次に図10は、特許文献2の第4図に示される実施例の説明図を模写したものである。ただし、特許文献2の符号は本発明の符号と重複するため、第4図の符号に2又は20を頭に付して200番台とした。   Next, FIG. 10 is a copy of the explanatory diagram of the embodiment shown in FIG. However, since the code of Patent Document 2 overlaps with the code of the present invention, 2 or 20 is added to the code of FIG.

特許文献2には、第4図に示される実施例の前提として次の記載がある。
「さりながら、該第3図に示す実施例においては、該シールドヘッド6の芯金17’に対するスライド部に段差部27が形成されているために、該シールドヘッド6に対する反力は生じないか、又、極めて小さく、このために、当該第3図に示す実施例においては、二重管の製造が内管2の収縮力を容易に得ることが出来ることにより製造がし易いという利点がある。
さりながら、当該第3図に示す実施例において、当該段差部27をその前部の拡管室21よりも積極的に大径にすることにより、内管2に対する軸方向収縮力を却って積極的に大きくすることが出来ることにより製造がし易いというメリットがある。」(4頁右欄27行目〜39行)
Patent Document 2 has the following description as a premise of the embodiment shown in FIG.
“In the meantime, in the embodiment shown in FIG. 3, since the step portion 27 is formed in the slide portion of the shield head 6 with respect to the core 17 ′, is there any reaction force against the shield head 6? Also, for this reason, the embodiment shown in FIG. 3 has an advantage that the double pipe can be easily manufactured because the contraction force of the inner pipe 2 can be easily obtained. .
In addition, in the embodiment shown in FIG. 3, the stepped portion 27 is positively made larger in diameter than the expansion tube 21 at the front thereof, thereby positively rejecting the axial contraction force on the inner tube 2. There is a merit that manufacturing is easy because it can be enlarged. (Page 4, right column, lines 27-39)

さらに図10を用いて特許文献2の第4図の構造を説明する。油圧シリンダ218’のピストンと一体のピストンロッド219’は、シールドジョー208’を介して芯金217と連結され、また内管202の先端フレア203’とは液密裡にナット225で固定、連結された構造である。内管202は、該内管の基部フレア203がシールヘッド206”のベースからボルト209で固設された可動シール206’を介してシールヘッド206”に固定、連結された構造である。芯金217はスタンド216と一体構造であり、上記油圧シリンダ218’もスタンド216にボルトで固設されている。拡管流通路211は内管202の基部フレア203及び先端フレア203’を含んで構成され、スタンド216に設けられた外部シリンダ228にシール220を介してシールヘッド206”の後端部において摺動可能、かつ液密裡の構造になっている。   Furthermore, the structure of FIG. 4 of patent document 2 is demonstrated using FIG. The piston rod 219 ′ integrated with the piston of the hydraulic cylinder 218 ′ is connected to the cored bar 217 via the shield jaw 208 ′, and fixed to the tip flare 203 ′ of the inner tube 202 by a nut 225 in a liquid tight manner. It is a structured. The inner tube 202 has a structure in which a base flare 203 of the inner tube is fixed and connected to the seal head 206 ″ from a base of the seal head 206 ″ via a movable seal 206 ′ fixed by a bolt 209. The cored bar 217 is integrated with the stand 216, and the hydraulic cylinder 218 'is also fixed to the stand 216 with bolts. The expanded pipe flow passage 211 includes a base flare 203 and a tip flare 203 ′ of the inner pipe 202, and is slidable at the rear end portion of the seal head 206 ″ via the seal 220 to the external cylinder 228 provided on the stand 216. And it has a liquid-tight structure.

特許文献2には第4図(図10)に開示した上記構造によって、「このような技術手段としては第4図に示す様に芯金217の基部の外側に外部シリンダ228を形成し、該外部シリンダ228に対してシールヘッド206”及びシール220を介して軸方向にスライド可能にし、該シールヘッドの内側の拡管流通路211を介して該外部シリンダ228と拡管室221を連通させるようにし、而も、該外部シリンダ228の内径を内管202の内径と等しいか、又は、大きくすることによってこのような軸方向反力を消去し、又、積極的に内管202に対する軸方向収縮力を与えることができる。」(第4頁右欄40行目〜第5頁左欄6行目)と記載されている。   According to the above-mentioned structure disclosed in FIG. 4 (FIG. 10) in Patent Document 2, “As such technical means, an external cylinder 228 is formed outside the base portion of the cored bar 217 as shown in FIG. The outer cylinder 228 is slidable in the axial direction via the seal head 206 ″ and the seal 220, and the outer cylinder 228 and the expansion chamber 221 are communicated with each other via the expansion flow passage 211 inside the seal head. However, the axial reaction force on the inner tube 202 is positively eliminated by eliminating the axial reaction force by making the inner diameter of the outer cylinder 228 equal to or larger than the inner diameter of the inner tube 202. Can be given. (Page 4, right column, line 40 to page 5, left column, line 6).

しかしながら、図10において、外部シリンダ228の直径を内管202の内径に合わせることは、内管2の内径サイズが変わるごとにスタンド216及び芯金217が一体の主要部品を交換しなければならず、また外部シリンダ228の内面はシールヘッド206”の後端部が液密裡、かつシール220を介して摺動可能な構造であるのでシールヘッド206”も交換しなければならず、内管202の軸方向収縮力の影響をなくして内管202の膨出破断又は外管201の座屈を防止することは難しい。   However, in FIG. 10, adjusting the diameter of the outer cylinder 228 to the inner diameter of the inner tube 202 means that the stand 216 and the core metal 217 must be replaced with each other as the inner diameter size of the inner tube 2 changes. Also, since the inner surface of the outer cylinder 228 has a structure in which the rear end of the seal head 206 ″ is liquid-tight and can slide through the seal 220, the seal head 206 ″ must also be replaced. It is difficult to prevent the inner tube 202 from bulging and breaking or the outer tube 201 from buckling by eliminating the influence of the axial contraction force.

特公昭56−48255号公報Japanese Patent Publication No. 56-48255 特公昭63−16210号公報Japanese Examined Patent Publication No. 63-16210

本発明が解決しようとする課題は、二重管の製造において上記した従来技術には開示されていない多くの具体的な技術を究明し、内管の膨出破断又は外管の座屈を防止して十分な嵌合応力を有する高品質な二重管を効率的に製造するための技術を提供することにある。   The problem to be solved by the present invention is to investigate many specific techniques not disclosed in the above-mentioned prior art in the manufacture of double pipes, and prevent the inner pipe from bulging and breaking or the outer pipe from buckling. Thus, an object of the present invention is to provide a technique for efficiently producing a high-quality double pipe having a sufficient fitting stress.

本発明は、以下の(1)〜(5)の二重管製造方法及び(6)〜(9)の二重管製造方法を提供する。
(1)予め外鋼管を熱膨張し、該外鋼管に内鋼管を相対重層し、該内鋼管を水圧拡管して外鋼管内面と接触一体化し、前記外鋼管を冷却収縮して両鋼管を緊締嵌合する二重管製造方法において、
内鋼管を水圧拡管するときに、該内鋼管を支持しつつ軸方向にスライド可能なスライドヘッドに対して、該内鋼管の水圧拡管に伴い生じる水圧軸力を補償する方向の軸力を付与して軸力バランスを調整することを特徴とする二重管製造方法。
(2)予め外鋼管を100〜500℃に加熱して熱膨張させる、(1)に記載の二重管製造方法。
(3)外鋼管に内鋼管を相対重層するときに、該内鋼管を30℃以下の冷却水で冷却する、(1)又は(2)に記載の二重管製造方法。
(4)内鋼管を水圧拡管するときの高圧水の供給段階を2段階以上とし、最終段階で高圧水が所定の最大圧力になるまでの時間が0.5〜5秒である、(1)〜(3)のいずれかに記載の二重管製造方法。
(5)内鋼管及び外鋼管を緊締嵌合して二重管とした後、内鋼管を水圧拡管するときの通水路に高圧水を供給して二重管の水圧試験を行う、(1)〜(4)のいずれかに記載の二重管製造方法。
(6)予め外鋼管を熱膨張し、該外鋼管に内鋼管を相対重層し、該内鋼管を水圧拡管して外鋼管内面と接触一体化し、前記外鋼管を冷却収縮して両鋼管を緊締嵌合する二重管製造装置において、
内鋼管を支持しつつ軸方向にスライド可能なスライドヘッドに、該内鋼管の水圧拡管に伴い生じる水圧軸力を補償する方向の軸力を付加して軸力バランスを調整する軸力補償シリンダを設けたことを特徴とする二重管製造装置。
(7)前記スライドヘッド及び前記軸力補償シリンダに冷却水又は高圧水を供給又は排水する給排水機構を有する、請求項6に記載の二重管製造装置。
(8)前記給排水機構は、給水タンクから水を受給すると共に油循環システムから高圧油を受給して高圧水を供給するブースタを有する、(7)に記載の二重管製造装置。
(9)前記ブースタが複数段からなる、(8)に記載の二重管製造装置。
The present invention provides the following (1) to (5) double pipe production method and (6) to (9) double pipe production method.
(1) The outer steel pipe is thermally expanded in advance, the inner steel pipe is relatively overlaid on the outer steel pipe, the inner steel pipe is hydraulically expanded and brought into contact with the inner surface of the outer steel pipe, the outer steel pipe is cooled and contracted, and both the steel pipes are tightened. In the double pipe manufacturing method to be fitted,
When the inner steel pipe is hydraulically expanded, an axial force in a direction that compensates for the hydraulic axial force generated by the hydraulic expansion of the inner steel pipe is applied to the slide head that is slidable in the axial direction while supporting the inner steel pipe. And adjusting the axial force balance.
(2) The double pipe manufacturing method according to (1), wherein the outer steel pipe is heated to 100 to 500 ° C. and thermally expanded in advance.
(3) The double pipe manufacturing method according to (1) or (2), wherein when the inner steel pipe is relatively layered on the outer steel pipe, the inner steel pipe is cooled with cooling water of 30 ° C. or lower.
(4) The supply stage of the high-pressure water when the inner steel pipe is expanded with water is set to two or more stages, and the time until the high-pressure water reaches a predetermined maximum pressure in the final stage is 0.5 to 5 seconds, (1) The method for producing a double pipe according to any one of to (3).
(5) After the inner steel pipe and the outer steel pipe are tightly fitted into a double pipe, high pressure water is supplied to the water passage when the inner steel pipe is hydraulically expanded, and the double pipe water pressure test is performed. (1) The method for producing a double tube according to any one of to (4).
(6) The outer steel pipe is thermally expanded in advance, the inner steel pipe is relatively overlaid on the outer steel pipe, the inner steel pipe is hydraulically expanded and integrated with the inner surface of the outer steel pipe, the outer steel pipe is cooled and contracted, and both the steel pipes are tightened. In the double pipe manufacturing equipment to be fitted,
An axial force compensation cylinder that adjusts the axial force balance by adding an axial force in a direction that compensates for the hydraulic axial force generated by the hydraulic expansion of the inner steel pipe to a slide head that supports the inner steel pipe and is slidable in the axial direction. A double pipe manufacturing apparatus characterized by being provided.
(7) The double pipe manufacturing apparatus according to claim 6, further comprising a water supply / drainage mechanism for supplying or draining cooling water or high pressure water to the slide head and the axial force compensation cylinder.
(8) The double-pipe manufacturing apparatus according to (7), wherein the water supply / drainage mechanism includes a booster that receives water from a water supply tank and receives high-pressure oil from an oil circulation system to supply high-pressure water.
(9) The double pipe manufacturing apparatus according to (8), wherein the booster includes a plurality of stages.

本発明の二重管製造方法及び二重管製造装置によれば、内鋼管の水圧拡管に伴い生じる水圧軸力を補償する方向の軸力を付与して軸力バランスを調整するようにしたことで、内管の軸方向収縮力等の影響による内管の膨出破断又は外管の座屈を防止して十分な嵌合応力を有する高品質な二重管を効率的に製造することができる。   According to the double pipe manufacturing method and the double pipe manufacturing apparatus of the present invention, the axial force balance is adjusted by applying the axial force in the direction to compensate for the hydraulic axial force generated with the hydraulic expansion of the inner steel pipe. Therefore, it is possible to efficiently manufacture a high quality double pipe having a sufficient fitting stress by preventing the inner pipe from bulging and breaking or the outer pipe from buckling due to the influence of the axial contraction force of the inner pipe. it can.

本発明の二重管製造方法の各工程を示し、本発明の一実施形態の構成を示すフローチャートである。It is a flowchart which shows each process of the double pipe manufacturing method of this invention, and shows the structure of one Embodiment of this invention. 本発明の二重管製造方法を実施する各工程(基本工程A〜D)を示し、本発明の一実施形態の構成を示す二重管製造装置の模式図である。It is a schematic diagram of the double pipe manufacturing apparatus which shows each process (basic process AD) which implements the double pipe manufacturing method of this invention, and shows the structure of one Embodiment of this invention. 図2に示した基本工程A、B及びCの詳細図であり、マンドレルに外管を相対重層した図である。FIG. 3 is a detailed view of basic steps A, B, and C shown in FIG. 2, and is a view in which an outer tube is relatively layered on a mandrel. 図2に示した軸力補償シリンダ、スライドヘッド、ラム及びマンドレルの拡大模式図である。FIG. 3 is an enlarged schematic view of the axial force compensation cylinder, slide head, ram, and mandrel shown in FIG. 2. 図3に示した本発明の二重管製造工程において内鋼管及び外鋼管から二重管への加工過程を示し、図3のA−A断面を示す模式図である。FIG. 4 is a schematic diagram showing a process of converting the inner steel pipe and the outer steel pipe into a double pipe in the double pipe manufacturing process of the present invention shown in FIG. 図5に示した二重管製造工程における管径と内鋼管及び外鋼管の嵌合応力との関係を示すグラフである。It is a graph which shows the relationship between the pipe diameter in the double pipe manufacturing process shown in FIG. 5, and the fitting stress of an inner steel pipe and an outer steel pipe. 図2に示した本発明の二重管製造工程のうち、外鋼管の加熱工程、加熱炉を同図のB−B断面により示す模式図である。It is the schematic diagram which shows the heating process and heating furnace of an outer steel pipe among the double pipe manufacturing processes of this invention shown in FIG. 2 by the BB cross section of the same figure. 図2に示した二重管製造装置を3ライン及び冷却水等を給排する1システムを設置した二重管製造装置の模式図である。It is a schematic diagram of the double pipe manufacturing apparatus which installed 1 system which supplies / discharges 3 lines, cooling water, etc. with the double pipe manufacturing apparatus shown in FIG. 特許文献1に記載された従来の二重管製造方法を示す例の模式図である。It is a schematic diagram of the example which shows the conventional double tube manufacturing method described in patent documents 1. 特許文献2に記載された従来の二重管製造装置を示す例の模式図である。It is a schematic diagram of the example which shows the conventional double pipe manufacturing apparatus described in patent document 2.

以下、本発明の実施態様について図1〜8を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、本発明の二重管製造方法の各工程を示す一実施形態のフローチャートである。同図に示すA1〜A4は一般的な製造方法で製造された耐食性鋼鋼管を使用して二重管の内貼り(一般にライナーともいう。)となる内管の製造工程である。A2は内管の両端部の一部を薄く展延して外向き又は内向きにフレアに加工する工程、A3はフレア加工した内管を後述する二重管製造装置のマンドレルを被うように装着する工程、A4はマンドレルに装着された内管を後述する冷却水供給機構(給排水機構)から冷却水の供給を受けて冷却する工程である。   FIG. 1 is a flowchart of an embodiment showing each step of the double pipe manufacturing method of the present invention. A1 to A4 shown in the figure are steps for producing an inner pipe to be internally attached to a double pipe (generally also referred to as a liner) using a corrosion-resistant steel pipe produced by a general production method. A2 is a process in which a part of both ends of the inner pipe is thinly extended and processed into a flare outward or inward, and A3 is so as to cover the mandrel of the double pipe manufacturing apparatus described later on the flare-processed inner pipe. Step A4 is a step of cooling the inner pipe attached to the mandrel by receiving cooling water from a cooling water supply mechanism (water supply / drainage mechanism) described later.

同図に示すB1〜B4は一般的な方法で製造された主に炭素鋼鋼管を使用して二重管の外側の鋼管となる外管の製造工程である。B2は外管内の錆び、汚れを除去する清浄化工程、B3は外管を加熱炉に装填する工程、B4は外管を加熱、該加熱温度を維持して移動する工程である。   B1 to B4 shown in the figure are steps for manufacturing an outer pipe which is a steel pipe outside the double pipe using mainly a carbon steel pipe manufactured by a general method. B2 is a cleaning process for removing rust and dirt in the outer pipe, B3 is a process for loading the outer pipe into a heating furnace, and B4 is a process for heating the outer pipe and moving while maintaining the heating temperature.

次いで図1に示すC1〜C4は内管及び外管を相対重層して二重管を製造する工程である。C1は上記A工程でマンドレルに装填し冷却された内管を被うようにB工程で加熱された外管を移動させて相対重層する工程、C2はマンドレルと内管の間隙に高圧水を供給して冷却された内管を拡管、該拡管によって内管が外管内面に接触し、さらに拡管を継続した後、高圧水の供給を止めて冷却水を通水、外管が熱収縮して内管と外管が緊締に嵌合して二重管化する工程、C3はマンドレルから二重管を引く抜く工程、C4は該二重管の端部を加工する工程である。同図に示すC5は二重管化した後、該二重管とマンドレルとの間隙・高圧水室の水密性を維持して二重管の水圧試験を任意に実施する工程である。   Next, C1 to C4 shown in FIG. 1 are processes for manufacturing a double pipe by relatively layering an inner pipe and an outer pipe. C1 is a process of moving the outer tube heated in the B process so as to cover the cooled inner tube loaded in the mandrel in the above A process, and C2 is supplying a high pressure water to the gap between the mandrel and the inner pipe. The expanded inner pipe is expanded and the inner pipe comes into contact with the inner surface of the outer pipe by the expansion. After continuing the expansion, the supply of high-pressure water is stopped, the cooling water is passed, and the outer pipe is thermally contracted. The inner tube and the outer tube are tightly fitted to form a double tube, C3 is a step of pulling out the double tube from the mandrel, and C4 is a step of processing the end of the double tube. C5 shown in the figure is a step in which a double-pipe water pressure test is optionally carried out after maintaining the gap between the double-pipe and the mandrel and the water tightness of the high-pressure water chamber after forming a double-pipe.

以下、図1に示す各製造工程、他の工程について詳細に説明する。
図2は本発明を実施する基本的な一ラインを示し、該ラインを工程別に基本工程A、基本工程B、基本工程C及び基本工程Dと称して区別する。図2において、基本工程Bから基本工程Dはマンドレル4の中心軸に合わせた一直線の装置であるが、図示の都合上、記号ホ及びホ′で切った二段表示としている。
Hereafter, each manufacturing process shown in FIG. 1 and another process are demonstrated in detail.
FIG. 2 shows a basic line for carrying out the present invention, and the lines are referred to as a basic process A, a basic process B, a basic process C, and a basic process D for each process. In FIG. 2, the basic process B to the basic process D are linear devices aligned with the central axis of the mandrel 4, but for convenience of illustration, they are shown in a two-stage display cut by the symbols ho and ho ′.

<基本工程A:冷却水の貯水及び供給、高圧油発生システム及び高圧水供給>
図2と共に図3を参照すると、基本工程Aにおいて高圧水供給経路は、貯水タンク22から給水管でつながるポンプ24、該ポンプ24から配水管42でラム3の供給口15へ、また配水管42′でブースタ30に連結されている。ブースタ30はアキュムレータ36から高圧油管37で供給される高圧油を受けて、高圧水を高圧水管41、41’及び41”を経てラム3及び軸力補償シリンダ12に供給する。ブースタ30の1次シリンダ室から排出された油は油管37’を経て油圧ユニット35に送られ、該油はアキュムレータ36に高圧状態で蓄えられる。
<Basic process A: Cooling water storage and supply, high pressure oil generation system and high pressure water supply>
Referring to FIG. 3 together with FIG. 2, in the basic process A, the high-pressure water supply path is such that the pump 24 connected from the water storage tank 22 through the water supply pipe to the supply port 15 of the ram 3 through the water distribution pipe 42. ′ Is connected to the booster 30. The booster 30 receives the high-pressure oil supplied from the accumulator 36 through the high-pressure oil pipe 37 and supplies high-pressure water to the ram 3 and the axial force compensation cylinder 12 through the high-pressure water pipes 41, 41 ′ and 41 ″. The oil discharged from the cylinder chamber is sent to the hydraulic unit 35 through the oil pipe 37 ′, and the oil is stored in the accumulator 36 in a high pressure state.

<基本工程B:ラム3、スライドヘッド11及び軸力補償シリンダ12による軸力調整>
図2を参照すると、基本工程Bにおいて軸力調整機構は、架台54に設けた固定フレーム8に固設されたラム3及びマンドレル4の後端部を掴む(囲む)ように設けられたスライドヘッド11、該スライドヘッド11に設けた連結ロッド10及び移動ビーム9を有し、該移動ビーム9から固定フレーム8’に固設された軸力補償シリンダ12のピストンロッドにつながっている。
<Basic process B: Axial force adjustment by ram 3, slide head 11 and axial force compensation cylinder 12>
Referring to FIG. 2, in the basic process B, the axial force adjusting mechanism is a slide head provided so as to grasp (enclose) the rear end portion of the ram 3 and the mandrel 4 fixed to the fixed frame 8 provided on the mount 54. 11. A connecting rod 10 and a moving beam 9 provided on the slide head 11 are provided, and the moving beam 9 is connected to a piston rod of an axial force compensating cylinder 12 fixed to a fixed frame 8 ′.

<基本工程C:スライドヘッド11の先端部及びマンドレル4に内管2の装着>
図2を参照すると、基本工程Cにおいてラム3と一体構造のマンドレル4は、架台54に設置された矢印53方向に昇降用エアーシリンダ51によって傾倒するマンドレル支持装置50によって支えられている。
<Basic Step C: Mounting the Inner Tube 2 to the Tip of the Slide Head 11 and the Mandrel 4>
Referring to FIG. 2, in the basic process C, the mandrel 4 that is integrated with the ram 3 is supported by a mandrel support device 50 that is tilted by an elevating air cylinder 51 in the direction of an arrow 53 installed on a pedestal 54.

<基本工程D:加熱炉60、外管回転装置79、移動台車64及び駆動装置からなる外管1の加熱、回転及び移動>
図2と共に図7を参照すると、基本工程Dにおいて架台65に設置されたレール52を走行する加熱炉60を搭載した加熱炉移動台車64は、加熱炉移動用モータ69によって矢印71方向に往復動する。外管1は外管回転ロール79に搭載され、また外管1を回転させるロータリチャック66に連結されている。該ロータリチャック66はロータリチャック移動用モータ67に連結し矢印70方向に往復移動する。
<Basic Step D: Heating, Rotating, and Moving of Outer Tube 1 Consisting of Heating Furnace 60, Outer Tube Rotating Device 79, Moving Car 64, and Drive Device>
Referring to FIG. 7 together with FIG. 2, the heating furnace moving carriage 64 on which the heating furnace 60 that runs on the rail 52 installed on the gantry 65 in the basic process D is reciprocated in the direction of the arrow 71 by the heating furnace moving motor 69. To do. The outer tube 1 is mounted on an outer tube rotating roll 79 and is connected to a rotary chuck 66 that rotates the outer tube 1. The rotary chuck 66 is connected to a rotary chuck moving motor 67 and reciprocates in the direction of arrow 70.

図3は、基本工程A、B及びCの詳細図であり、マンドレル4に外管1を相対重層した図である。図3に基づいて本発明装置の構造と一部作動について製造工程順に説明する。   FIG. 3 is a detailed view of the basic steps A, B, and C, and is a view in which the outer tube 1 is relatively layered on the mandrel 4. Based on FIG. 3, the structure and partial operation of the apparatus of the present invention will be described in the order of manufacturing steps.

ブースタ30は1次側シリンダ室43、3段階の2次側シリンダ室31,32,33、及びピストン39、39’,39”からなり、1次側シリンダ室43の断面積と2次側シリンダ室の各断面積との比により二次側の各シリンダ室から排出する高圧水の圧力が変化し、また、二次側シリンダ室の排出口を任意に組み合わせることによっても供給する高圧水の圧力を変化させて設定することができる。   The booster 30 includes a primary cylinder chamber 43, three-stage secondary cylinder chambers 31, 32, 33, and pistons 39, 39 ′, 39 ″, and a cross-sectional area of the primary cylinder chamber 43 and a secondary cylinder. The pressure of the high-pressure water discharged from each secondary-side cylinder chamber varies depending on the ratio of the cross-sectional area of the chamber, and the pressure of the high-pressure water supplied by arbitrarily combining the discharge ports of the secondary-side cylinder chamber Can be set.

基本工程Aにおいて冷却水の貯水タンク22は、冷却水供給バルブ23、冷却水供給ポンプ24及び逆止弁25を経由してラム3に冷却水を供給し、またブースタ水供給電磁バルブ26及び逆止弁27を経由してブースタ30の3段階の2次側シリンダ室31、32及び33に冷却水を供給する。ブースタ30の2次側の各シリンダ室には高圧水排出口を設け、該排出口に設けた高圧水供給管41、41’及び41”には高圧水供給電磁バルブ40、40’及び40”を設置する。ブースタ30が供給する高圧水は、拡管に必要な設定圧力に対応して高圧水供給電磁バルブ40、40’及び40”を制御して単独、又は組合せを選んで、供給管41により主加圧電磁バルブ46を経てラム3及び軸力補償シリンダ12に供給する。   In the basic process A, the cooling water storage tank 22 supplies the cooling water to the ram 3 via the cooling water supply valve 23, the cooling water supply pump 24, and the check valve 25, and the booster water supply electromagnetic valve 26 and the reverse. Cooling water is supplied to the three-stage secondary cylinder chambers 31, 32 and 33 of the booster 30 via the stop valve 27. Each cylinder chamber on the secondary side of the booster 30 is provided with a high-pressure water discharge port, and the high-pressure water supply pipes 41, 41 ′ and 41 ″ provided at the discharge port have high-pressure water supply electromagnetic valves 40, 40 ′ and 40 ″. Is installed. The high-pressure water supplied by the booster 30 is controlled by the high-pressure water supply electromagnetic valves 40, 40 ′ and 40 ″ according to the set pressure necessary for the pipe expansion, and selected alone or in combination, and is mainly pressurized by the supply pipe 41. It is supplied to the ram 3 and the axial force compensating cylinder 12 through the electromagnetic valve 46.

貯水タンク22の冷却水は、図示しない冷却器、クーラ等によって冷却し、好ましくは30℃以下、必要に応じて5℃以下に維持されている。   The cooling water in the water storage tank 22 is cooled by a cooler, a cooler or the like (not shown), and is preferably maintained at 30 ° C. or lower, and 5 ° C. or lower as required.

油圧ユニット35はブースタ30の1次側シリンダ室43から排油の供給を受け、該排油を圧縮して高圧油としてアキュムレータ36に供給して貯油し、拡管時に高圧油を1次側シリンダ室43に供給する。これら油圧ユニット35、アキュムレータ36及び1次側シリンダ室43はクローズド構造の矢印ハ、ハ’、ハ”方向に給排する油循環システムである。   The hydraulic unit 35 receives supply of waste oil from the primary side cylinder chamber 43 of the booster 30, compresses the waste oil, supplies it to the accumulator 36 as high pressure oil, stores the oil, and stores the high pressure oil in the primary side cylinder chamber when the pipe is expanded. 43. The hydraulic unit 35, the accumulator 36, and the primary cylinder chamber 43 are an oil circulation system that supplies and discharges in the directions of arrows C, C ', and C "having a closed structure.

次に基本工程B及びCにおいて、ラム3及びマンドレル4は一体の構造であり、かつラム3の基部は固定フレーム8に固設され、中心部に冷却水又は高圧水の通路16を設けた中空の円柱構造である。図3と共に図4を参照すると、マンドレル4の先端部6は通水路16(a)と内管2の先端フレア73を固定するシールディスク5及び締付けナット7を有する。スライドヘッド11は中央部に排水口19を有すると共に、内管2の端部フレア74を固定するシールジョウ18を有する。ラム3及びマンドレル4の基部を掴む(囲む)ようにスライドヘッド11を設置し、該スライドヘッド11の先端部には通水路16(b)を設け、後端部には水密シール72を設けている。これによりスライドヘッド11は、内管2を支持しつつ、水密シール72介してマンドレル4との接触面を軸方向に水密裡にスライド(摺動)可能な構造となっている。   Next, in the basic processes B and C, the ram 3 and the mandrel 4 have an integral structure, the base of the ram 3 is fixed to the fixed frame 8, and a hollow having a passage 16 for cooling water or high-pressure water provided in the center. This is a cylindrical structure. Referring to FIG. 4 together with FIG. 3, the distal end portion 6 of the mandrel 4 includes a seal disk 5 and a fastening nut 7 that fix the water passage 16 (a) and the distal end flare 73 of the inner tube 2. The slide head 11 has a drain port 19 at the center and a seal jaw 18 for fixing the end flare 74 of the inner pipe 2. The slide head 11 is installed so as to grasp (enclose) the base portions of the ram 3 and the mandrel 4, the water passage 16 (b) is provided at the front end portion of the slide head 11, and the watertight seal 72 is provided at the rear end portion. Yes. Accordingly, the slide head 11 has a structure capable of sliding (sliding) the contact surface with the mandrel 4 in the axial direction in a watertight manner through the watertight seal 72 while supporting the inner tube 2.

固定フレーム8’に固設された軸力補償シリンダ12はラム3と同じ軸心に設置され、右室に高圧水受給口14を設け、該シリンダ12のピストン13及びピストンロッドに連結した移動ビーム9及び連結ロッド10を介してスライドヘッド11に連結した構造である。   The axial force compensation cylinder 12 fixed to the fixed frame 8 ′ is installed on the same axis as the ram 3. The high pressure water receiving port 14 is provided in the right chamber, and the moving beam connected to the piston 13 and the piston rod of the cylinder 12. 9 and the connecting rod 10 are connected to the slide head 11.

マンドレル4には、両端に内向きフレア73及び外向きフレア74を施した所定長さの内管2がマンドレル4を被うように挿入される。該内管2の外向きフレア74はラム3及びマンドレル4に摺動可能に装着されたスライドヘッド11に設けたシールジョー18によって固定され、内管2の先端の内向きフレア73はマンドレル4の先端部6にシールディク5を介して締付ナット7で固定する。内管2がシールジョー18及びシールディスク5によって固定されると、マンドレル4と内管2との間隙は水密裡の通水路、又は高圧水室17を形成する。   The mandrel 4 is inserted so as to cover the mandrel 4 with a predetermined length of the inner tube 2 having inward flares 73 and outward flares 74 at both ends. An outward flare 74 of the inner tube 2 is fixed by a seal jaw 18 provided on a slide head 11 slidably mounted on the ram 3 and the mandrel 4, and an inward flare 73 at the tip of the inner tube 2 is fixed to the mandrel 4. The front end 6 is fixed with a tightening nut 7 via a seal disc 5. When the inner pipe 2 is fixed by the seal jaw 18 and the seal disk 5, the gap between the mandrel 4 and the inner pipe 2 forms a watertight water passage or a high-pressure water chamber 17.

図4は、図3に示す基本工程B及びCの拡大図であり、軸力補償シリンダ12、スライドヘッド11、ラム3及びマンドレル4からなる拡管機構において、高圧水による内管2又は外管1の拡管時に発生する内管2の左向き、又は右向きに働く軸力Fr及びFlと、各部の直径d(ラムの外径dr、スライドヘッド11の内径dc、スライドヘッド11の先端部内径dt、内管2の内径dp、マンドレル4の外径dm)による軸力バランスに関する説明図である。   FIG. 4 is an enlarged view of the basic steps B and C shown in FIG. 3. In the pipe expanding mechanism including the axial force compensating cylinder 12, the slide head 11, the ram 3 and the mandrel 4, the inner pipe 2 or the outer pipe 1 made of high-pressure water is shown. Axial force Fr and Fl acting to the left or right of the inner tube 2 generated when the tube is expanded, and the diameter d of each part (the outer diameter dr of the ram, the inner diameter dc of the slide head 11, the inner diameter dt of the tip of the slide head 11, the inner It is explanatory drawing regarding the axial force balance by the internal diameter dp of the pipe | tube 2, and the outer diameter dm of the mandrel 4. FIG.

図5は、図3に示す本発明の二重管製造工程における外管1及び内管2が単管から相対重層、拡管、二重管への加工工程の断面を示し、左から2番目の断面図は図3のA−A断面を示す。これらの断面図を左から第1ステージ(内管2をマンドレル4に嵌装、外管1を加熱)、第2ステージ(内管2に外管1を相対重層)、第3ステージ(高圧水による水圧Pで外管1の内面まで内管2のみ拡管)、第4ステージ(内管2と外管1を一体拡管して嵌合)、第5ステージ(水圧Pを解放、二重管を冷却)と区分する。   FIG. 5 shows a cross-section of the process of converting the outer tube 1 and the inner tube 2 from the single tube to the relative multi-layer, the expanded tube, and the double tube in the double tube manufacturing process of the present invention shown in FIG. The cross-sectional view shows the AA cross section of FIG. From the left, these cross-sectional views are the first stage (the inner tube 2 is fitted on the mandrel 4 and the outer tube 1 is heated), the second stage (the outer tube 1 is relatively layered on the inner tube 2), and the third stage (high pressure water The inner tube 2 is expanded to the inner surface of the outer tube 1 by the water pressure P, the fourth stage (the inner tube 2 and the outer tube 1 are integrally expanded and fitted), the fifth stage (the water pressure P is released, the double tube is Cooling).

図6は、図5に示す二重管製造工程における内管2及び外管1の管径Dの変化と拡管応力σ1及びσ2の変化を示すグラフである。   FIG. 6 is a graph showing changes in the tube diameter D of the inner tube 2 and the outer tube 1 and changes in the tube expansion stresses σ1 and σ2 in the double tube manufacturing process shown in FIG.

図6において、横軸は外管1及び内管2の直径Dの変化、縦軸は外管1及び内管2の直径方向の応力σ1及びσ2の変化を表す。外管1の伸縮は太線、内管2の伸縮は点線で示し、それぞれの変化は外力によって膨張、熱膨張、又は収縮する。外管1は、該鋼管材の弾性限界範囲内で拡管され、外管1の内径DPOと内管2の外径DLOが同一径となり、継続的に高圧水の供給でさらに拡管を継続するが、外管1の弾性限内、かつσ2>σ1の状況下で水圧Pを開放する。次いで二重管となった外管1及び内管2は、該内管内を流れる冷却水によって熱収縮、すなわち、直径が縮小して両管の嵌合面に応力を生じる。 In FIG. 6, the horizontal axis represents changes in the diameter D of the outer tube 1 and the inner tube 2, and the vertical axis represents changes in the stresses σ1 and σ2 in the diameter direction of the outer tube 1 and the inner tube 2. Expansion and contraction of the outer tube 1 is indicated by a bold line, and expansion and contraction of the inner tube 2 is indicated by a dotted line. The outer tube 1 is the tube expansion within the elastic limits of the steel pipe material, the outer diameter D LO inner diameter D PO and the inner pipe 2 of the outer tube 1 is the same size, further continued expanded pipe in continuous high-pressure water supply However, the water pressure P is released within the elastic limit of the outer tube 1 and under the condition of σ2> σ1. Next, the outer tube 1 and the inner tube 2 that have become double tubes are thermally contracted by the cooling water flowing in the inner tube, that is, the diameter is reduced, and stress is generated on the fitting surfaces of both the tubes.

図7は、図2のB−B断面を示し、移動台車64に搭載された加熱炉60の断面模式図である。移動台車64に搭載された2層耐火煉瓦75、該耐火煉瓦75を挟むように炉体側壁80を立設し、該炉体側壁80の内側に側壁耐火材76−1及び天井耐火材76−2によってトンネル形の炉内を形成する。該炉内には両側の炉体側壁80間にロール支持軸77を渡して、そのロール支持軸77に外管1の回転ロール79を設置し、回転ロール79はロールセンター調整治具78によって外管1の回転中心をマンドレル4の中心に合わせる。外管1の加熱は炉体側壁80に設けたガスバーナ63の燃焼炎(燃料:例、LPG)を加熱源とし、その燃焼ガスは排気ダンパー61の調節で適量を放出して炉内温度を調節し、外管1の加熱温度は、例えば放射温度計62で測定して外管1の温度を制御する。   FIG. 7 is a schematic cross-sectional view of the heating furnace 60 mounted on the movable carriage 64, showing the BB cross section of FIG. A two-layer refractory brick 75 mounted on a movable carriage 64, and a furnace side wall 80 are erected so as to sandwich the refractory brick 75, and a side wall refractory material 76-1 and a ceiling refractory material 76- are provided inside the furnace body side wall 80. 2 forms a tunnel-shaped furnace. In the furnace, a roll support shaft 77 is passed between the furnace body side walls 80 on both sides, and the rotary roll 79 of the outer tube 1 is installed on the roll support shaft 77. The rotary roll 79 is removed by a roll center adjusting jig 78. The center of rotation of the tube 1 is aligned with the center of the mandrel 4. The heating of the outer tube 1 uses the combustion flame (fuel: eg, LPG) of the gas burner 63 provided on the side wall 80 of the furnace as a heating source, and the combustion gas is released by adjusting the exhaust damper 61 to adjust the temperature inside the furnace. The heating temperature of the outer tube 1 is measured by, for example, the radiation thermometer 62 to control the temperature of the outer tube 1.

外管1は、側壁開閉枠81を油圧シリンダ82によって炉蓋開閉ロッド83を駆動して外蓋回動軸84を支点として天井耐火材76−2と共に矢印85方向に回動して加熱炉60を開いて加熱炉に装填する。装填した外管1は、その左端をロータリチャック66(図2参照)に掴まれ任意に回転する。該外管1は所定の温度に加熱されると移動台車64によって前進移動(図2の左方向)してマンドレル4に嵌装されている内管4を被うように相対重層の形態になる。   The outer tube 1 drives the furnace lid opening / closing rod 83 by the hydraulic cylinder 82 through the side wall opening / closing frame 81 and pivots in the direction of arrow 85 together with the ceiling refractory material 76-2 about the outer lid rotation shaft 84 as a fulcrum. Is opened and loaded into the heating furnace. The left outer end of the loaded outer tube 1 is gripped by a rotary chuck 66 (see FIG. 2) and arbitrarily rotated. When the outer tube 1 is heated to a predetermined temperature, the outer tube 1 moves forward (to the left in FIG. 2) by the moving carriage 64 and forms a relative multi-layer so as to cover the inner tube 4 fitted to the mandrel 4. .

図8は図2に示した二重管製造装置の3ライン、及び冷却水と高圧水の給排システム(給排水機構)の一式を設置した二重管製造装置の模式図である。   FIG. 8 is a schematic diagram of a double pipe manufacturing apparatus in which three lines of the double pipe manufacturing apparatus shown in FIG. 2 and a set of cooling and high pressure water supply / discharge systems (supply / drainage mechanisms) are installed.

図8において、二重管の製造装置は軸力補償シリンダ12、スライドヘッド11、マンドレル4及び移動台車64に搭載された加熱炉60からなる「製造装置ライン1」、「製造装置ライン2」及び「製造装置ライン3」を並列に設置し、ブースタ30に高圧油を給排する油圧ユニット35及びアキュムレータ36からなる油圧システムを一システムのみ設置する。そしてブースタ30から供給される高圧水の高圧水供給管41、また冷却水供給ポンプ24から供給される冷却水の冷却水供給管42には前記製造装置ライン1乃至3への供給水の分岐器87、88及び89を設置した装置設備である。   In FIG. 8, the double pipe manufacturing apparatus includes a “manufacturing apparatus line 1”, a “manufacturing apparatus line 2”, and a heating furnace 60 mounted on the axial force compensation cylinder 12, the slide head 11, the mandrel 4, and the movable carriage 64. “Manufacturing equipment line 3” is installed in parallel, and only one hydraulic system including a hydraulic unit 35 and an accumulator 36 for supplying and discharging high pressure oil to and from the booster 30 is installed. The high-pressure water supply pipe 41 supplied from the booster 30 and the cooling water supply pipe 42 supplied from the cooling water supply pump 24 are branched from the supply water to the production apparatus lines 1 to 3. This is equipment with 87, 88 and 89 installed.

すなわち、図8に示す二重管製造設備は、図示しない制御機器によって一つの冷却水等を給排するシステムを使用して3つの製造装置ラインに対して各製造ラインの製造工程の進捗に合わせて必要な冷却水又は高圧水をタイミングよく供給及び排水するものである。   That is, the double pipe manufacturing facility shown in FIG. 8 uses a system that supplies and discharges one cooling water or the like with a control device (not shown) to match the progress of the manufacturing process of each manufacturing line with respect to three manufacturing equipment lines. Supply and drain the necessary cooling water or high-pressure water in a timely manner.

なお、以上の実施態様は、本発明の製造方法を実施する装置例であり、本発明の二重管製造装置の一実施例であって、本発明は上述の構造装置、設備例に限るものではなく、本発明の技術思想の範囲内で変更することはできる。   In addition, the above embodiment is an example of an apparatus for performing the manufacturing method of the present invention, and is an example of the double pipe manufacturing apparatus of the present invention, and the present invention is limited to the above-described structural apparatus and example of equipment. Instead, it can be changed within the scope of the technical idea of the present invention.

次に本発明の二重管製造方法の手段、現象及び二重管製造装置の構造及び作動について図1〜図8によって説明する。   Next, the means and phenomenon of the double pipe manufacturing method of the present invention and the structure and operation of the double pipe manufacturing apparatus will be described with reference to FIGS.

(1)内管のセット、通水路及び高圧水室の形成
図1に示すA列工程の内管2は、端部に内向きフレア73及び外向きフレア74を加工し、図2に示すマンドレル4の自由端側から外向きフレア74を先にマンドレル4を被うように挿入する。図3に示すようにマンドレル4を被うように挿入された内管2は、その外向きフレア74をシールドジョー18によって水密裡にスライドヘッド11の先端部に、また内向きフレア73をマンドレル先端部6に当接しシールディスク5を挟んで締付けナット7によって水密理に締め付ける。また、スライドヘッド11はラム3との間に設けた水密シール72によって水密裡、かつ軸方向に摺動可能な構造として、スライドヘッド11の排水口19の排水電磁バルブ20を閉じることで高圧水室17を形成する。
(1) Set of inner pipe, formation of water passage and high-pressure water chamber The inner pipe 2 of the row A process shown in FIG. 1 has an inward flare 73 and an outward flare 74 processed at the end, and the mandrel shown in FIG. 4 is inserted so as to cover the mandrel 4 with the outward flare 74 first from the free end side. As shown in FIG. 3, the inner tube 2 inserted so as to cover the mandrel 4 has an outward flare 74 in a watertight manner by the shield jaw 18 at the tip of the slide head 11 and an inward flare 73 at the tip of the mandrel. It abuts on the portion 6 and is clamped in a watertight manner by a clamping nut 7 with the seal disk 5 interposed therebetween. Further, the slide head 11 has a structure that is watertight and can slide in the axial direction by a watertight seal 72 provided between the slide head 11 and the high pressure water by closing the drainage electromagnetic valve 20 of the drainage port 19 of the slidehead 11. A chamber 17 is formed.

(2)通水路の脱気、内鋼管の冷却
マンドレル4にセットされた内管2への通水は、冷却水を貯水タンク22から冷却水供給バルブ23を開いて冷却水ポンプ24から逆止弁25を開いて通水管42を通水してラム3の冷却水供給口15に供給した冷却水をマンドレル3内の冷却水通路16及び通水路16(a)を通水する。その冷却水はマンドレル4及び内管2の間隙に形成した円環状の通水路、又は高圧水室17を満たし、スライドヘッド11に設けた排水口19から排水されて配水管21、21’から貯水タンク22に戻り、循環する。
(2) Deaeration of water passage, cooling of inner steel pipe Water flow to the inner pipe 2 set in the mandrel 4 is reversed from the cooling water pump 24 by opening the cooling water supply valve 23 from the water storage tank 22. The cooling water supplied to the cooling water supply port 15 of the ram 3 through the water pipe 42 by opening the valve 25 is passed through the cooling water passage 16 and the water passage 16 (a) in the mandrel 3. The cooling water fills an annular water passage formed in the gap between the mandrel 4 and the inner pipe 2, or the high-pressure water chamber 17, is drained from a drain port 19 provided in the slide head 11, and is stored in the distribution pipes 21 and 21 ′. Return to tank 22 and circulate.

この通水によって、一連の通水路等の空気は排出されて、加熱された外管1の挿入時に残空気による水の気化に伴う爆発等の諸問題を回避すると共に内管1を冷却する。該冷却水は加熱された外管1の挿入時に内管2が加熱されるのを防止する。貯水タンク22に戻った水は、図示しない冷却器、クーラ等によって好ましくは30℃以下、より好ましくは10℃以下に冷却する。   By this water flow, air in a series of water passages and the like is discharged, and various problems such as explosion due to water evaporation due to residual air when the heated outer tube 1 is inserted are avoided and the inner tube 1 is cooled. The cooling water prevents the inner tube 2 from being heated when the heated outer tube 1 is inserted. The water returned to the water storage tank 22 is cooled to preferably 30 ° C. or less, more preferably 10 ° C. or less, by a cooler, a cooler or the like (not shown).

(3)外鋼管の加熱
図1に示すB列工程の外管1は、その内面を回転ブラシによる研磨、他によって清浄化し、図2に示す基本工程D及び図7に示す加熱炉60に装填し、100℃〜500℃の温度に加熱する。
(3) Heating of outer steel pipe The outer pipe 1 of the row B process shown in FIG. 1 is cleaned by polishing with a rotating brush and the like, and loaded into the heating furnace 60 shown in FIG. 2 and the basic process D shown in FIG. And heating to a temperature of 100 ° C to 500 ° C.

図7に示すように外管1は、加熱炉60の天井耐火材(例、ミネラルウール)76−2と一体構造である炉蓋開閉枠81を、炉蓋回動軸84を支点として油圧シリンダ82及び炉蓋開閉ロッド83によって炉蓋開閉方向85に開いて、加熱炉60の中心に設けた鋼管回転ロール79に載置する。載置した外管1は、鋼管軸心調整治具78によって前述のマンドレル4の軸心、すなわち、上記(1)内管のセット工程で予めセットされた内管2の軸心とも一致させる。   As shown in FIG. 7, the outer tube 1 includes a furnace lid opening / closing frame 81 that is integral with a ceiling refractory material (for example, mineral wool) 76-2 of the heating furnace 60, and a hydraulic cylinder with a furnace lid rotating shaft 84 as a fulcrum. 82 and the furnace lid opening / closing rod 83 are opened in the furnace lid opening / closing direction 85 and placed on a steel tube rotating roll 79 provided at the center of the heating furnace 60. The placed outer pipe 1 is made to coincide with the axis of the mandrel 4 described above by the steel pipe axis adjusting jig 78, that is, the axis of the inner pipe 2 set in advance in the above (1) inner pipe setting step.

外管1を加熱炉60にセット後、炉蓋開閉装置によって炉蓋を回動して閉じ、ガスバーナ63の火炎により加熱する。その間、外管1は鋼管回転ロール79によって回転し、外管1の加熱温度を放射温度計62によって随時測定してガスバーナ63の火力、又は排気ダンパー61の排気量の調整によって外管1の全長にわたって均一、かつ所定の温度に加熱される。   After setting the outer tube 1 in the heating furnace 60, the furnace cover is rotated and closed by a furnace cover opening / closing device, and heated by the flame of the gas burner 63. Meanwhile, the outer tube 1 is rotated by a steel tube rotating roll 79, the heating temperature of the outer tube 1 is measured by a radiation thermometer 62 as needed, and the total length of the outer tube 1 is adjusted by adjusting the heating power of the gas burner 63 or the exhaust amount of the exhaust damper 61. Over a uniform and predetermined temperature.

(4)内管及び外管のセッティング等の拡管準備から高圧水供給による拡管、二重管形成後の冷却手順 (4) Cooling procedures after preparation for expansion such as setting of inner and outer pipes, pipe expansion with high-pressure water supply, and double pipe formation

a)ブースタへ注水、内管へ冷却水を注水、拡管加圧の準備完了
図3に示す基本工程Aは、ブースタ30への冷却水供給機構及び高圧油を送る油循環システムによって、ブースタ30から高圧水をラム3及び軸力補償シリンダ12へ供給する工程である。
a) Injection of water into the booster, injection of cooling water into the inner pipe, and completion of preparation for expansion and pressurization The basic process A shown in FIG. 3 is performed from the booster 30 by the cooling water supply mechanism to the booster 30 and the oil circulation system that sends high-pressure oil. This is a step of supplying high-pressure water to the ram 3 and the axial force compensation cylinder 12.

図示しない制御機器の操作盤において、最初にブースタ30を原点に復帰するための操作としてブースタ注水の押釦を押すと、ブースタ水供給電磁バルブ26が開き、所定時間後にモーターバルブ45、主加圧弁46が閉じ、高圧水供給電磁バルブ40、40’及び40”が開き、冷却水ポンプ24が起動してブースタ30のピストン39、39’及び39”は原点に戻る。ブースタ30が原点に復帰すると所定時間後に、ブースタ注水動作が停止する。   When the booster water injection push button is first pressed as an operation for returning the booster 30 to the origin on the control panel (not shown), the booster water supply electromagnetic valve 26 is opened, and after a predetermined time, the motor valve 45 and the main pressurization valve 46 are opened. Is closed, the high pressure water supply electromagnetic valves 40, 40 ′ and 40 ″ are opened, the cooling water pump 24 is activated, and the pistons 39, 39 ′ and 39 ″ of the booster 30 return to the origin. When the booster 30 returns to the origin, the booster water injection operation stops after a predetermined time.

次に内管1及びマンドレル4で形成する通水路17への注水は、ブースタ30が原点にあって、上記(1)項の説明の如く拡管機構におけるマンドレル4及び内管2との水密形成の完了が注水の条件である。これらの条件が満たされて、通水路17への注水ONの押釦を押すと、モーターバルブ45が開き、冷却水ポンプ24が起動し、ラム3の排水口19から排水管21を経て貯水タンク22への水流状況を確認し、通水路17への注水OFFの押釦で終了する。この内管1への注水が終わると制御盤の「拡管準備完了」の表示が点滅する。   Next, the water injection to the water passage 17 formed by the inner pipe 1 and the mandrel 4 is performed with the booster 30 at the origin and water-tight formation with the mandrel 4 and the inner pipe 2 in the pipe expanding mechanism as described in the above section (1). Completion is a condition of water injection. When these conditions are met and the water injection ON push button to the water passage 17 is pushed, the motor valve 45 is opened, the cooling water pump 24 is activated, and the water storage tank 22 is passed from the drain port 19 of the ram 3 through the drain pipe 21. The flow of water is confirmed, and the process is terminated with a push button for turning off water to the water passage 17. When the water injection to the inner pipe 1 is finished, the display of “Ready for pipe expansion” on the control panel flashes.

b)管挿入・内管との相対重層
図2に示す基本工程Dの加熱炉60によって予め100℃〜500℃、例えば350℃に加熱した外管1は、加熱炉移動台車64により加熱炉移動方向71に加熱炉移動用モータ69の駆動により移動し、既に設置し冷却した内管2を被うように相対重層する。相対重層の間、内管2の温度上昇を防止するため、前記a)で一旦終了した内管2の通水路17に冷却水を継続通水し内管2を冷却する。
b) Tube insertion / relative layering with inner tube The outer tube 1 heated in advance to 100 ° C. to 500 ° C., for example, 350 ° C. by the heating furnace 60 in the basic process D shown in FIG. It moves by the drive of the heating furnace moving motor 69 in the direction 71, and is relatively layered so as to cover the already installed and cooled inner tube 2. In order to prevent the temperature of the inner tube 2 from rising during the relative multi-layering, the inner tube 2 is cooled by continuously passing cooling water through the water passage 17 of the inner tube 2 once completed in the step a).

これにより、加圧機構側が加圧準備完了となり、拡管機構側の外管1の加熱、挿入完了の信号で「外管挿入完了」の表示灯が点灯し、高圧水による加圧が可能になる。   As a result, the pressurization mechanism side is ready for pressurization, the outer tube 1 on the tube expansion mechanism side is heated, and the “outer tube insertion complete” indicator light is turned on in response to the insertion completion signal, and pressurization with high-pressure water becomes possible. .

c)高圧水の加圧起動、加圧上昇、最高加圧、そして最高圧力の加圧保持
アキュムレータ36の油圧力が設定値に達し、拡管機構側において外管1の内管2との相対重層が完了すると、加圧条件が整う。なお、アキュムレータ36を有する油圧システムはブースタ30のピストン39の後退時に油圧電磁バルブ34を開いて1次側シリンダ室43の油は矢印ハの方向に流れ、油圧ユニット35に供給する。油圧ユニット35は、油圧電磁バルブ38を閉じて該油を圧縮して圧力を付加してアキュムレータ36に所定圧力の高圧油になるまで供給して貯油する。
c) Pressurization start of high-pressure water, pressurization rise, maximum pressurization, and maximum pressure pressurization holding The oil pressure of the accumulator 36 reaches a set value, and the relative expansion of the outer tube 1 with the inner tube 2 on the tube expansion mechanism side When is completed, the pressurizing condition is set. Note that the hydraulic system having the accumulator 36 opens the hydraulic electromagnetic valve 34 when the piston 39 of the booster 30 is retracted, and the oil in the primary side cylinder chamber 43 flows in the direction indicated by the arrow c and is supplied to the hydraulic unit 35. The hydraulic unit 35 closes the hydraulic electromagnetic valve 38, compresses the oil, adds pressure, supplies the accumulator 36 to high pressure oil of a predetermined pressure, and stores the oil.

制御機器において、「加圧起動」押釦を押せば排水電磁バルブ20が閉となり、所定時間後に油圧システムの油圧電磁バルブ38が開になり、ブースタ30のピストン39が起動して高圧水供給電磁バルブ40、40’及び40”は加圧設定の対象シリンダ対応のバルブのみ開く。ブースタ30は3段階の装置であるが各シリンダ室の加圧力設定により、拡管時の昇圧は、実質的に1段階又は2段階からなる加圧拡管も可能である。   In the control device, when the “pressurization start” push button is pressed, the drain electromagnetic valve 20 is closed, and after a predetermined time, the hydraulic electromagnetic valve 38 of the hydraulic system is opened, and the piston 39 of the booster 30 is activated to start the high pressure water supply electromagnetic valve. 40, 40 'and 40 "open only the valve corresponding to the target cylinder of the pressurization setting. The booster 30 is a three-stage device, but the pressure increase at the time of pipe expansion is substantially one stage by setting the pressure in each cylinder chamber. Alternatively, a pressure expansion tube composed of two stages is also possible.

例えば、3段階による拡管実施は、高圧水室17への高圧水供給によって拡管が起動し、該高圧水の圧力が「拡管圧力設定」で予め設定された第1段階の値に達すると第2段階に移り、さらに第2段階の値で第3段階に移行する。第3段階で設定の最高圧力の値になると、高圧水供給電磁バルブ40、40’及び40”及び油圧電磁バルブ38は閉となり、加圧は終了する。この拡管起動から加圧終了までの好ましい時間は0.5秒〜5秒である。   For example, the pipe expansion in three stages is performed when the pipe expansion is started by supplying high-pressure water to the high-pressure water chamber 17 and the pressure of the high-pressure water reaches the value of the first stage set in advance by “setting the pipe expansion pressure”. The process proceeds to the stage, and further proceeds to the third stage with the value of the second stage. When the value of the maximum pressure set in the third stage is reached, the high-pressure water supply electromagnetic valves 40, 40 'and 40 "and the hydraulic electromagnetic valve 38 are closed, and the pressurization is completed. The time is 0.5 seconds to 5 seconds.

最高圧力に到達して拡管終了後、「加圧停止タイマー」で設定された時間は排水電磁バルブ20、主加圧バルブ46を閉じて加圧状態を保持する。該加圧保持時間は0.5秒〜5秒が好ましい。最高加圧力を所定の時間保持することによって内管2が外管1に均一に密着され、嵌合応力が均一になる。   After reaching the maximum pressure and completing the pipe expansion, the drainage electromagnetic valve 20 and the main pressurization valve 46 are closed for the time set by the “pressurization stop timer” to maintain the pressurization state. The pressure holding time is preferably 0.5 seconds to 5 seconds. By holding the maximum applied pressure for a predetermined time, the inner tube 2 is uniformly adhered to the outer tube 1 and the fitting stress becomes uniform.

d)大量冷却水の供給による冷却収縮、少量冷却
高圧水による加圧保持の終了後、「加圧停止タイマー」のタイムアップで排水電磁バルブ20が開き、このとき、次の大量冷却に備え、モーターバルブ45は開となる。冷却水ポンプ24が起動し、二重管を冷却し、「冷却水注水タイマー」のタイムアップで冷却水ポンプ24は停止する。大量冷却が終了しても各バルブは、その状態を継続し、冷却水供給ポンプ24の弱駆動により少量冷却を継続し、「少量冷却OFF」押釦を押して1工程の終了となる。
d) Cooling shrinkage by supplying a large amount of cooling water, cooling by a small amount After completion of pressurization and holding by high-pressure water, the drainage electromagnetic valve 20 opens at the time of "pressurization stop timer", and at this time, in preparation for the next large amount of cooling, The motor valve 45 is opened. The cooling water pump 24 is started, the double pipe is cooled, and the cooling water pump 24 stops when the time of the “cooling water injection timer” expires. Even after the mass cooling is completed, each valve continues to be in that state, and a small amount of cooling is continued by weak driving of the cooling water supply pump 24, and the “small amount cooling OFF” push button is pressed to complete one step.

(5)拡管動作と軸力補償シリンダ及びスライドヘッドの作動
次に図4及び図3によって、内管2の拡管作用と軸力補償シリンダ12及びスライドヘッド11の作動について説明する。
(5) Tube Expansion Operation and Operation of Axial Force Compensation Cylinder and Slide Head Next, the tube expansion operation of the inner tube 2 and the operation of the axial force compensation cylinder 12 and the slide head 11 will be described with reference to FIGS.

軸力補償シリンダ12の高圧水受給口14に供給した高圧水は、補償シリンダピストン13が左方向に前進する力を与える。該前進動作の力はピストンロッド、移動ビーム9及び連結ロッド10を経てスライドヘッド11に連動する。上記の項目(4)c)の高圧水による内管2の拡管における内管2の拡管作用は、基本的には内管2が膨張して内径が大きくなり、軸方向に収縮して管長が短縮する。この内管2の長さ変化に対応して内管2のフレア73及び74の固定、スライドヘッド11の後端部に設けた水密シール72によって設けた高圧水室17の水密性を維持することが要求される。さらにラム3の外径drに対してマンドレル4の外径dmは小径とし、高圧水室17の間隙を確保して内管2の冷却能力及び拡管力の向上を図ることが望まれる。   The high-pressure water supplied to the high-pressure water receiving port 14 of the axial force compensation cylinder 12 gives a force for the compensation cylinder piston 13 to advance in the left direction. The force of the forward movement is interlocked with the slide head 11 via the piston rod, the moving beam 9 and the connecting rod 10. The expansion action of the inner tube 2 in the expansion of the inner tube 2 by the high pressure water of the above item (4) c) is basically that the inner tube 2 expands to increase its inner diameter and contracts in the axial direction to increase the tube length. Shorten. Corresponding to the change in the length of the inner pipe 2, the flares 73 and 74 of the inner pipe 2 are fixed, and the water tightness of the high pressure water chamber 17 provided by the water tight seal 72 provided at the rear end of the slide head 11 is maintained. Is required. Further, it is desirable that the outer diameter dm of the mandrel 4 is smaller than the outer diameter dr of the ram 3 to secure a gap between the high-pressure water chambers 17 and to improve the cooling capacity and the expanding power of the inner pipe 2.

スライドヘッド11の水圧軸力は次のような拡管作業に不都合な影響力を与えることがある。引張軸力は、(ア)内管2の拡管時に引張り多軸の応力を発生させる、(イ)内管2(特にシールジョー部のネック)を膨出破断させる、(ウ)内管2の水密シール部の弛緩を生じる。他方、圧縮軸力は、(ア)外管1に作用して座屈変形を発生させる、(イ)内管水密シール部の弛緩を生じる。これらの現象は二重管の生産性及び品質に悪影響する大きな要因であり、これらを回避するため、拡管工程における内管2の長さの変化にスライドヘッド11が円滑に追随すること、内管2の伸縮を拘束しないことが必要である。   The hydraulic axial force of the slide head 11 may adversely affect the following tube expansion work. The tensile axial force is (a) tensile stress is generated when the inner pipe 2 is expanded, (b) the inner pipe 2 (especially the neck of the seal jaw) is bulged and broken, and (c) the inner pipe 2 This causes relaxation of the watertight seal. On the other hand, the compression axial force (a) acts on the outer tube 1 to cause buckling deformation, and (b) loosens the inner tube watertight seal portion. These phenomena are major factors that adversely affect the productivity and quality of the double pipe, and in order to avoid these, the slide head 11 smoothly follows the change in the length of the inner pipe 2 in the pipe expansion process, It is necessary not to restrain the expansion and contraction of 2.

ここで、高圧水室17においてスライドヘッド11に作用する水圧軸力Fl、Fr及びFaは以下の式1〜3で求めることができる。
(ア)スライドヘッドに左向き(←)に作用する水圧軸力Flは
Fl=π/4・(dc−dr)・P+π/4・(dp−dt)・P …式1
(イ)スライドヘッドに右向き(→)に作用する水圧軸力Frは(負として)
Fr=−π/4・(dc−dt)・P …式2
(ウ)FlとFrの合成水圧軸力Faは
Fa=Fl+Fr=π/4・(dp−dr)・P …式3
Here, the hydraulic axial forces Fl, Fr, and Fa acting on the slide head 11 in the high-pressure water chamber 17 can be obtained by the following equations 1-3.
(A) The hydraulic axial force Fl acting leftward (←) on the slide head is Fl = π / 4 · (dc 2 −dr 2 ) · P + π / 4 · (dp 2 −dt 2 ) · P Equation 1
(B) The hydraulic axial force Fr acting on the slide head in the right direction (→) is (as negative)
Fr = −π / 4 · (dc 2 −dt 2 ) · P Equation 2
(C) The combined hydraulic axial force Fa of Fl and Fr is Fa = Fl + Fr = π / 4 · (dp 2 −dr 2 ) · P Equation 3

したがって、
dp=drでFa=0 :軸力バランスして軸力は発生しない。
dp>drでFa>0 :この場合は左向き軸力となり内管2を引張る。
dp<drでFa<0 :この場合は右向き軸力となり内管2を圧縮する。
ただし、上記式に使用した符号は図4に示す直径の符号を示し、以下に定義する。
dp=拡管により内管が外管に内接したときの内径
dr=スライドヘッド摺動部のラム径
dc=スライドヘッドのシリンダ径
dt=スライドヘッド先端部のコーン喉部(最狭部)内径
dm=マンドレル本体の径
P=拡管圧力、とする。
Therefore,
dp = dr and Fa = 0: The axial force is balanced and no axial force is generated.
dp> dr and Fa> 0: In this case, the inner pipe 2 is pulled with a leftward axial force.
dp <dr and Fa <0: In this case, the inner pipe 2 is compressed with a rightward axial force.
However, the code | symbol used for the said type | formula shows the code | symbol of the diameter shown in FIG. 4, and is defined below.
dp = inner diameter when the inner tube comes in contact with the outer tube by expanding the tube dr = ram diameter of the slide head sliding portion dc = cylinder diameter of the slide head dt = cone throat (narrowest portion) inner diameter dm at the tip of the slide head = Mandrel body diameter P = tube expansion pressure.

よって、水圧軸力の補償方法は、dp=drとすれば水圧軸力は発生しないが、生産管理上、内管2の肉厚が変わるごとにラム径drを変更することは不経済である。そこで図4に示す軸力補償シリンダ12を設け、これに拡管用の高圧水を供給して軸力の補償を行う。また、dp<dr(Fl<Fr)であり、Fa<0(内管圧縮圧力)の場合、マンドレル先端部6(内フレア部)で内管が固定されており、スライドヘッド11が移動し内管の座屈発生原因になるため軸力補償シリンダ12でスライドヘッド11が内管2を圧縮方向へ移動するのを防止する。よって、軸力補償シリンダ12の作動によって内管2の座屈発生を防止する。ただし、この軸力補償シリンダ12でも、完全に軸力を消去するためには極めて多数の種類を準備しなければならない。一方、計算の結果によれば水圧軸力にはかなりの許容範囲があるので軸力補償シリンダ12の数はさほど多くを必要とせず、軸力の計算される範囲で段階的に準備すればよい。しかしながら、1種類のスライドヘッド11、ラム3及びマンドレル4に対して、多数の軸力補償シリンダ12を組み合わせて広い範囲の内管サイズに対応させるのは設計上多くの無理が生じるので、原則として一般の鋼管呼び径(公称)ごとに1種類のマンドレル3(スライドヘッド11及びラム3を含む)準備することで十分である。   Therefore, the hydraulic axial force compensation method does not generate a hydraulic axial force if dp = dr, but it is uneconomical to change the ram diameter dr every time the thickness of the inner pipe 2 changes in production management. . Therefore, an axial force compensation cylinder 12 shown in FIG. 4 is provided, and high pressure water for pipe expansion is supplied to the cylinder to compensate the axial force. In addition, when dp <dr (Fl <Fr) and Fa <0 (inner tube compression pressure), the inner tube is fixed at the mandrel tip 6 (inner flare portion), and the slide head 11 moves and moves inside. This causes the tube to buckle, and the axial force compensation cylinder 12 prevents the slide head 11 from moving the inner tube 2 in the compression direction. Therefore, the operation of the axial force compensation cylinder 12 prevents the inner tube 2 from buckling. However, even with this axial force compensation cylinder 12, a great number of types must be prepared in order to completely eliminate the axial force. On the other hand, according to the calculation result, there is a considerable allowable range for the hydraulic axial force, so the number of axial force compensating cylinders 12 is not so large, and it is sufficient to prepare in stages within the range in which the axial force is calculated. . However, as a general rule, it is difficult to design a single slide head 11, ram 3 and mandrel 4 by combining a large number of axial force compensation cylinders 12 to accommodate a wide range of inner tube sizes. It is sufficient to prepare one type of mandrel 3 (including the slide head 11 and the ram 3) for each general steel pipe nominal diameter (nominal).

もっとも標準的には、スライドヘッド11が摺動するラム径drをなるべく大きく取り、すなわち、内管2の肉厚が比較的薄いところで軸力バランスを取れる容量の軸力補償シリンダ12を設置し、内管2の肉厚の増大に対しては、その軸力補償シリンダ12の容量内で対応する。これにより、内管2の拡管時に生じる内管2の収縮に伴う外管1及び内管2への作用を最小限にとどめて、外管1の座屈変形の発生、内管2の水密シール部の弛緩を防止できる。   Most standardly, the ram diameter dr with which the slide head 11 slides is made as large as possible, that is, the axial force compensation cylinder 12 having a capacity capable of balancing the axial force when the inner tube 2 is relatively thin is installed. The increase in the thickness of the inner tube 2 is accommodated within the capacity of the axial force compensation cylinder 12. As a result, the action on the outer tube 1 and the inner tube 2 due to the contraction of the inner tube 2 that occurs when the inner tube 2 is expanded is minimized, the occurrence of buckling deformation of the outer tube 1, and the watertight seal of the inner tube 2. The relaxation of the part can be prevented.

(6)拡管圧力及びその時間の制御
図5及び図6を使用して拡管時間について説明する。図5においては、製造工程順に「第1ステージ」〜「第5ステージ」に区分して示す。ただし、該区分はブースタ30の第1段階〜第3段階とリンクするものではない。
(6) Tube expansion pressure and control of the time The tube expansion time will be described with reference to FIGS. 5 and 6. In FIG. 5, they are divided into “first stage” to “fifth stage” in the order of the manufacturing process. However, this division is not linked to the first to third stages of the booster 30.

第1ステージでは素管の外管1及びマンドレル4に嵌装された内管2を準備し、外管1を加熱する。第2ステージでは内管2に加熱した外管1を相対重層した状態であり、図3のA−A断面を示す。第3ステージでは内管2を拡管するために高圧水を高圧水室17に供給し、内管1の内面に半径方向の圧力Pが作動し、まず内管2のみ円周方向に膨張して降伏点を超して塑性変形下で拡管され点P1で外管1の内面に内接する。第4ステージでは、さらに圧力Pが継続上昇して外管1にも内管2を経て負荷され、内管2と共に一体拡管されてブースタ30の第3段階の最高圧力に達した点P2で拡管を終了し、二重管となる。次いで第5ステージにおいて、該二重管は高圧水の供給を止めて最高圧力の水圧Pを所定の時間を保持した後、排水電磁バルブ20を開放しして大量の冷却水を継続して供給して冷却され収縮する。なお、一体拡管時における高圧水の最高圧力は図6に示す太い実線で示す先端点P2であるが、この圧力P2は外管1の鋼管材の弾性範囲内に限定して拡管圧力及び拡管時間を設定する。   In the first stage, an outer tube 1 that is an elementary tube and an inner tube 2 that is fitted to the mandrel 4 are prepared, and the outer tube 1 is heated. In the second stage, the outer tube 1 heated on the inner tube 2 is relatively overlaid, and the AA cross section of FIG. 3 is shown. In the third stage, high-pressure water is supplied to the high-pressure water chamber 17 in order to expand the inner pipe 2, and radial pressure P is activated on the inner surface of the inner pipe 1, and only the inner pipe 2 first expands in the circumferential direction. The pipe is expanded under plastic deformation beyond the yield point, and is inscribed in the inner surface of the outer pipe 1 at a point P1. In the fourth stage, the pressure P continues to rise and the outer pipe 1 is loaded through the inner pipe 2 and is expanded together with the inner pipe 2 to reach the maximum pressure in the third stage of the booster 30. To complete a double pipe. Next, in the fifth stage, the double pipe stops supplying high-pressure water and maintains the maximum water pressure P for a predetermined time, then opens the drain electromagnetic valve 20 and continuously supplies a large amount of cooling water. Then it cools and shrinks. The maximum pressure of the high-pressure water at the time of integral pipe expansion is the tip point P2 indicated by the thick solid line shown in FIG. 6, but this pressure P2 is limited to the elastic range of the steel pipe material of the outer pipe 1 and the pipe expansion pressure and the pipe expansion time. Set.

内管2及び外管1の嵌合応力は、該内管及び外管の第4ステージ終了時の拡管応力σ1及びσ2、そして第5ステージにおける冷却による収縮量によって支配される。そこで、高圧水による拡管中に生じる内管2の温度上昇を極力低く抑えることが望ましく、このためには高圧水による拡管時間を極力短く、0.5秒から5秒とすることが好ましい。このような短時間での拡管を実施する高圧水の制御は、前述した図3に示す基本工程Aによって行う。すなわち、基本工程Aに図示した貯水タンク22に予め計算又は試験によって求めた圧力と水量を得るためブースタ30に供給する水量を確保し、一方、ブースタ30から所定の高圧水を供給するために、該ブースタ30を駆動するための高圧油を油圧ユニット35によって圧縮してアキュクレータ36に所定の圧力油を蓄える。   The fitting stress between the inner tube 2 and the outer tube 1 is governed by the expansion stresses σ1 and σ2 at the end of the fourth stage of the inner tube and the outer tube, and the contraction amount due to cooling in the fifth stage. Therefore, it is desirable to suppress the temperature rise of the inner tube 2 that occurs during the expansion of the high-pressure water as low as possible. For this purpose, the expansion time of the high-pressure water is preferably as short as possible, preferably 0.5 to 5 seconds. Control of high-pressure water for performing such pipe expansion in a short time is performed by the basic process A shown in FIG. That is, to secure the amount of water supplied to the booster 30 in order to obtain the pressure and the amount of water previously calculated or tested in the water storage tank 22 illustrated in the basic process A, while to supply predetermined high-pressure water from the booster 30, The high pressure oil for driving the booster 30 is compressed by the hydraulic unit 35 and the predetermined pressure oil is stored in the accumulator 36.

(7)内管と外管の嵌合とその応力の制御
図5及び図6を使用して嵌合応力の調整について説明する。
(7) Fitting of inner tube and outer tube and control of stress The adjustment of fitting stress will be described with reference to FIGS. 5 and 6.

前項で説明したように内管2及び外管1の緊締嵌合には、内管2又は外管1に外力・水圧力を付加すると共に冷却又は加熱することで両管が半径方向又は軸方向に伸縮する現象を活用する。この伸縮によって発生する応力、例えば、図6に示す拡管応力σ1、σ2を発生させ、次いで冷却収縮量を調整することで緊締嵌合したときの二重管として必要な嵌合応力を得ることができる。   As described in the previous section, for tight fitting of the inner tube 2 and the outer tube 1, external force and water pressure are applied to the inner tube 2 or the outer tube 1, and both tubes are radially or axially moved by cooling or heating. Take advantage of the phenomenon of stretching. By generating the stresses generated by this expansion and contraction, for example, pipe expansion stresses σ1 and σ2 shown in FIG. 6, and then adjusting the cooling shrinkage amount, it is possible to obtain a fitting stress necessary as a double pipe when tightly fitting. it can.

図6において、外管1の伸縮は太い実線、内管2の伸縮は点線で示し、それぞれの変化は外力によって膨張し、特に外管1の拡管膨張は弾性限界範囲内とする。まず、第3ステージにおいて、拡管は、内管2の外径を示す点DLOから高圧水の供給によって内管2のみ始まり、点線で示す如く進み、拡管と共に応力が増加する。次いで、第4ステージにおいて、点P1及び点P1’で内管2の外面が外管1の内面に接触して内管2及び外管1は一体となって拡管が進行し、その終了点P2及び点P3に到達する。この一体拡管の膨張進行は、内管2については内管鋼材の弾性限を超えて塑性変形の進行中の点P3で拡管をとめ、σ1の拡管応力を有し、外管2については、その鋼材の弾性限内における膨張進行の点P2で拡管を止め、σ2の拡管応力を有する。次いで、最後の第5ステージの開始時においては、直ちに拡管用の高圧水の供給を停止、内管2の内面にかかっていた圧力Pを開放し、スライドヘッド11の排水口19の排水電磁バルブ20を開き、冷却水ポンプ24から逆止弁25を経由して管42から冷却水を通水路17に供給する。よって、内管1及び外管2が一体嵌合した二重管は冷却されて熱収縮して直径が縮小して両管の嵌合面に残留応力を生じる。 In FIG. 6, the expansion and contraction of the outer tube 1 is indicated by a thick solid line, and the expansion and contraction of the inner tube 2 is indicated by a dotted line. Each change expands due to an external force, and the expansion of the outer tube 1 is particularly within the elastic limit range. First, in the third stage, the expansion of the pipe starts only from the point D LO indicating the outer diameter of the inner pipe 2 by the supply of high-pressure water, proceeds as indicated by the dotted line, and the stress increases with the expansion. Next, in the fourth stage, the outer surface of the inner tube 2 comes into contact with the inner surface of the outer tube 1 at points P1 and P1 ′, and the inner tube 2 and the outer tube 1 are integrally expanded, and the end point P2 thereof. And the point P3 is reached. The expansion of the integral pipe expands at the point P3 where the plastic deformation exceeds the elastic limit of the inner pipe steel material for the inner pipe 2 and has a pipe expansion stress of σ1, and the outer pipe 2 The tube expansion is stopped at the point P2 of the expansion progression within the elastic limit of the steel material, and has a tube expansion stress of σ2. Next, at the start of the final fifth stage, the supply of high-pressure water for pipe expansion is immediately stopped, the pressure P applied to the inner surface of the inner pipe 2 is released, and the drainage electromagnetic valve of the drainage port 19 of the slide head 11 is released. 20 is opened, and cooling water is supplied from the cooling water pump 24 to the water channel 17 through the pipe 42 via the check valve 25. Therefore, the double tube in which the inner tube 1 and the outer tube 2 are integrally fitted is cooled and thermally contracted, the diameter is reduced, and residual stress is generated on the fitting surfaces of both tubes.

すなわち、図6に示す点P4及び点P6で冷却収縮は停止し二重管となり、内管2と外管1の嵌合面には残留応力S1及びS2が生じる。該残留応力は、外管1には点P5から点P4までの引張応力S1、内管2には点P5から点P6までの圧縮応力S2が嵌合応力となり、所定の嵌合力を有する二重管となる。   That is, cooling contraction stops at points P4 and P6 shown in FIG. 6 to form a double pipe, and residual stresses S1 and S2 are generated on the fitting surfaces of the inner pipe 2 and the outer pipe 1. The residual stress is a double stress having a predetermined fitting force with a tensile stress S1 from point P5 to point P4 on the outer tube 1 and a compressive stress S2 from point P5 to point P6 on the inner tube 2 as a fitting stress. It becomes a tube.

例えば、本発明の二重管製造例における嵌合応力は平均16.8kg/mmで良好な値であった。これは、外管の鋼種:L−80(半径44.95mm、厚4.95mm)、内管の鋼種:SAF2206(半径39.5mm、厚さ1.5mm)、外管及び内管の長さ:9,595mmであり、製造条件等は拡管時間:約1.0秒、拡管圧力:880kg/cm、外管加熱温度:357℃、拡管応力:σ1=101kg/mm、σ2=36.8kg/mmであった。なお、後述の実施例を含み、嵌合応力の測定方法は、API規格5LD(第3版 2009.3)に準拠して実施し、1リングにつき2枚(円周180度ピッチ)の平均値である。 For example, the fitting stress in the double pipe production example of the present invention was a good value with an average of 16.8 kg / mm 2 . This is because the steel type of the outer tube: L-80 (radius 44.95 mm, thickness 4.95 mm), the steel type of the inner tube: SAF 2206 (radius 39.5 mm, thickness 1.5 mm), the length of the outer tube and the inner tube The production conditions are as follows: tube expansion time: about 1.0 second, tube expansion pressure: 880 kg / cm 2 , outer tube heating temperature: 357 ° C., tube expansion stress: σ1 = 101 kg / mm 2 , σ2 = 36. It was 8 kg / mm 2 . In addition, the measurement method of a fitting stress is implemented based on API specification 5LD (3rd edition 2009.3) including the Example mentioned later, and the average value of 2 sheets per ring (circumference 180 degree pitch). It is.

(8)二重管の性能、品質に関する水密性の水圧試験
図1のフローチャートで示す二重管の水圧試験C5について説明する。
前項における二重管の冷却工程を終了した後、排水電磁バルブ20を閉じ、拡管開始時と同様の制御によって水圧試験用の高圧水(例:加圧力設定25.0MPa)をラム3の供給口15に所定時間(例:10秒)通水して水圧試験を実施する。
(8) Water tightness water pressure test regarding the performance and quality of the double tube The double tube water pressure test C5 shown in the flowchart of FIG. 1 will be described.
After completing the cooling process of the double pipe in the previous section, the drain electromagnetic valve 20 is closed, and high-pressure water for water pressure test (for example, pressurization setting 25.0 MPa) is supplied to the supply port of the ram 3 by the same control as at the start of pipe expansion. The water pressure test is performed by passing water through 15 for a predetermined time (for example, 10 seconds).

(9)二重管の取り出し
加熱炉移動台車64を駆動して基本工程Cに嵌装状態にあった加熱炉60を架台65の位置に引き戻し、マンドレル4に内向きフレア73及び外向き74を介して水密、かつ固設されていた二重管内管部の両端部を開放して、マンドレル4から二重管を引き抜くように取り出す。該二重管は第1図に示す端部の仕上げ加工C4に移行する。
(9) Removal of the double tube The heating furnace moving carriage 64 is driven to pull the heating furnace 60 fitted in the basic process C back to the position of the gantry 65, and the mandrel 4 is provided with the inward flare 73 and the outward direction 74. Then, both ends of the pipe portion in the double pipe that is watertight and fixed are opened, and the double pipe is taken out from the mandrel 4. The double pipe moves to the end finishing C4 shown in FIG.

(10)1システムの冷却水等の給排システムと3ラインの製造設備の連続稼働
図8及び表1を用いて冷却水等の給排システムを1システムと本発明の二重管製造装置を製造装置ライン1(以下、ライン1という。同様にライン2、3という。)、ライン2及びライン3を一体的な設備として装置化した、いわゆる「ワン給排水システムとマルチ製造装置」を連続的に稼働し二重管を製造する例を説明する。
(10) Continuous operation of one system of cooling water supply / discharge system and three lines of manufacturing equipment Using FIG. 8 and Table 1, one system of cooling water supply / discharge system and the double pipe manufacturing apparatus of the present invention Production equipment line 1 (hereinafter referred to as line 1; similarly referred to as lines 2 and 3), line 2 and line 3 are integrated into an integrated facility, so-called “one water supply / drainage system and multi-manufacturing equipment” The example which operates and manufactures a double tube is demonstrated.

図8に示す製造装置は、図示しない制御機器によって一つの給排水するシステムを使用して3つの製造装置ラインに対して各製造ラインの製造工程の進捗に合わせて必要な冷却水、又は高圧水をタイミングよく供給及び排水する装置である。表1は、図8に示す製造装置の製造ラインを工程の稼働順に分割して各工程の所要時間(分)を横軸に取ったタイムチャートを示し、これにより3つの製造装置ラインを効率よく稼働、運用して生産性を上げことができる。   The manufacturing apparatus shown in FIG. 8 uses a system for supplying and draining water by a control device (not shown) to supply necessary cooling water or high-pressure water to three manufacturing apparatus lines in accordance with the progress of the manufacturing process of each manufacturing line. It is a device that supplies and drains in a timely manner. Table 1 shows a time chart in which the production line of the production apparatus shown in FIG. 8 is divided in the order of operation of the process and the required time (minutes) of each process is taken on the horizontal axis. Operate and operate to increase productivity.

表1に示すように製造装置ライン1の起動準備を開始した後、アキュムレータ36の加圧へと進み、次いで内管2挿入、フレア73,74部のシールへと進む、その間、ライン2が20分後に起動準備を開始、さらにライン3が60分後に起動準備を開始してのライン1、2及び3が稼働状態に入り、1つの冷却水等の給排システムは冷却水及び高圧水を制御機器の信号に基づいて関連する分岐器87、88及び89の弁、電磁バルブを開閉して必要な冷却水を給排し、拡管用の高圧水は他のラインと重複しないようにタイミング制御して供給する。   As shown in Table 1, after starting preparations for starting the production apparatus line 1, the process proceeds to pressurization of the accumulator 36, and then proceeds to the insertion of the inner tube 2 and the seal of the flares 73, 74. Start preparation after a minute, and line 1, 2 and 3 after line 3 starts preparation after 60 minutes enter operation state. One supply / discharge system such as cooling water controls cooling water and high pressure water Based on the signal of the equipment, the valves of the related branching devices 87, 88 and 89 and the electromagnetic valve are opened and closed to supply and discharge the necessary cooling water, and the high pressure water for expansion is controlled so as not to overlap with other lines. And supply.

最初に製造を開始したライン1は、経過時間が1時間42分(工程別の延べ稼働時間:2時間10分(130分))で二重管の製造を終了する。そして該ライン1は8分のタイムラグで、2本目の内管2を挿入開始、以下、1本目と同様に製造を進める。   Line 1 that started production first completes the production of the double pipe after an elapsed time of 1 hour and 42 minutes (total operation time for each process: 2 hours and 10 minutes (130 minutes)). The line 1 starts to insert the second inner pipe 2 with a time lag of 8 minutes, and the production proceeds in the same manner as the first one.

本発明は、このように表1に示すタイムチャートに従って製造装置ライン1乃至製造装置ライン3を順次、連続稼働できるので生産性が極めて高く、また1ラインの工程の内、外管1の工程作業は他の工程と並行して実施できるのでサイクルタイムの短縮が可能であり、表1に示した4時間の経過で本発明は6本の二重管を製造することができる。   In the present invention, the manufacturing apparatus line 1 to the manufacturing apparatus line 3 can be successively operated in accordance with the time chart shown in Table 1, so that the productivity is extremely high, and the process work of the outer pipe 1 in the process of one line. Since it can be carried out in parallel with other steps, the cycle time can be shortened, and the present invention can produce 6 double tubes after 4 hours shown in Table 1.

Figure 2018001230
Figure 2018001230

次に前記の実施態様(1)〜(10)において説明した製造方法及び製造装置において本発明が好ましい範囲とする数値の限定理由及びその効果等について説明する。   Next, the reasons for limiting the numerical values, the effects, and the like of the present invention will be described in the manufacturing method and manufacturing apparatus described in the above embodiments (1) to (10).

〔外管1の好ましい加熱温度は100℃〜500℃〕
外管1の好ましい加熱温度が500℃以下であるのは、炭素鋼を主とする外管1は、該外管の製造会社が製造の最終工程で焼き戻しを施して任意の規格等の品質を保証しているので、この焼き戻し処理した鋼材の性質を改変しない温度以下とし、500℃を超えると外管鋼材の降伏点が下がって引張強度が低下するおそれがあるからである。他方100℃未満になると外管1の熱膨張が少なく、目標とする内径に満たなくなるおそれがあり、また100℃未満では鋼管内面に結露等で水分を持ち、嵌合面間に残留して嵌合品質を悪くするおそれがある。よって、外管1の好ましい加熱温度は100℃〜500℃とする。
[The preferable heating temperature of the outer tube 1 is 100 ° C. to 500 ° C.]
The preferable heating temperature of the outer tube 1 is 500 ° C. or less because the outer tube 1 mainly made of carbon steel is tempered by a manufacturing company of the outer tube in the final process of manufacture, and has a quality such as an arbitrary standard. This is because if the temperature of the tempered steel material is set to a temperature that does not alter the temperature, and the temperature exceeds 500 ° C., the yield point of the outer tube steel material is lowered and the tensile strength may be lowered. On the other hand, if the temperature is less than 100 ° C, the outer tube 1 has little thermal expansion and may not reach the target inner diameter. If the temperature is less than 100 ° C, the inner surface of the steel tube has moisture due to condensation, etc., and remains between the fitting surfaces. There is a risk of deteriorating the quality. Therefore, the preferable heating temperature of the outer tube 1 is set to 100 ° C to 500 ° C.

〔冷却水の好ましい温度は30℃以下〕
内管2の温度は低いほど、すなわち、外管1との温度差が大きいほど、嵌合応力は高くなる。したがって、加熱した外管1が内管2を被うように相対重層するときに、内管2の温度が上昇するのを防止するため、冷却水としてできるだけ低い温度の水を供給する。また、拡管開始直前には、排水電磁バルブ20を閉じて高圧水室17の冷却水は封止状態にするので、内管1の低温を維持するためにもできるだけ低温の冷却水が必要である。また、図6に示す点P2及びP3の拡管終了後は、直ちに二重管を急速、大量冷却するため、大量の冷却水を通水して該二重管を100℃以下に冷却する。このような観点から二重管の均一で所定の嵌合応力を有する二重管を効率よく製造するため、冷却水は30℃以下が好ましく、冷却能力を高めて生産性を上げるため10℃以下、例えば5℃で供給するのがより好ましい。
[Preferable temperature of cooling water is 30 ° C. or less]
The lower the temperature of the inner tube 2, that is, the greater the temperature difference from the outer tube 1, the higher the fitting stress. Therefore, when the heated outer tube 1 is relatively layered so as to cover the inner tube 2, water having a temperature as low as possible is supplied as cooling water to prevent the temperature of the inner tube 2 from rising. Further, immediately before the start of the pipe expansion, the drainage electromagnetic valve 20 is closed and the cooling water in the high-pressure water chamber 17 is in a sealed state. Therefore, as low a cooling water as possible is necessary to maintain the low temperature of the inner pipe 1. . In addition, immediately after the expansion of the pipes at points P2 and P3 shown in FIG. 6, in order to immediately cool the double pipe rapidly and in large quantities, a large amount of cooling water is passed to cool the double pipe to 100 ° C. or lower. From this point of view, in order to efficiently produce a double pipe having a uniform and predetermined fitting stress, the cooling water is preferably 30 ° C. or lower, and 10 ° C. or lower in order to increase the cooling capacity and increase the productivity. For example, it is more preferable to supply at 5 ° C.

〔好ましい拡管時間は0.5秒〜5秒〕
拡管時間が長いと外管1の温度が低下し、内管1の温度が上昇して内管1と外管2との温度差が少なくなり、また、前記第5ステージにおける外管1の収縮量が低下するので嵌合応力が低くなる原因となるため、拡管時間は極力短時間とすることが好ましい。ただし、拡管時間が0.5秒未満では高圧水室17の全長に渉って均一の圧力・矢印Pが付与できず、均一の拡管ができないおそれがある。他方、5秒超では、内管2及び外管1の温度差が少なくなり、第5ステージにおいて冷却に時間を要し、適正かつ均一の嵌合応力が得られないおそれがある。よって、拡管時間は0.5秒〜5秒が好ましい。
[Preferable tube expansion time is 0.5 to 5 seconds]
If the tube expansion time is long, the temperature of the outer tube 1 decreases, the temperature of the inner tube 1 increases, the temperature difference between the inner tube 1 and the outer tube 2 decreases, and the contraction of the outer tube 1 in the fifth stage. Since the amount is reduced, the fitting stress is lowered, so that the tube expansion time is preferably as short as possible. However, if the tube expansion time is less than 0.5 seconds, the uniform pressure / arrow P cannot be applied over the entire length of the high-pressure water chamber 17, and there is a possibility that uniform tube expansion cannot be performed. On the other hand, if it exceeds 5 seconds, the temperature difference between the inner tube 2 and the outer tube 1 becomes small, and it takes time for cooling in the fifth stage, and there is a possibility that an appropriate and uniform fitting stress cannot be obtained. Therefore, the tube expansion time is preferably 0.5 seconds to 5 seconds.

以下、実施例に基づいて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
表2に本発明の実施例及び比較例に使用した外鋼管1の成分系とその成分例及び該当規格を参考に示す。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.
Table 2 shows the component system of the outer steel pipe 1 used in Examples and Comparative Examples of the present invention, its component examples, and applicable standards for reference.

Figure 2018001230
Figure 2018001230

表3に本発明の実施例及び比較例に使用した内鋼管の主要成分例及び該当規格を示す。     Table 3 shows examples of main components and applicable standards of the inner steel pipe used in the examples and comparative examples of the present invention.

Figure 2018001230
Figure 2018001230

表4に本発明の実施例及び比較例の外鋼管及び内鋼管のサイズ、製造条件を示す。   Table 4 shows the sizes and manufacturing conditions of the outer steel pipe and the inner steel pipe of Examples and Comparative Examples of the present invention.

Figure 2018001230
Figure 2018001230

表5に本発明の実施例及び比較例の拡管時の状況、水圧試験、製造結果及び二重管の評価を示す。   Table 5 shows the situation at the time of pipe expansion, the hydraulic pressure test, the production results, and the evaluation of the double pipe in the examples and comparative examples of the present invention.

Figure 2018001230
Figure 2018001230

表4及び表5に示すNo.1〜13は、本発明の要件を満足する本発明の実施例であり、製造した二重管に適正値の均一な嵌合応力、製品形状の欠陥は発生のない良好な製品であった。ただし、No.8及びNo.13は外管の加熱温度がやや低めであったので熱収縮量が少なくて嵌合応力が規格値内ではあるがやや低めであった。なお、本発明の二重管における外鋼管と内鋼管との嵌合応力値は10kg/mm以上をAPI規格を満足する値として良好なものとした。 No. shown in Table 4 and Table 5. Nos. 1 to 13 are examples of the present invention that satisfy the requirements of the present invention, and were good products with no uniform fitting stress and product shape defects of appropriate values in the manufactured double pipe. However, no. 8 and no. In No. 13, the heating temperature of the outer tube was slightly lower, so the amount of heat shrinkage was small, and the fitting stress was within the standard value but slightly lower. In addition, the fitting stress value between the outer steel pipe and the inner steel pipe in the double pipe of the present invention was set to 10 kg / mm 2 or more as a satisfactory value satisfying the API standard.

一方、表4及び表5のNo.14及びNo.15は軸力保証シリンダを採用しない比較例であり、拡管時の軸方向への収縮圧力にマンドレルが対応せず、スライドヘッド移動量が多く、嵌合応力にバラツキが発生、また内管に座屈又は二重管に曲りが発生して形状検査が不合格であった。   On the other hand, no. 14 and no. 15 is a comparative example that does not employ an axial force guarantee cylinder. The mandrel does not respond to the contraction pressure in the axial direction during tube expansion, the slide head travel is large, the fitting stress varies, and the inner tube is seated. Bending or bending occurred in the double pipe, and the shape inspection failed.

本発明の二重管製造方法及び二重管製造装置は、主に外鋼管を炭素鋼、内鋼管を耐食性鋼管とするサワーガス輸送用のラインパイプ、油井管、化学プラント用の耐食性鋼管に使用する高品質の二重管を生産性良く製造することに使用できる。
The double pipe manufacturing method and the double pipe manufacturing apparatus of the present invention are mainly used for sour gas transport line pipes, oil well pipes, and chemical plant steel pipes for chemical plants in which the outer steel pipe is carbon steel and the inner steel pipe is corrosion-resistant steel pipe. It can be used to produce high quality double pipes with high productivity.


1 外管、外鋼管
2 内管、内鋼管
3 ラム
4 マンドレル
5 シールディスク
6 マンドレル先端部
7 締付けナット
8 8’固定フレーム
9 移動ビーム
10 連結ロッド
11 スライドヘッド
12 軸力補償シリンダ
13 補償シリンダピストン
14 補償シリンダ高圧水受給口
15 冷却水、高圧水供給口
16 冷却水通路又は高圧水通路
16(a) 通水路(a)
16(b) 通水路(b)
17 通水路 又は高圧水室
18 シールジョー
19 冷却水、高圧水排水口
20 排水電磁バルブ
21 21′排水管
22 貯水タンク
23 冷却水供給バルブ
24 冷却水供給ポンプ
25 逆止弁
26 ブースタ水供給電磁バルブ
27 逆止弁
28 ブースタ水供給管
29 29’29” 冷却水供給逆止弁
30 ブースタ
31 2次側シリンダc室
32 2次側シリンダb室
33 2次側シリンダa室
34 油圧電磁バルブ
35 油圧ユニット
36 アキュムレータ
37 油圧管
38 油圧電磁バルブ
39 39′39″ ピストン
40 40’ 40” 高圧水供給電磁バルブ
41 41’ 41” 高圧水供給管
42、42’ 冷却水供給管
43 1次側シリンダ室
44 44’ 44” 高圧水逆止弁
45 モーターバルブ
46 主加圧バルブ
イ イ’ 冷却水流方向
ロ 高圧水流方向
ハ ハ’ 高圧油流方向
ニ 排水流方向
50 マンドレル支持装置
51 昇降用エアーシリンダ
52 加熱炉走行用レール
53 支持部材傾倒方向
54 架台
60 加熱炉
61 排気ダンパー
62 温度計
63 ガスバーナ
64 加熱炉移動台車
65 架台
66 ロータリチャック
67 ロータリチャック移動用モータ
68 チェイン
69 加熱炉移動用モータ
70 ロータリチャック移動方向
71 加熱炉移動方向
A 基本工程A:冷却水供給、高圧油循環システム及びブースタ
B 基本工程B:軸力補償シリンダ、ラム、マンドレル基部
C 基本工程C:スライドヘッド先端部、マンドレル、内管及び外管の嵌合
D 基本工程D:外管加熱炉、外管回転装置及びそれらの搭載台車、外管加熱、移動
72 水密シール
73 内向きフレア
74 外向きフレア
dp 拡管により内管が外管に内接したときの内径
dr スライドヘッドのラム径
dc スライドヘッドのシリンダ径
dt スライドヘッドのコーン喉部(最狭部)内径
dm マンドレル径
Fr 右向き軸力(内管圧縮)
Fl 左向き軸力(内管引張)
PO 外管の初期内径
LO 内管の初期外径
P 半径方向の水圧力
P1 P1’ 内管の外面が外管の内面への接触点
P2 外管の拡管停止、熱収縮開始点 σ2 外管の拡管応力
P3 内管の拡管停止、熱収縮開始点 σ1 内管の拡管応力
P4 外管の熱収縮完了点
P5 管の引張応力と圧縮応力の分岐点
P6 内管の熱収縮完了点
75 耐火煉瓦
76−1 側壁耐火材
76−2 天井耐火材
77 ロール支持軸
78 鋼管軸心調整治具
79 鋼管回転用ロール
80 炉体側壁
81 炉蓋開閉枠
82 油圧シリンダ
83 炉蓋開閉ロッド
84 炉蓋回動軸
85 炉蓋開閉方向
87 分岐器1
88 分岐器2
89 分岐器3
101 外管
102 コイルヒータ
103 内管
104 内部
105 穴あき栓体
105’ 栓体
106 穴
107 液体供給方向
108 加圧方向
201 外管
202 内管
203 203’ 内管先端部フレア、基部フレア
205 固定ラム
206 206’206″ シールヘッド
207 円錐状テーパ面
208 シールジョウ
209 タイロッド (第3図)
210 固定式シールヘッド
211 拡管流通路
212 排水通路
214 流通路
215 二重管製造装置
216 スタンド
217 芯金
218 油圧シリンダ
219 219’ ピストンロッド
220 シール
221 拡管室
223 外部通路
224 224’ オイル通路
225 ナット
228 外部シリンダ
拡管圧

DESCRIPTION OF SYMBOLS 1 Outer pipe, outer steel pipe 2 Inner pipe, inner steel pipe 3 Ram 4 Mandrel 5 Seal disk 6 Mandrel tip 7 Clamping nut 8 8 'Fixed frame 9 Moving beam 10 Connecting rod 11 Slide head 12 Axial force compensation cylinder 13 Compensation cylinder piston 14 Compensation cylinder high-pressure water receiving port 15 Cooling water, high-pressure water supply port 16 Cooling water passage or high-pressure water passage 16 (a) Water passage (a)
16 (b) Waterway (b)
17 Water passage or high-pressure water chamber 18 Seal jaw 19 Cooling water, high-pressure water drain 20 Drain electromagnetic valve 21 21 'Drain pipe 22 Water storage tank 23 Cooling water supply valve 24 Cooling water supply pump 25 Check valve 26 Booster water supply electromagnetic valve 27 Check valve 28 Booster water supply pipe 29 29'29 "Cooling water supply check valve 30 Booster 31 Secondary cylinder c chamber 32 Secondary cylinder b chamber 33 Secondary cylinder a chamber 34 Hydraulic solenoid valve 35 Hydraulic unit
36 accumulator 37 hydraulic pipe 38 hydraulic electromagnetic valve 39 39'39 "piston 40 40 '40" high pressure water supply electromagnetic valve 41 41' 41 "high pressure water supply pipe 42, 42 'cooling water supply pipe
43 Primary side cylinder chamber 44 44 '44 "High pressure water check valve 45 Motor valve 46 Main pressurizing valve I' Cooling water flow direction
B High-pressure water flow direction C Ha 'High-pressure oil flow direction D Drainage flow direction 50 Mandrel support device 51 Elevating air cylinder 52 Heating furnace traveling rail 53 Support member tilting direction 54 Base 60 Heating furnace 61 Exhaust damper 62 Thermometer 63 Gas burner 64 Heating Reactor moving carriage 65
66 Rotary chuck 67 Rotary chuck moving motor 68 Chain 69 Heating furnace moving motor 70 Rotary chuck moving direction 71 Heating furnace moving direction
A Basic process A: Cooling water supply, high-pressure oil circulation system and booster B Basic process B: Axial force compensation cylinder, ram, mandrel base C Basic process C: Fitting of slide head tip, mandrel, inner tube and outer tube D Basic process D: Outer tube heating furnace, outer tube rotating device and their carriage, outer tube heating, movement 72 Watertight seal 73 Inward flare 74 Outward flare dp Inner diameter when inner tube is inscribed in outer tube by expansion dr Slide head ram diameter dc Slide head cylinder diameter dt Slide head cone throat (narrowest) inner diameter dm Mandrel diameter Fr Rightward axial force (inner tube compression)
Fl Leftward axial force (inner tube tension)
D PO initial pipe inner diameter D LO inner pipe initial outer diameter P radial water pressure P1 P1 'contact point of inner pipe outer surface with inner pipe inner surface P2 outer pipe expansion stop, thermal contraction start point σ2 outer Pipe expansion stress P3 Inner pipe expansion stop, thermal contraction start point σ1 Inner pipe expansion stress P4 Outer pipe thermal contraction completion point P5 Pipe tensile stress and compressive stress branch point P6 Inner pipe thermal contraction completion point 75 Fire resistance Brick 76-1 Side wall refractory material 76-2 Ceiling refractory material 77 Roll support shaft 78 Steel pipe axis adjustment jig
79 Steel tube rotating roll 80 Furnace side wall 81 Furnace opening / closing frame 82 Hydraulic cylinder 83 Furnace opening / closing rod 84 Furnace rotation shaft 85 Furnace opening / closing direction 87 Branch 1
88 turnout 2
89 Branch 3
101 Outer tube 102 Coil heater 103 Inner tube 104 Inner 105 Perforated plug body 105 ′ Plug body 106 Hole 107 Liquid supply direction 108 Pressurizing direction 201 Outer tube 202 Inner tube 203 203 ′ Inner tube tip flare, base flare 205 Fixing ram
206 206′206 ″ Seal head 207 Conical tapered surface 208 Seal jaw 209 Tie rod (FIG. 3)
210 Fixed seal head 211 Expanded pipe flow path 212 Drainage path 214 Flow path 215 Double pipe manufacturing device 216 Stand 217 Core metal 218 Hydraulic cylinder 219 219 ′ Piston rod 220 Seal 221 Expanded chamber 223 External path 224 224 ′ Oil path 225 Nut 228 External cylinder
F tube expansion pressure

Claims (9)

予め外鋼管を熱膨張し、該外鋼管に内鋼管を相対重層し、該内鋼管を水圧拡管して外鋼管内面と接触一体化し、前記外鋼管を冷却収縮して両鋼管を緊締嵌合する二重管製造方法において、
内鋼管を水圧拡管するときに、該内鋼管を支持しつつ軸方向にスライド可能なスライドヘッドに対して、該内鋼管の水圧拡管に伴い生じる水圧軸力を補償する方向の軸力を付与して軸力バランスを調整することを特徴とする二重管製造方法。
The outer steel pipe is thermally expanded in advance, the inner steel pipe is relatively overlaid on the outer steel pipe, the inner steel pipe is hydraulically expanded and brought into contact with the inner surface of the outer steel pipe, the outer steel pipe is cooled and contracted, and both the steel pipes are tightly fitted. In the double pipe manufacturing method,
When the inner steel pipe is hydraulically expanded, an axial force in a direction that compensates for the hydraulic axial force generated by the hydraulic expansion of the inner steel pipe is applied to the slide head that is slidable in the axial direction while supporting the inner steel pipe. And adjusting the axial force balance.
予め外鋼管を100〜500℃に加熱して熱膨張させる、請求項1に記載の二重管製造方法。   The double pipe manufacturing method according to claim 1, wherein the outer steel pipe is heated to 100 to 500 ° C. and thermally expanded in advance. 外鋼管に内鋼管を相対重層するときに、該内鋼管を30℃以下の冷却水で冷却する、請求項1又は2に記載の二重管製造方法。   The double pipe manufacturing method according to claim 1 or 2, wherein the inner steel pipe is cooled with cooling water of 30 ° C or lower when the inner steel pipe is relatively layered on the outer steel pipe. 内鋼管を水圧拡管するときの高圧水の供給段階を2段階以上とし、最終段階で高圧水が所定の最大圧力になるまでの時間が0.5〜5秒である、請求項1〜3のいずれかに記載の二重管製造方法。   The supply stage of the high-pressure water when the inner steel pipe is expanded with water is set to two or more stages, and the time until the high-pressure water reaches a predetermined maximum pressure in the final stage is 0.5 to 5 seconds. The double pipe manufacturing method in any one. 内鋼管及び外鋼管を緊締嵌合して二重管とした後、内鋼管を水圧拡管するときの通水路に高圧水を供給して二重管の水圧試験を行う、請求項1〜4のいずれかに記載の二重管製造方法。   The inner steel pipe and the outer steel pipe are tightly fitted to form a double pipe, and then a water pressure test of the double pipe is performed by supplying high-pressure water to a water passage when the inner steel pipe is hydraulically expanded. The double pipe manufacturing method in any one. 予め外鋼管を熱膨張し、該外鋼管に内鋼管を相対重層し、該内鋼管を水圧拡管して外鋼管内面と接触一体化し、前記外鋼管を冷却収縮して両鋼管を緊締嵌合する二重管製造装置において、
内鋼管を支持しつつ軸方向にスライド可能なスライドヘッドに、該内鋼管の水圧拡管に伴い生じる水圧軸力を補償する方向の軸力を付加して軸力バランスを調整する軸力補償シリンダを設けたことを特徴とする二重管製造装置。
The outer steel pipe is thermally expanded in advance, the inner steel pipe is relatively overlaid on the outer steel pipe, the inner steel pipe is hydraulically expanded and brought into contact with the inner surface of the outer steel pipe, the outer steel pipe is cooled and contracted, and both the steel pipes are tightly fitted. In double pipe manufacturing equipment,
An axial force compensation cylinder that adjusts the axial force balance by adding an axial force in a direction that compensates for the hydraulic axial force generated by the hydraulic expansion of the inner steel pipe to a slide head that supports the inner steel pipe and is slidable in the axial direction. A double pipe manufacturing apparatus characterized by being provided.
前記スライドヘッド及び前記軸力補償シリンダに冷却水又は高圧水を供給又は排水する給排水機構を有する、請求項6に記載の二重管製造装置。   The double pipe manufacturing apparatus according to claim 6, further comprising a water supply / drainage mechanism that supplies or drains cooling water or high-pressure water to the slide head and the axial force compensation cylinder. 前記給排水機構は、給水タンクから水を受給すると共に油循環システムから高圧油を受給して高圧水を供給するブースタを有する、請求項7に記載の二重管製造装置。   The double-pipe manufacturing apparatus according to claim 7, wherein the water supply / drainage mechanism includes a booster that receives water from a water supply tank and receives high-pressure oil from an oil circulation system to supply high-pressure water. 前記ブースタが複数段からなる、請求項8に記載の二重管製造装置。   The double pipe manufacturing apparatus according to claim 8, wherein the booster includes a plurality of stages.
JP2016132680A 2016-07-04 2016-07-04 Double tube manufacturing method and manufacturing equipment Active JP6751936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132680A JP6751936B2 (en) 2016-07-04 2016-07-04 Double tube manufacturing method and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132680A JP6751936B2 (en) 2016-07-04 2016-07-04 Double tube manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2018001230A true JP2018001230A (en) 2018-01-11
JP6751936B2 JP6751936B2 (en) 2020-09-09

Family

ID=60945652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132680A Active JP6751936B2 (en) 2016-07-04 2016-07-04 Double tube manufacturing method and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6751936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097822A (en) * 2018-02-08 2018-06-01 沧州市三庆工贸有限公司 A kind of automatic butt processing unit (plant)
CN110774218A (en) * 2019-09-27 2020-02-11 临海伟星新型建材有限公司 Integrated composite pipe metal joint connecting device
CN112719102A (en) * 2020-12-04 2021-04-30 浙江凯越塑胶工业有限公司 Device of full-automatic metal double-buckle pipe equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097822A (en) * 2018-02-08 2018-06-01 沧州市三庆工贸有限公司 A kind of automatic butt processing unit (plant)
CN110774218A (en) * 2019-09-27 2020-02-11 临海伟星新型建材有限公司 Integrated composite pipe metal joint connecting device
CN112719102A (en) * 2020-12-04 2021-04-30 浙江凯越塑胶工业有限公司 Device of full-automatic metal double-buckle pipe equipment
CN112719102B (en) * 2020-12-04 2022-11-25 浙江凯越塑胶工业有限公司 Device of full-automatic metal double-buckle pipe equipment

Also Published As

Publication number Publication date
JP6751936B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP2018001230A (en) Method and device for production of double tube
US7565812B2 (en) Method for improving residual stress in pipe and apparatus
EP2158048B1 (en) Method for manufacturing tanks
US8079126B2 (en) Friction stir welded bladder fuel tank
US20070132228A1 (en) Production of clad pipes
US9498814B2 (en) Method and device for producing a shaped component
EP4368309A1 (en) Cylinders or tubes assembled by means of a new method for eliminating interference
US20030204944A1 (en) Forming gas turbine transition duct bodies without longitudinal welds
CN117225974A (en) Special-shaped thin-wall pipe fitting thermoforming device and method with additional air pressure assistance
Xie et al. Deformation analysis of hydro-bending of bi-layered metal tubes
US11644151B2 (en) Vessel made of thermally non-hardenable aluminum alloy and method for the production thereof
US20230062841A1 (en) Composite tank inner shell for high pressure gas
JP6576450B2 (en) Method and arrangement for the manufacture of pipes by continuous hydraulic expansion
US3194041A (en) Method for forming corrugated tubes
US11779985B1 (en) Fabricating method for low cost liquid fueled rocket engines
US10364908B2 (en) Method for producing a housing central part of a high-pressure slide gate valve
CA2388263A1 (en) Improved method for hydroforming an aluminum tubular blank
US1391010A (en) Apparatus for the manufacture of metal tubes by the self-hooping process
JPS6154489B2 (en)
WO2012066945A1 (en) Pipe expansion tool
RU2794403C1 (en) Method for manufacturing tubular parts with a cross section that varies along the length
RU2291753C1 (en) Tube to tube walls securing method
US9687902B1 (en) Methods for increasing cycle life of metal liners and products manufactured therefrom
EP1342515A1 (en) Process for the manufacture of closed, hardened sections with no cross-sectional limits
Latham Symposium on Welded Spiral Cases from the Consulting Engineers’ and Users’ Viewpoint: Welded Spiral Case Construction Procedures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6751936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250