JP2018000073A - Production method of 3hb - Google Patents

Production method of 3hb Download PDF

Info

Publication number
JP2018000073A
JP2018000073A JP2016129985A JP2016129985A JP2018000073A JP 2018000073 A JP2018000073 A JP 2018000073A JP 2016129985 A JP2016129985 A JP 2016129985A JP 2016129985 A JP2016129985 A JP 2016129985A JP 2018000073 A JP2018000073 A JP 2018000073A
Authority
JP
Japan
Prior art keywords
fermentation
crystallization
producing
organic solvent
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016129985A
Other languages
Japanese (ja)
Other versions
JP6692232B2 (en
Inventor
拓 西村
Hiroshi Nishimura
拓 西村
雅行 杉本
Masayuki Sugimoto
雅行 杉本
潤 坪田
Jun Tsubota
潤 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016129985A priority Critical patent/JP6692232B2/en
Publication of JP2018000073A publication Critical patent/JP2018000073A/en
Application granted granted Critical
Publication of JP6692232B2 publication Critical patent/JP6692232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide 3HB production methods that can efficiently purify and recover 3HB with high purification from a culture solution which is derived from organism fermentation and contains 3HB.SOLUTION: A method of the present invention comprises: a preliminary concentration step of distilling off moisture from a fermented solution produced by fermenting 3HB from 3 hydroxybutyric-acid (3HB) production bacterium; an extraction step of extracting, with an organic solvent, 3HB-containing solution which contains 3HB; a concentration step of distilling the organic solvent from the 3HB-containing solution extracted by the extraction step to obtain a 3HB concentrated solution; and a crystallization step of adding a crystallization solvent containing as main component at least one selected from ethyl acetate, diethyl ether, and t-butyl methyl ether to the 3HB concentrated solution obtained in the concentration step, and of precipitating 3HB crystal from the crystallization solvent in which 3HB is dissolved.SELECTED DRAWING: None

Description

本発明は、3ヒドロキシ酪酸(3HB)の製造方法に関する。   The present invention relates to a method for producing 3-hydroxybutyric acid (3HB).

3ヒドロキシ酪酸やその塩(以下3HBと称する、また、3HBと称する場合、特にその単量体を指すものとする)は、もともと人の体内に存在する物質であるため生体親和性が高く、糖質に代わる画期的なエネルギー源として期待されている。また、3HBは単なるエネルギー源という役割だけでなく、様々な遺伝子の発現やタンパク質の活性に影響するシグナル伝達物質としての作用があることがわかってきた。3HBは、例えば、遺伝子発現調節作用によって、ヒストン脱アセチル化酵素を阻害することによって認知機能や、長期持続記憶を改善することが知られ、アルツハイマーの予防に有効性が確認されている。例えば、ココナツオイルに多く含まれる中鎖脂肪酸の摂取および体内での代謝により生成される3HBが、脳や体内において糖質をうまく利用できないアルツハイマー病、糖尿病の患者の症状を改善させる効果を持つことが知られている。また、3HBは体内において糖質よりも速やかにエネルギーに変換されること、細胞への脂肪や糖の吸収を抑制する効果を有することから、アスリート向けのエネルギー物質、ダイエット・健康食品分野への応用が期待できる。   Since 3-hydroxybutyric acid and its salt (hereinafter referred to as 3HB, also referred to as 3HB, especially its monomer) is a substance that is originally present in the human body, it has high biocompatibility and is a sugar. Expected to be a groundbreaking energy source instead of quality. In addition, it has been found that 3HB not only serves as a mere energy source but also acts as a signal transmitter that affects the expression of various genes and the activity of proteins. 3HB is known to improve cognitive function and long-lasting memory by inhibiting histone deacetylase, for example, by regulating gene expression, and its effectiveness in preventing Alzheimer's has been confirmed. For example, 3HB produced by ingestion and metabolism in the body of medium chain fatty acids that are abundant in coconut oil has the effect of improving the symptoms of Alzheimer's disease and diabetic patients who cannot utilize carbohydrates in the brain and body. It has been known. In addition, 3HB is converted to energy more rapidly than carbohydrates in the body and has the effect of suppressing the absorption of fat and sugar into cells, so it can be applied to energy substances for athletes, diet and health foods. Can be expected.

また、これらの用途のほか、3HBは生分解性樹脂の原料として用いられることが知られており、工業的用途においても利用価値が高まりつつある物質である。   In addition to these uses, 3HB is known to be used as a raw material for biodegradable resins, and is a substance whose utility value is increasing in industrial uses.

このような3HBは、各種微生物にポリ3ヒドロキシ酪酸(以下PHBと称する)を生産させたのち、得られたPHBを酵素等により分解することにより得ることができる(特許文献1)。また、このような微生物としてハロモナス菌が、好気条件でPHBを蓄積し、嫌気条件に移行することでPHBを分解して生成した3HBを培養液中に分泌産生することが見出されている(特許文献2)。   Such 3HB can be obtained by causing various microorganisms to produce poly-3-hydroxybutyric acid (hereinafter referred to as PHB) and then decomposing the obtained PHB with an enzyme or the like (Patent Document 1). In addition, it has been found that Halomonas bacteria as such microorganisms accumulate PHB under aerobic conditions and secrete and produce 3HB produced by decomposing PHB by shifting to anaerobic conditions in the culture solution. (Patent Document 2).

特表2005−521718号公報JP-T-2005-521718

Yutaka Tokiwa et al. J Biotechnol. (2007) 132, 264-72.Yutaka Tokiwa et al. J Biotechnol. (2007) 132, 264-72.

生物発酵由来の3HBや、PHBは、培養液中から純品として回収することが難しく、種々の不純物を含む形態で回収されるのが実情である。このように回収された3HBを応用利用する際には、さらに精製して純度を高める必要がある。しかし、実際には、純度の低い3HB(たとえば現在流通している生物発酵由来の3HBは純度70%程度である)がそのまま用いられており、純度の高い3HBは、いまだ安定供給されていない。   It is difficult to recover 3HB or PHB derived from biological fermentation as a pure product from the culture solution, and it is actually recovered in a form containing various impurities. When the recovered 3HB is used for application, it needs to be further purified to increase the purity. However, in reality, 3HB with low purity (for example, 3HB derived from biological fermentation currently distributed is about 70% in purity) is used as it is, and 3HB with high purity has not yet been stably supplied.

このような純度の高い3HBを安定供給するために、生物発酵由来で3HBを含有する培養液を用いた効率的な3HBの製造方法が求められている。   In order to stably supply such high-purity 3HB, an efficient method for producing 3HB using a culture solution derived from biological fermentation and containing 3HB is required.

そこで、本発明は上記実状に鑑み、生物発酵由来で3HBを含有する培養液から効率よく純度の高い3HBを精製回収することができる3HBの製造方法を提供することを目的とする。   Then, in view of the said actual condition, this invention aims at providing the manufacturing method of 3HB which can refine | purify and collect highly purified 3HB efficiently from the culture solution derived from biological fermentation and containing 3HB.

上記目的を達成するための本発明の3HBの製造方法の特徴構成は、
3ヒドロキシ酪酸(3HB)生産菌から3HBを発酵生成した発酵液を得る発酵工程と、
前記発酵工程にて得られた発酵液から、水分を留去する予備濃縮工程と、
有機溶媒により、前記発酵液から3HBを含有する3HB含有溶液を抽出する抽出工程と、
前記抽出工程により抽出された3HB含有溶液から、前記有機溶媒を留去して3HB濃縮液を得る濃縮工程と、
前記濃縮工程で得られた3HB濃縮液に、酢酸エチル、ジエチルエーテル及びt−ブチルメチルエーテルから選ばれる少なくとも一種を主成分とする晶析溶媒を加え、3HBの溶解した晶析溶媒から3HB結晶を析出させる晶析工程と、
を行う点にある。
In order to achieve the above object, the characteristic configuration of the 3HB manufacturing method of the present invention is as follows:
A fermentation process for obtaining a fermentation broth produced by fermentation of 3HB from a 3-hydroxybutyric acid (3HB) producing bacterium;
From the fermentation liquid obtained in the fermentation step, a preconcentration step for distilling off water,
An extraction step of extracting a 3HB-containing solution containing 3HB from the fermentation broth with an organic solvent;
A concentration step of distilling off the organic solvent from the 3HB-containing solution extracted by the extraction step to obtain a 3HB concentrate;
A crystallization solvent containing at least one selected from ethyl acetate, diethyl ether, and t-butyl methyl ether as a main component is added to the 3HB concentrate obtained in the concentration step, and 3HB crystals are obtained from the crystallization solvent in which 3HB is dissolved. A crystallization step for precipitation,
The point is to do.

上記発酵工程により得た3HBは、光学純度がきわめて高い(100%に近い)ものであると考えられる。これを有機溶媒で抽出する抽出工程を行うと、発酵液から光学純度の高い3HB含有溶液を得ることができる。   3HB obtained by the fermentation process is considered to have very high optical purity (close to 100%). When an extraction step of extracting this with an organic solvent is performed, a 3HB-containing solution with high optical purity can be obtained from the fermentation broth.

ここで、発酵液から3HBを分離回収させるために、水分を留去する予備濃縮工程を経て有機溶媒による抽出を行う抽出工程を行うと、少量の有機溶媒で効率よく3HBを有機溶媒の層に移行させることができる。その有機溶媒を留去して濃縮工程により濃縮すると、3HBを高濃度に含有する3HB濃縮液が得られ、この3HB濃縮液を用いて晶析工程を行うことできわめて効率よく3HBを結晶化することができ、純度の高い3HBを得ることができる。   Here, in order to separate and recover 3HB from the fermented liquor, an extraction step in which extraction with an organic solvent is performed through a pre-concentration step for distilling off water efficiently converts 3HB into a layer of organic solvent with a small amount of organic solvent. Can be migrated. When the organic solvent is distilled off and concentrated by a concentration step, a 3HB concentrate containing 3HB at a high concentration is obtained, and 3HB is crystallized very efficiently by performing a crystallization step using this 3HB concentrate. 3HB with high purity can be obtained.

このようにして、3HBを析出させる晶析工程を行うと、発酵液から抽出しただけの3HB含有溶液から3HBを再結晶させて、より純度の高い3HBを得ることができる。具体的には、濃縮工程の後、晶析工程を行うことで、3HBの再結晶操作を行い、純度の高い3HBを得ることができる。
ここで、本発明者らは、鋭意研究の結果、晶析溶媒としては、酢酸エチル、ジエチルエーテル、t−ブチルメチルエーテルから選ばれる少なくとも一種を主成分とするものを用いると、発酵液の全量をそのまま出発原料として利用したとしてもきわめて効率よく3HBを結晶化することができることを実験的に見出し、本発明を完成するに至った。
Thus, when the crystallization process which precipitates 3HB is performed, 3HB can be recrystallized from the 3HB containing solution only extracted from the fermentation liquid, and 3HB with higher purity can be obtained. Specifically, by performing a crystallization step after the concentration step, 3HB recrystallization operation can be performed to obtain highly pure 3HB.
Here, as a result of diligent research, the inventors of the present invention have used the crystallization solvent as a main component of at least one selected from ethyl acetate, diethyl ether, and t-butyl methyl ether. It was found experimentally that 3HB can be crystallized very efficiently even if it is directly used as a starting material, and the present invention has been completed.

すなわち、晶析溶媒として、酢酸エチル、ジエチルエーテル、t−ブチルメチルエーテルのいずれかを用いた場合には、特に3HBの溶解度曲線(溶解度の温度依存性)の勾配が大きく(温度による溶解度の差が大きく)、容易に3HBを再結晶により晶析させられるとともに、不純物を取り除くことができることが明らかとなった。これにより純度の高い3HBを効率よく製造することができるようになった。   That is, when any one of ethyl acetate, diethyl ether, and t-butyl methyl ether is used as the crystallization solvent, the solubility curve of 3HB (temperature dependence of solubility) is particularly large (the difference in solubility due to temperature). It is clear that 3HB can be easily crystallized by recrystallization and impurities can be removed. As a result, high purity 3HB can be efficiently produced.

また、前記3HB生産菌が、3HB生産性のハロモナス菌であることが好ましく、この場合、前記発酵工程が、前記ハロモナス菌を好気発酵する好気発酵工程と、好気発酵工程によりポリヒドロキシ酪酸(PHB)を蓄積した前記ハロモナス菌を嫌気発酵する嫌気発酵工程とを含むことができる。   The 3HB-producing bacterium is preferably a 3HB-producing halomonas bacterium. In this case, the fermentation step comprises an aerobic fermentation step in which the halomonas bacterium is aerobically fermented, and an aerobic fermentation step. An anaerobic fermentation step of anaerobically fermenting the halomonas having accumulated (PHB).

すなわち、3HB生産菌として、3HB生産性のハロモナス菌を用いると、生産性高く3HBを生産することができる。また、ハロモナス菌は、好気発酵する好気発酵工程と、嫌気発酵する嫌気発酵工程とを行うことで、好気発酵工程により体内に蓄積したポリヒドロキシ酪酸(PHB)を体外(発酵液中)に排出させることができる。したがって、ハロモナス菌を用いることで、比較的容易に3HBを反応容易な形態に移行させることができ、さらに、効率よく3HBを製造することができるようになった。   That is, when 3HB-producing halomonas are used as 3HB-producing bacteria, 3HB can be produced with high productivity. In addition, Halomonas bacteria perform the aerobic fermentation process for aerobic fermentation and the anaerobic fermentation process for anaerobic fermentation, so that polyhydroxybutyric acid (PHB) accumulated in the body by the aerobic fermentation process is in vitro (in the fermentation broth). Can be discharged. Therefore, by using Halomonas bacteria, 3HB can be transferred to an easily reactable form relatively easily, and 3HB can be produced more efficiently.

また、前記発酵工程で得られた発酵液をろ過するろ過工程を行った後に前記抽出工程を行ってもよい。   Moreover, you may perform the said extraction process, after performing the filtration process which filters the fermentation liquor obtained at the said fermentation process.

発酵工程で得られた発酵液には、3HB以外に、3HBを生産した菌体も含まれている。このような菌体は、抽出工程を行った場合に3HB含有溶液中に移行しないので、夾雑物として存在することにより純度を低下させる原因になることが考えられる。また、抽出溶媒を無駄に増量して用いることにもなる。そこで、あらかじめ限外ろ過を行ったものとしておけば、菌体や、タンパク質等の大分子量の夾雑物を含まない状態で再結晶を行えるから、より再結晶の純度を向上することができるものと考えられる。   In addition to 3HB, the fermented liquid obtained in the fermentation process also includes cells that produced 3HB. Since such microbial cells do not migrate into the 3HB-containing solution when the extraction step is performed, it is considered that the presence of impurities as a cause of deterioration in purity. In addition, the amount of the extraction solvent is wasted and used. Therefore, if the ultrafiltration is performed in advance, recrystallization can be performed without containing large molecular weight impurities such as bacterial cells and proteins, so that the purity of recrystallization can be further improved. Conceivable.

また、前記発酵工程で得られた発酵液のpHを1〜6の酸性に調整するpH調整工程を行った後に、前記抽出工程を行うこともできる。   Moreover, after performing the pH adjustment process which adjusts the pH of the fermented liquor obtained at the said fermentation process to the acidity of 1-6, the said extraction process can also be performed.

前記発酵液に含まれる3HBは酸性であるため、中性に近い発酵液中では一部が塩として溶解している。このような形態の3HBは、3HB含有溶液中に移行しにくく、3HBの抽出効率を低下させる懸念がある。そこで、発酵液のpHをpH1〜6に調整するpH調整工程を行えば、3HBを遊離酸として発酵液中に存在させることができ、抽出された3HB含有溶液中に3HBが移行しやすくなるため、3HBの回収効率の向上に寄与するものと考えられる。   Since 3HB contained in the fermentation broth is acidic, a part thereof is dissolved as a salt in the fermentation broth close to neutrality. Such a form of 3HB is difficult to migrate into the 3HB-containing solution, and there is a concern that the extraction efficiency of 3HB may be reduced. Therefore, if a pH adjustment step for adjusting the pH of the fermentation broth to pH 1 to 6 is performed, 3HB can be present in the fermentation broth as a free acid, and 3HB easily migrates into the extracted 3HB-containing solution. It is thought that it contributes to the improvement of the recovery efficiency of 3HB.

また、前記3HB含有溶液または前記3HB濃縮液を活性炭に接触させる活性炭処理工程を行うこともできる。   Moreover, the activated carbon treatment process which makes the said 3HB containing solution or the said 3HB concentrate liquid contact activated carbon can also be performed.

上記ろ過工程をおこなえば、比較的分子量の大きな夾雑成分を除去することができるが、比較的分子量の小さな3HBに対する着色成分については除去することができない。このような着色成分は、3HBの実際の純度に対しては大きな影響がないものの、精製度の高い3HBが、白色結晶であるのに対して、褐色〜淡褐色に着色した結晶が得られるため、3HBの製品としては見た目に劣る。そこで、このような着色成分を活性炭により除去しておけば、晶析工程で得られる3HBが白色結晶として得られ、高品質な3HBとして提供することができるようになる。   If the filtration step is performed, a contaminant component having a relatively large molecular weight can be removed, but a colored component for 3HB having a relatively small molecular weight cannot be removed. Although such a colored component does not have a great influence on the actual purity of 3HB, 3HB with a high degree of purification is a white crystal, whereas crystals colored in brown to light brown are obtained. As a product of 3HB, it looks inferior. Therefore, if such coloring components are removed with activated carbon, 3HB obtained in the crystallization step can be obtained as white crystals and can be provided as high-quality 3HB.

尚、前記有機溶媒としては、1−ブタノール、1−ペンタノール、酢酸エチル、イソアミルアルコール、及びメチルエチルケトンから選ばれる少なくとも一種を主成分とするものを用いることができる。   In addition, as said organic solvent, what has as a main component at least 1 type chosen from 1-butanol, 1-pentanol, ethyl acetate, isoamyl alcohol, and methyl ethyl ketone can be used.

有機溶媒としては、溶解度曲線の勾配に関わらず、3HBに対する溶解度が高いものを用いることができ、このような有機溶媒としては、1−ブタノール、1−ペンタノール、酢酸エチル、イソアミルアルコール、あるいはメチルエチルケトンから選ばれる少なくとも一種を主成分とするものが、3HBに対する溶解度が高いので好ましい。   As the organic solvent, those having a high solubility in 3HB can be used regardless of the slope of the solubility curve. Examples of such an organic solvent include 1-butanol, 1-pentanol, ethyl acetate, isoamyl alcohol, or methyl ethyl ketone. Those having at least one selected from the above as a main component are preferred because of their high solubility in 3HB.

また、前記晶析工程において、3HBの溶解した晶析溶媒に3HBの種結晶を加えて攪拌しながら冷却を行うことができる。   In the crystallization step, 3HB seed crystals are added to a crystallization solvent in which 3HB is dissolved, and cooling can be performed while stirring.

撹拌しながら冷却により晶析させると、温度斑のない均一な溶液から晶析を開始させられるので、晶析開始温度範囲のきわめて狭い結晶を取り出すことができ、3HBの純度を挙げるのに寄与する。また、種結晶を用いると、過冷却状態の3HB溶液から適切な晶析開始温度にて晶析を開始させられるので、より品質の安定した3HBを提供するのに寄与する。   Crystallization by cooling while stirring can start crystallization from a uniform solution without temperature spots, so that crystals with a very narrow crystallization start temperature range can be taken out, contributing to increase the purity of 3HB. . In addition, when a seed crystal is used, crystallization can be started from an undercooled 3HB solution at an appropriate crystallization start temperature, which contributes to providing 3HB with more stable quality.

したがって、生物発酵由来で3HBを含有する培養液から効率よく純度の高い3HBを精製回収することができるようになった。   Therefore, 3HB having high purity can be efficiently purified and recovered from a culture solution derived from biological fermentation and containing 3HB.

以下に、本発明の実施形態にかかる3HBの製造方法を説明する。尚、以下に好適な実施形態を記すが、これら実施形態はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the manufacturing method of 3HB concerning embodiment of this invention is demonstrated. Preferred embodiments are described below, but these embodiments are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

本発明の実施形態にかかる3HBの製造方法は、
3ヒドロキシ酪酸(3HB)生産菌から3HBを発酵生成した発酵液を得る発酵工程と、
前記発酵工程にて得られた発酵液から、水分を留去する予備濃縮工程と、
有機溶媒により、前記発酵液から3HBを含有する3HB含有溶液を抽出する抽出工程と、
前記抽出工程により抽出された3HB含有溶液から、前記有機溶媒を留去して3HB濃縮液を得る濃縮工程と、
前記濃縮工程で得られた3HB濃縮液に、酢酸エチル、ジエチルエーテル及びt−ブチルメチルエーテルから選ばれる少なくとも一種を主成分とする晶析溶媒を加え、3HBの溶解した晶析溶媒から3HB結晶を析出させる晶析工程と
を行うものである。
ここで、3HB生産菌として、3HB生産性のハロモナス菌を用い、発酵工程として、前記ハロモナス菌を好気発酵する好気発酵工程と、好気発酵工程によりポリヒドロキシ酪酸(PHB)を蓄積した前記ハロモナス菌を嫌気発酵する嫌気発酵工程とを行う。
また、抽出工程に先んじて、発酵工程で得られた発酵液を限外濾過するろ過工程を行うとともに、発酵液のpHを1〜6の酸性に調整するpH調整工程を行う。
また3HB濃縮液を活性炭に接触させる活性炭処理工程を行う。
尚、有機溶媒としては、1−ブタノール、1−ペンタノール、酢酸エチル、イソアミルアルコール、及びメチルエチルケトンから選ばれる少なくとも一種を主成分とするものが用いられ、晶析工程において、3HBの溶解した晶析溶媒に3HBの種結晶を加えて攪拌しながら冷却を行うことができる。尚、晶析工程に用いる溶媒は抽出工程に用いる溶媒と同一であってもよい。
The manufacturing method of 3HB according to the embodiment of the present invention is as follows:
A fermentation process for obtaining a fermentation broth produced by fermentation of 3HB from a 3-hydroxybutyric acid (3HB) producing bacterium;
From the fermentation liquid obtained in the fermentation step, a preconcentration step for distilling off water,
An extraction step of extracting a 3HB-containing solution containing 3HB from the fermentation broth with an organic solvent;
A concentration step of distilling off the organic solvent from the 3HB-containing solution extracted by the extraction step to obtain a 3HB concentrate;
A crystallization solvent containing at least one selected from ethyl acetate, diethyl ether, and t-butyl methyl ether as a main component is added to the 3HB concentrate obtained in the concentration step, and 3HB crystals are obtained from the crystallization solvent in which 3HB is dissolved. A crystallization step for precipitation.
Here, 3HB-producing halomonas bacteria are used as 3HB-producing bacteria, and as a fermentation process, an aerobic fermentation process in which the halomonas bacteria are aerobically fermented, and polyhydroxybutyric acid (PHB) accumulated by the aerobic fermentation process An anaerobic fermentation process for anaerobically fermenting Halomonas bacteria.
Prior to the extraction step, a filtration step of ultrafiltration of the fermentation broth obtained in the fermentation step is performed, and a pH adjustment step of adjusting the pH of the fermentation broth to 1 to 6 acidity is performed.
Moreover, the activated carbon treatment process which makes 3HB concentrated liquid contact activated carbon is performed.
In addition, as an organic solvent, what has as a main component at least 1 type chosen from 1-butanol, 1-pentanol, ethyl acetate, isoamyl alcohol, and methyl ethyl ketone is used, and the crystallization which 3HB melt | dissolved in the crystallization process. Cooling can be performed while adding 3HB seed crystals to the solvent and stirring. The solvent used in the crystallization process may be the same as the solvent used in the extraction process.

〔発酵工程〕
発酵工程は、3HB生産菌から3HBを発酵生成した発酵液を得るものである。具体的には、糖質を含む培養液を収容した発酵容器に3HB生産性のハロモナス菌を添加して、まず撹拌通気しつつ好気発酵工程を行う。これにより、ハロモナス菌により糖質を資化させ、PHBを生産させることができ、ハロモナス菌体内にPHBを蓄積する。次に、糖類がほぼ完全に消費されたころに、発酵容器内への通気を停止して嫌気発酵工程を行う。これにより、ハロモナス菌は体内に蓄積したPHBを分解消費して発酵液中に3HBを放出する。その結果、3HB及び菌体を含有する発酵液が得られる。
[Fermentation process]
A fermentation process obtains the fermented liquor which produced and fermented 3HB from 3HB production microbe. Specifically, a 3HB-productive halomonas bacterium is added to a fermentation vessel containing a saccharide-containing culture solution, and an aerobic fermentation process is first performed while stirring and aeration. Thereby, carbohydrates can be assimilated by Halomonas bacteria to produce PHB, and PHB is accumulated in Halomonas bacteria. Next, when the saccharide is almost completely consumed, the anaerobic fermentation process is performed by stopping aeration into the fermentation vessel. As a result, Halomonas bacteria decompose and consume PHB accumulated in the body and release 3HB into the fermentation broth. As a result, a fermentation broth containing 3HB and bacterial cells is obtained.

〔ろ過工程〕
ろ過工程では、得られた発酵液中の菌体成分や、高分子量のたんぱく質等の夾雑物を濾過して除去する。具体的には、得られた発酵液は限外ろ過膜(UF膜)によりろ過する。すると簡便に菌体やタンパク質等の大分子量の夾雑物を除去することができ、主に3HBを含有する発酵液とすることができる。ここで得られた発酵液は、3HBを4.1質量%含有する発酵液が得られた。尚、本実施形態において3HBの濃度はクロマトグラフ法により決定している(以下も同じ)。
[Filtration process]
In the filtration step, contaminants such as bacterial cell components and high molecular weight proteins in the obtained fermentation broth are removed by filtration. Specifically, the obtained fermentation broth is filtered through an ultrafiltration membrane (UF membrane). Then, contaminants of large molecular weight such as bacterial cells and proteins can be easily removed, and a fermentation broth mainly containing 3HB can be obtained. The fermentation broth obtained here contained a fermentation broth containing 4.1% by mass of 3HB. In this embodiment, the concentration of 3HB is determined by a chromatographic method (the same applies below).

〔pH調整工程〕
pH調整工程は、発酵液のpHをpH1〜6に調整して、発酵液中の3HBを遊離酸の形態として、3HB含有溶液中に移行させやすくするものである。具体的には、pH調整工程では、ろ過工程で得られた64.3kgの発酵液に96質量%の硫酸1.4kgを加えてpH=3.0に調整した。
ここで、pH調整工程には種々の酸を用いることができるが、後の精製工程に悪影響の生じにくい無機酸を用いることが好ましい。また、pHは1〜6の酸性領域にまで調整すればよいが、好ましくは、3HBがほぼ遊離酸として存在するpH3程度になるまで酸を添加し、pHを調整することが、3HBの収率の面からは好ましい。
[PH adjustment step]
In the pH adjustment step, the pH of the fermentation broth is adjusted to pH 1 to 6 so that 3HB in the fermentation broth can be easily transferred to the 3HB-containing solution as a free acid. Specifically, in the pH adjustment step, 1.4 kg of 96 mass% sulfuric acid was added to 64.3 kg of the fermentation broth obtained in the filtration step to adjust the pH to 3.0.
Here, various acids can be used in the pH adjustment step, but it is preferable to use an inorganic acid that hardly causes adverse effects in the subsequent purification step. Further, the pH may be adjusted to an acidic region of 1 to 6, but it is preferable to adjust the pH by adding an acid until pH becomes about pH 3 where 3HB is almost present as a free acid. From the viewpoint of

〔予備濃縮工程〕
予備濃縮工程は、発酵液中の溶媒としての水を留去して発酵液を濃縮する工程である。具体的には、pH調整後の発酵液65.7kgからエバポレーターにて水を留去する濃縮を行った。これにより、3−ヒドロキシ酪酸を20.8質量%含有する3HB含有溶液を12.4kg得た。
[Preconcentration step]
The pre-concentration step is a step of concentrating the fermentation broth by distilling off water as a solvent in the fermentation broth. Specifically, concentration was performed by distilling off water with an evaporator from 65.7 kg of the fermented liquid after pH adjustment. As a result, 12.4 kg of a 3HB-containing solution containing 20.8% by mass of 3-hydroxybutyric acid was obtained.

〔活性炭処理工程〕
活性炭処理工程は、3HB含有溶液に対して、ここで粉末状あるいはグラニュール状の活性炭を接触させて着色物質をはじめとした不純物の除去するものである。ここで活性炭処理工程は、得られる3HBを脱色して品質を向上させるうえで行うことが好ましく、収量の減少や、工数の増加を避ける意味では省略することができる。
[Activated carbon treatment process]
In the activated carbon treatment step, powdered or granulated activated carbon is brought into contact with the 3HB-containing solution to remove impurities such as coloring substances. Here, the activated carbon treatment step is preferably performed in order to improve the quality by decolorizing 3HB to be obtained, and can be omitted in the sense of avoiding a decrease in yield and an increase in man-hours.

〔抽出工程〕
次に得られた3HB含有溶液のうち2kgを用いて、同重量の各種有機溶媒1−ブタノール、1−ペンタノール、酢酸エチル、イソアミルアルコール、あるいはメチルエチルケトンにより抽出する抽出工程を3回繰り返し行い3HB含有溶液を得た。それぞれの有機溶媒にて、3回の抽出工程を繰り返したところ、回収された3HBの収率は表1のようになった。尚、有機溶媒としては、他に汎用のものを用いることができるが、3HBに対する溶解度が高いことから、1−ブタノール、1−ペンタノール、酢酸エチル、イソアミルアルコール、あるいはメチルエチルケトンを用いることが好ましい。
[Extraction process]
Next, using 2 kg of the obtained 3HB-containing solution, the extraction step of extracting with the same weight of various organic solvents 1-butanol, 1-pentanol, ethyl acetate, isoamyl alcohol, or methyl ethyl ketone was repeated three times to contain 3HB. A solution was obtained. When the extraction process was repeated three times with each organic solvent, the yield of recovered 3HB was as shown in Table 1. As the organic solvent, other general-purpose solvents can be used, but 1-butanol, 1-pentanol, ethyl acetate, isoamyl alcohol, or methyl ethyl ketone is preferably used because of its high solubility in 3HB.

Figure 2018000073
Figure 2018000073

〔濃縮工程〕
濃縮工程では、得られた3HB含有液からエバポレーターにより有機溶媒を留去する。この濃縮工程では、3HBを75質量%含有する3HB濃縮液が得られた。濃縮工程は、3HB濃縮液の3HB濃度が50%以上90%以下程度になるまで行うことが好ましい。さらに好ましくは、濃縮下限として60%以上、あるいは70%以上、濃縮上限として85%以下が挙げられ、特に、70%以上85%以下程度になるまで濃縮するのが好ましい。
[Concentration process]
In the concentration step, the organic solvent is distilled off from the obtained 3HB-containing liquid using an evaporator. In this concentration step, a 3HB concentrate containing 75% by mass of 3HB was obtained. The concentration step is preferably performed until the 3HB concentration of the 3HB concentrate is about 50% to 90%. More preferably, the lower limit of concentration is 60% or more, or 70% or more, and the upper limit of concentration is 85% or less, and it is particularly preferable that the concentration is concentrated to about 70% or more and 85% or less.

〔活性炭処理工程〕
ここで粉末状あるいはグラニュール状の活性炭を用いた濃縮液からの着色物質をはじめとした不純物の除去する活性炭処理工程を実施してもよい。なお、活性炭処理工程は、3HB含有溶液あるいは3HB濃縮液のいずれかに対して行うことが好ましいが、省略することも、両方に対して行うこともできる。
[Activated carbon treatment process]
Here, an activated carbon treatment step for removing impurities such as colored substances from the concentrated liquid using powdered or granular activated carbon may be performed. The activated carbon treatment step is preferably performed on either the 3HB-containing solution or the 3HB concentrated solution, but may be omitted or performed on both.

〔晶析工程〕
続いて3HBを75質量%含有する濃縮液200g(有機溶媒として1−ブタノールを用いて抽出工程を行ったもの)に対して、晶析溶媒として酢酸エチルを60g添加し、40℃で3HBの均一な溶液を得た。この3HBの溶液を晶析装置にて撹拌混合しながら20〜30℃の3HBの飽和濃度にまで冷却した。飽和濃度に達した時点で種結晶として、あらかじめ精製により結晶として得てある3HBを添加した。さらに攪拌しながら一定速度で冷却を行い3HBの析出を行った。析出した3HBを吸引ろ過、減圧乾燥することにより白色結晶85gを単離した。晶析工程に関する収率は57%であった。
[Crystalling process]
Subsequently, 60 g of ethyl acetate as a crystallization solvent was added to 200 g of a concentrated solution containing 75% by mass of 3HB (extracted using 1-butanol as an organic solvent), and 3HB was homogeneous at 40 ° C. Solution was obtained. The 3HB solution was cooled to a saturated concentration of 3HB at 20 to 30 ° C. with stirring and mixing in a crystallizer. When the saturation concentration was reached, 3HB obtained as a crystal by purification in advance was added as a seed crystal. Further, cooling was carried out at a constant rate while stirring to precipitate 3HB. The precipitated 3HB was suction filtered and dried under reduced pressure to isolate 85 g of white crystals. The yield for the crystallization process was 57%.

また、酢酸エチルをジエチルエーテル、t−ブチルメチルエーテル、アセトン及びメチルエチルケトンに変更して同様に3HBを75質量%含有する濃縮液200gに対して晶析工程を行ったところ、表2のようになった。   In addition, when ethyl acetate was changed to diethyl ether, t-butyl methyl ether, acetone, and methyl ethyl ketone, and a crystallization process was similarly performed on 200 g of a concentrated solution containing 3% by mass of 3HB, the results shown in Table 2 were obtained. It was.

Figure 2018000073
Figure 2018000073

尚、晶析溶媒としては、温度に依存した溶解度勾配が大きいエステル系あるいはエーテル系の物質を用いることができ、酢酸エチル、ジエチルエーテル、およびt−ブチルメチルエーテルから選ばれる晶析溶媒は、メタノール、エタノール、プロパノール、ブタノール、アセトン、メチルエチルケトン等の種々公知の取り扱い容易な溶媒と比較して、溶解度勾配が大きく、晶析溶媒としてきわめて優れていることが分かった。   As the crystallization solvent, an ester-based or ether-based substance having a large temperature-dependent solubility gradient can be used, and the crystallization solvent selected from ethyl acetate, diethyl ether, and t-butyl methyl ether is methanol. As compared with various known easy-to-handle solvents such as ethanol, propanol, butanol, acetone, methyl ethyl ketone, etc., it was found that the solubility gradient was large and the crystallization solvent was extremely excellent.

本発明の3HBの製造方法によれば、高効率で純度の高い3HBを製造することができる。   According to the 3HB production method of the present invention, 3HB with high efficiency and high purity can be produced.

Claims (8)

3ヒドロキシ酪酸(3HB)生産菌から3HBを発酵生成した発酵液を得る発酵工程と、
前記発酵工程にて得られた発酵液から、水分を留去する予備濃縮工程と、
有機溶媒により、前記発酵液から3HBを含有する3HB含有溶液を抽出する抽出工程と、
前記抽出工程により抽出された3HB含有溶液から、前記有機溶媒を留去して3HB濃縮液を得る濃縮工程と、
前記濃縮工程で得られた3HB濃縮液に、酢酸エチル、ジエチルエーテル及びt−ブチルメチルエーテルから選ばれる少なくとも一種を主成分とする晶析溶媒を加え、3HBの溶解した晶析溶媒から3HB結晶を析出させる晶析工程と
を行う3HBの製造方法。
A fermentation process for obtaining a fermentation broth produced by fermentation of 3HB from a 3-hydroxybutyric acid (3HB) producing bacterium;
From the fermentation liquid obtained in the fermentation step, a preconcentration step for distilling off water,
An extraction step of extracting a 3HB-containing solution containing 3HB from the fermentation broth with an organic solvent;
A concentration step of distilling off the organic solvent from the 3HB-containing solution extracted by the extraction step to obtain a 3HB concentrate;
A crystallization solvent containing at least one selected from ethyl acetate, diethyl ether, and t-butyl methyl ether as a main component is added to the 3HB concentrate obtained in the concentration step, and 3HB crystals are obtained from the crystallization solvent in which 3HB is dissolved. 3HB manufacturing method which performs the crystallization process to make it precipitate.
前記3HB生産菌が、3HB生産性のハロモナス菌である請求項1に記載の3HBの製造方法。   The method for producing 3HB according to claim 1, wherein the 3HB-producing bacterium is a 3HB-producing halomonas bacterium. 前記発酵工程が、前記ハロモナス菌を好気発酵する好気発酵工程と、好気発酵工程によりポリヒドロキシ酪酸(PHB)を蓄積した前記ハロモナス菌を嫌気発酵する嫌気発酵工程とを含む請求項2に記載の3HBの製造方法。   The said fermentation process contains the aerobic fermentation process which carries out the aerobic fermentation of the said Halomonas bacteria, and the anaerobic fermentation process which carries out the anaerobic fermentation of the said Halomonas bacteria which accumulated polyhydroxybutyric acid (PHB) by the aerobic fermentation process. The manufacturing method of 3HB of description. 前記発酵工程で得られた発酵液をろ過するろ過工程を行った後に前記抽出工程を行う請求項1〜3のいずれか一項に記載の3HBの製造方法。   The manufacturing method of 3HB as described in any one of Claims 1-3 which perform the said extraction process after performing the filtration process which filters the fermented liquor obtained at the said fermentation process. 前記発酵工程で得られた発酵液のpHを1〜6の酸性に調整するpH調整工程を行った後に、前記抽出工程を行う請求項1〜4のいずれか一項に記載の3HBの製造方法。   The manufacturing method of 3HB as described in any one of Claims 1-4 which perform the said extraction process after performing the pH adjustment process which adjusts the pH of the fermented liquor obtained at the said fermentation process to the acidity of 1-6. . 前記3HB含有溶液または前記3HB濃縮液を活性炭に接触させる活性炭処理工程を行う請求項1〜5のいずれか一項に記載の3HBの製造方法。   The method for producing 3HB according to any one of claims 1 to 5, wherein an activated carbon treatment step in which the 3HB-containing solution or the 3HB concentrate is brought into contact with activated carbon is performed. 前記有機溶媒が1−ブタノール、1−ペンタノール、酢酸エチル、イソアミルアルコール、及びメチルエチルケトンから選ばれる少なくとも一種を主成分とするものである請求項1〜6のいずれか一項に記載の3HBの製造方法。   The said organic solvent is what has as a main component at least 1 type chosen from 1-butanol, 1-pentanol, ethyl acetate, isoamyl alcohol, and methyl ethyl ketone, The manufacture of 3HB as described in any one of Claims 1-6. Method. 前記晶析工程において、3HBの溶解した晶析溶媒に3HBの種結晶を加えて攪拌しながら冷却を行う請求項1〜7のいずれか一項に記載の3HBの製造方法。   The method for producing 3HB according to any one of claims 1 to 7, wherein in the crystallization step, 3HB seed crystals are added to a crystallization solvent in which 3HB is dissolved, and cooling is performed while stirring.
JP2016129985A 2016-06-30 2016-06-30 3HB manufacturing method Active JP6692232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016129985A JP6692232B2 (en) 2016-06-30 2016-06-30 3HB manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016129985A JP6692232B2 (en) 2016-06-30 2016-06-30 3HB manufacturing method

Publications (2)

Publication Number Publication Date
JP2018000073A true JP2018000073A (en) 2018-01-11
JP6692232B2 JP6692232B2 (en) 2020-05-13

Family

ID=60945425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016129985A Active JP6692232B2 (en) 2016-06-30 2016-06-30 3HB manufacturing method

Country Status (1)

Country Link
JP (1) JP6692232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343626A (en) * 2018-04-02 2019-10-18 四川大学 One plant of heat-resisting thermophilic Halomonas and its application

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158190A (en) * 1982-03-16 1983-09-20 Kanegafuchi Chem Ind Co Ltd Preparation of d(-)-beta-hydroxybutyric acid
JPS6474999A (en) * 1987-09-16 1989-03-20 Nissei Kagaku Kogyo Kk Production of optically active (r)-(-)-beta-hydroxylactic acid
JPH03183499A (en) * 1989-12-12 1991-08-09 Daicel Chem Ind Ltd Production of optically active 3-hydroxybutyric acid
JPH08154689A (en) * 1994-12-06 1996-06-18 Shin Nippon Kagaku Kogyo Kk Method for purifying natural type abscisic acid
JP2002346303A (en) * 2001-05-28 2002-12-03 Mitsubishi Chemicals Corp Crystallization method
JP2003518366A (en) * 1999-08-03 2003-06-10 アーカー−ダニエルズ−ミッドランド カンパニー Process for recovery of organic acids
JP2008043327A (en) * 2006-07-19 2008-02-28 Showa Denko Kk Method for producing succinic acid
JP2009201506A (en) * 2008-01-29 2009-09-10 Toray Ind Inc Method for producing lactic acid
JP2010126512A (en) * 2008-12-01 2010-06-10 Toray Ind Inc Method for producing hydroxycarboxylic acid
JP2013081403A (en) * 2011-10-07 2013-05-09 National Institute Of Advanced Industrial Science & Technology Method for producing 3-hydroxybutyric acid or its salt

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158190A (en) * 1982-03-16 1983-09-20 Kanegafuchi Chem Ind Co Ltd Preparation of d(-)-beta-hydroxybutyric acid
JPS6474999A (en) * 1987-09-16 1989-03-20 Nissei Kagaku Kogyo Kk Production of optically active (r)-(-)-beta-hydroxylactic acid
JPH03183499A (en) * 1989-12-12 1991-08-09 Daicel Chem Ind Ltd Production of optically active 3-hydroxybutyric acid
JPH08154689A (en) * 1994-12-06 1996-06-18 Shin Nippon Kagaku Kogyo Kk Method for purifying natural type abscisic acid
JP2003518366A (en) * 1999-08-03 2003-06-10 アーカー−ダニエルズ−ミッドランド カンパニー Process for recovery of organic acids
JP2002346303A (en) * 2001-05-28 2002-12-03 Mitsubishi Chemicals Corp Crystallization method
JP2008043327A (en) * 2006-07-19 2008-02-28 Showa Denko Kk Method for producing succinic acid
JP2009201506A (en) * 2008-01-29 2009-09-10 Toray Ind Inc Method for producing lactic acid
JP2010126512A (en) * 2008-12-01 2010-06-10 Toray Ind Inc Method for producing hydroxycarboxylic acid
JP2013081403A (en) * 2011-10-07 2013-05-09 National Institute Of Advanced Industrial Science & Technology Method for producing 3-hydroxybutyric acid or its salt

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. BIOTECHNOL., 2007, VOL. 132, PP. 264-272, JPN6019036312, ISSN: 0004118268 *
第5版 実験化学講座1 −基礎編I 実験・情報の基礎−, JPN6019036311, 25 September 2003 (2003-09-25), pages 162 - 167, ISSN: 0004118267 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343626A (en) * 2018-04-02 2019-10-18 四川大学 One plant of heat-resisting thermophilic Halomonas and its application

Also Published As

Publication number Publication date
JP6692232B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
CN101643752B (en) Method for producing xylitol and L-arabinose by xylose mother liquor
JP5595336B2 (en) Process for purification of glycolic acid on an industrial scale
Misra et al. Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis
CN108822163B (en) Comprehensive cyclic production method of D-glucosamine hydrochloride
CN112574263B (en) Preparation method of psicose crystal
CN110791538A (en) Production method suitable for synthesizing sitagliptin phosphate by enzyme method
JP6613367B2 (en) Method for purifying 1,4-diaminobutane
KR100828706B1 (en) A method for purifying 5'-Inosinic acid fermentation broth via crystallization process
JP2004509092A (en) Process for purifying α-hydroxy acids on an industrial scale
JP6692232B2 (en) 3HB manufacturing method
CN107201384A (en) A kind of method of separation and Extraction D-ALPHA-Hydroxypropionic acid in sodium zymotic fluid from D-ALPHA-Hydroxypropionic acid
ES2861305T3 (en) Continuous biotransformation of substituted aromatic carboxylic acids to their corresponding aldehydes and alcohols
CN111018731B (en) Extraction method of tyrosine
US20110201054A1 (en) Process for improved recovery of fermentation products from intracellular and extracellular presence
CN106316836A (en) Method for preparing butanedioic acid
JP2019176839A (en) Methods for producing hydroxyalkanoic acids
JP2018000032A (en) Production method of 3hb ester
TWI710638B (en) Refining method of 1,5-diaminopentane
CN108603207A (en) The method for producing l-methionine by fermenting and producing
CN112125935A (en) Preparation method of rhamnose
JP2014083019A (en) Method for producing gallic acid-containing composition with low iron content by using microorganism
CN114478235B (en) Method for purifying organic acid in fermentation liquor
JP2004509091A (en) Process for purifying α-hydroxy acids on an industrial scale
KR102419608B1 (en) Method for preparation of high concentration 3-hydroxypropionic acid aqueous solution
CN116496336A (en) Method for extracting thymidine from fermentation broth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6692232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150