JP2017539157A - Hfnオフセットを用いてユーザ機器を同期するための方法および装置 - Google Patents

Hfnオフセットを用いてユーザ機器を同期するための方法および装置 Download PDF

Info

Publication number
JP2017539157A
JP2017539157A JP2017526649A JP2017526649A JP2017539157A JP 2017539157 A JP2017539157 A JP 2017539157A JP 2017526649 A JP2017526649 A JP 2017526649A JP 2017526649 A JP2017526649 A JP 2017526649A JP 2017539157 A JP2017539157 A JP 2017539157A
Authority
JP
Japan
Prior art keywords
packet
wireless device
instructions
hyperframe number
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017526649A
Other languages
English (en)
Other versions
JP6776235B2 (ja
Inventor
ブレッサネッリ、ドミニク・フランソワ
バスワル、サケット
シャオ、ガン・アンディー
マヘシュワリ、シャイレシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2017539157A publication Critical patent/JP2017539157A/ja
Application granted granted Critical
Publication of JP6776235B2 publication Critical patent/JP6776235B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ機器(UE)におけるワイヤレス通信のための方法、システム、およびデバイスが説明される。いくつかの例において、UEは、ラジオリンクコントロール(RLC)レイヤで初期化およびリフレッシュ(IR)パケットのサイズに基づいて、IRパケットを識別し得、ここで、IRパケットは、圧縮されたRoHCパケットよりも大きい暗号化されたPDUサイズを備える。従って、いったん、UEがIRパケットを識別すると、UEは、1つまたは複数のHFNオフセット値を使用して、IRパケットを解読することを試み得る。一例において、UEは、解読されたIRパケットのCRC値に基づいて、IRパケットが正確に解読されているかどうかを決定し得る。結果として、本開示は、受信デバイスにおいてHFN値をインクリメントすることまたはデクリメントすることのうちの少なくとも1つによって、UEが送信デバイスと再同期することを可能にする。

Description

関連出願の相互参照
[0001] 本特許出願は、「Methods and Apparatus for Synchronizing a User Equipment with an HFN Offset」と題され、2014年11月19日付で出願され、およびこの譲受人に譲渡された、Bressanelli他による米国特許出願第14/547,325号への優先権を主張する。
[0002] 下記は、一般に、ワイヤレス通信に関連し、より具体的には、HFNオフセットを用いてユーザ機器(UE)を同期するための方法および装置に関連する。
[0003] ワイヤレス通信システムは、音声(voice)、ビデオ、パケットデータ、メッセージング、ブロードキャストなどのような、様々なタイプの通信コンテンツを提供するように広く展開されている。これらのシステムは、利用可能なシステムリソース(たとえば、時間、周波数、および電力)を共有することによって複数の(multiple)ユーザとの通信をサポートすることが可能である(capable of)多元接続システム(multiple-access system)であり得る。そのような多元接続システムの例は、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、(たとえば、ロングタームエボリューション(LTE(登録商標))システム)を含む。
[0004] 例として、ワイヤレス多元接続通信システムは、各々は、複数の通信デバイスに関して同時に(simultaneously)通信をサポートする多数の基地局を含み得、それらは、さもなければ、UEとして既知であり得る。基地局は、(たとえば、基地局からUEへの送信に関して)ダウンリンクチャネルおよび(たとえば、UEから基地局への送信に関して)アップリンクチャネル上で、複数の通信デバイスと通信し得る。
[0005] しかしながら、いくつかの例において、多数のフレームまたはプロトコルデータユニット(PDU:protocol data unit)は、基地局とUEとの間の通信の間に(たとえば、品質の悪いチャネルの状態に起因して)ドロップされ(dropped)得る。1つまたは複数の連続するPDUの送信の失敗は、基地局とUEとの間での脱同期に終わり(result in)得る。いくつかの例において、基地局とUEとの間での脱同期は、基地局からのデータを適切に解読する(decipher)かまたは展開する(decompress)UEの能力に影響し得る。基地局とUEとの間の通信の改善された方法が、所望されている。
[0006] UEを基地局と再同期するためのシステム、方法、および装置が開示される。本開示の複数の態様に従って、UEは、UEに記憶されたハイパーフレーム番号(HFN:hyper frame number)を使用して圧縮されたロバストなヘッダ圧縮(RoHC:compressed robust header compression)パケットを解読するために、閾値数の連続する失敗を検出し得る。複数の態様において、連続するそれら複数の失敗を検出する際に、UEは、送信デバイスに失敗の表示を送信し得、ここで、表示は、否定応答(NAK)メッセージを備え得る。複数の態様において、NAKメッセージを受信することに応答して、送信デバイスは、UEにRoHC初期化およびリフレッシュ(IR)パケットを送信し得る。
[0007] 本開示に従って、UEは、IRパケットのサイズに基づいて、ラジオリンクコントロール(RLC:radio link control)レイヤでIRパケットを識別し得る。たとえば、IRパケットは、圧縮されたRoHCパケットよりも大きいPDUサイズを含み得るので、UEは、IRパケットを識別し得る。本開示の1つまたは複数の例において、UEは、受信されたIRパケットを識別する際に、1つまたは複数のHFNオフセット値を使用して、受信されたパケットを復号し得る。いくつかの例において、HFNオフセット値は、HFN+iまたはHFN−i値のうちの少なくとも1つであり得、ここで、「i」(“i”)は、整数(たとえば、i=1、i=2等)であり得る。結果として、本開示は、受信デバイスにおいてHFN値をインクリメントすることまたはデクリメントすることのうちの少なくとも1つによって、UEが送信デバイスと再同期することを可能にする(allows)。
[0008] UEにおけるワイヤレス通信の方法が説明される。方法は、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信すること、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別すること、およびIRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読することを含み得る。
[0009] UEにおけるワイヤレス通信のための装置が説明される。装置は、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信するための手段、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別するための手段、およびIRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読するための手段を含み得る。
[0010] UEにおけるワイヤレス通信のためのさらなる装置が説明される。装置は、プロセッサ、プロセッサと電子通信状態にあるメモリ、およびメモリに記憶された命令を含み得、ここにおいて、命令は、プロセッサによって、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信すること、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別すること、およびIRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読することが実行可能である。
[0011] UEにおけるワイヤレス通信のためのコードを記憶する非一時的コンピュータ読み取り可能媒体が説明される。コードは、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信すること、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別すること、およびIRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読することが実行可能である命令を含み得る。
[0012] 上記に説明された方法、装置、または非一時的コンピュータ読み取り可能媒体のうちのいくつかの例において、サイズに基づいてIRパケットを識別することは、受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化された(ciphered)プロトコルデータユニット(PDU)サイズを備えることを決定することを備える。追加的、または代替的に、いくつかの例は、解読されたIRパケットのCRC値に基づいて、IRパケットが正確に解読されていることを決定することを含み得る。
[0013] 上記に説明された方法、装置、または非一時的コンピュータ読み取り可能媒体のうちのいくつかの例は、ハイパーフレーム番号オフセットを使用してのIRパケットを正確に解読することの失敗を検出することをさらに含み得る。追加的、または代替的に、いくつかの例は、検出された失敗に基づいて、ハイパーフレーム番号オフセットの値をインクリメントすることを含み得る。
[0014] 上記に説明された方法、装置、または非一時的コンピュータ読み取り可能媒体のうちのいくつかの例は、検出された失敗に基づいて、ハイパーフレーム番号オフセットの値をデクリメントすることをさらに含み得る。追加的、または代替的に、いくつかの例は、検出された失敗に基づいて、ラジオリンクの失敗をトリガすることを含み得る。
[0015] 上記に説明された方法、装置、または非一時的コンピュータ読み取り可能媒体のうちのいくつかの例は、ハイパーフレーム番号オフセットを使用してIRパケットを解読することにおける成功に基づいて、第1のワイヤレスデバイスを第2のワイヤレスデバイスと同期することをさらに含み得る。追加的、または代替的に、いくつかの例は、第1のワイヤレスデバイスによって記憶された現在のハイパーフレーム番号を使用して圧縮されたRoHCパケットを解読することの閾値数の連続する失敗を検出することを含み得る。
[0016] 上記に説明された方法、装置、または非一時的コンピュータ読み取り可能媒体のうちのいくつかの例は、第2のワイヤレスデバイスに連続する失敗の表示を送信することをさらに含み得る。追加的、または代替的に、いくつかの例において、第2のワイヤレスデバイスに送信される表示は、否定応答メッセージを備える。
[0017] 前述のことは、後に続く詳細な説明がよりよく理解され得るように、本開示に従って、複数の例の特徴および技術的利点を幾分広範に概説した。追加的な特徴および利点は、以下に説明される。開示された観念および特定の例は、本開示の同じ目的を実行する(carrying out)ための他の構造を修正することおよび設計することへの根拠として(as a basis for)、容易に利用され得る。そのような同等の構造(construction)は、添付の特許請求の範囲の範囲から逸脱しない。本明細書で開示される概念の特性(characteristics)、それらの編成(organization)および動作の方法の両方は、関連する利点とともに、添付の図に関連して検討されたときに以下の説明からより良く理解されるであろう。複数の図の各々は、例示および説明のみを目的として提供され、特許請求の範囲の限定の定義としては提供されない。
[0018] 本開示の特質および利点のさらなる理解は、以下の図面を参照することによって実現され得る。添付の図面では、同様のコンポーネントまたは特徴は、同じ参照ラベルを有し得る。さらに、同じタイプの様々なコンポーネントは、参照ラベルに、ダッシュと、同様のコンポーネント間を区別する第2のラベルとを後続させることによって区別され得る。本明細書中で、ただ第1の参照ラベルだけが使用される場合、その説明は、第2の参照ラベルに関係なく同じ第1の参照ラベルを有する同様の複数のコンポーネントのいずれか1つに適用可能である。
[0019] 図1は、本開示の様々な態様に従って、HFNオフセットを用いてユーザ機器(UE)を同期するためのワイヤレス通信システムの例を例示する。 [0020] 図2は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するためのフロー図の例を例示する。 [0021] 図3は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するためのフローチャートを例示する。 [0022] 図4は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するように構成されたUEのブロック図を示す。 [0023] 図5は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するように構成されたUEの別のブロック図を示す。 [0024] 図6は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するように構成された通信管理モジュールのブロック図を示す。 [0025] 図7は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するように構成されたUEを含むシステムのブロック図を例示する。 [0026] 図8は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法を例示するフローチャートを示す。 [0027] 図9は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法を例示する別のフローチャートを示す。 [0028] 図10は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法を例示する別のフローチャートを示す。 [0029] 図11は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法を例示する別のフローチャートを示す。 [0030] 図12は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法を例示する別のフローチャートを示す。
詳細な説明
[0031] 説明された複数の特徴は、一般に、1つまたは複数のHFNオフセット値を利用してUEを同期するための改善された複数のシステム、複数の方法、または複数の装置に関する。ラジオリンクコントロール(RLC)レイヤにおける送信デバイス(たとえば、基地局)デバイスと受信デバイス(たとえば、移動デバイス)との間のデータ通信は、エンクリプションおよびデクリプション(encryption and decryption)の処理がスムーズに動作することを確実にする(ensure)ために、厳密な同期(strict synchronization)を要し得る。RLCレイヤで、暗号化することおよび解読すること(ciphering and deciphering)は、時変パラメータ値またはカウント(a time-varying parameter value or count)を利用することによって、送信されたパケット上で行われ得、それは、各RLC SNサイクルでインクリメントされるハイパーフレーム番号(HFN)と短配列番号(SN:a short sequence number)との組み合わせであり得る。従って、SN値が、最大値(たとえば、127)を超える(exceeds)とき、SNは、それの初期値0までラップアラウンドし(wrapped around)得、HFNは、1つずつインクリメントされ(incremented by 1)得る。いくつかの例において、SN値は、各パケットの送信の間、送信デバイスと受信デバイスとの間にシグナリングされ得る。対照的に、HFN値は、送信するおよび受信デバイスの各々によって、別個に追跡され(tracked)得る(たとえば、受信デバイスに、送信デバイスによってシグナリングされない)。
[0032] いくつかの例において、多数のフレームまたはPDUは、送信デバイスと受信デバイスとの間に(たとえば、質の悪い送信チャネルの状態に起因して)ドロップされ得る。結果として、これらのフレームの送信は、HFN値に、送信デバイスにおいて、ロールオーバ(rollover)させ得る。しかしながら、受信デバイスは、ドロップされたフレームを受信しない可能性があるので、受信デバイスにおけるHFN値は、適切にインクリメントされない可能性があり、送信デバイスと受信デバイスとの間での脱同期に終わる。この脱同期は、受信デバイスによる、送信デバイスからのデータを解読および/または展開の失敗に終わり得る。たとえば、受信デバイスが、64個よりも多くの連続するPDUを逃す(misses)場合、受信デバイスは、逃したPDUに気づいていない可能性があり、よって受信デバイスにおけるHFNは、インクリメントされない可能性がある。その後は、さらなる複数のPDUが正確に送信されおよび受信されたとしても、受信された複数のPDUにおけるデータは、送信デバイスおよび受信デバイスにおけるHFN間での脱同期に起因して、受信デバイスにおいて誤って(erroneously)解読され得る。
[0033] 本開示に従って、受信デバイスのHFNが、送信デバイスのHFNと同期がずれ(out of synch with)得るとき、受信デバイスは、解読するデッドロック(deciphering deadlock)を破り(break)得る。特に、本開示に従って、受信デバイスは、受信デバイスによって記憶された現在のHFNを使用して圧縮されたロバストなヘッダ圧縮パケット(RoHC)を解読することの閾値数の連続する失敗を検出する際に、送信デバイスにそれら連続する失敗の表示を送信し得る。いくつかの例において、表示は、否定応答(NAK)メッセージであり得る。それに応じて、送信デバイスは、パケット圧縮なしにフルヘッダ情報(full header information)搬送するRoHC初期化およびリフレッシュ(IR)パケットを送信し得る。
[0034] 本開示のいくつかの例において、受信デバイスは、IRパケットのサイズに基づいて、受信デバイスのラジオリンクコントロール(RLC)レイヤにおいてIRパケットを識別し得る。特に、受信デバイスは、そのIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたPDUサイズを備えることを決定し得る。従って、受信デバイスは、HFNオフセット値を使用して、受信されたIRパケットを解読するかまたは展開することを試み得る。いくつかの例において、HFNオフセット値は、HFN+iまたはHFN−i値であり得、ここで、“i”は、整数(たとえば、i=1、i=2等)であり得る。結果として、受信デバイスは、受信デバイスにおいてHFN値をインクリメントまたはデクリメントすることによって、送信デバイスと再同期することを試み得る。一例において、受信デバイスは、解読されたIRパケットのサイクリック・リダンダンシー・チェック(CRC)値に基づいて、IRパケットが正確に解読されているか、または否かを決定し得る。
[0035] 以下の説明は、複数の例を提供するものであり、特許請求の範囲に記載されている範囲、適用性、または複数の例を限定していない。複数の変更は、本開示の範囲から逸脱することなく、延べられる要素の機能および配置において行われ得る。様々な例は、適宜、様々なプロシージャまたはコンポーネントを省略、代用、あるいは追加し得る。たとえば、説明される方法は、説明されるものとは異なる順序で行われ得、様々なステップは、追加、省略、または組み合わされ得る。また、いくつかの例に関して説明される特徴は、他の例において組み合され得る。
[0036] 図1は、本開示の様々な態様に従って、ワイヤレス通信システム100の例の図を例示する。システム100は、基地局105、少なくとも1つのUE115、およびコアネットワーク130を含む。コアネットワーク130は、ユーザ認証、アクセス許可、トラッキング、インターネットプロトコル(IP)接続性、および他のアクセス、ルーティング、またはモビリティ機能を提供し得る。基地局105は、バックホールリンク132(たとえば、S1等)を通じてコアネットワーク130とインターフェイスで連結する(interface with)。基地局105は、UE115との通信のためにラジオ構成およびスケジューリングを行い得、または基地局のコントローラ(図示せず)のコントロール下で動作し得る。様々な例では、基地局105は、(たとえば、コアネットワーク130を通して)直接的または間接的に、バックホールリンク134(たとえば、X1等)上で互いに通信し得、それはワイヤード(wired)またはワイヤレス通信リンクであり得る。
[0037] 基地局105は、1つまたは複数の基地局アンテナを介してUE115とワイヤレスに通信し得る。基地局105の各々は、それぞれのカバレッジエリア110に通信カバレッジを提供し得る。いくつかの例において、基地局105は、基地トランシーバ局、無線基地局、アクセスポイント、無線トランシーバ、ノードB、eノードB(eNB)、ホームノードB、ホームeノードB、または何らかの他の好適な用語で呼ばれ得る。基地局105のための地理的カバレッジエリア110は、そのカバレッジエリアの一部を構成する(making up)複数のセクタ(図示せず)に分割され得る。ワイヤレス通信システム100は、異なる複数のタイプの基地局105(たとえば、マクロまたはスモールセル基地局)を含み得る。異なる複数の技術のための重複する(overlapping)地理的カバレッジエリア110があり得る。
[0038] いくつかの例において、ワイヤレス通信システム100は、ロングタームエボリューション(LTE)/LTE−アドバンスト(LTE−A)ネットワークである。LTE/LTE−Aネットワークでは、発展型ノードB(eNB)という用語は、一般に、基地局105を説明するために使用され得、一方で、UEという用語は、一般に、UE115を説明するために使用され得る。ワイヤレス通信システム100は、異なるタイプの複数のeNBが、そこにおいて様々な地理的領域(geographical regions)にカバレッジを提供する異種LTE/LTE−Aネットワークであり得る。たとえば、各eNBまたは基地局105は、マクロセル、スモールセル、または他の複数のタイプのセルに通信カバレッジを提供し得る。「セル」という用語は、コンテキストに応じて、基地局、基地局に関連するコンポーネントキャリアまたはキャリア、あるいは基地局またはキャリアのカバレッジエリア(たとえば、セクタ等)を説明するために使用されることができる3GPP(登録商標)用語である。
[0039] マクロセルは、一般に、比較的大きい地理的エリア(たとえば、半径数キロメートル)をカバーし、ネットワークプロバイダのサービスに加入しているUE115による無制限のアクセスを可能にし得る。スモールセルは、複数のマクロセルと同じまたは異なる(たとえば、認可、無認可等の)複数の周波数帯域内で動作し得る、マクロセルと比較すると、より低出力(lower-powered)の基地局である。スモールセルは、様々な例によると、ピコセル、フェムトセル、およびマイクロセルを含み得る。ピコセルは、たとえば、小さい地理的エリアをカバーし得、ネットワークプロバイダのサービスに加入しているUE115による無制限のアクセスを可能にし得る。フェムトセルもまた、小さい地理的エリア(たとえば、家)をカバーし得、フェムトセルとの関連付けを有するUE115(たとえば、限定加入者グループ(CSG:a closed subscriber group)中のUE115、家の中にいるユーザのためのUE115など)による制限されたアクセスを提供し得る。マクロセルのためのeNBは、マクロeNBと呼ばれ得る。スモールセルのためのeNBは、スモールセルeNB、ピコeNB、フェムトeNBまたはホームeNBと呼ばれ得る。eNBは、1つまたは複数(たとえば、2つ、3つ、4つなど)のセル(たとえば、コンポーネントキャリア)をサポートし得る。
[0040] ワイヤレス通信システム100は、同期または非同期(asynchronous)動作をサポートし得る。同期動作に関しては、基地局105は、同様のフレームタイミングを有し得、異なる複数の基地局105からの送信は、時間的に近似に(approximately)そろえられ(aligned in time)得る。非同期動作に関しては、基地局105は、異なるフレームタイミングを有し得、異なる複数の基地局105からの送信が時間的にそろえられない可能性がある。本明細書で説明される複数の技法は、同期または非同期動作のいずれかに対して使用され得る。
[0041] 様々な開示された複数の例のうちのいくつかを供給し(accommodate)得る複数の通信ネットワークは、階層化プロトコルスタック(a layered protocol stack)に従って動作するパケットベースのネットワーク(packet-based networks)であり得る。ユーザプレーン(user plane)において、ベアラ(bearer)またはパケットデータコンバージェンスプロトコル(PDCP:packet data convergence protocol)レイヤでの通信は、IPベースであり得る。ラジオリンクコントロール(RLC)レイヤは、論理チャネルを通じて通信するためにパケットセグメンテーション(packet segmentation)およびリアセンブリ(reassembly)を行い得る。媒体アクセスコントロール(MAC)レイヤは、複数のトランスポートチャネルへの複数の論理チャネルの多重化および優先処理(priority handling)を行い得る。MACレイヤはまた、リンク効率(link efficiency)を改善するために、MACレイヤで再送信を提供するためにハイブリッド自動再送要求(HARQ)を使用し得る。コントロールプレーンにおいて、ラジオリソースコントロール(RRC:radio resource control)プロトコルレイヤは、UE115と基地局105との間でのRRC接続の確立、構成、および維持を提供し得る。RRCプロトコルレイヤはまた、ユーザプレインデータ(user plane data)に関する複数のラジオベアラのコアネットワーク130のサポートに使用され得る。物理(PHY)レイヤにおいて、それらトランスポートチャネルは、複数の物理チャネルにマッピングされ得る。
[0042] UE115は、ワイヤレス通信システム100全体に分散していることがあり得、各UE115は、固定式またはモバイルであり得る。UE115はまた、モバイル局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、遠隔ユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、遠隔デバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、遠隔端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または何らかの他の好適な専門用語を含み得、あるいは、当業者によってそのように呼ばれ得る。UE115は、セルラ電話、携帯情報端末(PDA)、ワイヤレスモデム、ワイヤレス通信デバイス、ハンドヘルドデバイス、タブレットコンピュータ、ラップトップコンピュータ、コードレスフォン、ワイヤレスローカルループ(WLL)局などであり得る。UEは、マクロeNB、スモールセルeNB、リレー基地局などを含む、様々なタイプの基地局およびネットワーク機器と通信することが可能であり得る。
[0043] ワイヤレス通信システム100で示される通信リンク125は、UE115から基地局105へのアップリンク(UL)送信、または基地局105からUE115へのダウンリンク(DL)送信を含み得る。ダウンリンク送信はまた、順方向リンク送信と呼ばれ得、一方で、アップリンク送信はまた、逆方向リンク送信と呼ばれ得る。各通信リンク125は、1つまたは複数のキャリアを含み得、ここで、各キャリアは、上記に説明された様々な無線技術に従って変調された複数のサブキャリア(たとえば、異なる複数の周波数の複数の波形信号)で構成されている信号であり得る。各変調された信号は、異なるサブキャリア上で送られ得、コントロール情報(たとえば、複数の基準信号、複数のコントロールチャネル、等)、オーバヘッド情報、ユーザデータ等を搬送し得る。通信リンク125は、(たとえば、ペアにされたスペクトルリソースを使用する)周波数分割複信(FDD)または(たとえば、ペアにされていない複数のスペクトルリソースを使用する)時分割複信(TDD)動作を使用して、双方向通信を送信し得る。フレーム構造は、FDD(たとえば、フレーム構造タイプ1)に関して、およびTDD(たとえば、フレーム構造タイプ2)に関して定義され得る。
[0044] システム100のいくつかの実施形態では、基地局105またはUE115は、基地局105とUE115との間の通信の品質と信頼性とを改善するために、アンテナダイバーシティ方式を採用するための複数のアンテナを含み得る。追加的または代替的に、基地局105またはUE115は、同じまたは異なるコード化されたデータを搬送する複数の空間レイヤを送信するために、マルチパス環境を活用し(take advantage of)得る多入力多出力(MIMO)技法を用い得る。
[0045] ワイヤレス通信システム100は、複数のセルまたはキャリア上での動作、キャリアアグリゲーション(CA:carrier aggregation)またはマルチキャリア動作と呼ばれ得る機能をサポートし得る。キャリアは、コンポーネントキャリア(CC)、レイヤ、チャネル等とも呼ばれ得る。「キャリア」、「コンポーネントキャリア」、「セル」、および「チャネル」という用語は、本明細書では交換可能に使用され得る。UEは、キャリアアグリゲーションのために複数のダウンリンクCCおよび1つまたは複数のアップリンクCCで構成され得る。キャリアアグリゲーションは、FDDコンポーネントキャリアとTDDコンポーネントキャリアの両方とともに使用され得る。
[0046] 本開示に従って、RLCにおける基地局105とUE115との間のデータ通信は、UE115が、受信されたデータを適切にデクリプトすることができることを確実にするために、厳格な同期を要し得る。たとえば、音声通信を確立するために、基地局105およびUE115との間の通信が同期されたままでいる(remain)ことは重要(critical)であり得る。しかしながら、上で述べられるように、時折、基地局105とUE115との間の多数のフレームまたはPDUは、たとえば、品質の悪いチャネルの状態に起因して、成功裏に送信されない可能性がある。そのような場合、フレームの失敗に終わった(unsuccessful)送信は、HFNに、基地局105においてロールオーバさせ得るが、UE115においてロールオーバさせない可能性があり、基地局105とUE115との間との脱同期に終わる。脱同期は、UE115による、基地局105からのデータを解読するかまたは展開の失敗にさらに終わり得る。たとえば、UE115が、64個よりも多くの連続するPDUを逃す場合、UE115は、逃したPDUに気づいていない可能性があり、よって、基地局105と同期されたままを維持するために、UE115におけるHFNをインクリメントしない可能性がある。その結果、さらなる複数のPDUが基地局105とUE115との間で正確に送信されおよび受信されたとしても、受信された複数のPDUにおけるデータは、基地局105およびUE115におけるHFN値の間での脱同期に起因して、不正確に(incorrectly)解読され得る。
[0047] 本開示に従って、UE115は、UE115に記憶されたHFNを使用して圧縮されたRoHCパケットを解読することの閾値数の連続する失敗を経験する際に、脱同期を検出し得る。圧縮されたRoHCパケットを解読する連続する複数の失敗を検出する際に、UE115は、脱同期を表示する基地局105にメッセージを送信し得る。いくつかの例において、メッセージは、NAKを備える。UE115からNAKメッセージを受信することに応答して、基地局105は、UE115にIRパケットを送信し得る。IRパケットは、UE115が基地局105と再同期することを援助する(assist)ための、重要なパケット圧縮なしのペイロードを含む、フルヘッダ情報を搬送し得る。
[0048] ワイヤレス通信システム100は、上位の複数のレイヤ(たとえば、RRCおよびPDCP)を下位の複数のレイヤ(たとえば、MACレイヤ)に接続するRLCレイヤを含み得る。基地局105またはUE115におけるRLCエンティティは、複数の送信パケットが、(MACレイヤトランスポートブロックサイズに対応して)適切にサイズ付けされた複数のブロックに整理される(organized)ことを確実にし得る。入ってくる一データパケット(たとえば、PDCPまたはRRCサービスデータユニット(SDU))が、送信には大きすぎる場合、RLCレイヤは、それをいくつかの(several)より小さいRLCプロトコルデータユニット(PDU)にセグメント化し得る。入ってくる複数のデータパケットが小さすぎる場合、RLCレイヤは、それらのいくつかを、単一の、より大きいRLC PDUに連結し(concatenate)得る。各RLC PDUは、データをリアセンブルする(reassemble)やり方についての情報を含むヘッダを含み得る。RLCレイヤはまた、複数のパケットが確実に送信されることを確実にし得る。送信器は、それが、対応する肯定応答(ACK)受信するまで、インデックス付けされた複数のRLC PDUのバッファを保ち(keep)得、各PDUの再送信を続け得る。いくつかの事例では、送信器は、どの複数のPDUが受信されたかを決定するためのポール要求(a Poll Request)を送り得、受信器は、状況報告(a Status Report)で応答し得る。MACレイヤのHARQと異なり、RLC自動再送要求(ARQ)は、フォワードエラー補正機能(a forward error correction function)を含まない可能性がある。RLCエンティティは、3つのモードのうちの1つにおいて、動作し得る。応答されたモード(AM)、応答されていないモード(UM)およびTMにおいて。AMにおいて、RLCエンティティは、セグメンテーション/連結およびARQを行い得る。このモードは、遅延耐性があり(delay tolerant)またはエラーに敏感な送信に適切であり得る。UMにおいて、RLCエンティティは、セグメンテーションまたは連結を行い得るが、ARQを行わない可能性がある。これは、遅延に敏感でありまたはエラー耐性のあるトラフィック(たとえば、ボイスオーバーロングタームエボリューション(VoLTE))にとって適切であり得る。トランスペアレントなモード(TM:transparent mode)は、連結/セグメンテーションまたはARQなしで、データバッファリングを行い得る。TMは、主にブロードキャストコントロール情報(たとえば、マスター情報ブロック(MIB)および複数のシステム情報ブロック(SIB))、複数のページングメッセージ、および複数のRRC接続メッセージを送ることに使用され得る。いくつかの送信は、RLC(たとえば、ランダムアクセスチャネル(RACH)プリアンブルおよび応答)なしで送られ得る。
[0049] 本開示に従って、UE115は、それらPDUパケットのサイズに基づいて、受信された複数のPDUを識別し得る。一例において、UE115は、受信されたIRパケットは、圧縮されたRoHCパケットよりも大きい暗号化されたPDUサイズを備えることを決定するという決定に基づいて、受信されたPDUをIRパケットとして識別し得る。従って、UE115は、IRパケットの識別に応答してHFNオフセットを使用して、IRパケットを解読し得る。本開示のいくつかの例において、UE115は、解読されたIRパケットのCRC値に基づいて、IRパケットが正確に解読されているかどうかを決定し得る。万一、UE115が、HFNオフセットを使用してのIRパケットを解読することの失敗を検出する場合には、UE115は、検出された失敗に基づいて、HFNオフセットの値をインクリメントまたはデクリメントし得る。
[0050] いくつかの事例では、UE115は、ラジオリンクが失敗したことを決定し得、ラジオリンクの失敗(RLF:radio link failure)プロシージャを開始し得る。たとえば、RLFプロシージャは、最大数の再送信が、到達されたというRLC表示の際に、最大数の同期していないという表示(out-of-sync indications)を受信する際に、またはRACHプロシージャの間の無線の失敗の際に、トリガされ得る。いくつかの事例(たとえば、同期していないという表示の限界に到達することの後)では、UE115は、タイマーを開始し得、閾値数の同期しているという表示(in-sync indications)が受信されたかどうかを決定するために待ち得る。同期しているという表示の数が、タイマーの終了(expiration)の前に閾値を超える(exceeds)場合、UE115は、RLFプロシージャを中断(abort)し得る。さもなければ、UE115は、ネットワークへのアクセスを取り戻す(regain)ためにRACHプロシージャを行い得る。RACHプロシージャは、セルラジオネットワークの一時的なアイデンティティ(C−RNTI:cell radio network temporary identity)、セルの識別(ID)、セキュリティ検証情報(security verification)、および再確立の原因(a cause)を含むRRC接続再確立要求(an RRC connection re-establishment request)を送信することを含み得る。その要求を受信する基地局105は、RRC接続の再確立のメッセージ(an RRC connection re-establishment message)またはRRC接続の再確立の拒否(an RRC connection re-establishment rejection)を用いて応答し得る。RRC接続の再確立のメッセージは、セキュリティキーを生成するための情報と同様に、UE115のためのシグナリングラジオベアラ(SRB)を確立するためのパラメータを含み得る。いったん、UE115が、RRC接続の確立のメッセージを受信すると、それは、新しいSRB構成をインプリメントし得、基地局105にRRC接続の再確立の完了メッセージ(an RRC connection re-establishment complete message)を送信し得る。
[0051] いくつかの事例において、LTEネットワークは、データパケットの転送のために設計され得、音声通信のためにフォールバックにスイッチされた回路(a circuit switched fall back)を使用し得る。しかしながら、LTEネットワークはまた、ボイスオーバーインターネットプロトコル(VoIP:voice over internet protocol)アプリケーションと同様の、パケットべースのシステムを使用する音声通信のために使用され得る。これは、VoLTE技術を使用して成し遂げられ得る。VoLTEとVoIPとの間には、いくつかの肝要な(key)複数の違いがあり得る。たとえば、VoLTEサービスは、明示的なサービス品質(QoS)のターゲット(an explicit quality of service (QoS) target)を含み得る。品質の悪い無線状態でのQoS閾値を達成するために、複数のVoLTEパケットは、少ない待ち時間(low latency)および改善されたエラー補正を確実にするためにインターネットプロトコルマルチメディアサブシステム(IMS:internet protocol multimedia subsystem)および他のネットワークの特徴を利用し得る。
[0052] 図2は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するためのワイヤレス通信サブシステム200の例を例示する。ワイヤレス通信サブシステム200は、UE115−aを含み得、それは、図1に関して上で説明されたUE115の例であり得る。ワイヤレス通信サブシステム200はまた、基地局105−aを含み得、それは、図1に関して上で説明された基地局105の例であり得る。
[0053] 本開示に従って、UE115−aおよび基地局105−aは、データ(たとえば、LTE上の音声パケット)を交換するために通信を確立し得る。PDCPにおいて、複数のパケットを暗号化および解読することは、時変パラメータ値またはカウントを利用することによって行われ得、それは、各PDCPSNサイクルでインクリメントされるハイパーフレーム番号(HFN)と短配列番号(SN)との組み合わせであり得る。従って、SN値が最大値(たとえば、127)を超える(exceeds)とき、SNは、それの初期値(たとえば、ゼロ)までラップアラウンドされ得、HFNは、連続してインクリメントされ得る。本開示のいくつかの例において、UE115−aは、送信されたパケットをエンクリプトするために、基地局105−aによって利用されるHFNを使用して、受信されたPDUをデクリプトする必要があり得る。
[0054] 一例において、UE115−aおよび基地局105−aは、独立して、HFNカウンタ205を維持し得る。SN値は、基地局105−aによって送信された各関連付けられたPDUでシグナリングされ得る。例示された例において、HFNカウンタは、UEHFNカウンタ205−aと基地局(BS)HFNカウンタ205−bとの両方に関して、ゼロで、開始し得る。第1の時間間隔の間、基地局105−aは、UE115−aに第1のセットのPDU210を送信し得る。各送信されたPDUは、UE115−aが基地局105−aから受信された複数のパケットの順序を決定することを許可し得るSN値(たとえば、0−127)と一致し(correspond with)得る。SN値が最大値(たとえば、127)を超えるとき、SNは、値ゼロまでラップアラウンドされ得、UE115−aは、UE HFNカウンタ215−aをインクリメントし得る。同様に、基地局105−aは、現在のHFN値を反映するようにインクリメントされ得る別個のHFNカウンタ215−bを維持し得る。
[0055] いくつかの例において、基地局105−aは、第2の時間期間の間、UE115−aに第2のセットのPDU(単数または複数)220を送信し得る。しかしながら、一例において、PDU(単数または複数)220の送信されたセットは、品質の悪いチャネルの状態に起因して、UE115−aに到達できない(fail to reach)可能性がある。結果として、第2のセットのPDU(単数または複数)220の送信は、基地局105−aに、BS HFNカウンタ225をロールオーバさせ得るが、UE HFNカウンタをロールオーバさせない可能性があり、UE115−aと基地局105−aとの間での脱同期に終わる。その後に、基地局105−aが、UE115−aに、更新されたHFN値を使用してエンクリプトされた第3のセットのPDU(単数または複数)230を送信するとき、UE115−aは、逃した第2のセットのPDU(単数または複数)に気づいていない可能性がある。このように、いくつかの例において、UE115−aは、復号の失敗235に終わるステイル(stale)なHFN値(たとえば、HFN=1)を利用して、第3のセットのPDU(単数または複数)を解読することを試み得る。一例において、UE115−aは、解読されたパケットのCRC値に基づいて、受信されたパケットが正確に解読されているかどうかを決定し得る。追加的、または代替的に、UE115−aは、基地局105−aに否定応答(NAK)メッセージ240を送信することの前に所定の回数にわたり(for a predetermined number of times)受信されたPDUセット230を解読することを試み得る。
[0056] NAKメッセージ240を受信する際に、基地局105−aは、パケット圧縮なしでデータパケットを搬送するRoHC IRパケット245を送信し得る。受信されたRoHC IRパケット245に部分的に基づいて、UE115−aは、図3に関して詳細に説明された適用HFNオフセット再同期プロシージャ(adaptive HFN offset re-synchronization procedure)250を開始し得る。
[0057] 図3は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法300を例示するフローチャートである。方法300の複数の動作は、図1〜2に関して説明されるように、UE115またはそれの複数のコンポーネントによってインプリメントされ得る。いくつかの例において、UE115は、以下に説明された複数の機能を行うために、UE115の複数の機能的なエレメントをコントロールするためのコードのセットを実行し得る。追加的、または代替的に、UE115は、特殊用途のハードウェアを使用して、以下に説明された複数の機能、複数の態様を行い得る。
[0058] 本開示に従って、UE115は、ブロック305において、送信されたNAKメッセージに応答して、基地局105からのRoHC IRパケットを受信し得る。ブロック310において、UE115は、RLCレイヤにおいて、パケットのサイズに基づいて、IRパケットを識別し得る。複数の態様において、UE115は、別のレイヤにおいてIRパケットを識別し得る。一例において、UE115は、受信されたIRパケットは、圧縮されたRoHCパケットよりも大きい暗号化されたPDUサイズを備えることを決定し得る。
[0059] 追加的、または代替的に、UE115は、ブロック315において、初期のHFNオフセット値に基づいて、IRパケットを解読し得る。いくつかの例において、HFNオフセット値は、HFN+iまたはHFN−i値のうちの1つまたは複数、またはそれのサブセットを参照し得、ここで、「i」は、整数(たとえば、i=1、i=2等)であり得る。一例において、初期のHFNオフセット値は、1であり得る(たとえば、HFN=1)。ブロック320において、UE115は、解読されたIRパケットに対して、サイクリック・リダンダンシー・チェック(CRC)を行うことによって、解読されたIRパケットが正確に解読されたどうかを決定し得る。ブロック320において、UE115が、初期のHFNオフセット値が正しいCRCを産出する(yields)ことを決定する場合、方法300は、UE115および基地局105が再同期されていることを識別するために、ブロック325に進み得る。しかしながら、万一、UE115が、初期のHFNオフセットを使用してのIRパケットを正確に解読することの失敗を検出する場合には、UE115は、ブロック330において、閾値数の再試行(たとえば、3つの連続する施行)が到達されたかどうかを最初に決定し得る。いくつかの例において、閾値は、基地局105とUE115との間で送信されたデータのタイプに基づいて、動的に調整され得る。受信されたIRパケットを解読することを試行することに関する閾値が到達した場合、UE115は、ブロック335において、ラジオリンクの失敗をトリガし得、基地局105との通信の再確立の処理を始め得る。複数の態様において、初期のHFNオフセットを使用してのIRパケットを正確に解読することの単一の失敗は、ラジオリンクの失敗をトリガし得る。
[0060] しかしながら、再試行の閾値が到達されなかったとき、UE115は、ブロック340において、検出されたCRCの失敗に基づいて、HFNオフセットの値をインクリメントまたはデクリメントし得る。ブロック345において、UE115は、更新されたHFNオフセット値で受信されたIRパケットを解読することを試み得、再び、解読されたIRパケットのCRC値に基づいて、IRパケットが正確に解読されているかどうかを決定し得る。
[0061] 図4は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するように構成されたUE115−bのブロック図400を示す。UE115−bは、図1〜3に関して説明される、UE115の複数の態様の例であり得る。UE115−bは、受信器405、通信管理モジュール410、または送信器415を含み得る。UE115−bは、プロセッサを含み得る。これらのコンポーネントの各々は、互いに通信状態であり得る。
[0062] UE115−bの複数のコンポーネントは、個別的または集合的に、ハードウェアにおいていくつかまたは全ての適用可能な機能を行うように適用された少なくとも1つの特定用途向け集積回路(ASIC)で、インプリメントされ得る。代替的に、複数の機能は、少なくとも1つのIC上で、1つまたは複数の他の処理ユニット(またはコア)によって行われ得る。他の実施形態において、他のタイプの集積回路(たとえば、ストラクチャード/プラットフォーム(Structured/Platform)ASIC、フィールドプログラマブルゲートアレイ(FPGA)、または別のセミカスタムIC(semi-custom IC)は、使用され得、それは、当該技術で知られる任意の方法でプログラムされ得る。各ユニットの複数の機能はまた、全体または一部において、1つまたは複数の汎用またはアプリケーション特有のプロセッサによって実行されるようにフォーマットされた、メモリにおいて具体化された命令でインプリメントされ得る。
[0063] 受信器405は、複数のパケット、ユーザデータ、または様々な情報チャネル(たとえば、HFNオフセットを用いてUEを同期することに関連づけられた情報、データチャネル、およびコントロールチャネル等)に関連付けられたコントロール情報のような情報を受信し得る。情報は、通信管理モジュール410およびUE115−cの他の複数のコンポーネントに渡され(passed on to)得る。
[0064] 通信管理モジュール410は、たとえば、PDCPレイヤにおいて、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信し得、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別し得、およびIRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読し得る。
[0065] 送信器415は、UE115−cの他の複数のコンポーネントから受信した複数の信号を送信し得る。いくつかの実施形態において、送信器415は、トランシーバモジュールにおいて、受信器405と配置され(collocated with)得る。送信器415は、単一のアンテナ、または、それは、複数のアンテナを含み得る。
[0066] 図5は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するためのUE115−cのブロック図500を示す。UE115−cは、図1〜4に関して、説明されたUE115の複数の態様の例であり得る。UE115−cは、受信器405−a、通信管理モジュール410−a、または送信器415−aを含み得る。UE115−cはまた、プロセッサを含み得る。これらのコンポーネントの各々は、互いに通信状態であり得る。通信管理モジュール410−aはまた、IR受信モジュール505、パケット識別モジュール510、および復号モジュール515を含み得る。
[0067] UE115−cの複数のコンポーネントは、個別的または集合的に、ハードウェアにおいていくつかまたは全ての適用可能な機能を行うように適用された少なくとも1つのASICでインプリメントされ得る。代替的に、複数の機能は、少なくとも1つのIC上で、1つまたは複数の他の処理ユニット(またはコア)によって行われ得る。他の実施形態において、他のタイプの集積回路(たとえば、ストラクチャード/プラットフォームASIC、FPGA、または別のセミカスタムIC)は、使用され得、それは、当該技術で知られる任意の方法でプログラムされ得る。各ユニットの複数の機能はまた、全体または一部において、1つまたは複数の汎用またはアプリケーション特有のプロセッサによって実行されるようにフォーマットされた、メモリにおいて具体化された命令でインプリメントされ得る。
[0068] 受信器405−aは、通信管理モジュール410−a、およびUE115−dの他の複数のコンポーネントに渡され得る情報を受信し得る。通信管理モジュール410−aは、図4に関して上で説明された複数の動作を行い得る。送信器415−aは、UE115−dの他の複数のコンポーネントから受信された信号を送信し得る。
[0069] IR受信モジュール505は、図2〜3に関して上で説明されるように、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信し得る。
[0070] パケット識別モジュール510は、図2〜3に関して上で説明されるように、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別し得る。複数の態様において、パケット識別モジュール510は、別のレイヤにおいてIRパケットを識別し得る。いくつかの例において、サイズに基づいてIRパケットを識別することは、受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたPDUサイズを備えることを決定することを備える。
[0071] 復号モジュール515は、図2〜3に関して上で説明されるように、IRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読し得る。
[0072] 図6は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための通信管理モジュール410−bのブロック図600を示す。通信管理モジュール410−bは、図4〜5に関して、説明された通信管理モジュール410の複数の態様の例であり得る。通信管理モジュール410−bは、IR受信モジュール505−a、パケット識別モジュール510−a、および復号モジュール515−aを含み得る。これらのモジュールの各々は、図5に関連して上記に説明された複数の機能を行い得る。通信管理モジュール410−bはまた、エラー検出モジュール605、HFN適用モジュール610、同期モジュール615、閾値決定モジュール620、およびエラー報告生成モジュール625を含み得る。
[0073] 通信管理モジュール410−bの複数のコンポーネントは、個別的または集合的に、ハードウェアにおいていくつかまたは全ての適用可能な機能を行うように適用された少なくとも1つのASICでインプリメントされ得る。代替的に、複数の機能は、少なくとも1つのIC上で、1つまたは複数の他の処理ユニット(またはコア)によって行われ得る。他の実施形態において、他のタイプの集積回路(たとえば、ストラクチャード/プラットフォームASIC、FPGA、または別のセミカスタムIC)は、使用され得、それは、当該技術で知られる任意の方法でプログラムされ得る。各ユニットの複数の機能はまた、全体または一部において、1つまたは複数の汎用またはアプリケーション特有のプロセッサによって実行されるようにフォーマットされた、メモリにおいて具体化された命令でインプリメントされ得る。
[0074] エラー検出モジュール605は、方法2〜3に関して上で説明されるように、解読されたIRパケットのCRC値に基づいて、IRパケットが正確に解読されていることを決定し得る。エラー検出モジュール605はまた、ハイパーフレーム番号オフセットを使用してのIRパケットを正確に解読することの失敗を検出し得る。
[0075] HFN適用モジュール610は、方法2〜3に関して上で説明されるように、検出された失敗に基づいて、ハイパーフレーム番号オフセットの値をインクリメントし得る。追加的、または代替的に、HFN適用モジュール610は、検出された失敗に基づいて、ハイパーフレーム番号オフセットの値をデクリメントし得る。
[0076] 同期モジュール615は、方法2〜3に関して上で説明されるように、ハイパーフレーム番号オフセットを使用してIRパケットを解読することにおける成功に基づいて、第1のワイヤレスデバイスを第2のワイヤレスデバイスと同期し得る。
[0077] 閾値決定モジュール620は、方法2〜3に関して上で説明されるように、第1のワイヤレスデバイスによって記憶された現在のハイパーフレーム番号を使用して圧縮されたRoHCパケットを解読することの閾値数の失敗(たとえば、連続する複数の失敗)を検出し得る。
[0078] エラー報告生成モジュール625は、方法2〜3に関して上で説明されるように、第2のワイヤレスデバイスに連続する失敗の表示を送信し得る。いくつかの例において、第2のワイヤレスデバイスに送信される表示は、否定応答メッセージを備える。
[0079] 図7は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するように構成されたUE115を含むシステム700の図を示す。システム700は、UE115−dを含み得、それは、方法1〜6に関して上で説明されたUE115の例であり得る。UE115−eは、通信管理モジュール710を含み得、それは、図4〜6に関して説明された通信管理モジュール410の例であり得る。UE115−dはまた、RLFモジュール725を含み得る。UE115−dはまた、通信を送信するためのコンポーネントおよび通信を受信するためのコンポーネントを含む双方向の音声およびデータ通信およびに関する複数のコンポーネントを含み得る。たとえば、UE115−dは、UE115−eまたは基地局105−cと双方向で(bi-directionally)通信し得る。
[0080] RLFモジュール725は、図2〜3に関して上で説明されるように、検出された失敗に基づいて、ラジオリンクの失敗をトリガし得る。たとえば、RLFプロシージャは、再送信の最大数が、到達されたというRLC表示の際に、最大数の同期していないという表示を受信する際に、またはRACHプロシージャの間の無線の失敗の際に、トリガされ得る。いくつかの事例(たとえば、同期していないという表示に関する限界に到達した後)では、RLFモジュール725は、タイマーを開始し得、閾値数の同期しているという表示(たとえば、1つまたは複数の)が受信されたかどうかを決定するために待ち得る。同期しているという表示の数が、タイマーの終了の前に閾値を超える場合、RLFモジュール725は、RLFプロシージャを中断し得る。さもなければ、RLFモジュール725は、ネットワークへのアクセスを取り戻すためにRACHプロシージャを行い得る。RACHプロシージャは、セルラジオネットワークの一時的なアイデンティティ(C−RNTI)、セルの識別(ID)、セキュリティ検証情報、および再確立の原因を含むRRC接続再確立要求を送信することを含み得る。
[0081] UE115−dはまた、プロセッサモジュール705、および(ソフトウェア(SW)720を含む)メモリ715、トランシーバモジュール735、および1つまたは複数のアンテナ(1つまたは複数)740を含み得、それらの各々は、直接的または間接的に(たとえば、複数のバス745を介して)共に(each other)通信し得る。トランシーバモジュール735は、上記に説明されるように、アンテナ(1つまたは複数)740または複数のワイヤードまたはワイヤレスリンクを介して、1つまたは複数のネットワークと双方向で通信し得る。たとえば、トランシーバモジュール735は、基地局105または別のUE115と双方向で通信し得る。トランシーバモジュール735は、パケットを変調して、および送信のためのアンテナ(単数または複数)740に変調されたパケットを提供するための、および、アンテナ(単数または複数)740から受信されたパケットを復調するための、モデムを含み得る。UE115−dは、単一のアンテナ740を含み得る一方で、UE115−dはまた、複数のワイヤレス送信を一斉に(concurrently)送信することまたは受信することが可能である複数のアンテナ740を有し得る。
[0082] メモリ715は、ランダムアクセスメモリ(RAM)および読み取り専用メモリ(ROM)を含み得る。メモリ715は、実行された場合、プロセッサモジュール705に、本明細書で説明された様々な機能(たとえば、HFNオフセットを用いてUEを同期すること等)を行わせる命令を含む、コンピュータ読み取り可能、コンピュータ実行可能ソフトウェア/ファームウェアコード720を記憶し得る。代替的に、ソフトウェア/ファームウェアコード720は、プロセッサモジュール705によって直接的に実行可能でない可能性があるが、コンピュータに、(たとえば、コンパイルされ(compiled)および実行されたとき)本明細書に説明された複数の機能を行わせ得る。プロセッサモジュール705は、(たとえば、中央処理ユニット(CPU)、マイクロコントローラ、ASIC等)インテリジェントハードウェアデバイスを含み得る。
[0083] 図8は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法800を例示するフローチャートを示す。方法800の複数の動作は、図1〜7に関して説明されるように、UE115またはそれの複数のコンポーネントによってインプリメントされ得る。たとえば、図4〜7に関して説明されるように、方法800の複数の動作は、通信管理モジュール410によって行われ得る。いくつかの例において、UE115は、以下に説明された複数の機能を行うために、UE115の複数の機能的なエレメントをコントロールするためのコードのセットを実行し得る。追加的、または代替的に、UE115は、特殊用途のハードウェアを使用して、以下に説明された複数の機能、複数の態様を行い得る。
[0084] ブロック805において、図2〜3に関して上で説明されるように、UE115は、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック805の複数の動作は、IR受信モジュール505によって行われ得る。
[0085] ブロック810において、図2〜3に関して上で説明されるように、UE115は、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別し得る。複数の態様において、UE115は、別のレイヤにおいてIRパケットを識別し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック810の複数の動作は、パケット識別モジュール510によって行われ得る。
[0086] ブロック815において、図2〜3に関して上で説明されるように、UE115は、IRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック815の複数の動作は、復号モジュール515によって行われ得る。
[0087] 図9は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法900を例示するフローチャートを示す。方法900の複数の動作は、図1〜7に関して説明されるように、UE115またはそれの複数のコンポーネントによってインプリメントされ得る。たとえば、方法4〜7に関して説明されるように、方法900の複数の動作は、通信管理モジュール410によって行われ得る。いくつかの例において、UE115は、以下に説明された複数の機能を行うために、UE115の複数の機能的なエレメントをコントロールするためのコードのセットを実行し得る。追加的、または代替的に、UE115は、特殊用途のハードウェアを使用して、以下に説明された複数の機能、複数の態様を行い得る。方法900はまた、図8の方法800の複数の態様を組み込み得る。
[0088] ブロック905において、方法2〜3に関して上で説明されるように、UE115は、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック905の複数の動作は、IR受信モジュール505によって行われ得る。
[0089] ブロック910において、方法2〜3に関して上で説明されるように、UE115は、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別し得る。複数の態様において、UE115は、別のレイヤにおいてIRパケットを識別し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック910の複数の動作は、パケット識別モジュール510によって行われ得る。
[0090] ブロック915において、方法2〜3に関して上で説明されるように、UE115は、IRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック915の複数の動作は、復号モジュール515によって行われ得る。
[0091] ブロック920において、方法2〜3に関して上で説明されるように、UE115は、解読されたIRパケットのCRC値に基づいて、IRパケットが正確に解読されていることを決定し得る。ある特定の複数の例において、図6に関して上で説明されるように、ブロック920の複数の動作は、エラー検出モジュール605によって行われ得る。
[0092] 図10は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法1000を例示するフローチャートを示す。図1〜7に関して説明されるように、方法1000の複数の動作は、UE115またはそれの複数のコンポーネントによってインプリメントされ得る。たとえば、図4〜7に関して説明されるように、方法1000の複数の動作は、通信管理モジュール410によって行われ得る。いくつかの例において、UE115は、以下に説明された複数の機能を行うために、UE115の複数の機能的なエレメントをコントロールするためのコードのセットを実行し得る。追加的、または代替的に、UE115は、特殊用途のハードウェアを使用して、以下に説明された複数の機能、複数の態様を行い得る。方法1000はまた、図8〜9の方法800及び900の態様を組み込み得る。
[0093] ブロック1005において、図2〜3に関して上で説明されるように、UE115は、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1005の複数の動作は、IR受信モジュール505によって行われ得る。
[0094] ブロック1010において、図2〜3に関して上で説明されるように、UE115は、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別し得る。複数の態様において、UE115は、別のレイヤにおいてIRパケットを識別し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1010の複数の動作は、パケット識別モジュール510によって行われ得る。
[0095] ブロック1015において、図2〜3に関して上で説明されるように、UE115は、IRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1015の複数の動作は、復号モジュール515によって行われ得る。
[0096] ブロック1020において、図2〜3に関して上で説明されるように、UE115は、ハイパーフレーム番号オフセットを使用してのIRパケットを正確に解読することの失敗を検出し得る。ある特定の複数の例において、図6に関して上で説明されるように、ブロック1020の複数の動作は、エラー検出モジュール605によって行われ得る。
[0097] ブロック1025において、図2〜3に関して上で説明されるように、UE115は、検出された失敗に基づいて、ハイパーフレーム番号オフセットの値をインクリメントまたはデクリメントすることのうちの少なくとも1つを行い得る。ある特定の複数の例において、ブロック1025の複数の動作は、図6に関して上で説明されるように、HFN適用モジュール610によって行われ得る。
[0098] 図11は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法1100を例示するフローチャートを示す。方法1100の複数の動作は、図1〜7に関して説明されるように、UE115またはそれの複数のコンポーネントによってインプリメントされ得る。たとえば、方法1100の複数の動作は、図4〜7に関して説明されるように、通信管理モジュール410によって行われ得る。いくつかの例において、UE115は、以下に説明された複数の機能を行うために、UE115の複数の機能的なエレメントをコントロールするためのコードのセットを実行し得る。追加的、または代替的に、UE115は、特殊用途のハードウェアを使用して、以下に説明された複数の機能、複数の態様を行い得る。方法1100はまた、図8〜10の方法800、900、および1000の態様を組み込み得る。
[0099] ブロック1105において、図2〜3に関して上で説明されるように、UE115は、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信し得る。複数の態様において、UE115は、別のレイヤにおいてIRパケットを識別し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1105の複数の動作は、IR受信モジュール505によって行われ得る。
[0100] ブロック1110において、方法2〜3に関して上で説明されるように、UE115は、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1110の複数の動作は、パケット識別モジュール510によって行われ得る。
[0101] ブロック1115において、UE115は、図2〜3に関して上で説明されるように、IRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1115の複数の動作は、復号モジュール515によって行われ得る。
[0102] ブロック1120において、図2〜3に関して上で説明されるように、UE115は、ハイパーフレーム番号オフセットを使用してIRパケットを解読することにおける成功に基づいて、第1のワイヤレスデバイスを第2のワイヤレスデバイスと同期し得る。ある特定の複数の例において、図6に関して上で説明されるように、ブロック1120の複数の動作は、同期モジュール615によって行われ得る。
[0103] 図12は、本開示の様々な態様に従って、HFNオフセットを用いてUEを同期するための方法1200を例示するフローチャートを示す。方法1200の複数の動作は、図1〜7に関して説明されるように、UE115またはそれの複数のコンポーネントによってインプリメントされ得る。たとえば、方法1200の複数の動作は、図4〜7に関して説明されるように、通信管理モジュール410によって行われ得る。いくつかの例において、UE115は、以下に説明された複数の機能を行うために、UE115の複数の機能的なエレメントをコントロールするためのコードのセットを実行し得る。追加的、または代替的に、UE115は、特殊用途のハードウェアを使用して以下に説明された複数の機能、複数の態様を行い得る。方法1200はまた、図8〜11の方法800、900、1000、および1100の態様を組み込み得る。
[0104] ブロック1205において、図2〜3に関して上で説明されるように、UE115は、第1のワイヤレスデバイスによって記憶された現在のハイパーフレーム番号を使用して圧縮されたRoHCパケットを解読することの閾値数の連続する失敗を検出し得る。ある特定の複数の例において、図6に関して上で説明されるように、ブロック1205の複数の動作は、閾値決定モジュール620によって行われ得る。
[0105] ブロック1210において、図2〜3に関して上で説明されるように、UE115は、第2のワイヤレスデバイスに連続する失敗の表示を送信し得る。ある特定の複数の例において、図6に関して上で説明されるように、ブロック1210の複数の動作は、エラー報告生成モジュール625によって行われ得る。
[0106] ブロック1215において、方法2〜3に関して上で説明されるように、UE115は、第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからRoHC初期化およびリフレッシュ(IR)パケットを受信し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1215の複数の動作は、IR受信モジュール505によって行われ得る。
[0107] ブロック1220において、方法2〜3に関して上で説明されるように、UE115は、IRパケットのサイズに基づいて、第1のワイヤレスデバイスのRLCレイヤにおいてIRパケットを識別し得る。複数の態様において、UE115は、別のレイヤにおいてIRパケットを識別し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1220の複数の動作は、パケット識別モジュール510によって行われ得る。
[0108] ブロック1225において、UE115は、図2〜3に関して上で説明されるように、IRパケットの識別に応答して、ハイパーフレーム番号オフセットを使用してIRパケットを解読し得る。ある特定の複数の例において、図5に関して上で説明されるように、ブロック1225の複数の動作は、復号モジュール515によって行われ得る。
[0109] 従って、方法800、900、1000、1100、および1200は、HFNオフセットを用いてUEを同期することを提供し得る。方法800、900、1000、1100、および1200は、可能性のあるインプリメンテーションを説明し、複数の動作およびステップは、再配置(rearranged)され得ること、またはさもなければ、他の複数のインプリメンテーションが可能であるように修正され得ることを留意されたい。いくつかの例において、方法800、900、1000、1100、および1200のうちの2つ以上からの複数の態様が組み合わされ得る。
[0110] 添付の図面に関して上述された詳細な説明は、例示的な実施形態を説明しており、インプリメントされ得る、または特許請求の範囲内にある全ての実施形態を表すものではない。本文書にわたって使用される用語「例示的(exemplary)」は、「好ましい」あるいは「その他の実施形態よりも有利である」ということではなく、「例、実例、あるいは例示として役立つこと」を意味する。詳細な説明は、説明された複数の技法の理解を提供する目的として特定の詳細を含む。これらの技法は、しかしながら、これらの特定の詳細なしに実施され得る。いくつかの事例では、周知の構造およびデバイスは、説明された複数の実施形態の概念を暖味にすることを避けるためにブロック図の形態で示されている。
[0111] 情報および信号は、様々な異なる複数の技術および技法のうちの任意のものを使用して表わされ得る。たとえば、上記説明の全体を通して参照され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場または磁性粒子、光場または光粒子、あるいはこれらの任意の組み合わせによって表わされ得る。
[0112] 本明細書での開示に関連して説明された様々な例示的なブロックおよびモジュールは、汎用プロセッサ、デジタルシグナルプロセッサ(DSP)、ASIC、FPGAまたは他のプログラマブル論理デバイス、離散ゲートまたはトランジスタ論理、離散ハードウェアコンポーネント、あるいは本明細書で説明された複数の機能を行うように設計されたそれらの任意の組み合わせを用いて、インプリメントまたは行われ得る。汎用プロセッサは、マイクロプロセッサであり得るが、代替において、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであり得る。プロセッサはまた、計算デバイスの組み合わせ(たとえば、DSPおよびマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと連携した1つまたは複数のマイクロプロセッサ、あるいは任意の他のそのような構成としてインプリメントされ得る。
[0113] 本明細書で説明された複数の機能は、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはそれらの任意の組み合わせによってインプリメントされ得る。プロセッサによって実行されるソフトウェアでインプリメントされる場合には、それら複数の機能は、コンピュータ読み取り可能媒体上の1つまたは複数の命令またはコードとして、記憶され得、またはそれを介して送信され得る。他の複数の例およびインプリメンテーションは、本開示および添付の特許請求の範囲内にある。たとえば、ソフトウェアの特質に起因して、上記に説明された機能は、プロセッサによって実行されるソフトウェア、ハードウェア、ファームウェア、ハードワイヤリング、またはこれらのいずれの組み合わせを使用してインプリメントされることができる。複数の機能をインプリメントする複数の特徴はまた、複数の機能の複数の部分が、異なる複数の物理的ロケーションにおいてインプリメントされるように分散されることを含めて、様々な場所に物理的に位置し得る。また、請求項を含む本明細書で使用される場合、項目のリスト(たとえば、「のうちの少なくとも1つ」または「のうちの1つまたは複数」のようなフレーズで始まる項目のリスト)において使用されるような「または(or)」は、たとえば「A、B、またはCのうちの少なくとも1つ」のリストが、A、またはB、またはC、またはAB、またはAC、またはBC、またはABC(すなわち、AおよびBおよびC)を意味するような包括的なリスト(inclusive list)を示す。
[0114] コンピュータ読み取り可能媒体は、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体とコンピュータ記憶媒体との両方を含む。記憶媒体は、汎用または特殊用途のコンピュータによってアクセスされることができる任意の利用可能な媒体であり得る。限定ではなく例として、コンピュータ読み取り可能媒体は、RAM、ROM、電気的消去可能プログラマブルROM(EEPROM(登録商標))、コンパクトディスク(CD)ROMまたはその他の光ディスク記憶装置、磁気ディスク記憶装置またはその他の磁気記憶デバイス、あるいは、データ構造または命令の形式で所望のプログラムコード手段を搬送または記憶するために使用されることができ、かつ汎用または特殊用途のコンピュータまたは汎用または特殊用途のプロセッサによってアクセスされることができるその他任意の媒体を備えることができる。また、任意の接続は、厳密にはコンピュータ読み取り可能媒体と称され得る。たとえば、ソフトウェアが、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者回線(「DSL」)、または赤外線、無線、およびマイクロ波のようなワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波のようなワイヤレス技術は、媒体の定義に含まれる。ディスク(disk)およびディスク(disc)は、本明細書で使用される場合、CD(disc)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(DVD)(disc)、フロッピー(登録商標)ディスク(disk)およびBlu−ray(登録商標)ディスク(disc)を含み、ここで、ディスク(disk)は通常、磁気的にデータを再生し、一方でディスク(disc)は、レーザーを用いて光学的にデータを再生する。上記の組み合わせもまた、コンピュータ読み取り可能媒体の範囲内に含まれ得る。
[0115] 本開示の先の説明は、当業者が本開示を製造または使用することを可能にするために提供される。本開示への様々な修正は、当業者にとって容易に明らかであり、ここに定義された一般的な原理は、本開示の範囲から逸脱することなく、他の変形形態に適用され得る。従って、本開示は、本明細書に説明された例および設計に限定されるべきではなく、ここに開示された原理および新規な特徴と一致する最も広い範囲を与えられるべきである。
[0116] 本明細書において説明される技法は、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、シングルキャリア周波数分割多元接続(SC−FDMA)、および他のシステムのような、様々なワイヤレス通信システムに使用され得る。「システム」および「ネットワーク」という用語は、しばしば、交換可能に使用される。CDMAシステムは、CDMA2000、ユニバーサル地上無線アクセス(UTRA)等のような無線テクノロジーをインプリメントし得る。CDMA2000は、IS−2000、IS−95、IS−856規格をカバーする。IS−2000リリース0およびAは、通常、CDMA20001X、1X等と呼ばれる。IS−856(TIA−856)は、通常、CDMA20001xEV−DO、高速パケットデータ(HRPD)等と呼ばれる。UTRAは、広帯域CDMA(WCDMA(登録商標))およびCDMAの他の変形を含む。TDMAシステムは、移動体通信のためのグローバルシステム(GSM(登録商標):Global System for Mobile Communications)のような無線技術をインプリメントし得る。OFDMAシステムは、ウルトラモバイルブロードバンド(UMB)、Evolved UTRA(E−UTRA)、IEEE802.11(Wi−Fi)、IEEE802.16(WiMax)、IEEE802.20、Flash−OFDM等のような無線技術をインプリメントし得る。UTRAおよびE−UTRAは、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)の一部である。3GPPロングタームエボリューション(LTE)およびLTE−アドバンスト(LTE−A)は、E−UTRAを使用するユニバーサルモバイルテレコミュニケーションシステム(UMTS)の新しいリリースである。UTRA、E−UTRA、UMTS、LTE、LTE−A、および移動体通信のためのグローバルシステム(GSM)は、「第3世代パートナーシッププロジェクト」(3GPP)という名称の団体からの文書に説明されている。CDMA2000およびUMBは、「第3世代パートナーシッププロジェクト2」(3GPP2)という名称の団体からの文書に説明されている。本明細書で説明される複数の技法は、上述されたシステムおよび無線技術にも、他のシステムおよび無線技術にも、使用され得る。上記の説明は、しかしながら、例の目的でLTEのシステムを説明しており、LTEという専門用語が上記の説明の大部分において使用されているが、それらの技法はLTEアプリケーションを超えて適用可能である。
[0116] 本明細書において説明される技法は、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、シングルキャリア周波数分割多元接続(SC−FDMA)、および他のシステムのような、様々なワイヤレス通信システムに使用され得る。「システム」および「ネットワーク」という用語は、しばしば、交換可能に使用される。CDMAシステムは、CDMA2000、ユニバーサル地上無線アクセス(UTRA)等のような無線テクノロジーをインプリメントし得る。CDMA2000は、IS−2000、IS−95、IS−856規格をカバーする。IS−2000リリース0およびAは、通常、CDMA20001X、1X等と呼ばれる。IS−856(TIA−856)は、通常、CDMA20001xEV−DO、高速パケットデータ(HRPD)等と呼ばれる。UTRAは、広帯域CDMA(WCDMA(登録商標))およびCDMAの他の変形を含む。TDMAシステムは、移動体通信のためのグローバルシステム(GSM(登録商標):Global System for Mobile Communications)のような無線技術をインプリメントし得る。OFDMAシステムは、ウルトラモバイルブロードバンド(UMB)、Evolved UTRA(E−UTRA)、IEEE802.11(Wi−Fi)、IEEE802.16(WiMax)、IEEE802.20、Flash−OFDM等のような無線技術をインプリメントし得る。UTRAおよびE−UTRAは、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)の一部である。3GPPロングタームエボリューション(LTE)およびLTE−アドバンスト(LTE−A)は、E−UTRAを使用するユニバーサルモバイルテレコミュニケーションシステム(UMTS)の新しいリリースである。UTRA、E−UTRA、UMTS、LTE、LTE−A、および移動体通信のためのグローバルシステム(GSM)は、「第3世代パートナーシッププロジェクト」(3GPP)という名称の団体からの文書に説明されている。CDMA2000およびUMBは、「第3世代パートナーシッププロジェクト2」(3GPP2)という名称の団体からの文書に説明されている。本明細書で説明される複数の技法は、上述されたシステムおよび無線技術にも、他のシステムおよび無線技術にも、使用され得る。上記の説明は、しかしながら、例の目的でLTEのシステムを説明しており、LTEという専門用語が上記の説明の大部分において使用されているが、それらの技法はLTEアプリケーションを超えて適用可能である。
以下に本願の出願当初の特許請求の範囲に記載された発明を付記する。
[C1] ユーザ機器(UE)におけるワイヤレス通信のための方法であって、
第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信すること、
前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別すること、および
前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読すること
を備える、方法。
[C2] 前記サイズに基づいて前記IRパケットを識別することは、
前記受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたプロトコルデータユニット(PDU)サイズを備えることを決定すること
を備える、C1に記載の方法。
[C3] 前記IRパケットが、前記解読されたIRパケットのサイクリック・リダンダンシー・チェック(CRC)値に基づいて、正確に解読されていることを決定すること
をさらに備える、C1に記載の方法。
[C4] 前記ハイパーフレーム番号オフセットを使用しての前記IRパケットを正確に解読することの失敗を検出すること
をさらに備える、C1に記載の方法。
[C5] 前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をインクリメントすること
をさらに備える、C4に記載の方法。
[C6] 前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をデクリメントすること
をさらに備える、C4に記載の方法。
[C7] 前記検出された失敗に基づいて、ラジオリンクの失敗をトリガすること
をさらに備える、C4に記載の方法。
[C8] 前記ハイパーフレーム番号オフセットを使用して前記IRパケットを解読することにおける成功に基づいて、前記第1のワイヤレスデバイスを前記第2のワイヤレスデバイスと同期すること
をさらに備える、C1に記載の方法。
[C9] 前記第1のワイヤレスデバイスによって記憶された現在のハイパーフレーム番号を使用して圧縮されたRoHCパケットを解読することの閾値数の連続する失敗を検出すること
をさらに備える、C1に記載の方法。
[C10] 前記第2のワイヤレスデバイスに前記連続する失敗の表示を送信すること
をさらに備える、C9に記載の方法。
[C11] 前記第2のワイヤレスデバイスに送信される前記表示は、否定応答メッセージを備える、C10に記載の方法。
[C12] ユーザ機器(UE)におけるワイヤレス通信のための装置であって、
第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信するための手段、
前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別するための手段、および
前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読するための手段
を備える、装置。
[C13] ユーザ機器(UE)におけるワイヤレス通信のための装置であって、
プロセッサ、
前記プロセッサと電子通信状態にあるメモリ、および
前記メモリに記憶された命令
を備え、ここにおいて、前記命令は、前記プロセッサによって、
第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信すること、
前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別すること、および
前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読すること
が実行可能である、
装置。
[C14] 前記サイズに基づいて前記IRパケットを識別することは、
前記受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたプロトコルデータユニット(PDU)サイズを備えることを決定すること
を備える、C13に記載の装置。
[C15] 前記命令は、前記プロセッサによって、
前記IRパケットが、前記解読されたIRパケットのサイクリック・リダンダンシー・チェック(CRC)値に基づいて、正確に解読されていることを決定すること
がさらに実行可能である、C13に記載の装置。
[C16] 前記命令は、前記プロセッサによって、
前記ハイパーフレーム番号オフセットを使用しての前記IRパケットを正確に解読することの失敗を検出すること
がさらに実行可能である、C13に記載の装置。
[C17] 前記命令は、前記プロセッサによって、
前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をインクリメントすること
がさらに実行可能である、C16に記載の装置。
[C18] 前記命令は、前記プロセッサによって、
前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をデクリメントすること
がさらに実行可能である、C16に記載の装置。
[C19] 前記命令は、前記プロセッサによって、
前記検出された失敗に基づいて、ラジオリンクの失敗をトリガすること
がさらに実行可能である、C16に記載の装置。
[C20] 前記命令は、前記プロセッサによって、
前記ハイパーフレーム番号オフセットを使用して前記IRパケットを解読することにおける成功に基づいて、前記第1のワイヤレスデバイスを前記第2のワイヤレスデバイスと同期すること
がさらに実行可能である、C13に記載の装置。
[C21] 前記命令は、前記プロセッサによって、
前記第1のワイヤレスデバイスによって記憶された現在のハイパーフレーム番号を使用して圧縮されたRoHCパケットを解読することの閾値数の連続する失敗を検出すること
がさらに実行可能である、C13に記載の装置。
[C22] 前記命令は、前記プロセッサによって、
前記第2のワイヤレスデバイスに前記連続する失敗の表示を送信すること
がさらに実行可能である、C21に記載の装置。
[C23] 前記第2のワイヤレスデバイスに送信される前記表示は、否定応答メッセージを備える、C22に記載の装置。
[C24] ユーザ機器(UE)におけるワイヤレス通信のためのコードを記憶する非一時的コンピュータ読み取り可能媒体であって、前記コードは、
第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信すること、
前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別すること、および
前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読すること
が実行可能である命令を備える、非一時的コンピュータ読み取り可能媒体。
[C25] 前記サイズに基づいて前記IRパケットを識別することは、
前記受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたプロトコルデータユニット(PDU)サイズを備えることを決定すること
を備える、C24に記載の非一時的コンピュータ読み取り可能媒体。
[C26] 前記命令は、
前記IRパケットが、前記解読されたIRパケットのサイクリック・リダンダンシー・チェック(CRC)値に基づいて、正確に解読されていることを決定すること
がさらに実行可能である、C24に記載の非一時的コンピュータ読み取り可能媒体。
[C27] 前記命令は、
前記ハイパーフレーム番号オフセットを使用しての前記IRパケットを正確に解読することの失敗を検出すること
がさらに実行可能である、C24に記載の非一時的コンピュータ読み取り可能媒体。
[C28] 前記命令は、
前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をインクリメントすること
がさらに実行可能である、C27に記載の非一時的コンピュータ読み取り可能媒体。
[C29] 前記命令は、
前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をデクリメントすること
がさらに実行可能である、C27に記載の非一時的コンピュータ読み取り可能媒体。
[C30] 前記命令は、
前記検出された失敗に基づいて、ラジオリンクの失敗をトリガすること
がさらに実行可能である、C27に記載の非一時的コンピュータ読み取り可能媒体。

Claims (30)

  1. ユーザ機器(UE)におけるワイヤレス通信のための方法であって、
    第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信すること、
    前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別すること、および
    前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読すること
    を備える、方法。
  2. 前記サイズに基づいて前記IRパケットを識別することは、
    前記受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたプロトコルデータユニット(PDU)サイズを備えることを決定すること
    を備える、請求項1に記載の方法。
  3. 前記IRパケットが、前記解読されたIRパケットのサイクリック・リダンダンシー・チェック(CRC)値に基づいて、正確に解読されていることを決定すること
    をさらに備える、請求項1に記載の方法。
  4. 前記ハイパーフレーム番号オフセットを使用しての前記IRパケットを正確に解読することの失敗を検出すること
    をさらに備える、請求項1に記載の方法。
  5. 前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をインクリメントすること
    をさらに備える、請求項4に記載の方法。
  6. 前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をデクリメントすること
    をさらに備える、請求項4に記載の方法。
  7. 前記検出された失敗に基づいて、ラジオリンクの失敗をトリガすること
    をさらに備える、請求項4に記載の方法。
  8. 前記ハイパーフレーム番号オフセットを使用して前記IRパケットを解読することにおける成功に基づいて、前記第1のワイヤレスデバイスを前記第2のワイヤレスデバイスと同期すること
    をさらに備える、請求項1に記載の方法。
  9. 前記第1のワイヤレスデバイスによって記憶された現在のハイパーフレーム番号を使用して圧縮されたRoHCパケットを解読することの閾値数の連続する失敗を検出すること
    をさらに備える、請求項1に記載の方法。
  10. 前記第2のワイヤレスデバイスに前記連続する失敗の表示を送信すること
    をさらに備える、請求項9に記載の方法。
  11. 前記第2のワイヤレスデバイスに送信される前記表示は、否定応答メッセージを備える、請求項10に記載の方法。
  12. ユーザ機器(UE)におけるワイヤレス通信のための装置であって、
    第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信するための手段、
    前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別するための手段、および
    前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読するための手段
    を備える、装置。
  13. ユーザ機器(UE)におけるワイヤレス通信のための装置であって、
    プロセッサ、
    前記プロセッサと電子通信状態にあるメモリ、および
    前記メモリに記憶された命令
    を備え、ここにおいて、前記命令は、前記プロセッサによって、
    第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信すること、
    前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別すること、および
    前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読すること
    が実行可能である、
    装置。
  14. 前記サイズに基づいて前記IRパケットを識別することは、
    前記受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたプロトコルデータユニット(PDU)サイズを備えることを決定すること
    を備える、請求項13に記載の装置。
  15. 前記命令は、前記プロセッサによって、
    前記IRパケットが、前記解読されたIRパケットのサイクリック・リダンダンシー・チェック(CRC)値に基づいて、正確に解読されていることを決定すること
    がさらに実行可能である、請求項13に記載の装置。
  16. 前記命令は、前記プロセッサによって、
    前記ハイパーフレーム番号オフセットを使用しての前記IRパケットを正確に解読することの失敗を検出すること
    がさらに実行可能である、請求項13に記載の装置。
  17. 前記命令は、前記プロセッサによって、
    前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をインクリメントすること
    がさらに実行可能である、請求項16に記載の装置。
  18. 前記命令は、前記プロセッサによって、
    前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をデクリメントすること
    がさらに実行可能である、請求項16に記載の装置。
  19. 前記命令は、前記プロセッサによって、
    前記検出された失敗に基づいて、ラジオリンクの失敗をトリガすること
    がさらに実行可能である、請求項16に記載の装置。
  20. 前記命令は、前記プロセッサによって、
    前記ハイパーフレーム番号オフセットを使用して前記IRパケットを解読することにおける成功に基づいて、前記第1のワイヤレスデバイスを前記第2のワイヤレスデバイスと同期すること
    がさらに実行可能である、請求項13に記載の装置。
  21. 前記命令は、前記プロセッサによって、
    前記第1のワイヤレスデバイスによって記憶された現在のハイパーフレーム番号を使用して圧縮されたRoHCパケットを解読することの閾値数の連続する失敗を検出すること
    がさらに実行可能である、請求項13に記載の装置。
  22. 前記命令は、前記プロセッサによって、
    前記第2のワイヤレスデバイスに前記連続する失敗の表示を送信すること
    がさらに実行可能である、請求項21に記載の装置。
  23. 前記第2のワイヤレスデバイスに送信される前記表示は、否定応答メッセージを備える、請求項22に記載の装置。
  24. ユーザ機器(UE)におけるワイヤレス通信のためのコードを記憶する非一時的コンピュータ読み取り可能媒体であって、前記コードは、
    第1のワイヤレスデバイスにおいて、第2のワイヤレスデバイスからロバストなヘッダ圧縮(RoHC)初期化およびリフレッシュ(IR)パケットを受信すること、
    前記IRパケットのサイズに基づいて、前記第1のワイヤレスデバイスのラジオリンクコントロール(RLC)レイヤにおいて前記IRパケットを識別すること、および
    前記IRパケットの前記識別に応答して、ハイパーフレーム番号オフセットを使用して前記IRパケットを解読すること
    が実行可能である命令を備える、非一時的コンピュータ読み取り可能媒体。
  25. 前記サイズに基づいて前記IRパケットを識別することは、
    前記受信されたIRパケットが、圧縮されたRoHCパケットよりも大きい暗号化されたプロトコルデータユニット(PDU)サイズを備えることを決定すること
    を備える、請求項24に記載の非一時的コンピュータ読み取り可能媒体。
  26. 前記命令は、
    前記IRパケットが、前記解読されたIRパケットのサイクリック・リダンダンシー・チェック(CRC)値に基づいて、正確に解読されていることを決定すること
    がさらに実行可能である、請求項24に記載の非一時的コンピュータ読み取り可能媒体。
  27. 前記命令は、
    前記ハイパーフレーム番号オフセットを使用しての前記IRパケットを正確に解読することの失敗を検出すること
    がさらに実行可能である、請求項24に記載の非一時的コンピュータ読み取り可能媒体。
  28. 前記命令は、
    前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をインクリメントすること
    がさらに実行可能である、請求項27に記載の非一時的コンピュータ読み取り可能媒体。
  29. 前記命令は、
    前記検出された失敗に基づいて、前記ハイパーフレーム番号オフセットの値をデクリメントすること
    がさらに実行可能である、請求項27に記載の非一時的コンピュータ読み取り可能媒体。
  30. 前記命令は、
    前記検出された失敗に基づいて、ラジオリンクの失敗をトリガすること
    がさらに実行可能である、請求項27に記載の非一時的コンピュータ読み取り可能媒体。
JP2017526649A 2014-11-19 2014-11-20 Hfnオフセットを用いてユーザ機器を同期するための方法および装置 Active JP6776235B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/547,325 2014-11-19
US14/547,325 US9532268B2 (en) 2014-11-19 2014-11-19 Methods and apparatus for synchronizing a user equipment with an HFN offset
PCT/US2014/066612 WO2016080996A1 (en) 2014-11-19 2014-11-20 Methods and apparatus for synchronizing a user equipment with an hfn offset

Publications (2)

Publication Number Publication Date
JP2017539157A true JP2017539157A (ja) 2017-12-28
JP6776235B2 JP6776235B2 (ja) 2020-10-28

Family

ID=52023663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017526649A Active JP6776235B2 (ja) 2014-11-19 2014-11-20 Hfnオフセットを用いてユーザ機器を同期するための方法および装置

Country Status (7)

Country Link
US (1) US9532268B2 (ja)
EP (1) EP3198929B1 (ja)
JP (1) JP6776235B2 (ja)
KR (1) KR102291890B1 (ja)
CN (1) CN107078943B (ja)
BR (1) BR112017010496A2 (ja)
WO (1) WO2016080996A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3238475B1 (en) * 2014-12-22 2020-07-29 Telefonaktiebolaget LM Ericsson (publ) Mitigating drawbacks of ciphering failures in a wireless network
US10171496B2 (en) * 2016-01-19 2019-01-01 Cisco Technology, Inc. Beacon spoofing prevention
CN106982149B (zh) * 2016-12-29 2019-10-01 中国银联股份有限公司 基于sdn的报文镜像方法及网络流量监控管理系统
KR102111727B1 (ko) 2017-02-01 2020-05-15 엘지전자 주식회사 시스템 정보를 요청하는 방법 및 장치
KR20180096370A (ko) * 2017-02-21 2018-08-29 삼성전자주식회사 무선 통신 시스템에서 암호화 파라미터 값을 결정하기 위한 장치 및 방법
CN107241166A (zh) * 2017-06-12 2017-10-10 京信通信系统(中国)有限公司 一种长期演进上的语音Volte数据保障方法和设备
CN107797896B (zh) * 2017-06-16 2019-05-07 平安科技(深圳)有限公司 一种流量数据自恢复处理方法和服务器
EP4210394A1 (en) * 2018-05-10 2023-07-12 Beijing Xiaomi Mobile Software Co., Ltd. Method for receiving reported flight path information, and base station for receiving said information
WO2019218354A1 (en) * 2018-05-18 2019-11-21 Apple Inc. Fast synchronization of compressor state and decompression state in marginal wireless coverage
CN108901066B (zh) * 2018-06-13 2021-03-30 京信通信系统(中国)有限公司 Pdcp层超帧号同步方法和装置
US11108704B2 (en) 2018-12-04 2021-08-31 Nvidia Corp. Use of stashing buffers to improve the efficiency of crossbar switches
CN112087781B (zh) * 2019-06-13 2023-01-06 成都鼎桥通信技术有限公司 一种lte系统中确定语音编码方式的方法和设备
CN110300105B (zh) * 2019-06-24 2022-01-04 超越科技股份有限公司 一种网络密码机的远程密钥管理方法
WO2021056152A1 (zh) * 2019-09-23 2021-04-01 Oppo广东移动通信有限公司 一种信息配置方法及装置、终端设备、网络设备
CN111343605B (zh) * 2020-03-06 2023-08-29 知轮(杭州)科技有限公司 一种用于车辆局域网高速传输数据的无线通信方法
CN111935728B (zh) * 2020-07-10 2022-08-19 展讯半导体(成都)有限公司 一种握手方法、装置、相关设备、存储介质及系统
CN113316137B (zh) * 2021-05-28 2022-11-22 韦华半导体(苏州)有限公司 基于tdma的多频冗余无线传输方法及装置
CN114125071B (zh) * 2021-11-23 2024-02-09 北京人大金仓信息技术股份有限公司 数据压缩传输方法及装置
US11770215B2 (en) * 2022-02-17 2023-09-26 Nvidia Corp. Transceiver system with end-to-end reliability and ordering protocols

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054718A (ja) * 2004-08-12 2006-02-23 Nec Corp 移動通信システム、移動機、無線制御装置および移動通信方法
JP2006217100A (ja) * 2005-02-02 2006-08-17 Nec Corp 復号処理システム及びその方法並びにそれを用いた移動通信システム
EP1928130A2 (en) * 2006-11-15 2008-06-04 Samsung Electronics Co., Ltd. Apparatuses and methods for performing initialization of the Packet Data Convergence Protocol PDCP in a mobile communication system
JP2008154246A (ja) * 2006-12-19 2008-07-03 Asustek Computer Inc プロトコルエラー回復方法及び通信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060050679A1 (en) 2004-09-09 2006-03-09 Sam Shiaw-Shiang Jiang Method for On-Line Recovery of Parameter Synchronization for Ciphering Applications
EP1808995A1 (en) 2006-01-13 2007-07-18 Thomson Licensing S.A. Method for the exchange of data packets in a network of distributed stations, device for compression of data packets and device for decompression of data packets
CN101202936B (zh) * 2006-12-11 2010-12-08 大唐移动通信设备有限公司 涉及srns重定位的实现rrc信令完整性保护的方法、系统及无线网络控制器
JP5127745B2 (ja) 2009-02-23 2013-01-23 三菱電機株式会社 無線通信システムおよび通信制御方法
EP2490470B1 (en) 2011-02-16 2019-10-09 Marvell World Trade Ltd. Recovery from decryption errors in a sequence of communication packets
US9736684B2 (en) 2011-06-01 2017-08-15 Qualcomm Incorporated Mechanisms for detection of and recovery from ciphering parameter mismatch on communication networks
US9048986B2 (en) * 2011-08-12 2015-06-02 Qualcomm Incorporated Mitigation of lost resource allocation synchronization between a user equipment (UE) and an evolved node B (eNodeB)
US9125181B2 (en) * 2011-08-23 2015-09-01 Qualcomm Incorporated Systems and methods for compressing headers
ES2720192T3 (es) * 2012-01-09 2019-07-18 Samsung Electronics Co Ltd Procedimiento y aparato de transferencia en un sistema de comunicación inalámbrica
US9313756B2 (en) * 2012-10-10 2016-04-12 Qualcomm Incorporated Apparatus and methods for managing hyper frame number (HFN) de-synchronization in radio link control (RLC) unacknowledged mode (UM)
EP2785091A1 (en) 2013-03-26 2014-10-01 Alcatel Lucent Method, apparatus and computer program product for determining validity of Hyper Frame Numbers used for decoding PDCP units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054718A (ja) * 2004-08-12 2006-02-23 Nec Corp 移動通信システム、移動機、無線制御装置および移動通信方法
JP2006217100A (ja) * 2005-02-02 2006-08-17 Nec Corp 復号処理システム及びその方法並びにそれを用いた移動通信システム
EP1928130A2 (en) * 2006-11-15 2008-06-04 Samsung Electronics Co., Ltd. Apparatuses and methods for performing initialization of the Packet Data Convergence Protocol PDCP in a mobile communication system
JP2008154246A (ja) * 2006-12-19 2008-07-03 Asustek Computer Inc プロトコルエラー回復方法及び通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Discussion on HFN de-synchronization and its impact to a VoLTE call[online]", 3GPP TSG-RAN WG2#87 R2-143728, JPN6018035698, 22 August 2014 (2014-08-22) *

Also Published As

Publication number Publication date
EP3198929B1 (en) 2018-04-25
KR20170086510A (ko) 2017-07-26
KR102291890B1 (ko) 2021-08-19
WO2016080996A1 (en) 2016-05-26
CN107078943A (zh) 2017-08-18
US9532268B2 (en) 2016-12-27
BR112017010496A2 (pt) 2017-12-26
EP3198929A1 (en) 2017-08-02
JP6776235B2 (ja) 2020-10-28
CN107078943B (zh) 2020-11-24
US20160142936A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6776235B2 (ja) Hfnオフセットを用いてユーザ機器を同期するための方法および装置
US10805430B2 (en) Evolved data compression scheme signaling
US11805460B2 (en) Dual link handover
US10397754B2 (en) Packet data convergence protocol reordering with enhanced component carriers
US20170041766A1 (en) Media access control segmentation and packet data convergence protocol delivery notification with enhanced component carriers
US20160308776A1 (en) Enhancements for pdcp layer
KR102615359B1 (ko) 저 지연 업링크 확인응답 채널 파형 설계
KR20090017553A (ko) 암호화 구성이 변화하는 동안 중단되지 않는 송신
CN111066341B (zh) 无线系统中的无线链路控制重新组装技术

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6776235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150