JP2017537380A5 - - Google Patents

Download PDF

Info

Publication number
JP2017537380A5
JP2017537380A5 JP2017522100A JP2017522100A JP2017537380A5 JP 2017537380 A5 JP2017537380 A5 JP 2017537380A5 JP 2017522100 A JP2017522100 A JP 2017522100A JP 2017522100 A JP2017522100 A JP 2017522100A JP 2017537380 A5 JP2017537380 A5 JP 2017537380A5
Authority
JP
Japan
Prior art keywords
distribution
scores
gene
disease
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017522100A
Other languages
English (en)
Japanese (ja)
Other versions
JP2017537380A (ja
JP6707081B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2015/056646 external-priority patent/WO2016064995A1/en
Publication of JP2017537380A publication Critical patent/JP2017537380A/ja
Publication of JP2017537380A5 publication Critical patent/JP2017537380A5/ja
Application granted granted Critical
Publication of JP6707081B2 publication Critical patent/JP6707081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2017522100A 2014-10-22 2015-10-21 正の選択下で遺伝子を同定する方法 Active JP6707081B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462067294P 2014-10-22 2014-10-22
US62/067,294 2014-10-22
PCT/US2015/056646 WO2016064995A1 (en) 2014-10-22 2015-10-21 Method to identify genes under positive selection

Publications (3)

Publication Number Publication Date
JP2017537380A JP2017537380A (ja) 2017-12-14
JP2017537380A5 true JP2017537380A5 (cg-RX-API-DMAC7.html) 2018-11-29
JP6707081B2 JP6707081B2 (ja) 2020-06-10

Family

ID=54541186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017522100A Active JP6707081B2 (ja) 2014-10-22 2015-10-21 正の選択下で遺伝子を同定する方法

Country Status (6)

Country Link
US (1) US10886005B2 (cg-RX-API-DMAC7.html)
EP (1) EP3210141A1 (cg-RX-API-DMAC7.html)
JP (1) JP6707081B2 (cg-RX-API-DMAC7.html)
AU (1) AU2015336005B2 (cg-RX-API-DMAC7.html)
CA (1) CA2965163A1 (cg-RX-API-DMAC7.html)
WO (1) WO2016064995A1 (cg-RX-API-DMAC7.html)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3210141A1 (en) 2014-10-22 2017-08-30 Baylor College of Medicine Method to identify genes under positive selection
US10395759B2 (en) 2015-05-18 2019-08-27 Regeneron Pharmaceuticals, Inc. Methods and systems for copy number variant detection
JP6765433B2 (ja) 2016-02-12 2020-10-07 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. 異常な核型の検出のための方法
US11281977B2 (en) * 2017-07-31 2022-03-22 Cognizant Technology Solutions U.S. Corporation Training and control system for evolving solutions to data-intensive problems using epigenetic enabled individuals
CN110782947A (zh) * 2019-10-18 2020-02-11 湖南大学 基于蛋白质序列功能区域的癌症驱动识别
US20230139964A1 (en) * 2020-03-06 2023-05-04 The Research Institute at Nationwide Childern's Hospital Genome dashboard
CN113643754B (zh) * 2021-08-11 2023-12-29 苏州赛美科基因科技有限公司 一种错义变异基因的评分处理方法、优化评分方法及装置
CN116897723A (zh) * 2022-08-01 2023-10-20 中国农业科学院都市农业研究所 一种基于植物感光基因调节的光源排列系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016860A2 (en) 1999-08-27 2001-03-08 Iris Bio Technologies, Inc. Artificial intelligence system for genetic analysis
US20040023296A1 (en) 2001-11-28 2004-02-05 Baylor College Of Medicine Use of quantitative evolutionary trace analysis to determine functional residues
KR101325736B1 (ko) * 2010-10-27 2013-11-08 삼성에스디에스 주식회사 바이오 마커 추출 장치 및 방법
WO2014007863A1 (en) 2012-07-03 2014-01-09 Baylor College Of Medicine Biological action of missense genotype perturbations on phenotype
EP3210141A1 (en) 2014-10-22 2017-08-30 Baylor College of Medicine Method to identify genes under positive selection

Similar Documents

Publication Publication Date Title
JP2017537380A5 (cg-RX-API-DMAC7.html)
Lakatos et al. Evolutionary dynamics of neoantigens in growing tumors
Moncunill et al. Comprehensive characterization of complex structural variations in cancer by directly comparing genome sequence reads
Yauy et al. Accurate detection of clinically relevant uniparental disomy from exome sequencing data
Kim et al. Exome sequencing reveals novel rare variants in the ryanodine receptor and calcium channel genes in malignant hyperthermia families
Uricchio et al. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants
Oey et al. Genetic and epigenetic variation among inbred mouse littermates: identification of inter-individual differentially methylated regions
CN104302781B (zh) 一种检测染色体结构异常的方法及装置
IL320112A (en) Methods and processes for non-invasive assessment of genetic variations
Juul et al. Non-coding cancer driver candidates identified with a sample-and position-specific model of the somatic mutation rate
KR102858552B1 (ko) 표적화 핵산 서열 분석 데이터를 정렬하는 방법
KR101949286B1 (ko) 암 환자의 유전체 염기서열 변이 정보와 생존 정보를 이용한 맞춤형 약물 선택 방법 및 시스템
US20210327535A1 (en) Sensitively detecting copy number variations (cnvs) from circulating cell-free nucleic acid
Luebeck et al. Identification of a key role of widespread epigenetic drift in Barrett’s esophagus and esophageal adenocarcinoma
Knevel et al. A genetic variant in granzyme B is associated with progression of joint destruction in rheumatoid arthritis
JP5789720B2 (ja) 遺伝子変異分析装置、遺伝子変異分析システム及び遺伝子変異分析方法
KR20220011630A (ko) 미소부수체 분석을 위한 방법 및 시스템
Baker et al. Silico: a simulator of long read sequencing in PacBio and Oxford Nanopore
CN112365922A (zh) 用于检测msi的微卫星位点、其筛选方法及应用
CN113853444A (zh) 癌症患者生存率的预测方法
KR20180066248A (ko) 폐 선암종을 검출하기 위한 생체마커 및 그의 사용
WO2017218798A1 (en) Systems and methods for diagnosing familial hypercholesterolemia
JP7332695B2 (ja) 循環核酸からの全ゲノム配列データにおける包括的配列特徴の同定
Watson et al. Evolutionary dynamics in the decades preceding acute myeloid leukaemia
Gaksch et al. Residual disease detection using targeted parallel sequencing predicts relapse in cytogenetically normal acute myeloid leukemia