JP2017531934A5 - - Google Patents

Download PDF

Info

Publication number
JP2017531934A5
JP2017531934A5 JP2017505477A JP2017505477A JP2017531934A5 JP 2017531934 A5 JP2017531934 A5 JP 2017531934A5 JP 2017505477 A JP2017505477 A JP 2017505477A JP 2017505477 A JP2017505477 A JP 2017505477A JP 2017531934 A5 JP2017531934 A5 JP 2017531934A5
Authority
JP
Japan
Prior art keywords
management unit
location management
location
reference signal
predetermined time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017505477A
Other languages
Japanese (ja)
Other versions
JP2017531934A (en
JP6557849B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2015/043321 external-priority patent/WO2016019354A1/en
Publication of JP2017531934A publication Critical patent/JP2017531934A/en
Publication of JP2017531934A5 publication Critical patent/JP2017531934A5/ja
Application granted granted Critical
Publication of JP6557849B2 publication Critical patent/JP6557849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

無線システム内の1つ以上のユーザ機器(UE)の場所を決定するための方法であって、
2つ以上の共に位置するチャネルを有する第1の場所管理ユニット経由で基準信号を受信することと、
前記無線システムについての場所の所望の正確性に基づいて、第1の所定時間以下の第1の標準偏差内で前記2つ以上の共に位置するチャネルのタイミングを同期することと、
2つ以上の共に位置するチャネルを有する第2の場所管理ユニット経由で基準信号を受信することと、
前記無線システムについての前記場所の前記所望の正確性に基づいて、第2の所定時間以下の第2の標準偏差内で前記第2の場所管理ユニットの前記共に位置するチャネルのタイミングを同期することと、
前記第1の場所管理ユニットから前記受信された基準信号又は前記第2の場所管理ユニットから前記受信された基準信号を利用して、前記1つ以上のUEの中の少なくとも1つのUEの前記場所を計算することと、を含む、方法。
A method for determining the location of one or more user equipments (UEs) in a wireless system comprising:
Receiving a reference signal via a first location management unit having two or more co-located channels;
Synchronizing the timing of the two or more co-located channels within a first standard deviation of a first predetermined time or less based on a desired location accuracy for the wireless system;
Receiving a reference signal via a second location management unit having two or more co-located channels;
Synchronizing the timing of the co-located channels of the second location management unit within a second standard deviation of a second predetermined time or less based on the desired accuracy of the location for the wireless system. When,
The location of at least one UE in the one or more UEs using the received reference signal from the first location management unit or the received reference signal from the second location management unit Calculating a method.
前記計算することは、前記第1の場所管理ユニット及び前記第2の場所管理ユニットの少なくとも一方が前記少なくとも1つのUEの前記場所を計算することを含む、請求項1に記載の方法。The method of claim 1, wherein the calculating includes calculating at least one of the first location management unit and the second location management unit of the location of the at least one UE. 前記場所を計算するために、前記第1の場所管理ユニットによって計算された場所及び前記第2の場所管理ユニットによって計算された場所を組み合わせ、位置特定誤差を低減する、請求項2に記載の方法。The method of claim 2, wherein the location is calculated by combining the location calculated by the first location management unit and the location calculated by the second location management unit to reduce location error. . 前記第1の場所管理ユニット及び前記第2の場所管理ユニットから前記基準信号を受信及び処理するように構成されたマルチパス軽減プロセッサを利用することを更に含み、
前記マルチパス軽減プロセッサが、高分解能スペクトル推定分析を利用して、前記第1の場所管理ユニット及び前記第2の場所管理ユニットの前記受信された基準信号と関連付けられた空間的不明確さを減らし、
前記高分解能スペクトル推定が、前記第1の場所管理ユニット及び前記第2の場所管理ユニットの前記受信された基準信号のいくつかの周波数成分についてのモデルサイズを推定することと、前記周波数成分の複数の人工的な周波数の分布に基づいて、前記少なくとも1つのUEの前記場所を計算することとを含む、請求項に記載の方法。
Further comprising utilizing a multipath mitigation processor configured to receive and process the reference signal from the first location management unit and the second location management unit;
The multipath mitigation processor utilizes high resolution spectral estimation analysis to reduce spatial ambiguities associated with the received reference signals of the first location management unit and the second location management unit ,
Said high resolution spectral estimation estimating a model size for several frequency components of said received reference signal of said first location management unit and said second location management unit; and a plurality of said frequency components based of the distribution of artificial frequency, the and calculating the location of at least one UE, the method according to claim 1.
前記高分解能スペクトル推定分析が、1つ以上の高分解能スペクトル推定アルゴリズムを利用する、請求項に記載の方法。 The method of claim 4 , wherein the high resolution spectral estimation analysis utilizes one or more high resolution spectral estimation algorithms. 前記マルチパス軽減プロセッサを利用することは、Utilizing the multipath mitigation processor
前記基準信号に基づいて到着時間差(TDOA)を計算することと、Calculating a time difference of arrival (TDOA) based on the reference signal;
前記TDOAに基づいて前記基準信号の到着角(AoA)を計算することとを含む、請求項4に記載の方法。5. The method of claim 4, comprising calculating an angle of arrival (AoA) of the reference signal based on the TDOA.
前記第1の所定時間及び前記第2の所定時間が、約3ns〜約10nsの間にある、請求項に記載の方法。 The method of claim 4 , wherein the first predetermined time and the second predetermined time are between about 3 ns and about 10 ns. 前記受信された基準信号が、アップリンク基準信号、ダウンリンク基準信号、分散型アンテナシステム基準信号、セルアンテナシステム信号、セルセクタアンテナシステム信号、またはそれらの組み合わせである、請求項に記載の方法。 The method of claim 4 , wherein the received reference signal is an uplink reference signal, a downlink reference signal, a distributed antenna system reference signal, a cell antenna system signal, a cell sector antenna system signal, or a combination thereof. . 前記第1の場所管理ユニット及び前記第2の場所管理ユニットが、空間的に互いに異なった複数のアンテナから前記基準信号を受信する、請求項に記載の方法。 Said first location management unit and the second location management unit receives the reference signal from a plurality of antennas different from each other spatially, The method of claim 1. 前記基準信号が、前記2つ以上の共に位置するチャネルと通信するアンテナの共有グループから受信される、請求項に記載の方法。 The method of claim 1 , wherein the reference signal is received from a shared group of antennas communicating with the two or more co-located channels. 前記第1の所定時間及び前記第2の所定時間が、約10nsを超える、請求項に記載の方法。 The first predetermined time and the second predetermined time, greater than about 10 ns, the method of claim 1. 前記第1の場所管理ユニット及び前記第2の場所管理ユニットの一方又は両方は、WiFiアクセスポイント機器と共に位置し、前記WiFiアクセスポイント機器と電源を共用する、請求項1に記載の方法。The method of claim 1, wherein one or both of the first location management unit and the second location management unit is located with a WiFi access point device and shares power with the WiFi access point device. 前記第1の場所管理ユニット及び前記第2の場所管理ユニットの一方又は両方にサービス提供するアンテナは、WiFiアクセスポイント機器と共に位置し、前記WiFiアクセスポイント機器と電源を共用する、請求項1に記載の方法。The antenna serving one or both of the first location management unit and the second location management unit is located with a WiFi access point device and shares a power source with the WiFi access point device. the method of. 前記無線システムは、前記第1の場所管理ユニット及び前記第2の場所管理ユニットと通信するように構成された位置特定サーバユニット(LSU)を含む、請求項1に記載の方法。The method of claim 1, wherein the wireless system includes a location server unit (LSU) configured to communicate with the first location management unit and the second location management unit. 前記LSUが前記無線システムの1つ以上のサーバと通信するように構成されるか、又は、前記1つ以上のUEが前記LSUと通信するように構成される、請求項14に記載の方法。The method of claim 14, wherein the LSU is configured to communicate with one or more servers of the wireless system or the one or more UEs are configured to communicate with the LSU.
JP2017505477A 2014-08-01 2015-07-31 Partially synchronized multi-side / tri-side survey method and system for position finding using RF Active JP6557849B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462032371P 2014-08-01 2014-08-01
US62/032,371 2014-08-01
PCT/US2015/043321 WO2016019354A1 (en) 2014-08-01 2015-07-31 Partially synchronized multilateration/trilateration method and system for positional finding using rf

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019110504A Division JP2019194607A (en) 2014-08-01 2019-06-13 Partially synchronized multi-side/tri-side survey method and system for position finding using rf

Publications (3)

Publication Number Publication Date
JP2017531934A JP2017531934A (en) 2017-10-26
JP2017531934A5 true JP2017531934A5 (en) 2018-09-06
JP6557849B2 JP6557849B2 (en) 2019-08-14

Family

ID=55218392

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017505477A Active JP6557849B2 (en) 2014-08-01 2015-07-31 Partially synchronized multi-side / tri-side survey method and system for position finding using RF
JP2019110504A Pending JP2019194607A (en) 2014-08-01 2019-06-13 Partially synchronized multi-side/tri-side survey method and system for position finding using rf
JP2021160815A Active JP7256241B2 (en) 2014-08-01 2021-09-30 Partially synchronized multilateration/trilateration method and system for position finding using RF

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019110504A Pending JP2019194607A (en) 2014-08-01 2019-06-13 Partially synchronized multi-side/tri-side survey method and system for position finding using rf
JP2021160815A Active JP7256241B2 (en) 2014-08-01 2021-09-30 Partially synchronized multilateration/trilateration method and system for position finding using RF

Country Status (5)

Country Link
EP (1) EP3175668A4 (en)
JP (3) JP6557849B2 (en)
KR (1) KR102166578B1 (en)
CN (1) CN106922219B (en)
WO (1) WO2016019354A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10834531B2 (en) 2005-12-15 2020-11-10 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US10281557B2 (en) 2005-12-15 2019-05-07 Polte Corporation Partially synchronized multilateration/trilateration method and system for positional finding using RF
US9913244B2 (en) 2005-12-15 2018-03-06 Polte Corporation Partially synchronized multilateration or trilateration method and system for positional finding using RF
US9288623B2 (en) 2005-12-15 2016-03-15 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US11125850B2 (en) 2011-08-03 2021-09-21 Polte Corporation Systems and methods for determining a timing offset of emitter antennas in a wireless network
US11835639B2 (en) 2011-08-03 2023-12-05 Qualcomm Technologies, Inc. Partially synchronized multilateration or trilateration method and system for positional finding using RF
US10863313B2 (en) 2014-08-01 2020-12-08 Polte Corporation Network architecture and methods for location services
US10845453B2 (en) 2012-08-03 2020-11-24 Polte Corporation Network architecture and methods for location services
US10440512B2 (en) 2012-08-03 2019-10-08 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
KR102166575B1 (en) * 2014-10-24 2020-10-19 폴테 코포레이션 Partially synchronized multilateration or trilateration method and system for positional finding using rf
CN106102161B (en) * 2016-05-30 2019-10-15 天津大学 Based on the data-optimized indoor orientation method of focusing solutions analysis
EP3255851B1 (en) 2016-06-08 2019-08-07 Nxp B.V. Processing module for a communication device and method therefor
NL2017621B1 (en) * 2016-10-14 2018-04-24 Repoint B V Method for operating a system comprising a plurality of nodes, corresponding system and medical equipment provided with a node
EP3321712B1 (en) * 2016-11-11 2024-06-05 Nxp B.V. Processing module and associated method
CN110291798B (en) * 2016-12-09 2021-02-09 诺基亚技术有限公司 Location dependent application management
CN111279208A (en) * 2017-09-15 2020-06-12 弗劳恩霍夫应用研究促进协会 Communication device, method and cellular network capable of being used for user equipment positioning using phase estimation
CN107644220B (en) * 2017-09-30 2021-03-05 上海摩软通讯技术有限公司 Fingerprint identification method and system of mobile terminal
JP2021508367A (en) * 2017-10-12 2021-03-04 ユー−ブロックス、アクチエンゲゼルシャフトu−blox AG Phase comparison of multi-frequency transmission to assist in determining position or time
JP2019128313A (en) * 2018-01-26 2019-08-01 沖電気工業株式会社 Wireless communication device, wireless communication system, and program
US10838430B2 (en) * 2018-03-05 2020-11-17 Mitsubishi Electric Research Laboratories, Inc. Clock synchronization for time sensitive networking in vehicular communication environment
US11255945B2 (en) 2018-03-27 2022-02-22 Polte Corporation Multi-path mitigation in tracking objects using compressed RF data
US11054529B2 (en) * 2018-08-07 2021-07-06 Taber Innovations Group LLC Personnel location and monitoring system
WO2020065894A1 (en) * 2018-09-27 2020-04-02 三菱電機株式会社 Base station, terminal device and positioning method
WO2020133997A1 (en) * 2018-12-28 2020-07-02 Huawei Technologies Co., Ltd. Selectively driven ultra-wideband antenna arrays
CN111526484A (en) 2019-02-02 2020-08-11 索尼公司 Apparatus, method and storage medium for wireless communication system
CN109856596B (en) * 2019-02-21 2021-05-07 上海迹寻科技有限公司 Method for collecting wireless node signal position fingerprint in high-speed moving state, computer readable storage medium and equipment thereof
WO2020172819A1 (en) 2019-02-27 2020-09-03 Qualcomm Incorporated User equipment position determination using an uplink random access channel message
JP7437877B2 (en) * 2019-03-29 2024-02-26 日本信号株式会社 Mobile object position detection device
CN111585683B (en) * 2020-05-11 2021-11-23 上海交通大学 High-reliability clock synchronization system and method for time-sensitive network
CN111398897B (en) * 2020-06-02 2020-08-25 江苏东大集成电路系统工程技术有限公司 Bluetooth Beacon positioning method using sector model and differential technology
CN112532547B (en) * 2020-11-21 2022-03-01 北京邮电大学 Channel estimation and channel identification method in intelligent reflector communication system
CN113438733B (en) * 2021-06-21 2022-10-11 中国电信股份有限公司 System and method for realizing indoor positioning based on 5G and WIFI and electronic equipment
WO2023004694A1 (en) * 2021-07-29 2023-02-02 华为技术有限公司 Reference signal arrival time estimation method and device, and chip
KR20230033285A (en) * 2021-09-01 2023-03-08 삼성전자주식회사 Display device and method for controlling the same
CN117795967A (en) 2021-09-01 2024-03-29 三星电子株式会社 Display device and control method thereof
CN113766424B (en) * 2021-09-23 2023-11-03 成都工业职业技术学院 Unmanned aerial vehicle indoor positioning method, unmanned aerial vehicle indoor positioning device, computer equipment and storage medium
US20230319742A1 (en) * 2022-04-05 2023-10-05 Meta Platforms, Inc. Peripheral time server device
CN118101076A (en) * 2024-04-23 2024-05-28 浙江大学 Optical fiber communication multipath interference suppression method and system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378124B1 (en) * 1998-12-10 2003-06-19 삼성전자주식회사 Device and method for estimating the position of terminal in mobile communication system
EP1245967A1 (en) * 2001-03-29 2002-10-02 Société Européenne des Satellites S.A. Ranging system for determining ranging information of a spacecraft
US6996392B2 (en) * 2002-09-03 2006-02-07 Trueposition, Inc. E911 overlay solution for GSM, for use in a wireless location system
WO2004086792A1 (en) * 2003-03-21 2004-10-07 Ecole Polytechnique Federale De Lausanne Synchronization and channel estimation with sub-nyquist sampling in ultra-wideband communication systems
CN101238648B (en) * 2005-06-14 2013-03-20 高通股份有限公司 Method and device for broadcast and multicast from cellular wireless networks
US7411937B2 (en) * 2005-08-09 2008-08-12 Agilent Technologies, Inc. Time synchronization system and method for synchronizing locating units within a communication system using a known external signal
US9699607B2 (en) * 2005-12-15 2017-07-04 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US7974627B2 (en) * 2008-11-11 2011-07-05 Trueposition, Inc. Use of radio access technology diversity for location
CN102379141B (en) * 2009-02-05 2014-12-03 苹果公司 Method and system for user equipment location determination on a wireless transmission system
US8401111B2 (en) * 2009-03-13 2013-03-19 Qualcomm Incorporated Method and apparatus for sequencing and correlating a positioning reference signal
US8730925B2 (en) * 2009-04-09 2014-05-20 Motorola Mobility Llc Method and apparatus for generating reference signals for accurate time-difference of arrival estimation
US8238941B2 (en) * 2010-07-08 2012-08-07 Global Business Software Development Technologies, Inc. System and method for determining a location for a mobile device
US8526391B2 (en) 2010-07-23 2013-09-03 Trueposition, Inc. Network based location of mobile transmitters
US9538493B2 (en) * 2010-08-23 2017-01-03 Finetrak, Llc Locating a mobile station and applications therefor
US8776246B2 (en) * 2011-03-11 2014-07-08 Abbott Point Of Care, Inc. Systems, methods and analyzers for establishing a secure wireless network in point of care testing
JP6166260B2 (en) * 2011-08-03 2017-07-19 ポルテ・コーポレイションPoLTE Corporation Multipath mitigation in object ranging and tracking using RF techniques with reduced attenuation
US8554246B2 (en) * 2011-11-21 2013-10-08 Trueposition, Inc. Combination of multiple baselines for location estimation
WO2014053487A1 (en) * 2012-10-01 2014-04-10 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for rf performance metric estimation
US10588107B2 (en) * 2012-10-26 2020-03-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods of positioning in a system comprising measuring nodes with multiple receiving points
CN105264920B (en) * 2012-12-12 2020-01-14 波尔特公司 Multipath mitigation in ranging and tracking of objects using reduced attenuation RF techniques

Similar Documents

Publication Publication Date Title
JP2017531934A5 (en)
JP7256241B2 (en) Partially synchronized multilateration/trilateration method and system for position finding using RF
JP7394777B2 (en) Network architecture and method for location services
Liu et al. Prospective positioning architecture and technologies in 5G networks
US10904710B2 (en) User equipment positioning using PRSs from a plurality of TRPs in a 5G-NR network
CN108370551B (en) Positioning method based on arrival time difference, user equipment and network equipment
JP2018500540A5 (en)
KR101516651B1 (en) Distributed positioning mechanism for wireless communication devices
EP3372024B1 (en) Positioning in wlan systems
KR101837918B1 (en) Generation and use of a user equipment location distribution in a wireless communication network
Sivers et al. LTE positioning accuracy performance evaluation
US10075934B2 (en) Positioning method and apparatus
US10866303B2 (en) Determining the location of a mobile computing device
WO2017204899A1 (en) Systems and methods for supporting positioning beacons compatible with legacy wireless devices
WO2014008859A1 (en) Positioning information determination method and device
JP2014524569A5 (en)
CN111279208A (en) Communication device, method and cellular network capable of being used for user equipment positioning using phase estimation
CN113785633A (en) Method and apparatus for bidirectional positioning of a device
WO2020035153A1 (en) Provision of positioning reference signals
EP3613244A1 (en) Fingerprinting enhancement with multi-band aoa measurements
WO2017062912A3 (en) Method and apparatus for measuring effect of information delivered to mobile devices
US9699611B1 (en) Relative forward link calibration estimation
EP3682690A1 (en) Enabling efficient positioning of a target device in a wireless communication system
WO2021006803A1 (en) Positioning signal search window configuration in a wireless communication system
TW202241184A (en) Anchor user equipment selection for positioning