JP2017525151A5 - - Google Patents

Download PDF

Info

Publication number
JP2017525151A5
JP2017525151A5 JP2017502694A JP2017502694A JP2017525151A5 JP 2017525151 A5 JP2017525151 A5 JP 2017525151A5 JP 2017502694 A JP2017502694 A JP 2017502694A JP 2017502694 A JP2017502694 A JP 2017502694A JP 2017525151 A5 JP2017525151 A5 JP 2017525151A5
Authority
JP
Japan
Prior art keywords
lumo
homo
energy gap
cathode
acc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017502694A
Other languages
Japanese (ja)
Other versions
JP2017525151A (en
JP6673897B2 (en
Filing date
Publication date
Priority claimed from PCT/US2014/062351 external-priority patent/WO2015061772A1/en
Application filed filed Critical
Priority claimed from PCT/US2015/041114 external-priority patent/WO2016011443A2/en
Publication of JP2017525151A publication Critical patent/JP2017525151A/en
Publication of JP2017525151A5 publication Critical patent/JP2017525151A5/ja
Application granted granted Critical
Publication of JP6673897B2 publication Critical patent/JP6673897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (33)

アノードおよびカソードを含む、重なり関係にある二つの電極と、
当該二つの電極の間に配置され、ドナー−アクセプタヘテロ接合を形成する少なくとも一つのドナー材料および少なくとも一つのアクセプタ材料を含む光活性領域(ここで、前記少なくとも一つのアクセプタ材料は、最低空軌道エネルギー準位(LUMOAcc)および最高被占軌道エネルギー準位(HOMOAcc)を有する)と、
前記カソードと前記少なくとも一つのアクセプタ材料との間に配置される励起子阻止電子フィルタ(ここで、当該電子フィルタは、少なくとも一つのカソード側の広エネルギーギャップ材料および少なくとも一つの電子伝導材料を含む混合物を含む)と、
を含み、
前記少なくとも一つのカソード側の広エネルギーギャップ材料は、
・前記LUMOAcc以下である最低空軌道エネルギー準位(LUMOCS−WG)と、
・前記HOMOAcc以上である、または前記HOMOAccより0.3eVの範囲内で小さい最高被占軌道エネルギー準位(HOMOCS−WG)と、
・HOMOAcc−LUMOAccのエネルギーギャップより広いHOMOCS−WG−LUMOCS−WGのエネルギーギャップと
85℃以上のガラス転移温度と、
を有し、
前記少なくとも一つの電子伝導材料は、前記LUMO Acc 以上である、または前記LUMO Acc より0.2eVの範囲内で小さい最低空軌道エネルギー準位(LUMO EC )を有する有機感光性光電子デバイス。
Two electrodes in an overlapping relationship, including an anode and a cathode;
A photoactive region disposed between the two electrodes and comprising at least one donor material and at least one acceptor material forming a donor-acceptor heterojunction, wherein the at least one acceptor material has a minimum free orbital energy and level (LUMO Acc) and highest occupied molecular orbital energy level that have a (HOMO Acc)),
An exciton blocking electronic filter disposed between the cathode and the at least one acceptor material, wherein the electronic filter comprises at least one cathode-side wide energy gap material and at least one electron conducting material Including)
Including
The at least one cathode side wide energy gap material comprises:
The lowest orbital energy level (LUMO CS-WG ) that is less than or equal to the LUMO Acc ;
A maximum occupied orbit energy level (HOMO CS-WG ) that is equal to or higher than the HOMO Acc or smaller than the HOMO Acc within a range of 0.3 eV;
-HOMO CS-WG - LUMO CS-WG energy gap wider than HOMO Acc -LUMO Acc energy gap ;
And the glass transition temperature · 85 ℃ or more,
I have a,
The at least one electron-conducting material, an organic photosensitive optoelectronic device having said at LUMO Acc or more, or less lowest unoccupied molecular orbital energy level in the range of 0.2eV than the LUMO Acc (LUMO EC).
前記少なくとも一つのカソード側の広エネルギーギャップ材料は、3,3’,5,5’−テトラ[(m−ピリジル)−フェン−3−イル]ビフェニル(BP4mPy)、2,2’,2”−(1,3,5−ベンジントリイル)−トリス(1−フェニル−1−H−ベンズイミダゾール)(TPBi)、ビス(2−メチル−8−キノリノレート)−4−(フェニルフェノラト)アルミニウム(BAlq)、トリス(8−ヒドロキシ−キノリナト)アルミニウム(Alq3)、トリス(2,4,6−トリメチル−3−(ピリジン−3−イル)フェニル)ボラン(3TPYMB)、4,40−(1,3−フェニレン)ビス(2,6−ジ−トリルピリジン−3,5−ジカルボニトリル)(m−MPyCN)、4,40−(1,3−フェニレン)ビス(2,6−ジ(ビフェニル−4−イル)ピリジン−3,5−ジカルボニトリル)(m−PhPyCN)、4,40−(1,3−フェニレン)ビス(2,6−ジフェニルピリジン−3,5−ジカルボニトリル)(m−PyCN)、6,60−(1,4−フェニレン)ビス(2−フェニル−4−p−トリルニコチノニトリル)(p−PPtNN)、4,40−(1,4−フェニレン)ビス(2−フェニル−6−p−トリルニコチノニトリル)(p−PPtNT)、およびそれらの誘導体から選択される材料を含む請求項1に記載のデバイス。   The at least one cathode-side wide energy gap material is 3,3 ′, 5,5′-tetra [(m-pyridyl) -phen-3-yl] biphenyl (BP4mPy), 2,2 ′, 2 ″ — (1,3,5-Benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum (BAlq ), Tris (8-hydroxy-quinolinato) aluminum (Alq3), tris (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (3TPYMB), 4,40- (1,3- Phenylene) bis (2,6-di-tolylpyridine-3,5-dicarbonitrile) (m-MPyCN), 4,40- (1,3-phenylene) bis (2, -Di (biphenyl-4-yl) pyridine-3,5-dicarbonitrile) (m-PhPyCN), 4,40- (1,3-phenylene) bis (2,6-diphenylpyridine-3,5-di (Carbonitrile) (m-PyCN), 6,60- (1,4-phenylene) bis (2-phenyl-4-p-tolylnicotinonitrile) (p-PPtNN), 4,40- (1,4- The device of claim 1 comprising a material selected from phenylene) bis (2-phenyl-6-p-tolylnicotinonitrile) (p-PPtNT), and derivatives thereof. 前記広エネルギーギャップ材料は、85〜200℃の間のガラス転移温度を有する請求項1に記載のデバイス。   The device of claim 1, wherein the wide energy gap material has a glass transition temperature between 85-200 ° C. 前記広エネルギーギャップ材料は、100〜165℃の間のガラス転移温度を有する請求項1に記載のデバイス。   The device of claim 1, wherein the wide energy gap material has a glass transition temperature between 100-165 ° C. 前記HOMOCS−WGは、前記HOMOAccより大きく、前記LUMOCS−WGは、前記LUMOAccより小さい請求項1に記載のデバイス。 The device according to claim 1, wherein the HOMO CS-WG is larger than the HOMO Acc , and the LUMO CS-WG is smaller than the LUMO Acc . 前記LUMOECは、前記LUMOAccと等しい請求項1に記載のデバイス。 The device of claim 1, wherein the LUMO EC is equal to the LUMO Acc . 前記LUMOECは、前記LUMOAccより大きい請求項1に記載のデバイス。 The device of claim 1, wherein the LUMO EC is greater than the LUMO Acc . 前記LUMOCS−WGは、前記LUMOECより小さい請求項1に記載のデバイス。 The device of claim 1, wherein the LUMO CS-WG is smaller than the LUMO EC . 前記少なくとも一つのアクセプタ材料は、サブフタロシアニン、サブナフタロシアニン、ジピリン錯体、BODIPY錯体、ペリレン、ナフタレン、フラーレン、官能基化フラーレン誘導体、およびそれらの誘導体から選択される材料を含む請求項1に記載のデバイス。   The said at least one acceptor material comprises a material selected from subphthalocyanine, subnaphthalocyanine, dipyrine complex, BODIPY complex, perylene, naphthalene, fullerene, functionalized fullerene derivatives, and derivatives thereof. device. 前記少なくとも一つのアクセプタ材料は、フラーレンおよび官能基化フラーレン誘導体から選択される材料を含む請求項9に記載のデバイス。 The device of claim 9, wherein the at least one acceptor material comprises a material selected from fullerenes and functionalized fullerene derivatives . 前記少なくとも一つの電子伝導材料は、サブフタロシアニン、サブナフタロシアニン、ジピリン錯体、BODIPY錯体、ペリレン、ナフタレン、フラーレン、官能基化フラーレン誘導体、およびそれらの誘導体から選択される材料を含む請求項1に記載のデバイス。   The said at least one electron conducting material comprises a material selected from subphthalocyanine, subnaphthalocyanine, dipyrine complex, BODIPY complex, perylene, naphthalene, fullerene, functionalized fullerene derivatives, and derivatives thereof. Devices. 前記少なくとも一つのアクセプタ材料および前記少なくとも一つの電子伝導材料は、同一の材料を含む請求項1に記載のデバイス。   The device of claim 1, wherein the at least one acceptor material and the at least one electron conducting material comprise the same material. アノードおよびカソードを含む、重なり関係にある二つの電極と、
当該二つの電極の間に配置され、ドナー−アクセプタヘテロ接合を形成する少なくとも一つのドナー材料および少なくとも一つのアクセプタ材料を含む光活性領域(ここで、前記少なくとも一つのドナー材料は、最低空軌道エネルギー準位(LUMODon)および最高被占軌道エネルギー準位(HOMODon)を有する)と、
前記アノードと前記少なくとも一つのドナー材料との間に配置される励起子阻止正孔フィルタ(ここで、当該正孔フィルタは、少なくとも一つのアノード側の広エネルギーギャップ材料および少なくとも一つの正孔伝導材料を含む混合物を含む)と、
を含み、
前記少なくとも一つのアノード側の広エネルギーギャップ材料は、
・前記HOMODon以上である最高被占軌道エネルギー準位(HOMOAS−WG)と、
・前記LUMODon以下である、または前記LUMODonより0.3eVの範囲内で大きい最低空軌道エネルギー準位(LUMOAS−WG)と、
・HOMODon−LUMODonのエネルギーギャップより広いHOMOAS−WG−LUMOAS−WGのエネルギーギャップと
85℃以上のガラス転移温度と、
を有する有機感光性光電子デバイス。
Two electrodes in an overlapping relationship, including an anode and a cathode;
At least one donor material disposed between the two electrodes and forming a donor-acceptor heterojunction and a photoactive region comprising at least one acceptor material, wherein the at least one donor material has a minimum free orbital energy The level (LUMO Don ) and the highest occupied orbit energy level (HOMO Don ));
An exciton blocking hole filter disposed between the anode and the at least one donor material, wherein the hole filter comprises at least one anode-side wide energy gap material and at least one hole conducting material; Including a mixture)
Including
The at least one anode side wide energy gap material comprises:
The highest occupied orbit energy level (HOMO AS-WG ) that is equal to or higher than the HOMO Don ;
A lowest orbital energy level (LUMO AS-WG ) that is less than or equal to the LUMO Don or greater than the LUMO Don within a range of 0.3 eV;
-HOMO AS-WG - LUMO AS-WG energy gap wider than HOMO Don -LUMO Don energy gap ,
And the glass transition temperature · 85 ℃ or more,
An organic photosensitive optoelectronic device.
前記少なくとも一つのアノード側の広エネルギーギャップ材料は、3,3’,5,5’−テトラ[(m−ピリジル)−フェン−3−イル]ビフェニル(BP4mPy)、2,2’,2”−(1,3,5−ベンジントリイル)−トリス(1−フェニル−1−H−ベンズイミダゾール)(TPBi)、ビス(2−メチル−8−キノリノレート)−4−(フェニルフェノラト)アルミニウム(BAlq)、トリス(8−ヒドロキシ−キノリナト)アルミニウム(Alq3)、トリス(2,4,6−トリメチル−3−(ピリジン−3−イル)フェニル)ボラン(3TPYMB)、4,40−(1,3−フェニレン)ビス(2,6−ジ−トリルピリジン−3,5−ジカルボニトリル)(m−MPyCN)、4,40−(1,3−フェニレン)ビス(2,6−ジ(ビフェニル−4−イル)ピリジン−3,5−ジカルボニトリル)(m−PhPyCN)、4,40−(1,3−フェニレン)ビス(2,6−ジフェニルピリジン−3,5−ジカルボニトリル)(m−PyCN)、6,60−(1,4−フェニレン)ビス(2−フェニル−4−p−トリルニコチノニトリル)(p−PPtNN)、4,40−(1,4−フェニレン)ビス(2−フェニル−6−p−トリルニコチノニトリル)(p−PPtNT)、およびそれらの誘導体から選択される材料を含む請求項13に記載のデバイス。 The at least one anode- side wide energy gap material is 3,3 ′, 5,5′-tetra [(m-pyridyl) -phen-3-yl] biphenyl (BP4mPy), 2,2 ′, 2 ″ — (1,3,5-Benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum (BAlq ), Tris (8-hydroxy-quinolinato) aluminum (Alq3), tris (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (3TPYMB), 4,40- (1,3- Phenylene) bis (2,6-di-tolylpyridine-3,5-dicarbonitrile) (m-MPyCN), 4,40- (1,3-phenylene) bis (2,6- (Biphenyl-4-yl) pyridine-3,5-dicarbonitrile) (m-PhPyCN), 4,40- (1,3-phenylene) bis (2,6-diphenylpyridine-3,5-dicarbonitrile) ) (M-PyCN), 6,60- (1,4-phenylene) bis (2-phenyl-4-p-tolylnicotinonitrile) (p-PPtNN), 4,40- (1,4-phenylene) 14. The device of claim 13, comprising a material selected from bis (2-phenyl-6-p-tolylnicotinonitrile) (p-PPtNT), and derivatives thereof. 前記広エネルギーギャップ材料は、85〜200℃の間のガラス転移温度を有する請求項13に記載のデバイス。   The device of claim 13, wherein the wide energy gap material has a glass transition temperature between 85-200 ° C. 前記HOMOAS−WGは、前記HOMODonより大きく、前記LUMOAS−WGは、前記LUMODonより小さい請求項13に記載のデバイス。 14. The device of claim 13, wherein the HOMO AS-WG is larger than the HOMO Don and the LUMO AS-WG is smaller than the LUMO Don . 前記HOMOHCは、前記HOMODon以下である請求項13に記載のデバイス。 The device of claim 13, wherein the HOMO HC is less than or equal to the HOMO Don . 前記HOMOAS−WGは、前記HOMOHCより大きい請求項13に記載のデバイス。 The device of claim 13, wherein the HOMO AS-WG is larger than the HOMO HC . 前記少なくとも一つのドナー材料は、フタロシアニン、サブフタロシアニン、ナフタロシアニン、メロシアニン色素、ホウ素ジピロメテン(BODIPY)色素、チオフェン、低バンドギャップポリマー、ポリアセン、ジインデノペリレン(DIP)、スクアライン(SQ)色素、テトラフェニルジベンゾペリフランテン(DBP)、およびそれらの誘導体から選択される材料を含む請求項13に記載のデバイス。   The at least one donor material is phthalocyanine, subphthalocyanine, naphthalocyanine, merocyanine dye, boron dipyrromethene (BODIPY) dye, thiophene, low band gap polymer, polyacene, diindenoperylene (DIP), squaraine (SQ) dye, 14. The device of claim 13, comprising a material selected from tetraphenyl dibenzoperifuranthene (DBP) and derivatives thereof. 前記少なくとも一つの正孔伝導材料は、フタロシアニン、サブフタロシアニン、ナフタロシアニン、メロシアニン色素、ホウ素ジピロメテン(BODIPY)色素、チオフェン、低バンドギャップポリマー、ポリアセン、ジインデノペリレン(DIP)、スクアライン(SQ)色素、テトラフェニルジベンゾペリフランテン(DBP)、およびそれらの誘導体から選択される材料を含む請求項13に記載のデバイス。   The at least one hole conducting material includes phthalocyanine, subphthalocyanine, naphthalocyanine, merocyanine dye, boron dipyrromethene (BODIPY) dye, thiophene, low band gap polymer, polyacene, diindenoperylene (DIP), squaraine (SQ). 14. The device of claim 13, comprising a material selected from dyes, tetraphenyl dibenzoperifuranthene (DBP), and derivatives thereof. 前記混合物は、前記少なくとも一つのカソード側の広エネルギーギャップ材料および前記少なくとも一つの電子伝導材料を、体積比で10:1〜1:10となる範囲の比率で含む請求項1に記載のデバイス。The device of claim 1, wherein the mixture comprises the at least one cathode-side wide energy gap material and the at least one electron conducting material in a volume ratio of 10: 1 to 1:10. 前記混合物は、前記少なくとも一つのカソード側の広エネルギーギャップ材料および前記少なくとも一つの電子伝導材料を、体積比で2:1〜1:2となる範囲の比率で含む請求項1に記載のデバイス。The device of claim 1, wherein the mixture comprises the at least one cathode-side wide energy gap material and the at least one electron conducting material in a volume ratio of 2: 1 to 1: 2. 前記励起子阻止電子フィルタと前記カソードとの間に配置される少なくとも一つのキャップ層をさらに含む請求項1に記載のデバイス。The device of claim 1, further comprising at least one cap layer disposed between the exciton blocking electron filter and the cathode. 前記少なくとも一つのキャップ層および前記少なくとも一つのカソード側の広エネルギーギャップ材料は、同一の材料を含む請求項23に記載のデバイス。24. The device of claim 23, wherein the at least one cap layer and the at least one cathode-side wide energy gap material comprise the same material. 前記少なくとも一つの電子伝導材料は、フラーレンおよび官能基化フラーレン誘導体から選択される材料を含む請求項1に記載のデバイス。The device of claim 1, wherein the at least one electron conducting material comprises a material selected from fullerenes and functionalized fullerene derivatives. 前記少なくとも一つの電子伝導材料は、CThe at least one electron conductive material is C 6060 およびCAnd C 7070 から選択される材料を含む請求項25に記載のデバイス。26. The device of claim 25, comprising a material selected from: 前記少なくとも一つのアクセプタ材料は、CThe at least one acceptor material is C 6060 およびCAnd C 7070 から選択される材料を含む請求項26に記載のデバイス。27. The device of claim 26, comprising a material selected from: 前記少なくとも一つのカソード側の広エネルギーギャップ材料は、BP4mPy、TPBi、BAlq、Alq3および3TPYMBから選択される材料を含む請求項26に記載のデバイス。27. The device of claim 26, wherein the at least one cathode-side wide energy gap material comprises a material selected from BP4mPy, TPBi, BAlq, Alq3, and 3TPYMB. 前記励起子阻止電子フィルタと前記カソードとの間に配置される少なくとも一つのキャップ層をさらに含み、前記少なくとも一つのキャップ層および前記少なくとも一つのカソード側の広エネルギーギャップ材料は、同一の材料を含む請求項28に記載のデバイス。And further including at least one cap layer disposed between the exciton blocking electron filter and the cathode, wherein the at least one cap layer and the at least one cathode-side wide energy gap material include the same material. 30. The device of claim 28. 前記少なくとも一つのカソード側の広エネルギーギャップ材料は、TPBiを含む請求項27に記載のデバイス。28. The device of claim 27, wherein the at least one cathode side wide energy gap material comprises TPBi. 前記励起子阻止電子フィルタと前記カソードとの間に配置される少なくとも一つのキャップ層をさらに含み、前記少なくとも一つのキャップ層は、TPBiを含む請求項30に記載のデバイス。32. The device of claim 30, further comprising at least one cap layer disposed between the exciton blocking electron filter and the cathode, wherein the at least one cap layer comprises TPBi. 前記少なくとも一つのドナー材料は、テトラフェニルジベンゾペリフランテン(DBP)を含む請求項31に記載のデバイス。32. The device of claim 31, wherein the at least one donor material comprises tetraphenyl dibenzoperifuranthene (DBP). 前記少なくとも一つのカソード側の広エネルギーギャップ材料は、TPBiを含む請求項1に記載のデバイス。The device of claim 1, wherein the at least one cathode-side wide energy gap material comprises TPBi.
JP2017502694A 2014-07-18 2015-07-20 Stable organic photosensitive devices including exciton blocking charge carrier filters using high glass transition temperature materials Active JP6673897B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462026301P 2014-07-18 2014-07-18
US62/026,301 2014-07-18
PCT/US2014/062351 WO2015061772A1 (en) 2013-10-25 2014-10-27 Organic photosensitive devices with exciton-blocking charge carrier filters
USPCT/US2014/062351 2014-10-27
PCT/US2015/041114 WO2016011443A2 (en) 2014-07-18 2015-07-20 Stable organic photosensitive devices with exciton-blocking charge carrier filters utilizing high glass transition temperature materials

Publications (3)

Publication Number Publication Date
JP2017525151A JP2017525151A (en) 2017-08-31
JP2017525151A5 true JP2017525151A5 (en) 2018-08-30
JP6673897B2 JP6673897B2 (en) 2020-03-25

Family

ID=55079184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017502694A Active JP6673897B2 (en) 2014-07-18 2015-07-20 Stable organic photosensitive devices including exciton blocking charge carrier filters using high glass transition temperature materials

Country Status (6)

Country Link
EP (1) EP3170212A2 (en)
JP (1) JP6673897B2 (en)
KR (1) KR102481742B1 (en)
CN (1) CN107580730A (en)
TW (1) TWI684296B (en)
WO (1) WO2016011443A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336231B (en) * 2018-03-14 2021-08-27 南京邮电大学 Organic photoelectric detector with wide spectral response
CN113224242A (en) * 2021-04-29 2021-08-06 天津大学 Organic solar cell preparation method for improving shape thermal stability of active layer
CN115237198B (en) * 2022-04-18 2024-04-26 浙江树人学院 Quick global peak tracking method of photovoltaic system under time-varying local shadow condition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045955B2 (en) * 2002-08-09 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence element and a light emitting device using the same
US20070182321A1 (en) * 2006-02-09 2007-08-09 Fujifilm Corporation Organic electroluminescence device and producing method therefor
WO2010120393A2 (en) * 2009-01-12 2010-10-21 The Regents Of The University Of Michigan Enhancement of organic photovoltaic cell open circuit voltage using electron/hole blocking exciton blocking layers
KR20200018718A (en) * 2011-02-21 2020-02-19 더 리젠츠 오브 더 유니버시티 오브 미시간 Organic photovoltaic cell incorporating electron conducting exciton blocking layers
WO2012122387A1 (en) * 2011-03-10 2012-09-13 Marshall Cox Graphene electrodes for electronic devices
JPWO2013035305A1 (en) * 2011-09-09 2015-03-23 出光興産株式会社 Organic solar cell
US9508945B2 (en) * 2012-06-27 2016-11-29 Regents Of The University Of Minnesota Spectrally tunable broadband organic photodetectors
KR102251818B1 (en) * 2012-11-22 2021-05-12 더 리젠츠 오브 더 유니버시티 오브 미시간 Hybrid planar-mixed heterojunction for organic photovoltaics
ES2791779T3 (en) * 2013-04-12 2020-11-05 Univ Michigan Regents Organic Photosensitive Devices with Exciton Blocking Charge Carrier Filters

Similar Documents

Publication Publication Date Title
Gao et al. Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: conformation effects on regulating molecular properties and suppressing nonradiative energy loss
Xiao et al. Dopant‐free squaraine‐based polymeric hole‐transporting materials with comprehensive passivation effects for efficient all‐inorganic perovskite solar cells
Zhang et al. Intensive exposure of functional rings of a polymeric hole‐transporting material enables efficient perovskite solar cells
Gu et al. An azaacene derivative as promising electron‐transport layer for inverted perovskite solar cells
Kim et al. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers
Nishimura et al. Hole-transporting materials with a two-dimensionally expanded π-system around an azulene core for efficient perovskite solar cells
Völker et al. Organic charge carriers for perovskite solar cells
Zhang et al. Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer
Liu et al. Fine-tuning the quasi-3D geometry: enabling efficient nonfullerene organic solar cells based on perylene diimides
Gao et al. Asymmetric isomer effects in benzo [c][1, 2, 5] thiadiazole‐fused nonacyclic acceptors: dielectric constant and molecular crystallinity control for significant photovoltaic performance enhancement
Xu et al. 1, 1, 2, 2‐Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solid‐State Dye‐Sensitized Solar Cells
Liu et al. Molecular engineering of simple carbazole‐triphenylamine hole transporting materials by replacing benzene with pyridine unit for perovskite solar cells
Liu et al. Thiophene–Arylamine Hole‐Transporting Materials in Perovskite Solar Cells: Substitution Position Effect
Heo et al. Development of dopant-free donor–acceptor-type hole transporting material for highly efficient and stable perovskite solar cells
Gao et al. High‐Mobility Hydrophobic Conjugated Polymer as Effective Interlayer for Air‐Stable Efficient Perovskite Solar Cells
Chen et al. Novel Cathode Interlayers Based on Neutral Alcohol‐Soluble Small Molecules with a Triphenylamine Core Featuring Polar Phosphonate Side Chains for High‐Performance Polymer Light‐Emitting and Photovoltaic Devices
Hai et al. Dopant‐Free Hole Transport Materials Based on a Large Conjugated Electron‐Deficient Core for Efficient Perovskite Solar Cells
Chu et al. A New Supramolecular Hole Injection/Transport Material on Conducting Polymer for Application in Light‐Emitting Diodes
Wang et al. Chemically doped hole transporting materials with low cross-linking temperature and high mobility for solution-processed green/red PHOLEDs
Ma et al. Improved hole-transporting property via HAT-CN for perovskite solar cells without lithium salts
Hua et al. Composite hole‐transport materials based on a metal‐organic copper complex and spiro‐OMeTAD for efficient perovskite solar cells
Zhang et al. Regulating Intramolecular Charge Transfer and Resonance Effects to Realize Ultrawide Bandgap Conjugated Polymer for High‐Performance All‐Polymer Solar Cells
Siddique et al. Discovery of versatile bat‐shaped acceptor materials for high‐performance organic solar cells‐a DFT approach
Liu et al. Thieno [3, 2-b] indole-based hole transporting materials for perovskite solar cells with photovoltages exceeding 1.11 V
JP2017525151A5 (en)