JP2017525038A5 - - Google Patents

Download PDF

Info

Publication number
JP2017525038A5
JP2017525038A5 JP2017502110A JP2017502110A JP2017525038A5 JP 2017525038 A5 JP2017525038 A5 JP 2017525038A5 JP 2017502110 A JP2017502110 A JP 2017502110A JP 2017502110 A JP2017502110 A JP 2017502110A JP 2017525038 A5 JP2017525038 A5 JP 2017525038A5
Authority
JP
Japan
Prior art keywords
filter
training
neural network
artificial neural
regularization term
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017502110A
Other languages
English (en)
Japanese (ja)
Other versions
JP2017525038A (ja
Filing date
Publication date
Priority claimed from US14/526,046 external-priority patent/US10402720B2/en
Application filed filed Critical
Publication of JP2017525038A publication Critical patent/JP2017525038A/ja
Publication of JP2017525038A5 publication Critical patent/JP2017525038A5/ja
Pending legal-status Critical Current

Links

JP2017502110A 2014-07-16 2015-07-13 ニューラルネットワークにおける畳込み演算の分解 Pending JP2017525038A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462025406P 2014-07-16 2014-07-16
US62/025,406 2014-07-16
US14/526,046 2014-10-28
US14/526,046 US10402720B2 (en) 2014-07-16 2014-10-28 Decomposing convolution operation in neural networks
PCT/US2015/040221 WO2016010930A1 (en) 2014-07-16 2015-07-13 Decomposing convolution operation in neural networks

Publications (2)

Publication Number Publication Date
JP2017525038A JP2017525038A (ja) 2017-08-31
JP2017525038A5 true JP2017525038A5 (enExample) 2018-07-26

Family

ID=55074837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017502110A Pending JP2017525038A (ja) 2014-07-16 2015-07-13 ニューラルネットワークにおける畳込み演算の分解

Country Status (8)

Country Link
US (2) US10402720B2 (enExample)
EP (2) EP3170126A1 (enExample)
JP (1) JP2017525038A (enExample)
KR (1) KR20170031695A (enExample)
CN (2) CN106663222A (enExample)
AU (1) AU2015289877A1 (enExample)
BR (1) BR112017000229A2 (enExample)
WO (2) WO2016010922A1 (enExample)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10402720B2 (en) 2014-07-16 2019-09-03 Qualcomm Incorporated Decomposing convolution operation in neural networks
US10262259B2 (en) * 2015-05-08 2019-04-16 Qualcomm Incorporated Bit width selection for fixed point neural networks
KR102565273B1 (ko) * 2016-01-26 2023-08-09 삼성전자주식회사 뉴럴 네트워크에 기초한 인식 장치 및 뉴럴 네트워크의 학습 방법
US10713562B2 (en) * 2016-06-18 2020-07-14 International Business Machines Corporation Neuromorphic memory circuit
CN106326985A (zh) * 2016-08-18 2017-01-11 北京旷视科技有限公司 神经网络训练方法和装置及数据处理方法和装置
US11238337B2 (en) * 2016-08-22 2022-02-01 Applied Brain Research Inc. Methods and systems for implementing dynamic neural networks
EP3306535B1 (en) * 2016-10-10 2019-12-04 Alcatel Lucent Runtime optimization of convolutional neural networks
KR102879261B1 (ko) * 2016-12-22 2025-10-31 삼성전자주식회사 컨볼루션 신경망 처리 방법 및 장치
US11301750B2 (en) 2017-03-31 2022-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Simplification of neural models that include arborized projections
DE102017205713A1 (de) 2017-04-04 2018-10-04 Siemens Aktiengesellschaft Verfahren und Steuereinrichtung zum Steuern eines technischen Systems
US11037330B2 (en) 2017-04-08 2021-06-15 Intel Corporation Low rank matrix compression
CN107248144B (zh) * 2017-04-27 2019-12-10 东南大学 一种基于压缩型卷积神经网络的图像去噪方法
US11093832B2 (en) 2017-10-19 2021-08-17 International Business Machines Corporation Pruning redundant neurons and kernels of deep convolutional neural networks
CN107729994B (zh) 2017-11-28 2020-05-26 南京地平线机器人技术有限公司 执行卷积神经网络中的卷积层的运算的方法和装置
WO2019146189A1 (ja) * 2018-01-29 2019-08-01 日本電気株式会社 ニューラルネットワークのランク最適化装置および最適化方法
US11238346B2 (en) 2018-04-25 2022-02-01 Qualcomm Incorproated Learning a truncation rank of singular value decomposed matrices representing weight tensors in neural networks
JP7021010B2 (ja) * 2018-06-06 2022-02-16 株式会社Nttドコモ 機械学習システム
US11922314B1 (en) * 2018-11-30 2024-03-05 Ansys, Inc. Systems and methods for building dynamic reduced order physical models
CN109948787B (zh) * 2019-02-26 2021-01-08 山东师范大学 用于神经网络卷积层的运算装置、芯片及方法
US11580399B2 (en) 2019-04-30 2023-02-14 Samsung Electronics Co., Ltd. System and method for convolutional layer structure for neural networks
KR102774162B1 (ko) * 2019-05-16 2025-03-04 삼성전자주식회사 전자 장치 및 이의 제어 방법
WO2020235011A1 (ja) * 2019-05-21 2020-11-26 日本電信電話株式会社 学習装置、学習方法及び学習プログラム
CN112215329B (zh) * 2019-07-09 2023-09-29 杭州海康威视数字技术股份有限公司 基于神经网络的卷积计算方法及装置
CN112784207B (zh) * 2019-11-01 2024-02-02 中科寒武纪科技股份有限公司 运算方法及相关产品
US11010691B1 (en) * 2020-03-16 2021-05-18 Sas Institute Inc. Distributable event prediction and machine learning recognition system
US12450472B2 (en) * 2020-06-22 2025-10-21 Qualcomm Incorporated Charge-pump-based current-mode neuron for machine learning
KR102427737B1 (ko) 2020-09-18 2022-08-01 네이버 주식회사 표현적 병목 현상이 최소화된 인공 신경망을 기반으로 하는 전자 장치 및 그의 동작 방법
US20230057387A1 (en) * 2021-07-23 2023-02-23 Cohere Inc. System and Method for Low Rank Training of Neural Networks
JP7600972B2 (ja) * 2021-12-06 2024-12-17 株式会社デンソー モデル生成方法、モデル生成プログラム、モデル生成装置、データ処理装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781700A (en) 1996-02-05 1998-07-14 Ford Global Technologies, Inc. Trained Neural network air/fuel control system
US6351740B1 (en) 1997-12-01 2002-02-26 The Board Of Trustees Of The Leland Stanford Junior University Method and system for training dynamic nonlinear adaptive filters which have embedded memory
US6269351B1 (en) * 1999-03-31 2001-07-31 Dryken Technologies, Inc. Method and system for training an artificial neural network
US6754380B1 (en) 2003-02-14 2004-06-22 The University Of Chicago Method of training massive training artificial neural networks (MTANN) for the detection of abnormalities in medical images
WO2006091636A2 (en) 2005-02-23 2006-08-31 Digital Intelligence, L.L.C. Signal decomposition and reconstruction
ITRM20050192A1 (it) 2005-04-20 2006-10-21 Consiglio Nazionale Ricerche Sistema per la rilevazione e la classificazione di eventi durante azioni in movimento.
US7945061B1 (en) 2006-06-07 2011-05-17 Bae Systems Information And Electronic Systems Integration Inc. Scalable architecture for subspace signal tracking
JP5315411B2 (ja) 2008-07-03 2013-10-16 エヌイーシー ラボラトリーズ アメリカ インク 有糸分裂像検出装置および計数システム、および有糸分裂像を検出して計数する方法
CN101667425A (zh) 2009-09-22 2010-03-10 山东大学 一种对卷积混叠语音信号进行盲源分离的方法
BRPI0904540B1 (pt) 2009-11-27 2021-01-26 Samsung Eletrônica Da Amazônia Ltda método para animar rostos/cabeças/personagens virtuais via processamento de voz
US8874432B2 (en) 2010-04-28 2014-10-28 Nec Laboratories America, Inc. Systems and methods for semi-supervised relationship extraction
US8583586B2 (en) 2011-01-21 2013-11-12 International Business Machines Corporation Mining temporal patterns in longitudinal event data using discrete event matrices and sparse coding
US9262724B2 (en) 2012-07-13 2016-02-16 International Business Machines Corporation Low-rank matrix factorization for deep belief network training with high-dimensional output targets
CN102820653B (zh) 2012-09-12 2014-07-30 湖南大学 一种电能质量综合控制器模糊-神经网络双闭环控制方法
US20140156575A1 (en) 2012-11-30 2014-06-05 Nuance Communications, Inc. Method and Apparatus of Processing Data Using Deep Belief Networks Employing Low-Rank Matrix Factorization
CN103325382A (zh) 2013-06-07 2013-09-25 大连民族学院 一种自动识别中国少数民族传统乐器音频数据的方法
US9728184B2 (en) 2013-06-18 2017-08-08 Microsoft Technology Licensing, Llc Restructuring deep neural network acoustic models
US9400955B2 (en) * 2013-12-13 2016-07-26 Amazon Technologies, Inc. Reducing dynamic range of low-rank decomposition matrices
US10402720B2 (en) 2014-07-16 2019-09-03 Qualcomm Incorporated Decomposing convolution operation in neural networks

Similar Documents

Publication Publication Date Title
JP2017525038A5 (enExample)
Carvalhaes et al. The surface Laplacian technique in EEG: Theory and methods
Donatelli et al. Square smoothing regularization matrices with accurate boundary conditions
Da Veiga et al. A virtual element method for elastic and inelastic problems on polytope meshes
Heister et al. A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach
Piketty et al. Optimal labor income taxation
Ferradi et al. A new beam element with transversal and warping eigenmodes
WO2013181637A3 (en) Neural network learning and collaboration apparatus and methods
JP2013542501A5 (enExample)
JP2015219371A5 (ja) 処理装置、血管模型、画像処理方法、プログラム、および、造形装置
MX2014007247A (es) Sistema y metodo para simulacion flexible y eficiente de variacion de densidad de fractura en un simulador de yacimiento.
JP2015122068A5 (enExample)
Hassani et al. Deflation strategies for multi-block principal component analysis revisited
Bang et al. Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization
Karl et al. Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects
Xie et al. The MGPBiCG method for solving the generalized coupled Sylvester-conjugate matrix equations
Zhang et al. Lattice Boltzmann simulation of pattern formation under cross-diffusion
JP2017164215A5 (enExample)
EA201790714A1 (ru) Система моделирования
Chen et al. Expected discounted dividends in a discrete semi-Markov risk model
Ruan et al. Scenario-based allocating of relief medical supplies for large-scale disasters
Puuronen et al. A Bayesian inverse solution using independent component analysis
Vyzhva et al. About methods of 3-D dataset statistical simulation on Rivne NPP example
EP2942477A3 (en) Method of monitoring a reservoir system using image well technique
Bremner Structure of the rational monoid algebra for Boolean matrices of order 3