JP2017525038A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2017525038A5 JP2017525038A5 JP2017502110A JP2017502110A JP2017525038A5 JP 2017525038 A5 JP2017525038 A5 JP 2017525038A5 JP 2017502110 A JP2017502110 A JP 2017502110A JP 2017502110 A JP2017502110 A JP 2017502110A JP 2017525038 A5 JP2017525038 A5 JP 2017525038A5
- Authority
- JP
- Japan
- Prior art keywords
- filter
- training
- neural network
- artificial neural
- regularization term
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 claims 7
- 238000000034 method Methods 0.000 claims 6
- 239000011159 matrix material Substances 0.000 claims 4
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462025406P | 2014-07-16 | 2014-07-16 | |
| US62/025,406 | 2014-07-16 | ||
| US14/526,046 | 2014-10-28 | ||
| US14/526,046 US10402720B2 (en) | 2014-07-16 | 2014-10-28 | Decomposing convolution operation in neural networks |
| PCT/US2015/040221 WO2016010930A1 (en) | 2014-07-16 | 2015-07-13 | Decomposing convolution operation in neural networks |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2017525038A JP2017525038A (ja) | 2017-08-31 |
| JP2017525038A5 true JP2017525038A5 (enExample) | 2018-07-26 |
Family
ID=55074837
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017502110A Pending JP2017525038A (ja) | 2014-07-16 | 2015-07-13 | ニューラルネットワークにおける畳込み演算の分解 |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US10402720B2 (enExample) |
| EP (2) | EP3170126A1 (enExample) |
| JP (1) | JP2017525038A (enExample) |
| KR (1) | KR20170031695A (enExample) |
| CN (2) | CN106663222A (enExample) |
| AU (1) | AU2015289877A1 (enExample) |
| BR (1) | BR112017000229A2 (enExample) |
| WO (2) | WO2016010922A1 (enExample) |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10402720B2 (en) | 2014-07-16 | 2019-09-03 | Qualcomm Incorporated | Decomposing convolution operation in neural networks |
| US10262259B2 (en) * | 2015-05-08 | 2019-04-16 | Qualcomm Incorporated | Bit width selection for fixed point neural networks |
| KR102565273B1 (ko) * | 2016-01-26 | 2023-08-09 | 삼성전자주식회사 | 뉴럴 네트워크에 기초한 인식 장치 및 뉴럴 네트워크의 학습 방법 |
| US10713562B2 (en) * | 2016-06-18 | 2020-07-14 | International Business Machines Corporation | Neuromorphic memory circuit |
| CN106326985A (zh) * | 2016-08-18 | 2017-01-11 | 北京旷视科技有限公司 | 神经网络训练方法和装置及数据处理方法和装置 |
| US11238337B2 (en) * | 2016-08-22 | 2022-02-01 | Applied Brain Research Inc. | Methods and systems for implementing dynamic neural networks |
| EP3306535B1 (en) * | 2016-10-10 | 2019-12-04 | Alcatel Lucent | Runtime optimization of convolutional neural networks |
| KR102879261B1 (ko) * | 2016-12-22 | 2025-10-31 | 삼성전자주식회사 | 컨볼루션 신경망 처리 방법 및 장치 |
| US11301750B2 (en) | 2017-03-31 | 2022-04-12 | Ecole Polytechnique Federale De Lausanne (Epfl) | Simplification of neural models that include arborized projections |
| DE102017205713A1 (de) | 2017-04-04 | 2018-10-04 | Siemens Aktiengesellschaft | Verfahren und Steuereinrichtung zum Steuern eines technischen Systems |
| US11037330B2 (en) | 2017-04-08 | 2021-06-15 | Intel Corporation | Low rank matrix compression |
| CN107248144B (zh) * | 2017-04-27 | 2019-12-10 | 东南大学 | 一种基于压缩型卷积神经网络的图像去噪方法 |
| US11093832B2 (en) | 2017-10-19 | 2021-08-17 | International Business Machines Corporation | Pruning redundant neurons and kernels of deep convolutional neural networks |
| CN107729994B (zh) | 2017-11-28 | 2020-05-26 | 南京地平线机器人技术有限公司 | 执行卷积神经网络中的卷积层的运算的方法和装置 |
| WO2019146189A1 (ja) * | 2018-01-29 | 2019-08-01 | 日本電気株式会社 | ニューラルネットワークのランク最適化装置および最適化方法 |
| US11238346B2 (en) | 2018-04-25 | 2022-02-01 | Qualcomm Incorproated | Learning a truncation rank of singular value decomposed matrices representing weight tensors in neural networks |
| JP7021010B2 (ja) * | 2018-06-06 | 2022-02-16 | 株式会社Nttドコモ | 機械学習システム |
| US11922314B1 (en) * | 2018-11-30 | 2024-03-05 | Ansys, Inc. | Systems and methods for building dynamic reduced order physical models |
| CN109948787B (zh) * | 2019-02-26 | 2021-01-08 | 山东师范大学 | 用于神经网络卷积层的运算装置、芯片及方法 |
| US11580399B2 (en) | 2019-04-30 | 2023-02-14 | Samsung Electronics Co., Ltd. | System and method for convolutional layer structure for neural networks |
| KR102774162B1 (ko) * | 2019-05-16 | 2025-03-04 | 삼성전자주식회사 | 전자 장치 및 이의 제어 방법 |
| WO2020235011A1 (ja) * | 2019-05-21 | 2020-11-26 | 日本電信電話株式会社 | 学習装置、学習方法及び学習プログラム |
| CN112215329B (zh) * | 2019-07-09 | 2023-09-29 | 杭州海康威视数字技术股份有限公司 | 基于神经网络的卷积计算方法及装置 |
| CN112784207B (zh) * | 2019-11-01 | 2024-02-02 | 中科寒武纪科技股份有限公司 | 运算方法及相关产品 |
| US11010691B1 (en) * | 2020-03-16 | 2021-05-18 | Sas Institute Inc. | Distributable event prediction and machine learning recognition system |
| US12450472B2 (en) * | 2020-06-22 | 2025-10-21 | Qualcomm Incorporated | Charge-pump-based current-mode neuron for machine learning |
| KR102427737B1 (ko) | 2020-09-18 | 2022-08-01 | 네이버 주식회사 | 표현적 병목 현상이 최소화된 인공 신경망을 기반으로 하는 전자 장치 및 그의 동작 방법 |
| US20230057387A1 (en) * | 2021-07-23 | 2023-02-23 | Cohere Inc. | System and Method for Low Rank Training of Neural Networks |
| JP7600972B2 (ja) * | 2021-12-06 | 2024-12-17 | 株式会社デンソー | モデル生成方法、モデル生成プログラム、モデル生成装置、データ処理装置 |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5781700A (en) | 1996-02-05 | 1998-07-14 | Ford Global Technologies, Inc. | Trained Neural network air/fuel control system |
| US6351740B1 (en) | 1997-12-01 | 2002-02-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method and system for training dynamic nonlinear adaptive filters which have embedded memory |
| US6269351B1 (en) * | 1999-03-31 | 2001-07-31 | Dryken Technologies, Inc. | Method and system for training an artificial neural network |
| US6754380B1 (en) | 2003-02-14 | 2004-06-22 | The University Of Chicago | Method of training massive training artificial neural networks (MTANN) for the detection of abnormalities in medical images |
| WO2006091636A2 (en) | 2005-02-23 | 2006-08-31 | Digital Intelligence, L.L.C. | Signal decomposition and reconstruction |
| ITRM20050192A1 (it) | 2005-04-20 | 2006-10-21 | Consiglio Nazionale Ricerche | Sistema per la rilevazione e la classificazione di eventi durante azioni in movimento. |
| US7945061B1 (en) | 2006-06-07 | 2011-05-17 | Bae Systems Information And Electronic Systems Integration Inc. | Scalable architecture for subspace signal tracking |
| JP5315411B2 (ja) | 2008-07-03 | 2013-10-16 | エヌイーシー ラボラトリーズ アメリカ インク | 有糸分裂像検出装置および計数システム、および有糸分裂像を検出して計数する方法 |
| CN101667425A (zh) | 2009-09-22 | 2010-03-10 | 山东大学 | 一种对卷积混叠语音信号进行盲源分离的方法 |
| BRPI0904540B1 (pt) | 2009-11-27 | 2021-01-26 | Samsung Eletrônica Da Amazônia Ltda | método para animar rostos/cabeças/personagens virtuais via processamento de voz |
| US8874432B2 (en) | 2010-04-28 | 2014-10-28 | Nec Laboratories America, Inc. | Systems and methods for semi-supervised relationship extraction |
| US8583586B2 (en) | 2011-01-21 | 2013-11-12 | International Business Machines Corporation | Mining temporal patterns in longitudinal event data using discrete event matrices and sparse coding |
| US9262724B2 (en) | 2012-07-13 | 2016-02-16 | International Business Machines Corporation | Low-rank matrix factorization for deep belief network training with high-dimensional output targets |
| CN102820653B (zh) | 2012-09-12 | 2014-07-30 | 湖南大学 | 一种电能质量综合控制器模糊-神经网络双闭环控制方法 |
| US20140156575A1 (en) | 2012-11-30 | 2014-06-05 | Nuance Communications, Inc. | Method and Apparatus of Processing Data Using Deep Belief Networks Employing Low-Rank Matrix Factorization |
| CN103325382A (zh) | 2013-06-07 | 2013-09-25 | 大连民族学院 | 一种自动识别中国少数民族传统乐器音频数据的方法 |
| US9728184B2 (en) | 2013-06-18 | 2017-08-08 | Microsoft Technology Licensing, Llc | Restructuring deep neural network acoustic models |
| US9400955B2 (en) * | 2013-12-13 | 2016-07-26 | Amazon Technologies, Inc. | Reducing dynamic range of low-rank decomposition matrices |
| US10402720B2 (en) | 2014-07-16 | 2019-09-03 | Qualcomm Incorporated | Decomposing convolution operation in neural networks |
-
2014
- 2014-10-28 US US14/526,046 patent/US10402720B2/en active Active
- 2014-10-28 US US14/526,018 patent/US10360497B2/en active Active
-
2015
- 2015-07-13 CN CN201580038150.4A patent/CN106663222A/zh active Pending
- 2015-07-13 KR KR1020177001193A patent/KR20170031695A/ko not_active Withdrawn
- 2015-07-13 BR BR112017000229A patent/BR112017000229A2/pt not_active Application Discontinuation
- 2015-07-13 WO PCT/US2015/040206 patent/WO2016010922A1/en not_active Ceased
- 2015-07-13 EP EP15742477.1A patent/EP3170126A1/en not_active Ceased
- 2015-07-13 CN CN201580038152.3A patent/CN106537421A/zh active Pending
- 2015-07-13 AU AU2015289877A patent/AU2015289877A1/en not_active Abandoned
- 2015-07-13 WO PCT/US2015/040221 patent/WO2016010930A1/en not_active Ceased
- 2015-07-13 JP JP2017502110A patent/JP2017525038A/ja active Pending
- 2015-07-13 EP EP15748340.5A patent/EP3170127A1/en not_active Ceased
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2017525038A5 (enExample) | ||
| Carvalhaes et al. | The surface Laplacian technique in EEG: Theory and methods | |
| Donatelli et al. | Square smoothing regularization matrices with accurate boundary conditions | |
| Da Veiga et al. | A virtual element method for elastic and inelastic problems on polytope meshes | |
| Heister et al. | A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach | |
| Piketty et al. | Optimal labor income taxation | |
| Ferradi et al. | A new beam element with transversal and warping eigenmodes | |
| WO2013181637A3 (en) | Neural network learning and collaboration apparatus and methods | |
| JP2013542501A5 (enExample) | ||
| JP2015219371A5 (ja) | 処理装置、血管模型、画像処理方法、プログラム、および、造形装置 | |
| MX2014007247A (es) | Sistema y metodo para simulacion flexible y eficiente de variacion de densidad de fractura en un simulador de yacimiento. | |
| JP2015122068A5 (enExample) | ||
| Hassani et al. | Deflation strategies for multi-block principal component analysis revisited | |
| Bang et al. | Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization | |
| Karl et al. | Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects | |
| Xie et al. | The MGPBiCG method for solving the generalized coupled Sylvester-conjugate matrix equations | |
| Zhang et al. | Lattice Boltzmann simulation of pattern formation under cross-diffusion | |
| JP2017164215A5 (enExample) | ||
| EA201790714A1 (ru) | Система моделирования | |
| Chen et al. | Expected discounted dividends in a discrete semi-Markov risk model | |
| Ruan et al. | Scenario-based allocating of relief medical supplies for large-scale disasters | |
| Puuronen et al. | A Bayesian inverse solution using independent component analysis | |
| Vyzhva et al. | About methods of 3-D dataset statistical simulation on Rivne NPP example | |
| EP2942477A3 (en) | Method of monitoring a reservoir system using image well technique | |
| Bremner | Structure of the rational monoid algebra for Boolean matrices of order 3 |