JP2017501162A - ヘンドラ及びニパウイルスg糖タンパク質免疫原性組成物 - Google Patents

ヘンドラ及びニパウイルスg糖タンパク質免疫原性組成物 Download PDF

Info

Publication number
JP2017501162A
JP2017501162A JP2016540020A JP2016540020A JP2017501162A JP 2017501162 A JP2017501162 A JP 2017501162A JP 2016540020 A JP2016540020 A JP 2016540020A JP 2016540020 A JP2016540020 A JP 2016540020A JP 2017501162 A JP2017501162 A JP 2017501162A
Authority
JP
Japan
Prior art keywords
hev
niv
glycoprotein
dose
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016540020A
Other languages
English (en)
Inventor
エドワーズ,ナイジェル
ホアン,ジナン
ウェアリング,マーク
Original Assignee
ゾエティス・サービシーズ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゾエティス・サービシーズ・エルエルシー filed Critical ゾエティス・サービシーズ・エルエルシー
Publication of JP2017501162A publication Critical patent/JP2017501162A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55577Saponins; Quil A; QS21; ISCOMS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18071Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18211Henipavirus, e.g. hendra virus
    • C12N2760/18222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18211Henipavirus, e.g. hendra virus
    • C12N2760/18234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18211Henipavirus, e.g. hendra virus
    • C12N2760/18271Demonstrated in vivo effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、ヘンドラ及びニパ免疫原性組成物及び使用方法に関する。本発明はまた、本発明の免疫原性組成物で予防接種された対象を、ヘンドラ及び/またはニパウイルスに感染した対象から区別する方法に関する。【選択図】なし

Description

[0001]
本発明は、ヘンドラウイルス(HeV)由来G糖タンパク質を含む免疫原性及びワクチン組成物、ならびにウマにおける使用方法に関する。本発明はまた、予防接種後の長期間にわたる向上した抗体力価の維持を促進する、改善された投薬計画に関する。
[0002]
多数の人間の死亡数をもたらすNiVの反復的な大流行が、近年問題となっている(例えば、Butler(2000)Nature 429,7を参照されたい)。また、HeVは、人間及び動物を致死させることが知られており、遺伝学的及び免疫学的にNiVに密接に関連している。現在、ニパウイルスまたはヘンドラウイルスによりもたらされる感染または疾患の予防のためのワクチンは、1つしか存在が知られていない(国際公開第2009/117035号)。ニパウイルス及びヘンドラウイルスは共に、米国立アレルギー感染病研究所、生物兵器防衛に関するカテゴリーCの最重要物質である。さらに、これらのウイルスは、動物原性感染症生物学的安全性レベル4物質(BSL−4)であるため、安全性を有するワクチン及び/または診断薬の製造は、非常に費用を要し困難である。したがって、ワクチン及び/または診断薬の高スループット製造を可能とする、さらなる改善されたニパウイルスまたはヘンドラウイルスワクチン及び診断薬が必要とされている。
[0003]
HeV及びNiV等のパラミクソウイルスは、ウイルス粒子のエンベロープ内の2つの主要な膜固定糖タンパク質を有する。一方の糖タンパク質は、宿主細胞上の受容体へのビリオン付着に必要であり、赤血球凝集素−ノイラミニダーゼタンパク質(HN)または赤血球凝集素タンパク質(H)と呼ばれ、他方は、赤血球凝集もノイラミニダーゼ活性も有さない糖タンパク質(G)である。付着糖タンパク質は、分子のアミノ(N)末端が細胞質に向かって配向し、タンパク質のカルボキシ(C)末端が細胞外であるII型膜タンパク質である。他の主要な糖タンパク質は、2つの7アミノ酸繰り返し(HR)領域及び疎水性融合ペプチドを含有する三量体クラスI融合性エンベロープ糖タンパク質である、融合(F)糖タンパク質である。HeV及びNiVは、受容体結合後のそれらの付着G糖タンパク質及びF糖タンパク質の協調作用により、受容性の宿主細胞へのpH依存性膜融合プロセスを介して細胞に感染する。HeV及びNiV付着G糖タンパク質の主要な機能は、十分特性決定された大多数のパラミクソウイルスにおいてシアル酸部分である、宿主細胞の表面上の適切な受容体に係合することである。HeV及びNiV G糖タンパク質は、宿主細胞タンパク質受容体エフリンB2及び/またはエフリンB3を利用し、G糖タンパク質によるウイルス付着をブロックする抗体が開発されている(国際公開第2006137931号、Bishop(2008)J. Virol.82:11398−11409)。さらに、G糖タンパク質をHeV及びNiV感染に対する免疫防御反応を生成するための手段としても使用するワクチンが開発されている(国際公開第2009117035号)。
[0004]
投薬部位反応性は、ワクチン調製におけるQuil Aの動物及びヒトに対する使用の両方において、大きな懸案事項である。このQuil Aの毒性を回避するための1つの手法は、免疫刺激性複合体(Rajput(2007)J. Zhejiang Univ. Sci.B,8:153−161)の使用である。これは主に、Quil Aが、免疫刺激性複合体内に組み込まれた場合に反応性がより低いためであり、これは、複合体内のコレステロールとのその関連が、細胞膜からコレステロールを抽出するその能力、ひいてはその細胞溶解作用を低減するためである。さらに、同様のレベルのアジュバント効果を生成するのに必要なQuil Aの量がより少ない。Quil Aサポニンの免疫調節性、及びこれらのサポニンが免疫刺激性複合体内に組み込まれた場合にそれらから得られる付加的利益は、国際公開第2000041720号に記載されている。
[0005]
単一ワクチンにおけるHeV及び/またはNiV G糖タンパク質と免疫刺激性複合体との組み合わせは、これらの成分が組み合わせて投与された場合の減少したアジュバント副作用を伴う向上した免疫反応性の可能性を考慮すると、効果的なHeV及びNiVワクチンの開発における進展を意味する。
国際公開第2009/117035号 国際公開第2006137931号 国際公開第2000041720号
Butler(2000)Nature 429,7 Bishop(2008)J. Virol.82:11398−11409 Rajput(2007)J. Zhejiang Univ. Sci.B,8:153−161
[0006]
本発明は、対象への投与後にヘンドラ及び/またはニパウイルスに対する中和抗体の産生を惹起するのに効果的な量で、ヘンドラ及び/またはニパウイルスGタンパク質と、免疫刺激複合体(ISC)と、1種以上の賦形剤とを含む免疫原性組成物を包含する。いくつかの実施形態において、免疫原性組成物は、サポニン、リン脂質、及びステロイドを含む。
[0007]
いくつかの実施形態において、可溶性ヘンドラウイルスG糖タンパク質は、天然ヘンドラ G糖タンパク質(配列番号2)のアミノ酸73から604からなる。いくつかの実施形態において、可溶性ヘンドラウイルスG糖タンパク質は、配列番号16のヌクレオチド64から1662を含むヌクレオチド配列によりコードされる。いくつかの実施形態において、可溶性ヘンドラウイルスGタンパク質は、二量体形態で存在し、各可溶性ヘンドラウイルスG糖タンパク質二量体サブユニットは、1つ以上のジスルフィド結合により接続されている。いくつかの実施形態において、可溶性ヘンドラウイルスGタンパク質は、四量体形態で存在する。いくつかの実施形態において、四量体形態は、1つ以上のジスルフィド結合により非共有結合的に連結及び/または接続された二量体の二量体として存在する。可溶性ヘンドラウイルスGタンパク質の濃度は、免疫原性組成物中約5μg/mlから100μg/mlである。
[0008]
いくつかの実施形態において、サポニンは、シャボンノキ(Quillaja saponaria Molina)から単離され、またQH−A、QH−B、QH−CまたはQS21から選択されてもよい。いくつかの実施形態において、リン脂質は、ホスファチジルコリン(PC)、ジパルミトイルホスファチジルコリン(DPPC)、ホスファチジン酸(ホスファチジン酸塩)(PA)、ホスファチジルエタノールアミン(PE)、ホスファチジルセリン(PS)、ホスファチジルイノシトール(PI)ホスファチジルイノシトールリン酸(PIP)、ホスファチジルイノシトール二リン酸(PIP2)、ホスファチジルイノシトール三リン酸(PIP3)、ホスホリルコリン(SPH)、セラミドホスホリルエタノールアミン(Cer−PE)及びセラミドホスホリルグリセロールからなる群から選択される。いくつかの実施形態において、サポニンはQuil Aであり、リン脂質はDPPCであり、ステロイドはコレステロールであり、組成物中のQuil A:DPPC:コレステロールの比は、重量で5:1:1である。
[0009]
本発明はまた、対象におけるヘンドラ及び/またはニパウイルスに対する中和抗体反応を生成する方法であって、本明細書に記載の免疫原性組成物を、中和抗体反応を生成するのに効果的な量及び期間で対象に投与することを含む方法を包含する。いくつかの実施形態において、中和抗体反応は、対象におけるヘンドラ及び/またはニパウイルス複製を低減し、また、対象におけるヘンドラ及び/またはニパウイルス排出を低減し得る。いくつかの実施形態において、対象は、まだヘンドラ及び/またはニパウイルスに曝露されておらず、他の実施形態において、対象は、ヘンドラ及び/またはニパウイルス感染に罹患している。いくつかの実施形態において、本発明は、対象におけるヘンドラウイルスに対する中和抗体反応を生成する方法であって、本明細書に記載の免疫原性組成物を、中和抗体反応を生成するのに効果的な量及び期間で対象に投与することを含む方法を包含する。いくつかの実施形態において、本発明は、対象におけるニパウイルスに対する中和抗体反応を生成する方法であって、本明細書に記載の免疫原性組成物を、中和抗体反応を生成するのに効果的な量及び期間で対象に投与することを含む方法を包含する。
[0010]
いくつかの実施形態において、免疫原性組成物は、筋肉内投与される。いくつかの実施形態において、免疫原性組成物は複数回投薬で投与され、第1の投薬に続いて、第1の投薬から少なくとも約21日から約42日後に第2の投薬が行われる。いくつかの実施形態において、第1の投薬に続いて、第1の投薬から28日後に第2の投薬が行われ、さらにそれに続いて、第2の投薬から28日後に第3の投薬が行われる。いくつかの実施形態において、最終投薬から6ヶ月後にブースター投薬が施される。第3の投薬が施されない実施形態において、第2の投薬が最終投薬である。第3の投薬が施される実施形態において、第3の投薬が最終投薬である。さらなる実施形態において、ブースター投薬から1年後に追加の投薬が施される。いくつかの実施形態において、各投薬は、約50μgまたは約100μgの可溶性ヘンドラウイルスGタンパク質を含有する。
[0011]
本発明は、さらに、本明細書に記載の免疫原性組成物で予防接種された対象を、ヘンドラ及び/またはニパウイルスに曝露された対象から区別する方法であって、対象から単離された生体試料において、融合タンパク質(F)、基質タンパク質(M)、リンタンパク質(P)、巨大タンパク質(L)及びヌクレオカプシドタンパク質(N)からなる群から選択されるHeV及び/またはNiVウイルスタンパク質のいずれかの少なくとも1つに対する抗体の存在を検出することを含む方法を包含する。
[0012]
本発明の免疫原性組成物及び方法は、ヒト、ウマ、ウシ、ヒツジ、ブタ、ヤギ、ニワトリ、イヌまたはネコ等の対象に施すことができる。
[0013]
本発明はまた、ヒト対象におけるヘンドラ及び/またはニパウイルスに対する中和抗体反応を生成する方法であって、ヘンドラウイルス可溶性G糖タンパク質を含む免疫原性組成物を、中和抗体反応を生成するのに効果的な量及び期間で対象に投与することを含む方法を包含する。いくつかの実施形態において、免疫原性組成物は、アジュバントをさらに含む。
[0014] 図1は、250μgの免疫刺激性複合体で補助された50または100μg/投薬の組換えヘンドラウイルス可溶性糖タンパク質(sG)を投与され、続いて0日目に生きたヘンドラウイルスに曝露されたウマにおける、経時的な直腸温度を示すグラフである。 [0015] 図2は、250μgの免疫刺激性複合体で補助された50または100μg/投薬の組換えヘンドラウイルス可溶性糖タンパク質(sG)を投与され、続いて0日目に生きたヘンドラウイルスに曝露されたウマにおける、経時的な心拍数を示すグラフである。 [0016] 図3は、免疫刺激複合体の調製のための概略を示す図である。 [0017] 図4は、sGHeV予防接種及びNiV負荷スケジュールの概略図である。sGHeV予防接種、NiV負荷及び安楽死の日付が、矢印により示されている。示されるように(*)、負荷後−42日目、−7日目、0日目、3日目、5日目、7日目、10日目、14日目、21日目及び28日目に血液及びスワブ検体を採取した。灰色文字は、負荷タイムライン(上の行)を示し、黒字は、予防接種タイムライン(下の行)を示す。各ワクチン投薬群内の対象、及び1匹の対照対象のアフリカミドリザル(AGM)の番号が示されている。 [0018] 図5は、NiV感染対象の生存曲線を示す図である。対照対象(n=2)及びsGHeV予防接種対象(n=9)からのデータを使用して、カプラン−マイヤー生存曲線を生成した。対照は、1つの追加的な歴史的対照対象からのデータを含んでいた。予防接種された対象は、10μg、50μgまたは100μgの2回のsGHeV皮下投与を受けた。終末期疾患までの平均時間は、対照対象においては11日であり、一方全ての予防接種対象は、試験の最後に安楽死させられるまで生存した。 [0019] 図6は、予防接種対象におけるNiV及びHeV特異的免疫グロブリン(Ig)を示す図である。予防接種対象から血清及び鼻腔スワブを採取し、sGHeV及びsGNiV多重ミクロスフェアアッセイを使用して、IgG、IgA及びIgM反応を評価した。同じワクチン投薬群(n=3)における対象からの血清またはスワブを個々に分析し、ミクロスフェア中央蛍光強度(M.F.I.)の平均を計算したが、これはY軸上に示されている。エラーバーは、標準誤差を表す。血清sG特異的Igは、黒で示され(sGHeV(白抜きの三角)、sGNiV(塗りつぶされた三角))、粘膜sG特異的IgAは、灰色の記号で示されている(sGHeV(白抜きの三角)、sGNiV(塗りつぶされた三角))。
ワクチン及び免疫原性組成物
[0020]
本発明のワクチン及び免疫原性組成物は、投与が、予防接種の目的、ならびに/またはHeV及び/もしくはNiVの1つ以上の株によるHeV及び/もしくはNiV感染の予防に好適であるように、組成物を投与された、または、HeV及び/もしくはNiVの少なくとも1つの株に対する少なくとも1つの免疫反応の向上に効果的な対象におけるいくつかの液性及び細胞性免疫反応の少なくとも1つを誘発する。本発明の組成物は、それを必要とする対象に、HeV及び/またはNiVからの可溶性G糖タンパク質を含むG糖タンパク質、ならびにアジュバントとして作用する免疫刺激複合体(ISC)を送達する。いくつかの実施形態において、G糖タンパク質の量は、これらに限定されないが、1ml当たり5、10、15、20、25、30、35、40、45、50、75、100、150、200または250μgを含み、これはまた、1ml当たり100、125、150、175、200、225、250、275または300μgのISCを含有し得る。いくつかの実施形態において、G糖タンパク質の量は、1ml当たり5、50または100μgであり、ISCの量は、1ml当たり250μgである。
A.HeV及びNiV Gタンパク質
[0021]
いくつかの実施形態において、ワクチン及び免疫原性組成物は、本明細書に記載のように、1つ以上のHeV及び/またはNiV G糖タンパク質を含む。タンパク質という用語は、本明細書において、ポリペプチドまたはその断片を含むように広義で使用される。例えば、限定されないが、Wang(2000)J. Virol.74,9972−9979において、HeV G糖タンパク質は、可溶性形態であってもよく、HeV G糖タンパク質のアミノ酸配列のアミノ酸73〜604を含んでもよい(Yu(1998)Virology 251,227−233もまた参照されたい)。また、例として、限定されないが、Harcourt (2000) Virology 271:334−349,2000において、NiV G糖タンパク質は、可溶性形態であってもよく、NiV G糖タンパク質のアミノ酸配列のアミノ酸71〜602を含んでもよい(Chua(2000)Science,288,1432−1もまた参照されたい)。
[0022]
一般に、HeV及びNiV G糖タンパク質の可溶性形態は、HeVまたはNiVのG糖タンパク質の外部ドメイン(例えば細胞外)の全てまたは一部を含み、また一般に、G糖タンパク質の膜貫通ドメインの全てまたは一部、ならびにG糖タンパク質の細胞質尾部の全てまたは一部を削除することにより生成される。例えば、可溶性G糖タンパク質は、HeVまたはNiV G糖タンパク質の完全な外部ドメインを含んでもよい。また、例えば、限定されないが、可溶性G糖タンパク質は、HeVまたはNiV G糖タンパク質の外部ドメインの全てまたは一部、及び膜貫通ドメインの一部を含んでもよい。
[0023]
本発明の可溶性HeVまたはNiV G糖タンパク質は、一般に、対応する天然ウイルス糖タンパク質の1つ以上の特徴、例えば、ウイルス宿主細胞受容体と相互作用もしくは結合して、オリゴマー形態(複数を含む)で生成され得る能力、または、天然G糖タンパク質を認識することができる抗体(これに限定されないが、ウイルス中和抗体を含む)を惹起する能力を保持する。追加の特徴の例は、これに限定されないが、宿主細胞の感染をブロックまたは予防する能力を含む。特徴の1つ以上に関して可溶性HeVまたはNiV G糖タンパク質を評価するために、従来の方法を利用することができる。
[0024]
例えば、限定されないが、Wang(2000)J.Virol.74,9972−9979において、可溶性HeV G糖タンパク質をコードするポリヌクレオチドは、HeV G糖タンパク質(配列番号2)のアミノ酸配列の約アミノ酸73〜604をコードするポリヌクレオチド配列を含んでもよい。また、例えば、限定されないが、Wang(2000)J.Virol.74,9972−9979において、可溶性HeV G糖タンパク質をコードするポリヌクレオチドは、HeV G糖タンパク質のポリヌクレオチド配列のヌクレオチド9129から10727を含んでもよい。さらに、HeV G糖タンパク質(配列番号2)の約アミノ酸73〜604をコードするコドン最適化ポリヌクレオチド配列が利用されてもよい。いくつかの実施形態において、これらのコドン最適化配列は、配列番号16のヌクレオチド64から1662を含む、またはそれらからなる。さらなる実施形態において、コドン最適化配列は、Igκリーダー配列をコードするヌクレオチドを含む、配列番号16を含む、またはそれからなる。
[0025]
例として、限定されないが、Harcourt(2000)Virology 271,334−349において、NiV G糖タンパク質は、可溶性形態であってもよく、NiV G糖タンパク質のアミノ酸配列のアミノ酸71〜602を含んでもよい。可溶性NiV G糖タンパク質を構築するために使用され得る配列の限定されない例は、Harcourt(2000) Virology 271,334−349において見出すことができる。一般に、任意のニパウイルス分離株またはウイルス株からのG糖タンパク質配列が、本発明のポリヌクレオチド及びポリペプチドを誘導するために利用され得る。
[0026]
例えば、限定されないが、Harcourt(2000)Virology 271,334−349において、可溶性NiV G糖タンパク質をコードするポリヌクレオチドは、NiV G糖タンパク質のアミノ酸配列の約アミノ酸71〜602をコードするポリヌクレオチド配列を含んでもよい。また、例えば、限定されないが、Harcourt(2000)Virology 271,334−349において、可溶性NiV G糖タンパク質をコードするポリヌクレオチドは、NiV G糖タンパク質のポリヌクレオチド配列の234〜2042を含んでもよい。さらに、NiV G糖タンパク質のアミノ酸配列の約アミノ酸71〜604をコードするコドン最適化ポリヌクレオチド配列が利用されてもよい。
[0027]
これらのG糖タンパク質の機能的均等物が、本発明の免疫原性及びワクチン組成物において使用されてもよい。例えば、限定されないが、機能的に均等なポリペプチドは、以下の特性の1つ以上を有する:ウイルス宿主細胞受容体と相互作用もしくは結合して、二量体もしくは四量体形態(複数を含む)で生成され得る能力、天然G糖タンパク質を認識することができる抗体(これに限定されないが、HeV及び/もしくはNiVウイルス中和抗体を含む)、ならびに/または、宿主細胞の感染をブロックもしくは予防する能力。
[0028]
いくつかの実施形態において、G糖タンパク質は、二量体及び/または四量体形態であってもよい。そのような二量体は、G糖タンパク質内のシステイン残基間に形成されるジスルフィド結合の形成に依存する。そのようなジスルフィド結合は、HeVまたはNiVの表面において発現される場合、天然G糖タンパク質内に形成されるものに対応してもよく(例えば、システインの場所が不変のままである)、または、抗原性を高めるG糖タンパク質の異なる二量体及び/もしくは四量体形態を形成するように、G糖タンパク質の存在もしくは場所において(例えば、アミノ酸配列内のシステイン(複数可)の場所を改変することにより)改変されてもよい。さらに、G糖タンパク質が数々の立体構造依存性エピトープ(すなわち、三級の3次元構造から生じるもの)を提示すること、及び、多くのそのような自然エピトープの保存が、中和抗体反応を付与するために極めて好ましいことを再び考慮して、非二量体及び四量体形態もまた本発明の範囲内である。
[0029]
本発明のHeV免疫原性及びワクチン組成物は、可変長のタンパク質を含有してもよいが、配列番号2のアミノ酸残基73から604を含む。本発明の一実施形態において、本発明のエンベロープタンパク質は、配列番号2(アミノ酸73から604を含む)のHeV 糖タンパク質と少なくとも約85、90、91、92、93、94、95、96、97、98、または99%同一である。したがって、本発明のHeV G糖タンパク質は、立体構造エピトープを生成するのに十分な数のアミノ酸を有する天然HeV G糖タンパク質の免疫原性断片を含む。免疫原性断片の限定されない例は、少なくとも530、531、532、533、534もしくは535またはそれ以上のアミノ酸の長さであってもよいアミノ酸配列を含む。いくつかの実施形態において、HeV G糖タンパク質は、配列番号2、またはIgκリーダー配列(配列番号15)をさらに含む合成コンストラクトを含む、またはそれらからなる。
[0030]
本発明のNiV免疫原性及びワクチン組成物は、可変長のタンパク質を含有してもよいが、配列番号4のアミノ酸残基71から602を含む。本発明の一実施形態において、本発明のエンベロープタンパク質は、配列番号4(アミノ酸71から602を含む)のNiV糖タンパク質と少なくとも約85、90、91、92、93、94、95、96、97、98、または99%同一である。したがって、本発明のNiV G糖タンパク質は、立体構造エピトープを生成するのに十分な数のアミノ酸を有する天然NiV G糖タンパク質の免疫原性断片を含む。免疫原性断片の限定されない例は、少なくとも528、529、530、531、532、もしくは533またはそれ以上のアミノ酸の長さであってもよいアミノ酸配列を含む。いくつかの実施形態において、NiV G糖タンパク質は、配列番号4、またはリーダー配列をさらに含む合成コンストラクトを含む、またはそれらからなる。
[0031]
本明細書に記載のような免疫原性断片は、抗原の少なくとも1つのエピトープを含有し、HeV及び/またはNiV抗原性を示し、好適なコンストラクトにおいて提示された場合、例えば他のHeV及び/もしくはNiV抗原に融合された場合、または担体上に提示された場合、免疫反応を引き起こすことができ、免疫反応は、天然抗原に対するものである。本発明の一実施形態において、免疫原性断片は、HeV及び/またはNiV抗原からの少なくとも20の連続したアミノ酸、例えば、HeV及び/またはNiV抗原からの少なくとも50、75、または100の連続したアミノ酸を含有する。
[0032]
HeV及びNiV G糖タンパク質実施形態は、天然HeVまたはNiV G糖タンパク質に対する少なくとも85、90、91、92、93、94、95、96、97、98、99または100%の同一性を有するアミノ酸配列を含む単離ポリペプチドをさらに含み、前記ポリペプチド配列は、天然HeVもしくはNiV G糖タンパク質アミノ酸配列と同一であってもよく、または、天然HeVもしくはNiV Gタンパク質アミノ酸配列と比較して、ある特定の整数値までのアミノ酸改変を含んでもよく、前記改変は、少なくとも1つのアミノ酸欠失、保存的及び非保存的置換を含む置換、または挿入からなる群から選択され、前記改変は、参照ポリペプチド配列のアミノもしくはカルボキシ末端位置、またはそれらの末端位置の間のいずれかの箇所で生じ、参照配列内の、または天然HeVもしくはNiV G糖タンパク質アミノ酸配列内の1つ以上の連続した群内のアミノ酸間で個々に散在してもよい。
[0033]
アミノ酸配列レベルでの配列同一性または相同性は、配列類似性検索用に設計された、blastp、blastn、blastx、tblastn及びtblastxプログラムにより使用されるアルゴリズムを使用したBLAST(ベーシックローカルアライメント検索ツール)分析により決定され得る(Altschul(1997)Nucleic Acids Res.25,3389−3402及びKarlin(1990)Proc.Natl.Acad.Sci.USA 87,2264−2268)。BLASTプログラムにより使用される手法は、まず、クエリ配列とデータベース配列との間のギャップあり(非連続的)及びギャップなし(連続的)の類似したセグメントを考慮し、次いで、識別される全てのマッチの統計的有意性を評価し、最後に、事前に選択された有意性の閾値を満足するマッチのみを集約することである。配列データベースの類似性検索における基本的問題の議論については、Altschul(1994)Nature Genetics 6,119−129を参照されたい。ヒストグラム、説明、アライメント、期待値(すなわち、データベース配列に対する報告するマッチの統計的有意性閾値)、カットオフ、行列及びフィルタ(低複雑度)の検索パラメータは、初期設定である。blastp、blastx、tblastn、及びtblastxにより使用される初期スコア行列は、85アミノ酸を超える長さにわたるクエリ配列に推奨される、BLOSUM62行列である(Henikoff(1992)Proc.Natl.Acad.Sci.USA 89,10915−10919)。
[0034]
本発明のワクチン及び免疫原性組成物は、本発明の免疫化方法をさらに強化し得る、異なる株からの追加的なHeV及び/またはNiV Gタンパク質をさらに含んでもよい。
B.免疫刺激複合体
[0035]
一般に、本発明は、免疫刺激複合体(ISC)と組み合わせたHeV及び/またはNiV G糖タンパク質エンベロープタンパク質の可溶形態を含む、ワクチン組成物を含む免疫原性組成物、ならびに、対象におけるHeV及び/またはNiV感染の予防及び治療にこれらの組成物を使用するための方法を提供する。本発明において、ワクチン及び/または免疫原性組成物は、アジュバントとして作用する免疫刺激複合体を含む。本明細書において使用される場合、「アジュバント」は、それ自体はいかなる特定の抗原作用も有さないが、免疫系を刺激して抗原に対する反応を増加させることができる薬剤を指す。
[0036]
ISCは、それを以下のある特定の用途において理想的なアジュバントとするいくつかの特徴を有する。
[0037]
抗原の節約:例えばWee(2008)Mucosal Immunol.1,489−496において言及されているように、抗原の利用可能性が限られている、または抗原の費用が高い場合、ISCは、10倍から100倍という高い抗原の節約を可能とすることが示されている。これは、他のアジュバントと比較して増加した効率またはより適切な作用機序の組み合わせに起因する可能性が最も高い。
[0038]
交差提示:例えばSchnurr(2009)J.Immunol.182,1253−1259において言及されているように、抗原提示細胞(APC)による抗原の提示は、通常、2つの経路のうちの1つに従う。外来抗原は、通常、主要組織適合遺伝子複合体(MHC)クラスII分子に関連して、APCにより取り囲まれ、次いで処理されてAPCの表面上に再発現される。次いでそれらはリンパ球により認識され得、正しい共刺激因子/信号が存在する場合、適宜反応され得る。自己またはがん抗原及びウイルス抗原は、通常、クラスI分子に関連して処理及び発現され得るが、これは、それらがAPCの細胞質内に存在するためである。がん及びウイルス抗原に対する効果的な免疫には、クラスI経路へのアクセスが必要である。これは、ウイルス感染または細胞恒常性(内部抗原の細胞交替)の間、自然に発生する。ワクチンとして導入された抗原(ウイルス抗原または自己抗原)は、細胞の外側から細胞の抗原処理機構に、及びクラスII経路からクラスI経路に入る方法を発見することが必要となる。これは、樹状細胞(DC−スペシャリストAPC)において自然に生じ得るか、または、アジュバントとしてのISCと混合された抗原で予防摂取することにより達成され得る。外部由来抗原が抗原提示のクラスI経路に入る方法を見出すこのプロセスは、交差提示と呼ばれる。ISCが抗原の交差提示を達成する正確な機序は完全には明らかになっていないが、ISC成分の膜摂動に依存している可能性がある。
[0039]
液性及び細胞媒介反応:例えば、Maraskovsky(2009)Immunol.Cell Biol.87,371−376)において言及されているように、ISCの作用機序により、適応免疫系の液性及び細胞性アームの両方が関与する。いくつかの種において、これは、このアジュバントを用いた予防接種により刺激されるサイトカインのプロファイルと並行する。インターロイキン−2及びIFN−ガンマ発現及び細胞内病原体(細菌、原生動物及びウイルス)に対する防御により特徴付けられる1型免疫応答と、インターロイキン−4の発現ならびに抗毒素及び抗病原体関連免疫に対する中和抗体の生成により特徴付けられる2型反応。ISCは、これらの2つの両極端の間でバランスのとれたサイトカインプロファイルをもたらし、より広範な免疫反応を可能にする。さらに、いくつかの研究では、ワクチンが鼻腔内に送達された場合、ISCが効果的となり得ることが示されている。これにより、粘膜表面の感作が可能になり、したがって、病原菌進入部位での関連した免疫(この場合では特に関連する免疫)(粘膜免疫)がもたらされる。Sjolander(2001)Vaccine 19,4072−4080もまた参照されたい。
[0040]
滅菌濾過性及び一貫性のある製造基準:ISC粒子のサイズは通常、直径40nmであり、後に製剤化される調製物の滅菌に使用されるフィルタを通過することが可能となる。さらに、Quil Aにおいて見出されるようなトリテルペノイドサポニンがコレステロール及びリン脂質と関連する自然な傾向が、ISCの製造方法の開発において利用されている。ISC粒子を形成しないQuil A種は、最終生成物から透析により除去される。成分比を制御することにより、Quil Aサポニンの不均一連続体から一貫した生成物が生成される。偏差により特徴的な40nm粒子ではない構造(へリックス、シート等)がもたらされるため、この比は重要である。ISCコロイドの自由流動性、ならびに透過型電子顕微鏡、HPLC及び他の技術を使用して測定されるその能力により、このアジュバントは放出アッセイ及び他の品質測定法で展開させ易い。
[0041]
したがって、上記に基づき、いくつかの実施形態において、免疫刺激性複合体の最適な量のG糖タンパク質との製剤は、サポニン、リン脂質及びステロイド分子を含む。いくつかの実施形態において、5:1:1の比のサポニン、リン脂質、ステロイド分子のモル比。免疫刺激性複合体は、例えば、5重量%から10重量%のサポニン、1%から5%のステロイド分子及びリン脂質、ならびにG糖タンパク質を含む残部を含有してもよい。G糖タンパク質は、直接的に、または、タンパク質が免疫刺激性複合体内に組み込まれた後の担体タンパク質(例えば、キメラもしくは融合タンパク質)への化学結合により、免疫刺激性複合体内に組み込まれてもよい。免疫刺激性複合体への言及は、その誘導体、化学的均等物及び類似体に対する言及を含むものとして理解されるべきである。いくつかの実施形態において、ISCは、HeV及び/またはNiV G糖タンパク質とは別個に混合され、次いでG糖タンパク質がISCと混合される。いくつかの実施形態において、G糖タンパク質は、サポニン、リン脂質及びステロイド分子と直接混合される。
[0001]
好適なサポニンは、トリテルペノイドサポニンを含む。これらのトリテルペノイドは、植物起源の表面活性グリコシドの群を含み、ステロイドまたはトリテルペノイド構造の疎水性領域に関連した親水性領域(通常はいくつかの糖鎖)で構成される共通した化学コアを有する。これらの類似性のため、この化学コアを共通して有するサポニンは、同様の補助特性を有する可能性がある。アジュバント組成物における使用に好適なトリテルペノイドは、これらに限定されないが、キラヤ(Quillaja saponaria)、トマチン、朝鮮人参エキス、キノコ、及びステロイドサポニンと構造的に類似したアルカロイドグリコシドを含む、植物由来または合成均等物である多くの源を起源とし得る。
[0042]
いくつかの実施形態において、本発明における使用のためのサポニンは、Quil A及び/またはその誘導体である。Quil Aは、南アメリカの樹木であるシャボンノキ(Quillaja saponaria Molina)から単離されたサポニン調製物であり、最初にDalsgaard(1974)Saponin adjuvants,Archiv.fur die gesamte Virusforschung,Vol.44,Springer Verlag,pp.243−254によりアジュバント活性を有することが説明された。Quil Aに関連した毒性を有さないアジュバント活性を保持するQuil Aの精製断片(EP0362278)、例えばQS7及びQS21(QA7及びQA21としても知られる)が、HPLCにより単離されている。QS21は、シャボンノキ(Quillaja saponaria Molina)の樹皮に由来する天然サポニンであり、CD8+細胞毒性T細胞(CTL)、Th1細胞及び支配的IgG2a抗体反応を誘発し、本発明に関連した使用のためのサポニンである。ISCにおける使用に好適な他のサポニンは、これらに限定されないが、Quil AのQH−A、QH−B及びQH−C亜分画、キラヤ(Quillaia saponaria)以外の種からのもの、例えばオタネニンジン(Panax)属(朝鮮人参)、レンゲ(Astragalus)属、イノコズチ(Achyranthes)属、ダイズ、アカシア(Acacia)属及びツルニンジン(Codonopsis)属からのものを含む。いくつかの実施形態において、サポニンは、キラヤ(Quillaia saponaria)以外の種から単離される。
[0043]
本発明の免疫原性及びワクチン組成物における使用のためのリン脂質の限定されない例は、ジアシルグリセリド構造を有する分子及びリンスフィンゴ脂質を含む。ジアシルグリセリド構造を有するリン脂質の限定されない例は、ホスファチジン酸(ホスファチジン酸塩)(PA)、ホスファチジルエタノールアミン(セファリン)(PE)、ホスファチジルコリン(レシチン)(PC)、ジパルミトイルホスファチジルコリン(DPPC)またはホスファチジルセリン(PS)を含む。ジアシルグリセリド構造を有するリン脂質の別の限定されない例は、ホスホイノシチジドを含む。例示的なホスホイノシチジドは、これらに限定されないが、ホスファチジルイノシトール(PI)、ホスファチジルイノシトールリン酸(PIP)、ホスファチジルイノシトール二リン酸(PIP2)またはホスファチジルイノシトール三リン酸(PIP3)を含む。リンスフィンゴ脂質の限定されない例は、セラミドホスホリルコリン(スフィンゴミエリン)(SPH)、セラミドホスホリルエタノールアミン(スフィンゴミエリン)(Cer−PE)またはセラミドホスホリルグリセロールを含む。
[0044]
本発明の免疫原性及びワクチン組成物における使用のためのステロイド分子は、その構造の一部としてステロイドを組み込んだ分子を含む。ステロイド分子の限定されない例は、コレステロール、プレグネノロン、17−アルファ−ヒドロキシブレグネノロン、デヒドロエピアンドロステロン、アンドロステンジオール、プロゲステロン、17−アルファ−ヒドロキシプロゲステロン、アンドロステンジオン、テストステロン、ジヒドロキシテストロン(dihyrdroxytestorone)、デオキシコルチコステロン、11−デオキシコルチコステロン、コルチゾル、コルチコステロン、アルドステロン、エストロン、エストラジオール、またはエストリオールを含む。
[0045]
いくつかの実施形態において、免疫刺激性複合体は、これらに限定されないが、典型的には、直径30〜40nMの小かご様構造である。いくつかの実施形態において、免疫刺激性複合体の製剤は、5:1:1の比のQuil A、コレステロール及びホスファチジルコリンのモル比を有する。免疫刺激性複合体は、例えば、5重量%から10重量%のQuil A、1%から5%のコレステロール及びリン脂質、ならびにG糖タンパク質を含む残部を含有してもよい。G糖タンパク質は、直接的に、または、タンパク質が免疫刺激性複合体内に組み込まれた後の担体タンパク質(例えば、キメラもしくは融合タンパク質)への結合により、免疫刺激性複合体内に組み込まれてもよい。免疫刺激性複合体への言及は、その誘導体、化学的均等物及び類似体に対する言及を含むものとして理解されるべきである。例えば、免疫刺激性複合体の誘導体への言及は、Quil A、コレステロール、ホスファチジルコリンまたはタンパク質の1つ以上が、例えば、欠失している、置換されている、またはQuil A、コレステロール、ホスファチジルコリンもしくはタンパク質に加えてある成分が複合体に付加されている免疫刺激性複合体への言及を含む。免疫刺激性複合体の機能的均等物は、その4つの成分の1つ以上が機能的均等物により置き換えられた免疫刺激性複合体であってもよい。本発明のいくつかの実施形態において、免疫刺激性複合体のG糖タンパク質成分が欠失している。この種の免疫刺激性複合体は、本明細書において、タンパク質不含免疫刺激性複合体と呼ばれる。
[0046]
いくつかの実施形態において、本発明は、これに限定されないが、in vitroでHeV及び/またはNiVの複数の株に対する交差反応性中和抗血清の産生を誘発し得る単離されたHeVまたはNiV Gタンパク質と、Quil A、DPPC及びコレステロールを含むアジュバントとを含む免疫原性組成物を含み、例えば、組成物は、5、50または100μgの可溶性HeVまたはNiV Gタンパク質と、適切な量のQuil A、DPPC、及びコレステロールとを含有する。免疫刺激複合体及びその調製のさらなる例示的実施形態は、欧州特許第0242380B1号及び同第0180564B1号、ならびに国際公開第2000041720号(例えば、Cox&Coulter(1992)Advances in Adjuvant Technology and Application in Animal Parasite Control Utilizing Biotechnology,Chapter 4,Yong(ed.),CRC Press;Dalsgard(1974)Gesamte Virusforsch,44,243−254を参照しているその3ページ目及び9ページ目を参照されたい);オーストラリア特許明細書第558258号、同第589915号、同第590904号及び同第632067号にも記載されている。また、米国特許第6,506,386号に記載の代表的プロトコル、ならびに同文献における、形成される際にタンパク質抗原が免疫刺激複合体に包含される免疫刺激複合体が使用され得る(欧州特許第0109942B1号を参照されたい)、または代替として、予め形成された免疫刺激複合体が提供され、これが次いで抗原の別個に添加された一定分量と混合されてワクチンが形成される(欧州特許第0436620B1号を参照されたい)という周知の事実への言及も参照されたい。一般的に認識されるように、タンパク質抗原はまた、免疫刺激複合体に共有結合し得る(再びEP0180564B1を参照されたい)。また、当該技術分野において十分認識されているように、免疫刺激複合体は、粘膜予防接種により投与されてもよく(Mowat(1991)Immunology 72,317−322を参照されたい)、本発明の免疫刺激複合体は、膜標的化タンパク質の含有により粘膜予防接種用にさらに改善され得る(国際公開第9730728号)。
[0047]
いくつかの実施形態において、本発明は、これに限定されないが、in vitroでHeV及び/またはNiVの複数の株に対する交差反応性中和抗血清の産生を誘発し得る単離されたHeVまたはNiV Gタンパク質と、Quil A、DPPC及びコレステロールを含むアジュバントとを含む免疫原性組成物を含み、例えば、組成物は、5、50または100μgの可溶性HeVまたはNiV Gタンパク質と、適切な量のQuil A、ジパルミトイルホスファチジルコリン(DPPC)、及びコレステロールとを含有する。免疫刺激複合体のさらなる例示的実施形態は、国際公開第2000041720号に記載されている。
[0048]
本発明の別の実施形態において、ワクチン及び免疫原性組成物は、医薬組成物の一部であってもよい。本発明の医薬組成物は、作用部位への送達のために薬学的に使用され得る調製物への活性化合物の加工を容易化する賦形剤及び助剤を含む、好適な薬学的に許容される担体を含有してもよい。
C.賦形剤
[0049]
本発明の免疫原性及びワクチン組成物は、さらに、薬学的に許容される担体、賦形剤及び/または安定剤(例えば、Remington:The Science and practice of Pharmacy(2005)Lippincott Williamsを参照されたい)を、凍結乾燥製剤または水溶液の形態で含んでもよい。許容される担体、賦形剤、または安定剤は、特定の用量及び濃度においてレシピエントに対し非毒性であり、リン酸塩、クエン酸塩及び他の有機酸等の緩衝剤;アスコルビン酸及びメチオニンを含む酸化防止剤;保存剤(例えば((o−カルボキシフェニル)チオ)エチル水銀ナトリウム塩(THIOMERSAL)、オクタデシルメチルベンジルアンモニウムクロリド;塩化ヘキサメトニウム;塩化ベンザルコニウム、塩化ベンゼトニウム;フェノール、ブチルもしくはベンジルアルコール;メチルもしくはプロピルパラベン等のアルキルパラベン;カテコール;レゾルシノール;シクロヘキサノール;3−ペンタノール;及びm−クレゾール);血清アルブミン、ゼラチン、もしくは免疫グロブリン等のタンパク質;ポリビニルピロリドン等の親水性ポリマー;グリシン、グルタミン、アスパラギン、ヒスチジン、アルギニン、もしくはリシン等のアミノ酸;グルコース、マンノース、もしくはデキストランを含む単糖類、二糖類、及び他の炭水化物;EDTA等のキレート剤;スクロース、マンニトール、トレハロースもしくはソルビトール等の糖類;ナトリウム等の塩形成対イオン;金属錯体(例えばZn−タンパク質錯体);ならびに/または、ポリエチレングリコール(PEG)、TWEENもしくはPLURONICS等の非イオン性界面活性剤を含み得る。
[0050]
本発明の組成物は、用量を保持するのに十分な体積の任意の適切な薬学的ビヒクルまたは担体中に懸濁される用量であってもよい。一般に、担体、アジュバント等を含む最終体積は、典型的には、少なくとも1.0mlである。上限は、投与される量の実用性によって定められ、一般に、約0.5mlから約2.0ml以下である。
使用方法
[0051]
本発明は、ヘンドラ及び/またはニパウイルス感染を予防及び/または治療する方法であって、本発明の免疫原性及びワクチン組成物を、任意の哺乳動物対象に投与することを含む方法を包含する。本明細書に記載のアジュバントと共にHeV及び/またはNiV G糖タンパク質で予防接種することにより惹起される能動免疫は、細胞性または液性免疫反応をプライムまたはブーストすることができる。有効量のHeV及び/もしくはNiV G糖タンパク質またはその抗原断片は、ワクチンを調製するために、アジュバントと混合して調製され得る。
[0052]
本発明は、ヒト対象におけるヘンドラ及び/またはニパウイルス感染を予防及び/または治療する方法であって、可溶性HeV及び/もしくはNiV G糖タンパク質を含む免疫原性及び/もしくはワクチン組成物、またはそれらの組み合わせを、単独で、またはヒトにおける使用に好適な少なくとも1種のアジュバントと組み合わせて投与することを含む方法を包含する。ヒトにおける使用に好適なアジュバントは、単独で、または組み合わせて使用され得る。ヒトにおける使用に好適なアジュバントの例は、これに限定されないが、アルミニウム塩を含む。アルミニウム塩の例は、これらに限定されないが、水酸化アルミニウム、水酸化アルミニウムゲル(Alhydrogel(商標))、リン酸アルミニウム、ミョウバン(硫酸アルミニウムカリウム)、または混合アルミニウム塩を含む。ヒトにおける使用に好適なアジュバントのさらなる例は、これらに限定されないが、油中水エマルション、水中油エマルション、及びAS04(水酸化アルミニウム及びモノホスホリル脂質Aの組み合わせ)、ならびにCpGオリゴデオキシヌクレオチドを含む。CpGオリゴデオキシヌクレオチドは、非メチル化CpGジヌクレオチドを特定の配列構成(CpGモチーフ)に含有する合成オリゴヌクレオチドである。これらのCpGモチーフは、哺乳動物DNAと比較して、細菌DNAにおいて20倍高い頻度で存在する。CpGオリゴデオキシヌクレオチドは、Toll様受容体9(TLR9)により認識され、強力な免疫刺激作用がもたらされる。
[0053]
本明細書に記載の1種以上のアジュバントと共にHeV及び/またはNiV G糖タンパク質を含むワクチンまたは免疫原性組成物の投与は、予防目的または治療目的のいずれであってもよい。本発明の一態様において、組成物は、予防目的に有用である。予防用として提供される場合、ワクチン組成物は、HeV及び/またはNiV感染の任意の検出または症状に先立って提供される。有効量の化合物(複数種可)の予防的投与は、任意のその後のHeV及び/またはNiV感染を予防または減弱するのに役立つ。
[0054]
治療用として提供される場合、ワクチンは、実際の感染の症状の検出後に、有効量で提供される。組成物は、その投与がレシピエントに忍容され得る場合、「薬学的に許容される」と言われる。そのような組成物は、投与される量が生理学的に有意義である場合、「治療または予防有効量」で投与されると言われる。本発明のワクチンまたは免疫原性組成物は、その存在が、例えばHeV及び/またはNiVの1種以上の株に対する広範な反応性を有する液性または細胞性免疫反応を強化することにより、レシピエント患者の検出可能な生理学的変化をもたらす場合、生理学的に有意義である。対照集団に比べて統計的に有意な改善が存在する限り、提供される防御は完全である必要はない(すなわち、HeVまたはNiV感染が完全に予防または根絶される必要はない)。防御は、疾患の症状の重症度または発症の急速性を緩和することに限定されてもよい。
[0055]
本発明のワクチンまたは免疫原性組成物は、HeV及び/またはNiVの複数の株に対する耐性を付与し得る。本明細書において使用される場合、ワクチンは、患者へのその投与により、感染の症状もしくは状態の完全もしくは部分的な減弱(すなわち抑制)、または感染に対する個人の完全もしくは部分的免疫がもたらされる場合、感染を予防または減弱すると言われる。
[0056]
少なくとも1種の本発明のワクチンまたは免疫原性組成物は、本明細書に記載のような医薬組成物を使用して、意図される目的を達成する任意の手段により投与され得る。例えば、そのような組成物の投与は、皮下、静脈内、皮内、筋肉内、腹腔内、鼻腔内、経皮、または頬粘膜経路等の様々な非経口経路によるものであってもよい。本発明の一実施形態において、組成物は、皮下投与される。非経口投与は、ボーラス注射によるものであってもよく、または、長時間の段階的かん流によるものであってもよい。
[0057]
能動的な特異的細胞免疫療法による細胞性免疫反応によって軽減され得る疾患または状態の予防、抑制または治療のための典型的な計画は、単回治療として施される、または最長1週間から約24ヶ月(これらを含む)の期間にわたり増強もしくはブースター用量として反復される、上述のような有効量のワクチン組成物の投与を含む。限定されない例は、第1の投薬に続く、第1の投薬(0日目)から少なくとも約10、11、12、13、14、15、16、17、18、19、20、21、22、23または24日後の第2の投薬を含む。別の例において、第2の投薬は、第1の投薬から42日後に施される。さらに別の例において、第2の投薬は、第1の投薬から28日後に施され、続いて第2の投薬から28日後に第3の投薬が施される。さらに別の例において、ブースター投薬は、最後の予防接種から6ヶ月後に施され、続いてブースター投薬から1年後に年1回の再予防接種が施される。免疫原性またはワクチン組成物の投薬量は、0日目に施される第1の投薬より少なくてもよく、それと同じでもよく、またはそれより多くてもよい。
[0058]
本発明によれば、ワクチンまたは免疫原性組成物の「有効量」は、所望の生物学的効果を、この場合はHeV及び/またはNiVの1種以上の株に対する細胞性または液性免疫反応の少なくとも1つを達成するのに十分な量である。有効量は、対象の年齢、性別、健康、及び体重、該当する場合には併用治療の種類、治療頻度、ならびに所望の効果の性質に依存することが理解される。以下に記載の有効用量の範囲は、本発明を限定することを意図せず、本発明の組成物の投与に好適となり得る用量範囲の例を表す。しかしながら、用量は、必要以上の実験を行うことなく当業者により理解及び決定され得るように、個々の対象に合わせて設計され得る。
[0059]
本発明のワクチン及び免疫原性組成物のレシピエントは、HeV及び/またはNiVに対する細胞性または液性免疫反応を介して特定の免疫を獲得し得る任意の対象であってもよく、細胞性反応は、MHCクラスiまたはクラスiiタンパク質により媒介される。哺乳動物のうち、レシピエントは、霊長目の哺乳動物(ヒト、チンパンジー、類人猿及びサルを含む)であってもよい。本発明の一実施形態において、本発明のワクチンまたは免疫原性組成物でヒトを治療する方法が提供される。対象は、HeV及び/もしくはNiVに感染していてもよく、または、試験研究の場合のようにHeVもしくはNiV感染のモデルとなってもよい。いくつかの実施形態において、対象は、これらに限定されないが、ウマ、雌ウシ、雄ウシ、スイギュウ、ヒツジ、ブタ(Mingyi(2010)Vet.Res.41,33)、ヤギ、イヌ(Biosecurity Alert−Hendra Virus Update,27 July 2011,Press Release,Biosecurity Queensland)またはネコを含む、飼い慣らされた哺乳動物である。いくつかの実施形態において、対象は、ニワトリを含む家禽類である。
[0060]
本発明のワクチンはまた、ヘンドラウイルスに対する防御に使用される用量でのニパウイルス感染に対する交差防御も提供し、したがって、ニパウイルスに対する効果的な予防接種も提供する。
[0061]
効果的な免疫反応への言及は、有益な予防または治療効果を直接的または間接的にもたらす免疫反応への言及として理解されるべきである。免疫原が本明細書に記載のようなHeVまたはNiV G糖タンパク質を含む場合、そのような反応は、ウイルス複製及び/もしくはウイルス排出の低減またはブロック、ならびに/または動物における疾患症状の低減を含む。有効性は機能に関する尺度であり、循環抗体の存在だけでは、前記循環抗体がウイルス複製及び排出をブロックする能力が必ずしも示されるわけではないことから、抗HeV及び/または抗NiV抗体力価に言及するだけでは規定されないことが理解されるべきである。
[0062]
また、例えば、限定されることなく、本発明の可溶性Gタンパク質ポリペプチドが、ヘンドラもしくはニパに感染した、またはその感染が疑われる対象における免疫反応を増大させるために投与されている場合、及び/あるいは、本発明の抗体が、受動免疫療法の形態として投与されている場合、組成物は、例えば、他の治療薬剤(例えば抗ウイルス薬剤)をさらに含んでもよい。
[0063]
後述の実施例4は、予防接種を受けるウマにおいて使用するためのある特定の好ましい組成物に関する情報を提供する。ヘンドラウイルスに感染している可能性があり、したがってヘンドラ及びニパウイルス感染の両方から動物を、ひいてはヒトを防御するために予防接種を認容する他の動物に関しては、一般に以下の情報が適用され、当業者によって容易に適合され得る。一般的に言えば、コンパニオンアニマル(イヌ及びネコ)は、約25マイクログラムのヘンドラ抗原を認容し、25〜150マイクログラムの範囲内のISCアジュバントから利益を得ることができ、5:1:1の比のサポニン、リン脂質及びステロールが好ましいISC組成物の1つであるが、本明細書において開示されるような成分種のいずれかが使用される。コンパニオンアニマルにおいて、最終用量が約1mlであることが好ましい。コポリマー系アジュバントであるPolygen(商標)(MVP Technologies)もまた、好ましくは約5〜15%(v/v)で使用され得る。
[0064]
一般的に言えば、より大型の家畜(ヒツジ、ウシ、ブタ等)では、本明細書において別様にウマに対して指定される抗原及びアジュバント投薬(及び最終投薬体積)量が適用可能であり、すなわち、50〜100マイクログラムの抗原、典型的には約250マイクログラムのISCが使用され得、最終体積は例えば1〜3mlである。ブタに関しては、代替及び効果的なアジュバント製剤は、(ほぼ同量の抗原に対して)1〜3mlの最終投薬体積中にISC及びイオン性多糖類、具体的には100mgのDEAEデキストラン及び800マイクログラムのISCのブレンドを含む(同じく5:1:1のQuil A:ホスファチジルコリン:コレステロール(国際公開第2000/41720号を参照されたい))。
予防接種された動物の区別
[0065]
本発明はまた、健常な予防接種された動物を、HeV及び/もしくはNiVに曝露された、または感染した動物から区別する方法を包含する。ウイルス感染の間、HeV及びNiVは、融合タンパク質(F)、基質タンパク質(M)、リンタンパク質(P)、巨大タンパク質(L)及びヌクレオカプシドタンパク質(N)を含む、G糖タンパク質(G)以外の追加的なタンパク質を発現する。これらの追加的なタンパク質は、これらのタンパク質またはT細胞免疫に結合する抗体の形態で、動物における免疫反応を誘発する可能性を有する。これらの他のタンパク質に対する抗体反応のレベルは、通常、酵素結合免疫アッセイ(EIA)等のアッセイにより測定され得る。本発明の免疫原性及びワクチン製剤は、いくつかの実施形態において、HeV及び/またはNiV抗原としてG糖タンパク質のみを含有し、したがって、HeV及び/またはNiVのG糖タンパク質のみに対する抗体による免疫反応を誘発する。その後HeVまたはNiVにより感染される本明細書に記載の免疫原性組成物で予防接種された動物は、G糖タンパク質に対してブースター免疫反応を開始するが、G糖タンパク質以外のいくつかの他のHeV及びNiVタンパク質に対する抗体提示の変化も示す。したがって、融合タンパク質(F)、基質タンパク質(M)、リンタンパク質(P)、巨大タンパク質(L)及びヌクレオカプシドタンパク質(N)のいずれかに対する抗体の存在は、血清試料中のこれらのタンパク質に特異的な抗体の存在または非存在を決定するためのEIAにおいて測定され得る。これらの他のタンパク質(すなわち、G糖タンパク質以外のタンパク質)のいずれかに対する抗体が検出される場合は、動物は、HeV及び/またはNiVに曝露されている。代替として、これらの他のタンパク質に対する抗体が発見されず、Gタンパク質に結合する抗体のみが見出される場合は、動物は予防接種を受けただけである。
[0066]
本発明のEIAは、HeV及び/またはNiVに感染した動物と、本明細書に記載の免疫原性組成物で予防接種された健常動物との間の検出及び区別において極めて特異的であると共に、極めて選択的でもある。本発明は、均一及び不均一環境の両方において、ELISAを含む様々なアッセイ手順を利用し得る。アッセイ手順は、血液、血清、乳、または抗体を含有する任意の他の体液等の試料に対して行うことができる。
[0067]
いくつかの実施形態において、EIAにおいて使用される抗体は、G糖タンパク質での予防接種により誘発された抗体のみと競合し得るが、HeV及び/またはNiVの感染により動物において誘発された抗体とは競合しない。これにより、HeV及びNiV感染の血清学的診断だけでなく、1回のアッセイでの予防接種と感染との区別が可能になる。EIA手順は、標準的な血液血清試料、または抗体を含有する任意の体液もしくは分泌物に対して行うことができる。EIA手順は、G糖タンパク質ならびに任意の他のHeV及び/またはNiVウイルスタンパク質(例えば、融合タンパク質(F)、基質タンパク質(M)、リンタンパク質(P)、巨大タンパク質(L)及びヌクレオカプシドタンパク質(N)であり、そのようなタンパク質はHeV及び/またはNiVに曝露されていない予防接種された健常動物においては存在しないため)に対するモノクローナル及び/またはポリクローナル抗体を使用し得る。EIAは、任意の数の市販の固定または携帯式の手動型、半自動型またはロボット工学的自動型のELISA機器において、コンピュータ支援データ分析軽減ソフトウェア及びハードウェアを用いて、または用いずに行うことができる。いくつかの実施形態において、健常な予防接種された動物を、HeV及び/またはNiVに曝露された、または感染した動物から区別する方法は、これらに限定されないが、ウマ、ウシ、ヒツジ、ブタ、ヤギ、イヌまたはネコを含む飼い慣らされた哺乳動物から単離された生体試料に対して行うことができる。いくつかの実施形態において、対象は、ニワトリを含む家禽類である。いくつかの実施形態において、対象は、ヒトである。
[0068]
以下の実施例は、本発明の特定の実施形態のみを例示し、実施形態の全てを例示しているわけではなく、したがって、本発明の範囲を限定するものとして解釈されるべきではない。
実施例1:ベクターコンストラクト
[0069]
ベクターは、膜貫通/細胞質尾部欠失HeV GまたはNiV Gを発現するように構築した。全長HeVまたはNiV Gタンパク質のクローンcDNAをPCRにより増幅し、膜貫通ドメイン/細胞質尾部欠失HeVまたはNiV Gタンパク質をコードする約2600のヌクレオチドの断片を生成した。
[0070]
以下のオリゴヌクレオチドプライマーを、HeV Gの増幅のために合成した。sHGS:5’−GTCGACCACCATGCAAAATTACACCAGAACGACTGATAAT−3’(配列番号5)。sHGAS:5’−GTTTAAACGTCGACCAATCAACTCTCTGAACATTGGGCAGGTATC−3’(配列番号6)。
[0071]
以下のオリゴヌクレオチドプライマーを、NiV Gの増幅のために合成した。sNGS:5’−CTCGAGCACCATGCAAAATTACACAAGATCAACAGACAA−3’(配列番号7)。sNGAS:5’−CTCGAGTAGCAGCCGGATCAAGCTTATGTACATTGCTCTGGTATC−3’(配列番号8)。
全てのPCR反応は、以下の設定でAccupol DNAポリメラーゼ(PGS Scientifics Corp)を使用して行った:最初に94℃で5分間、次いで94℃で1分間、56℃で2分間、72℃で4分間を25サイクル。これらのプライマーは、Sal 1部位が隣接するsHeV G ORF及びXho 1部位が隣接するsNiV G ORFのためのPCR産物を生成した。PCR産物をゲル精製した(Qiagen)。ゲル精製後、sHeV G及びsNiV Gを、TOPOベクター(Invitrogen)にサブクローニングした。
[0072]
PSectag2B(Invitrogen)を購入し、S−ペプチドタグまたはmyc−エピトープタグを含有するように改質した。S−ペプチドならびに消化Kpn 1及びEcoR1オーバーハングの配列をコードする、重複オリゴヌクレオチドを合成した。
SPEPS:5’−CAAGGAGACCGCTGCTGCTAAGTTCGAACGCCAGCACATGGATTCT−3’(配列番号9)。SPEPAS:5’AATTAGAATCCATGTGCTGGCGTTCGAACTTAGCAGCAGCGGTCTCCTTGGTAC−3’(配列番号10)。
[0073]
myc−エピトープタグならびに消化Kpn 1及びEcoR1オーバーハングの配列をコードする、重複オリゴヌクレオチドを合成した。
MTS:5’−CGAACAAAAGCTCATCTCAGAAGAGGATCTG−3’(配列番号11)。MTAS5’−AATTCAGATCCTCTTCTGAGATGAGCTTTTGTTCGGTAC−3’(配列番号12)。
[0074]
64ρmolのSPEPS及び64ρmolのSPEPASを混合し、65℃まで5分間加熱し、50℃に徐々に冷却した。64ρmolのMTS及び64ρmolのMTASを混合し、65℃まで5分間加熱し、50℃に徐々に冷却した。2つの混合物を希釈し、Kpn1−EcoR1消化pSecTag2Bにクローニングして、S−ペプチド改質pSecTag2Bまたはmyc−エピトープ改質pSecTag2Bを生成した。全てのコンストラクトを、ます制限酵素消化によりスクリーニングし、さらに配列決定により検証した。
[0075]
TOPO sGコンストラクトを、Sal 1ゲル精製(Qiagen)で消化し、S−ペプチド改質pSecTag2Bまたはmyc−エピトープ改質pSecTag2BのXho 1部位にインフレームでサブクローニングした。全てのコンストラクトを、まず制限酵素消化によりスクリーニングし、さらに配列決定により検証した。
[0076]
次いで、Igκリーダー−S−ペプチド−sHeVG(sGS−tag)及びIgkリーダー−mycタグ−sHeVG(sGmyc−tag)コンストラクトを、ワクシニアシャトルベクターpMCO2にサブクローニングした。オリゴヌクレオチドSEQS:5’−TCGACCCACCATGGAGACAGACACACTCCTGCTA−3’(配列番号13)を合成し、オリゴヌクレオチドsHGASと組み合わせて使用して、PCRによりsGS−tag及びsGmyc−tagを増幅した。全てのPCR反応は、以下の設定でAccupol DNAポリメラーゼ(PGS Scientifics Corp)を使用して行った:最初に94℃で5分間、次いで94℃で1分間、56℃で2分間、72℃で4分間を25サイクル。これらのプライマーは、Sal 1部位が隣接するPCR産物を生成した。PCR産物をゲル精製した(Qiagen)。ゲル精製後、sGS−tag及びsGmyc−tagを、TOPOベクター(Invitrogen)にサブクローニングした。sG S−タグ及びsG myc−タグを、Sal 1で消化し、pMCO2のSal 1部位にサブクローニングした。全てのコンストラクトを、まず制限酵素消化によりスクリーニングし、さらに配列決定により検証した。その後、配列番号16で示される真核細胞株における産生を促進するために、コドン最適化ヌクレオチド配列を生成した。
[0077]
Chromos人工染色体発現(ACE)系を使用したCHO細胞におけるヘンドラsGタンパク質の発現のために、ヘンドラsGタンパク質のDNAコード化を、製造者の指示に従い、Pfxポリメラーゼ(Invitrogen)を使用したPCRにより増幅した。鋳型は、pCDNA ヘンドラsG(S−ペプチドタグなし)であった。DNAを増幅するために使用したオリゴヌクレオチドプライマーは、5’−GATATCGCCACCATGGAAACCGACACCCTG−3’(配列番号18)及び5’−GGTACCTCAGCTCTCGCTGCACTG−3’(配列番号19)であった。断片のゲル精製は、製造者の指示に従い、QiaQuickゲル抽出(Qiagen)を使用して行った。次いで、PCR産物をZero Blunt(登録商標)TOPO(登録商標)(Invitrogen)にライゲーションし、ライゲーション混合物を、One Shot Max efficiency細胞(Invitrogen)に形質転換した。陽性形質転換体からのDNAを精製し、KpnI及びEcoRVを使用してsG挿入体を切断し、ACE系標的化ベクター(ATV)であるpCTV927にライゲーションした。次いで、ライゲーション反応物を、大腸菌OmniMax細胞(Invitrogen)に形質転換した。陽性クローンの識別後、pCTV927/ヘンドラsG T1プラスミドを単離し、次いで配列決定により挿入体を確認した。
実施例2:CHO細胞を使用した可溶性Gタンパク質のタンパク質産生
[0078]
St.Louisからのチャイニーズハムスター卵巣(CHO)ChK2細胞を解凍し、CD−CHO培地(Invitrogen)及び6mM Glutamax(Gibco)を含む滅菌125mlフラスコに移し、継代に供した。トランスフェクションの1時間前に、培養培地を除去し、新鮮なChK2接着培養培地で置換した。pCTV927/ヘンドラsG T1プラスミドを単離し、エタノール沈殿させ、0.85μg/μLの濃度まで再懸濁させた。OptiMEM I(Gibco)を使用して、製造者の指示に従い、接着細胞をACE Integrase(pSI0343)ならびにpCTV927/ヘンドラsG T1及びLipofectamine(商標)2000(Invitrogen)で共トランスフェクトした。ACE Integraseは、バクテリオファージラムダDNAから増幅されたが哺乳動物発現用に最適化されたインテグラーゼ遺伝子からなる。新鮮なChK2接着培地を用い、37℃/5%COで一晩培養物をインキュベートした。翌日、培養培地を除去し、細胞をPBSで慎重に洗浄し、続いて2mLのトリプシン溶液を添加して細胞を分離させ、さらに4mLの新鮮なChK2接着培地を添加した。次いで、細胞を96ウェルプレート内での制限的な連続希釈に供し、続いて、2mg/mLハイグロマイシンによる選択を行い、24時間後に96ウェルプレート内に堆積させた。
[0079]
17日間の慎重なモニタリングの後、80の個々のトランスフェクトされたクローンを選択し、6mMのglutamax(Gibco)及び0.1mg/mlのハイグロマイシンを含有する1mlのCD−CHO(Invitrogen)(維持選択培地)を含む24ウェルプレート内に分注した。4日後、クローンを、以下に示すように維持選択培地を含む新たな24プレートに分割した。500マイクロリットル(μL)の懸濁培養物を各発現フラスコから取り出し、500×gで5分間遠心分離した。上澄みを取り出し、清浄な新しい管に移し、−20℃で凍結した。全ての上清を後に解凍し、NuPAGE(登録商標)Novex(登録商標)Bis−Tris Mini Gels(Invitrogen)を使用して、ポリアクリルアミドゲル電気泳動(PAGE)に供した。各試料に対して2組を、一方はゲル染色に、他方はウェスタンブロット分析に供した。iBlot(登録商標)ゲル移送デバイス(Invitrogen)を使用して、第2の組のゲルをニトロセルロース上に移した。抗Gタンパク質ポリクローナル抗体を一次抗体として使用し、続いてペルオキシダーゼコンジュゲート親和性精製抗ウサギIgG抗体(Rockland)を使用した。次いで、ブロットを、TMB膜ペルオキシダーゼ基質(KPL)の添加により展開した。Gタンパク質の発現が確認された。
実施例3:ワクシニアを使用した可溶性Gタンパク質のタンパク質産生
[0080]
タンパク質産生のために、コドン最適化配列を含有する遺伝子コンストラクトを使用して、組換えポックスウイルスベクター(ワクシニアウイルス、WR株)を生成した。次いで、tk選択及びGUS染色を使用した標準的技術を使用して、組換えポックスウイルスを得た。簡潔に説明すると、リン酸カルシウムトランスフェクションキット(Promega)を使用して、CV−1細胞をpMCO2 sHeV G融合体またはpMCO2 sNiV G融合体でトランスフェクトした。次いで、これらの単層を、ワクシニアウイルスのWestern Reserve(WR)野生株に、0.05PFU/細胞の感染多重度(MOI)で感染させた。2日後、細胞ペレットを粗組換えウイルスストックとして回収した。TK細胞を、25μg/mlの5−ブロモ−2’−デオキシウリジン(BrdU)(Calbiochem)の存在下で組換え粗ストックに感染させた。2時間後、ウイルスを、1%の低融点(LMP)アガロース(Life Technologies)及びμg/mlのBrdUを含有するEMEM−10オーバーレイで置換した。2日間のインキュベーション後、1%のLMPアガロース、25μg/mlのBrdU、及び0.2mg/mlの5−ブロモ−4−クロロ−3−インドリル−β−D−グルクロン酸(X−GLUC)(Clontech)を含有する追加のEMEM−10を添加した。24〜48時間以内に、青色のプラークが明らかとなり、これを採取して、二重選択プラーク精製にさらに2回供した。次いで、組換えワクシニアウイルスvKB16(sHeV G融合体)及びvKB22(sNiV G融合体)を増幅し、標準的方法により精製した。簡潔に説明すると、組換えワクシニアウイルスを、プラーク精製、細胞培養増幅、超遠心分離でのショ糖クッションペレット化、及びプラークアッセイによる滴定によって精製する。sHeV Gの発現は、細胞溶解物及び培養上澄みにおいて検証した。
実施例4:293F細胞を使用した可溶性Gタンパク質のタンパク質産生
[0081]

コドン最適化配列を含有する遺伝子コンストラクトを使用して、293F細胞(Invitrogen)を形質転換し、HeV可溶性G糖タンパク質を発現する安定な細胞株を生成した。CHO−S細胞(Invitrogen)もまた、HeV可溶性G糖タンパク質の形質転換及び発現に使用され得る。形質転換された細胞を、35mlのDMEM−10を含む162cm組織培養フラスコに播種する。細胞を接着させ、37℃、5〜8%CO下で数日間増殖させた。細胞がコンフルエントになったら、150μg/mlのハイグロマイシンBを含むDMEM−10を有する複数のフラスコ(フラスコ当たり30ml)に分割した。細胞が70〜80%コンフルエントになったら、30mlのPBSで2回洗浄し、次いで、20mlの293 SFM II(Invitrogen)を添加し、細胞を、37℃、5〜8%CO下で一晩インキュベートした。翌日、細胞を、200mlのSFM II培地を有する三角フラスコに移した。細胞を、37℃、5〜8%CO、125rpmで5〜6日間、細胞が死滅し始めるまで増殖させた。その時点で、上澄みを回収する。
[0082]
各三角フラスコからの培地を、3,500rpmで30分間遠心分離する。次いで、上澄みを250mlの遠心ボトルに移し、10,000rpmで1時間回転させた。得られた上澄みを回収し、製造者の推奨に従ってプロテアーゼ阻害剤をTriton X−100と共に添加し、最終濃度を0.1%とする。次いで、上澄みを、0.2μmの低タンパク質結合フィルタ膜を通して濾過する。
[0083]
S−タンパク質アガロース親和性カラムを使用して、HeVsGを精製する。総体積20mlのS−タンパク質アガロース(Novagen)を、XK 26カラム(GE Healthcare)に充填する。カラムを、総体積の10倍の結合/洗浄緩衝液(0.15MのNaCl、20mMのTris−HCl、pH7.5及び0.1%のTriton X−100)で洗浄する。調製されたHeV sGの上澄みをカラムに投入し、3ml/分の流速を維持する。カラムを、総体積の10倍(200ml)の結合/洗浄緩衝液Iで洗浄し、続いて、総体積の6倍(120ml)の洗浄緩衝液1×洗浄緩衝液(0.15MのNaCl、及び20mMのTris−HCl、pH7.5)で洗浄する。
[0084]
次いで、ポンプを止め、ビーズ表面に達するまで洗浄緩衝液を排出させたら、30mlの溶出緩衝液(0.2Mのクエン酸、pH2)を添加する。最初の10mlの流出分(これはまだ洗浄緩衝液であるはずである)を回収し、次いで、溶出緩衝液を、ビーズと共に10分間インキュベートする。次に、15mlの溶出液を、25mlの中和緩衝液(1MのTris、pH8)を含む50mLの滅菌円錐遠心管に回収する。pHを中性に調節し、溶出及びインキュベーションを3回繰り返す。中和された溶出液を全て組み合わせ、約4mlに濃縮する。回収したHeV sG(4ml)を、0.2μmの低タンパク質結合フィルタ膜(0.2μm HT Tuffryn Membraneを備えるAcrodisc 13mm Syringe Filter)を通して精製する。
[0085]
ゲル濾過を利用して、HeV sGをさらに精製することができる。品質管理分析、ならびに純度及びオリゴマー状態の確認後、四量体+二量体、二量体、及び単量体の一定分量のHeV sGプール分画を、−80℃で保存する。
実施例5:CHO HeV sGタンパク質のガンマ線照射
[0086]
CHO HeVマスター細胞シードストックを解凍し、4回連続継代により、振盪フラスコ内で拡大した。採取した材料を、8×10細胞/mlの最終細胞密度まで、バイオリアクタ内で3回連続継代によりさらに拡大した。遠心分離により細胞を除去した(代替として、これは深層ろ過により行われてもよい)。次いで、得られた清浄化HeV sG培養材料を、0.2%(w/v)の最終濃度までアスコルビン酸と混合し、50kGrayの蓄積線量でCo−60ガンマ照射源に供した。
実施例6:ワクチン製剤の調製
[0087]
ISCの調製を要約した概略を図3に示し、さらに以下で説明する。
[0088]
ステップ1:90g/Lのデカノイル−n−メチルグルカミド(Mega−10洗剤)の溶液を、注射用水(WFI)で調製する。溶液を加熱して、Mega 10を確実に完全溶解させ、次いで、すぐにステップ2で使用するか、または滅菌濾過する。
[0089]
ステップ2:25g/Lのコレステロール及び25g/Lのジパルミトイルホスファチジルコリン(DPPC)を含有する溶液を、これらの成分をMega 10洗剤のストック溶液中に溶解することにより調製する。溶液を加熱して全ての成分を溶解させ、次いですぐにステップ3で使用するか、または滅菌濾過する。
[0090]
ステップ3:等張緩衝生理食塩水、10mMのリン酸緩衝液、pH6.2±1(BIS)を、WFIで調製し、すぐに使用しない場合は滅菌濾過する。
[0091]
ステップ4:Quil Aを、BIS中で100g/Lの最終濃度に調製し、すぐに使用しない場合は滅菌濾過する。
[0092]
ステップ5:予熱されたBIS、Mega−10溶液中のコレステロール/DPPC(160ml/L)、及びQuil A溶液(200ml/L)を順次添加することにより、ISCを撹拌された温度制御槽(22〜37℃)内で製剤化する。BISを添加することにより、反応物を標的体積とする。
[0093]
ステップ6:製剤全体を、必要とされる温度(標的温度27℃、許容される動作温度範囲22〜37℃)に平衡化し、次いで、撹拌しながら15分間インキュベートして、ISCの製剤化を促進する。ISC溶液をステップ7においてさらに処理するか、または中間的保存のために滅菌濾過する。
[0094]
ステップ7:複合化していない成分を除去するために、ISC反応混合物を、温度制御(標的温度27℃、許容される動作温度範囲21〜37℃)下で、BISに対し最小で20回の体積交換での透析(膜:Hydrosart 30kDa(Sartorius AG Goettingen))により洗浄する。
[0095]
ステップ8:透析されたISCを、透析に使用した膜と同じ膜を使用した限外濾過により約2倍に濃縮する。濾過系をBISで濯ぎ、ISCを元の体積に戻す。
[0096]
ステップ9:0.22μmの酢酸セルロースフィルタを通した滅菌濾過を介して、ISCを滅菌保存容器に移す。
[0097]
ステップ10:ISCアジュバントを、ワクチン製剤における使用のために放出されるまで、2〜8℃で保存する。
[0098]
次いで、免疫刺激組成物(250μg/ml)を、適切な量の可溶性HeV G糖タンパク質(例えば、5、50、100μg/ml)と組み合わせ、BISで体積を調節する。
実施例7:ウマにおける第1の臨床実験
[0099]

試験ワクチン1:250μgの免疫刺激性複合体で補助された100μg/用量の組換えヘンドラウイルス可溶性糖タンパク質(sG);体積は生理食塩水で1ml/用量に調節される。
[00100]
試験ワクチン2:250μgの免疫刺激性複合体で補助された50μg/用量の組換えヘンドラウイルス可溶性糖タンパク質(sG);体積は生理食塩水で1ml/用量に調節される。
[00101]
試験ワクチン3:250μgの免疫刺激性複合体で補助された5μg/用量の組換えヘンドラウイルス可溶性糖タンパク質(sG);体積は生理食塩水で1ml/用量に調節される。
[00102]
ウマからの血清学的及び負荷防御データを、より高いレベルの抗原を含有するワクチン(50μg/用量及び100μg/用量)が与えられた2ロットのウマから収集した。
[00103]
血清学的検査:2頭のウマをそれぞれ、21日の間隔をあけた2回のワクチン投薬(100μg sG及びISC)で免疫化した。プライミング後及び負荷前の血清学的検査では、HeVに対するワクチン誘発血清転換が確認された(表1)。負荷前のウイルス中和抗体レベルは、さもなくば致死量である近縁のニパウイルスに曝露されたネコにおいて防御効果があることが見出された抗体レベルに匹敵するものであった。アジュバントのみが与えられたウマ(陰性対照)は、ウイルス負荷前にHeVに対する抗体を生じなかった。
[00104]
したがって、それぞれのウマを、ブースター免疫化を受けさせてから27日後、BSL4封じ込め施設で生きたHeVに曝露させた。ウイルスを鼻腔内投与(1×10TCID50)及び経口投与(1×10TCID50)した。負荷の時点、及びその後の観察期間の間、対照ウマの素性は、作業のこの部分に関与するスタッフには知らされなかった。
[00105]
V1の臨床観察結果:このウマは、HeVへの曝露後の観察期間の間、負荷後8日目に認められた留置頸静脈カテーテルの入口部位での局所的な感染以外、臨床的に良好な状態を維持した。これは、いかなる疾患の構成的な兆候にも関連していなかった。ウマは、ウイルス負荷後9日目に選択的に安楽死させた。全体的な死後の検査での異常は、10cmの腸間膜脂肪腫(偶発的所見)、ならびにバルビツール酸塩に起因する左肺心葉の腹面先端におけるリンパ管の軽度の拡張に限定されていた。組織の初回スクリーニングでは、このウマにおいて、病変またはHeV抗原の痕跡は発見されなかった。
[00106]
V2の臨床観察結果:このウマは、3日目に一時的な軽度の鼻漏を示したが、その後その他は良好な状態を維持したものの、6日目に留置頸静脈カテーテル部位における局所的な炎症反応に関連した体温上昇を示した。カテーテルを除去したが、病変は拡大を続け、ウマはかなりの興奮状態となったため、翌日(d7)、その雌ウマを長期作用型ペニシリンで処置した。8日目には、体温及び気性の両方が通常に戻り、そのウマを選択的に安楽死させた。全体的な死後の検査での異常は、バルビツール酸塩に起因する右肺心葉の腹面先端におけるリンパ管の軽度の拡張に限定されていた。組織の初回スクリーニングでは、このウマにおいて、病変またはHeV抗原の痕跡は発見されなかったが、詳細な検査が現在完了しつつある。
[00107]
V3の臨床観察結果:このウマは、4日目に一時的な軽度の鼻漏を示したが、その後その他は良好な状態を維持したものの、6日目に局所的な兆候を有さない体温上昇を示した。このウマの心拍数もまた上昇し、皮膚にわずかなテンティングがあり、これは軽度の脱水症状及びめくれ上がったような(tucked−up)外観に一致した。この一連の兆候は、我々の実験室条件下での急性HeV感染に典型的なものであった。ウマの体温及び心拍数はその後12時間にわたり上昇し続け(図1及び2)、ウマは軽い抑鬱となったため、7日目に人道的理由によりウマを安楽死させた。死後の検査では、肺の心葉におけるリンパ管の中等度の拡大が見られ、また胸膜肥厚及び浮腫が付随する8〜10cm腹部の関与があった。
[00108]
組織学的検査において、血管壁のフィブリノイド壊死を伴う肺血管炎、小葉間隔壁の浮腫、及び巣状壊死性肺胞隔炎が見られた。肺の血管の内皮及び中膜;髄膜;脳柔組織;三叉神経節;顎下、気管支、鼠径部及び腎リンパ節;脾臓;肝臓;心臓;軟口蓋;副腎;腎糸球体;小腸及び大腸;卵巣;咽頭及び鼻甲介、ならびに脾臓の胚中心、及び時に心筋細胞にHeV抗原の過剰な沈着が見られた。脊髄、喉嚢、膀胱、及び脳の嗅葉は陰性であった。組織学的及び免疫組織学的に最急性HeV感染と一致するものであった。
[00109]
臨床試料の分子解析。臨床観察期間を通して、免疫化したウマV1及びV2から採取された生物学的試料のいずれからもHeVの排出の痕跡は見られなかった。具体的には、曝露後のいずれの日においても、鼻奥の鼻腔スワブまたは血液のいずれからもゲノムは回収されなかった。
[00110]
対照的に、免疫化していないウマV3では、負荷後3日目に鼻腔スワブにおいてウイルスゲノムが検出された。連続的な試料採取日におけるCt値の減少は上部気道におけるウイルス複製を示唆しており、我々の実験室による、無処置のウマをHeVに曝露した後の初期の観察結果と一致していた(Redlands2008)。発熱直前の血液及びその後のすべての分泌物においてウイルスゲノムが見られたことは、抑鬱等の他の臨床徴候についての最初の認識と合致し、先の観察結果とも一致している。
[00111]
死後の試料。TaqMan PCR(HeV N−遺伝子)では、V3(対照)において、負荷ウイルスの複製物が複数の組織に伝播し感染していることが確認された(表3)。最高レベルの複製は、先に報告されているように、肺、脾臓、腎臓、心筋、ならびに上部及び下部気道に関連するリンパ組織に存在するようであった。免疫化したウマ(V1及びV2)の組織では、ウイルス複製の痕跡は見られなかった。
[00112]
負荷後の血清学的検査。免疫化したウマV1及びV2では、HeV負荷後、力価の上昇が見られなかった(表4)。これは、これらの動物において負荷ウイルスの顕著な複製がなかったことと一致する。負荷後7日目の安楽死の時点で、対照ウマV3において抗体は検出されなかった。検出可能な抗体の生成に十分な時間がウイルス曝露と動物の死との間に存在しなかったと考えられ、これはRedlandsのウマのHeVに関する我々の実験室における先の観察結果と一致する。
[00113]
プライムブースト計画において100μgのsG+ISCアジュバントで予防接種された2頭のウマ(V1及びV2)は、HeV曝露の前にHeVに血清転換した。ISCのみを与えられた1頭のウマ(V3)は、負荷ウイルスに対して血清陰性のままであった。
[00114]
さもなくば致死量のHeVによる負荷後、免疫化したウマは観察期間を通して臨床的に良好な状態を維持し、ウマにおけるHeVのすべての実験的に誘発された場合の発症時間を上回っていた。免疫の血清学的痕跡を有さないウマ(V3)は、急性HeVと一致する臨床徴候を示した後、安楽死させた。免疫化したウマでは、負荷後に抗体力価の上昇が検出されず、これらの動物において負荷ウイルスの複製が見られなかったことと一致していた。
[00115]
毎日の臨床試料の全てにおけるPCRの陰性試験結果により反映されるように、免疫化したウマによるウイルス排出の痕跡は見られなかった。免疫化していない対照では、ウイルス曝露後3日目に鼻腔スワブにおいて、発熱直前に血液において、及び発熱が確立された時からはすべての臨床試料においてウイルスゲノムが検出された。この排出パターンは、この施設での先の試験でHeVに曝露された無処置のウマにおいて見られたものと一致する。
[00116]
急性感染期間と推定される期間中の安楽死後、死後の検査において採取された免疫化したウマのいずれの組織においても、HeVウイルス複製の痕跡は見られなかった。対照的に、対照ウマの組織全体に、HeVゲノム及び抗原が急性HeV感染と一致するパターンで分布しており、HeV感染に典型的な脈管障害も特定された。
実施例8:ウマにおける第2の臨床試験
[00117]
3頭のウマをそれぞれ、21日の間隔をあけた2回のワクチン投薬(50μgのsG及びISC)で免疫化した。プライミング後及び負荷前の血清学的検査では、HeVに対するワクチン誘発血清転換が確認された(表5)。負荷前のウイルス中和抗体レベルは、さもなくば致死量である近縁のニパウイルスに曝露されたネコにおいて防御効果があることが見出された抗体レベルに匹敵するものであり、また、本明細書に記載の第1の臨床試験においてHeVに曝露されたウマに匹敵するものであった。アジュバントのみが与えられたウマは、免疫化したウマのウイルス負荷前に、HeVに対する抗体を生じなかった(データは示さず)。
[00118]
したがって、それぞれの免疫化したウマを、ブースター免疫化を受けさせてから27日後、BSL4封じ込め施設で生きたHeVに曝露させた。ウイルスを鼻腔内投与(1×10TCID50)及び経口投与(1×10TCID50)した。4匹のモルモットを、この試験において病原性対照として用い、これらのうち少なくとも1匹はHeV疾患で死亡すると推定した。モルモットを腹腔内経路により50,000TCID50 HeVに曝露した。
[00119]
V4の臨床観察結果:このウマは、HeVへの曝露後の観察期間の間、臨床的に良好な状態を維持し、体温及び心拍数は正常な範囲内に留まっていた。ウマは、ウイルス負荷後8日目に選択的に安楽死させた。死後の検査において全体的に異常は見られなかった。組織の初回スクリーニングでは、このウマにおいて、病変またはHeV抗原の痕跡は発見されなかったが、詳細な検査が現在完了しつつある。
[00120]
V5の臨床観察結果:このウマは、HeVへの曝露後の観察期間の間、臨床的に良好な状態を維持し、体温及び心拍数は正常な範囲内に留まっていた(図2)。ウマは、ウイルス負荷後7日目に選択的に安楽死させた。死後の検査において全体的に異常は見られなかった。組織の初回スクリーニングでは、このウマにおいて、病変またはHeV抗原の痕跡は発見されなかったが、詳細な検査が現在完了しつつある。
[00121]
V6の臨床観察結果:このウマは、HeVへの曝露後の観察期間の間、臨床的に良好な状態を維持し、体温及び心拍数は正常な範囲内に留まっていた(図2)。ウマは、ウイルス負荷後9日目に選択的に安楽死させた。死後の検査において全体的に異常は見られなかった。組織の初回スクリーニングでは、このウマにおいて、病変またはHeV抗原の痕跡は発見されなかったが、詳細な検査が現在完了しつつある。
[00122]
モルモット:4匹のモルモットのうち1匹(番号3)は、HeV負荷後3日目に体重が減少し始めた。体重の減少は、動物が神経学的徴候(頭部後屈、振戦)を示し、安楽死させられた5日目まで進行した。死後の検査での異常は後腹膜結合組織の浮腫に限定された。
[00123]
組織学的検査では、HeV抗原の蓄積に関連して、肺血管炎、腎周囲血管の脈管炎、卵巣炎、及び非化膿性脳炎が見られた。組織学的及び免疫組織学的に急性HeV感染と一致するものであり、負荷ウイルスの病原性が確認された。
[00124]
臨床観察期間を通して、V4、V5またはV6から採取されたいずれの生体試料においてもHeV排出の痕跡は見られなかったが、但し、3日目にV6からの直腸スワブにおいて36.2のCt値(HeV N遺伝子)がTaqManPCRにより2つの複製物のウェルの1つで観察され、第2のウェルは増幅を示さなかった(表6)。具体的には、曝露後のいずれの日においても、鼻奥の鼻腔スワブまたは血液のいずれからもゲノムは回収されなかった。
[00125]
死後の試料。免疫化したウマV4、V5またはV6の組織では、ウイルス複製の痕跡は見られなかった。1匹のモルモット(番号3)において、負荷後5日目にウイルスゲノムが血液(Ct34.2)、脳、肺及び脾臓において検出され、この動物の急性HeV感染の臨床的、組織学的及び免疫組織学的所見が裏付けられた(表7)。
[00126]
負荷後の血清学的検査。免疫化したウマV4、V5及びV6では、HeV負荷後、力価の上昇が見られなかった(表8)。これは、これらの動物において負荷ウイルスの顕著な複製がなかったことと一致する。
[00127]
プライムブースト計画において50μgのsG+ISCアジュバントで予防接種された3頭のウマ(V4、V5及びV6)は、HeV曝露の前にHeVに血清転換した。ISCのみを与えられた1頭のウマは、負荷ウイルスに対して血清陰性のままであった。
[00128]
さもなくば致死量のHeVによる負荷後、免疫化したウマは観察期間を通して臨床的に良好な状態を維持し、ウマにおけるHeVのすべての実験的に誘発された場合の発症時間を上回っていた。病原性対照として使用された1匹のモルモットは、急性HeVと一致する臨床兆候を示した後、安楽死させた。免疫化したウマでは、負荷後に抗体力価の上昇が検出されず、これらの動物において負荷ウイルスの複製が見られなかったことと一致していた。
[00129]
3日目のV6の直腸スワブからの1つの複製物以外、毎日の臨床試料の全てにおけるPCRの陰性試験結果により反映されるように、免疫化したウマによるウイルス排出の痕跡は見られなかった。この試験は繰り返されているが、同様の結果が観察される場合、これは低レベルの残留接種源を示すというのが1つの説明である。1匹の免疫化していないモルモットにおいては、ウイルスへの曝露後5日目に、主要器官及び血液においてウイルスゲノムが検出された。
[00130]
急性感染期間と推定される期間中の安楽死後、死後の検査において採取された免疫化したウマのいずれの組織においても、HeVウイルス複製の痕跡は見られなかった。対照的に、感染しやすいモルモットの組織全体に、HeVゲノム及び抗原が急性HeV感染と一致するパターンで分布しており、この動物においてHeV感染に典型的な脈管障害も特定された。
実施例9:ウマに対するヘンドラウイルスワクチンを使用した代替的予防接種計画の評価
[00131]
3ヶ月齢以上の健常なウマを、この試験に採用した。試験群は、表9に概説される通りである。
[00132]
ウマヘンドラウイルスへの以前の曝露の影響がないことを確認するために、0日目の予防接種前の全てのウマから血液を採取した。さらに、80及び91日目に血液試料を採取した。ヘンドラウイルスに対する抗体の検出を、検証された実験室手順を使用した血清中和アッセイにより評価した。
[00133]
ウマを、指定された試験日にIVPで予防接種した。IVPは、250g/用量の免疫刺激複合体(ISC)で補助された116gの照射ヘンドラウイルス可溶性Gタンパク質(sG)からなっていた。ワクチンの用量は、各場合においてウマ当たり1mlであった。
[00134]
予防接種部位をまず80%アルコールで拭き、そこを確実に清浄化した。ワクチン投与は、経験豊富な獣医により、個別の3mlゴム不使用注射器及び18G 1.5インチ針を使用して行われた。ワクチンは、全ての場合において、標準的な獣医学的手順に従い、頸部の左側中央の筋肉内に投与した。
[00135]
有効な試験の基準は、以下のように定義された:1)全てのウマは、0日目の予防接種前は臨床的に正常である;2)全てのウマは、0日目においてウマヘンドラウイルスに対する抗体を有さない;3)対照群T01内のウマは、試験期間を通してウマヘンドラウイルスに対する抗体を有さない。
[00136]
結果。試験期間を通して、ワクチンに対する有害な副作用を経験したと報告された動物はいなかった。処置群T02において、動物は全てワクチンに反応し、80日目に256以上の血清中和力価(SNT)に達し、91日目に64以上のSNTに達した。処置群T03においても、動物は全てワクチンに反応し、80日目に256以上のSNTに達し、91日目に32以上のSNTに達した。最後に、処置群T04においても、動物は全てワクチンに反応し、80日目に512以上のSNTに達し、91日目に128以上のSNTに達した。
[00137]
結論として、処置群T02、T03及びT04内の全ての動物がワクチンに反応し、80日目に256から1024超の間のSNTに達し、91日目に32から2048の間のSNTに達した。これらの結果は、ウマヘンドラウイルスワクチンの予防接種間隔を、3週間間隔の2回投薬(T02)から6週間間隔の2回投薬(T03)、または4週間間隔の3回投薬(T04)に変更すると、最終投薬が行われてから約3週間(24日)後までに、ウマヘンドラウイルスに対する血清中和抗体反応がもたらされることを示している。ウマが3週間間隔の2回の予防接種後に負荷及び防御された先の有効性試験に基づき、本試験において80及び91日目に3つ全ての予防接種群(T02、T03及びT04)で測定されたSNTは、ウマヘンドラウイルスに対して同等の防御効果を有すると推定される。
実施例10:ヘンドラウイルスワクチンのウマにおける免疫継続期間
[00138]
5〜14歳齢の臨床的に健常なウマのみを、試験に採用した。さらに、以下の基準を使用して、この負荷試験用のウマを選択した:身体的適合性(全体的な健康、心肺機能、足及び四肢の完全性);気性;ならびに低い負荷前抗体力価。試験デザインを、表10に示す。
[00139]
封じ込め施設の制限に関連した制約、人間による生きたウイルス及び感染した(予防接種されていない)ウマの取り扱いに関連したリスク、ならびに動物福祉に関する配慮に起因して、この試験は、ごく小規模の動物群を利用し、試験の負荷段階中に標的動物(ウマ)対照はなかった。予防接種していないウマにヘンドラウイルスを負荷することを含む先の実験研究は、負荷モデルの有効性を一貫して示しており、その後フェレットが病原性対照として成功裏に利用された。この試験において同じ実験デザインを使用し、負荷段階中2匹のフェレットを対照として使用して、負荷ウイルスの病原性を確認した。各フェレットを口鼻経路により50,000TCID50 HeVに曝露した。フェレット対象に投与された負荷ウイルスは、ウマに投与されたものと同じであった。
[00140]
負荷のために、組織培養上澄み中のウマヘンドラウイルスの毒性溶液を調製した。ウイルス培養物を、Vero細胞において増殖させた。負荷の日の朝、負荷材料を以下の手順に従って調製した:組織培養上澄み中のストックヘンドラウイルスの一定分量を−80℃から取り出し、解凍し、適切に希釈して、負荷接種源を生成した。投与された接種源の力価を確認するために、一定分量の接種源を逆滴定を行うために保留した。接種源を、実験用のウマ及び病原性対照(フェレット)に投与するまで湿潤した氷上で保持した。負荷ウイルスをウマに鼻腔内投与(標的1×10TCID50)及び経口投与(標的1×10TCID50)した。
[00141]
ウマヘンドラウイルスへの曝露前に、ウマから血液を採取した。さらに、21、42、56、84、120、136及び178日目に血液試料を採取し、予防接種後のHeVに対する抗体のレベルを決定した。負荷の日(218日目)に開始して、226日目まで、血液試料を毎日または1日おきに採取した。留置カテーテルに関する問題により、218日目以降の1頭のウマからは血液試料を採取しなかった。ヘンドラウイルスに対する抗体の検出を、検証された実験室手順を使用した血清中和アッセイにより評価した。
[00142]
負荷前の2日間(216日目及び217日目)、体温を1日2回記録し、負荷の日にも記録し(負荷前に1回、及び4〜5時間後に再度)、次いでそれぞれのウマの安楽死の日まで1日2回記録した。
[00143]
ウマを最大4〜5時間毎日観察し、1日2回心拍数及び臨床兆候を記録した(負荷前に1回、負荷から4〜5時間後に1回、次いでそれ以降は1日2回)。
[00144]
ウイルス同定及び単離のために、218日目(負荷前)、次いでそれぞれのウマが安楽死させられるまで毎日、全てのウマから鼻腔、口腔及び直腸スワブ試料を採取した。各試料採取日に、尿及び糞便もまたそれぞれのウマの囲いから採取した。
[00145]
負荷後7、8及び9日目(225、226及び227日)にウマを選択的に安楽死させ、その囲いの中で死後の検査を行った。上述のようにスワブ試料を採取し、ウイルス学及び組織病理学検査用に組織試料を採取した。全ての主要器官系を採取したが、脳、気道及びリンパ系に対しては特に注意した。
[00146]
結果。負荷接種源の逆滴定により、ウマにはそれぞれ3.06×10TCID50、及びフェレットにはそれぞれ5.87x10TCID50のヘンドラウイルスが与えられたことが確認された。
[00147]
有効な試験の基準は、試験の各負荷段階後のフェレット病原性対照の1つ以上における、臨床兆候の発症、及び急性HeV感染に一致する組織学的/免疫組織学的所見として定義される。試験のこの段階において両方のフェレットが急性HeV感染で死亡したため、この基準は満たされた。主要転帰の基準は、負荷されたウマにおける、急性ヘンドラウイルス感染に一致する臨床疾患の発症またはその他であった。
[00148]
表11及び表12は、この試験に採用された3頭のウマのHeV血清中和抗体力価を列挙している。表内の日数は、ワクチンの第1の投薬(0日目)から数えられている。
[00149]
全ての動物は、死後の検査において全体的に正常であり、脾臓、肝臓、心臓、腎臓(皮質、髄質、骨盤)、膀胱、リンパ節(頭部のリンパ節を含む)、肺、副腎、(皮質及び髄質)、脊髄(2レベル)、大腸、小腸、卵巣、下垂体、三叉神経節、脳(嗅球を含む全ての主要領域)、喉嚢、咽頭ならびに鼻甲介の検査後に、いかなるウマにおいても組織学的病変は検出されなかった。
[00150]
試験期間を通して、ワクチンに対する有害な副作用を経験したと報告された動物はいなかった。
[00151]
結論として、3頭のウマに、ブースター(第2の)予防接種から197日後に負荷し、負荷後の7、8及び9日目にそれぞれ選択的に安楽死させた。全てのウマが観察期間の間臨床的に良好な状態を維持し、正常範囲を超える心拍数及び体温の上昇は観察されなかった。
[00152]
負荷後の3頭のウマのうち2頭から採取された血液試料に対する血清学的検査は、力価の上昇を示さず、これは、これらの予防接種された動物において、顕著なウイルス複製がなかったことと一致した(表12)。留置カテーテルに関して生じる問題により、第3のウマ(V12)からは血液を採取しなかった。
[00153]
ヘンドラウイルスゲノム(N遺伝子)は、HeVへの曝露後の任意の時点でV12及びV14から採取されたいかなる臨床試料からも回収されず、負荷後2、3、4及び7日目のV13からの鼻腔スワブ試料において、低レベルのゲノムが発見されたが、安楽死の日のものからは発見されなかった。ウイルスは、HeV N遺伝子の低いコピー数を示す鼻腔スワブを含むいかなる臨床試料からも、再び単離されることはなかった。無処置の対照動物と比較して、予防接種されたウマの上部気道においてウイルス複製がはるかに低いことが明らかである。
[00154]
全ての動物は、死後の検査において全体的に正常であり、採取された組織の検査後に、いかなるウマにおいても組織学的病変は検出されなかった。HeV抗原は、いずれのウマからも採取されたいずれの組織においても検出されなかった。これらの免疫組織病理学的所見はまた、Tagman qPCRの結果によって裏付けられており、死後の検査において3頭のウマのいずれからも採取されたいかなる組織からも、HeVゲノムは回収されなかった(データは示さず)。
[00155]
要約すると、予防接種から約6ヶ月後にウマヘンドラウイルスの生きた毒性株を負荷されたウマは、ヘンドラウイルス感染の臨床兆候から防御された。これにより、21日間隔でのHeV sGワクチンの2回の投薬によりもたらされる免疫継続期間は、少なくとも197日(約6ヶ月)であることが確認される。
実施例11:ニパウイルスに対する霊長類における臨床試験
[00156]
統計。バイオセーフティレベル4(BSL−4)の動物試験、特に非ヒト霊長類の試験の実施においては、動物対象の数、得ることができる生体試料の体積、及び分析の独立した再試可能性が厳しく制限され、したがって統計学的分析が限定される。結果として、データは、複製アッセイではなく複製試料から計算した平均値または中央値で表され、エラーバーは複製物にわたる標準偏差を表す。
[00157]
ウイルス。NiV−マレーシア(GenBank受託番号AF212302)を、米国疾病管理予防センターの特殊病原菌部門(Special Pathogens Branch of the Centers for Disease Control and Prevention)(ジョージア州アトランタ)から入手した。Rockx et al.(2010)J.Virol.84,9831においてHeVに対して説明されているように、NiVをベロ細胞で増殖させ、力価を測定した。
[00158]
ワクチン製剤。3種のsGHeVワクチン製剤を用いた(10μg、50μgまたは100μg)。sGHeVの生成及び精製は、以前にPallister(2011)Vaccine 29,5623において説明されているように行った。各ワクチン製剤はまた、Allhydrogel(商標)(Accurate Chemical&Scientific Corporation)、及び完全なホスホロチオエート骨格を含むCpGオリゴデオキシヌクレオチド(ODN)2006(InvivoGen)を含有していた。一定量のODN2006、様々な量のsGHeV及びアルミニウムイオン(重量比1:25)を含有するワクチン用量を、以下のように製剤化した。100μg用量:100μgのsGHeV、2.5mgのアルミニウムイオン及び150μgのODN 2006;50μg用量:50μgのsGHeV、1.25mgのアルミニウムイオン及び150μgのODN2006;ならびに10μg用量:5μgのsGHeV、250μgのアルミニウムイオン及び150μgのODN2006。全ての用量において、Alhydrogel(商標)及びsGHeVを、まずODN2006を添加する前に混合した。各ワクチン用量をPBSで1mlに調節し、混合物を室温で少なくとも2時間から3時間、回転ホイール上でインキュベートした後で注射した。各対象には、プライム及びブーストにおいて同じ1ml用量を与え、全てのワクチン用量は、筋肉内注射により与えた。
[00159]
動物。体重4〜6kgの若齢成体アフリカミドリザル(AGM)(クロロセブス・アエチオプス(Chlorocebus aethiops))(Three Springs Scientific Inc.)10匹を別個に檻に入れた。対象をケタミン(10〜15mg/kg)の筋肉内注射により麻酔し、−42日目(プライム)及び−21日目(ブースト)にsGHeVで予防接種した。3匹の対象に10μg用量を2回(AGM16、AGM17、AGM18)、3匹の対象に50μg用量を2回(AGM13、AGM14、AGM15)、3匹の動物に100μg用量を2回(AGM10、AGM11、AGM12)、1匹の対象(AGM9)にアジュバントのみを与えた。0日目に、対象を麻酔し、4mlのダルベッコ最小必須培地(DMEM)(Sigma−Aldrich)中の1×10TCID50(組織培養感染用量中央値)のNiVで気管内接種した。感染後(p.i.)0、3、5、7、10、14、21及び28日目に、体温、呼吸数、胸部X線写真、採血、ならびに鼻腔、口腔及び直腸粘膜のスワブを含む臨床検査のために対象を麻酔した。対照対象(AGM 9)は、感染後10日目に、承認された人道的エンドポイントに従って安楽死させる必要があった。他の全ての対象は、試験終了まで生存し、感染後28日目に安楽死させた。剖検に際し、ウイルス学及び組織病理学検査用に様々な組織を採取した。試料採取された組織は、結膜、扁桃、中/鼻咽頭、鼻腔粘膜、気管、右気管支、左気管支、右肺上葉、右肺中葉、右肺下葉、左肺上葉、左肺中葉、左肺下葉、気管支リンパ節(LN)、心臓、肝臓、脾臓、腎臓、副腎、膵臓、空腸、横行結腸、脳(前頭葉)、脳(小脳)、脳幹、頸部脊髄、脳下垂体、下顎骨LN、唾液LN、鼠径部LN、腋下LN、腸間膜LN、膀胱、精巣または卵巣、大腿骨骨髄を含む。予防接種は、BSL−2封じ込め条件で行った。予防接種スケジュール、負荷及び生物標本採取日のタイムラインを図4に示す。
[00160]
予防接種及びNiV負荷。以前に、我々は、10 TCID50(組織培養感染用量中央値)のNiVによるAGMの気管内接種が、一様に致死的転帰をもたらすことを実証した(Rockx et al.(2010)J.Virol.84,9831)。急速に進行する臨床的疾患がこれらの研究において示されたが、臨床的徴候は、重度抑鬱、急性呼吸窮迫をもたらす呼吸器疾患、重度の神経疾患、及び重度の可動性低下を含み、安楽死に対して承認された人道的エンドポイントの基準に至るまでの時間は、7日から12日の範囲であった。ここで、我々は、sGHeVによる予防接種がAGMにおけるNiV感染及び疾患を予防できるかの判定を試みた。上記方法で説明したように、10、50または100μgの用量のsGHeVを、ミョウバン及びCpG部分と混合した。各ワクチン製剤を3匹の対象に0日目(プライム)及び再度21日目(ブースト)に皮下投与し、1匹の対照対象(AGM9)には同じ日程でアジュバントのみのプライミング及びブースティングを行った。42日目に、全ての対象に10TCID50のNiVを気管内接種した。対照対象(AGM9)は、食欲の喪失、重度の持続性行動の変化(抑鬱、活動性の低下、猫背の姿勢)、血小板数の減少、及び末期疾患での呼吸数の段階的増加を示した。その後、AGM 9は、急性呼吸窮迫を示し、感染後10日目に、承認された人道的エンドポイントに従って安楽死させる必要があった。対照的に、予防接種された対象のいずれも臨床的な疾患を有さず、全て試験終了まで生存した。カプラン−マイヤー生存曲線のグラフを図5に示す。
[00161]
対照対象におけるNiV媒介性疾患。対照対象における全体的な病理学的変化は、以前にNiV感染AGMにおいて見られたものと一致していた(Geisbert et al.(2010)PLoS One 5,e10690)。脳の表面に巨脾及び血管の鬱血が現れ、肺の全葉が湿り、重かった。NiV RNA及び感染ウイルスはAGM9血液試料からは回収されず、ウイルス血症の痕跡もなかった。AGM9では、NiV特異的IgMならびに検出可能なNiV特異的IgG及びIgAのレベルが顕著であった。組織試料のさらなる分析により、以前にAGMにおいて見られた広範なNiV感染と類似する広域のNiV組織屈性が明らかとなった(Geisbert et al.(2010)PLoS One 5,e10690)。AGM9は、示されたように組織の大半にNiV RNAを有しており、多数の組織から感染性ウイルスが回収された。顕著な病変は、間質性肺炎、亜急性脳炎及び壊死、ならびに白脾髄の出血を含んでいた。肺胞空間には、浮腫液、フィブリン、核崩壊及び細胞残屑、ならびに肺胞マクロファージが充満していた。多病巣性脳炎は、適度な数のリンパ球、及びより少ない好中球による、ウイルヒョウ−ロバン腔の拡大により特徴付けられた。より少数のこれらの炎症細胞が、隣接する柔組織内に拡大していた。複数のニューロンが膨張し、空胞化し(変性)、または核崩壊(壊死)により細片化していた。白脾髄における小胞の多病巣性胚中心は、出血及びフィブリンだけでなく、少数の好中球ならびに細胞性及び核崩壊性残屑により失われていた。これらの所見は、脾臓での壊死及び胚中心の喪失と一致していた。過剰量のウイルス抗原が脳幹に存在しており、NiVが中枢神経系に著しい損傷を引き起こしていることを強調していた。
[00162]
sGHeV予防接種対象の防御。負荷後に採取した全血液試料及び剖検の際に採取した全ての組織を含む全ての生物学的試料がNiV RNA陰性であり、いずれの試料からも感染性ウイルスは単離されなかった。予防接種された対象からの組織切片をより詳細に検査した結果、組織構築は正常のようであり、NiV抗原は、免疫組織化学的技術を使用して、いずれの組織においても検出されなかった。ワクチンにより惹起される防御機序をさらに分析するために、血清及び粘膜sGNiV及びsGHeV特異的IgM、IgG及びIgA、ならびにNiV及びHeV血清中和力価を、予防接種された動物において測定した。図6に示されるように、負荷の7日前、最低用量のsGHeVが与えられた対象は、検出可能な抗原特異的血清IgMと最高レベルのsGHeV特異的血清IgGを有していた。50μgのsGHeVが与えられた対象も、負荷の7日前に、検出可能レベルの血清IgM及び最高レベルの血清IgGを有していた。高用量の対象は検出可能な血清IgMを有さず、血清IgGレベルは、−7日目において他の2つの群と比較して著しく低かった。NiV負荷の日までに、高用量対象の血清IgGレベルが増加し、すべての予防接種対象が同様のIgGレベルを有していた。血清IgMレベルは、NiV負荷後、いずれの対象においても変化しなかった。血清IgGレベルはNiV負荷の日に中用量対象において減少し、IgGレベルはNiV負荷後すぐに低用量対象において減少した。興味深いことに、IgGレベルは、これらの群の両方において感染後3日目及び5日目までに増加したが、負荷の7日前に示されたIgGレベルを超えることはなく、両方の群において力価は感染後28日目までに顕著に減少した。
[00163]
反対に、血清IgGレベルは高用量群において高いままであり、感染後28日目において最も高くなった。抗原特異的血清IgAは、予防接種後のすべての対象において検出可能であったが、レベルは非常に低く、負荷前と負荷後のレベルに顕著な差は見られなかった(図6)。粘膜の抗原特異的IgAのわずかな増加が、感染後14日目に低用量対象からの鼻腔スワブにおいて検出されたが、レベルは非常に低く、これらの粘膜抗体は負荷後のNiVの広がりを予防する役割を果たしそうではなかった。血清中和試験(SNT)の結果を表9に示す。全ての予防接種対象に対して、HeV特異的中和力価は同様に維持されたか、または感染後28日目までに減少し、NiV特異的中和力価は、負荷前の力価が最も低い対象であっても、感染後7日目までに顕著な変化を示さなかった。1匹の低用量対象及び1匹の高用量対象は、感染後14日目までにNiV SNT力価の対数増加を示し、1匹の中用量対象は、感染後21日目までにNiV SNT力価の対数増加を示した。他の全ての予防接種動物において、SNT力価の変化は一貫性がない(力価が増加し、次いで減少する)か、または顕著でなかった(力価は3〜4倍増加するが、1対数分を超えない)。最後に、NiV融合(F)エンベロープ糖タンパク質に対する血清転換がNiV負荷後の予防接種対象において測定された。血清抗NiV F IgMの最小レベルが、低用量対象及び中用量対象においてそれぞれ感染後10日目及び21日目に検出され、これらの低いM.F.I.値は、NiV負荷後の一次抗体反応が弱いことを示唆する。血清抗NiV−F IgMは高用量対象においては検出されず、これらの動物では、負荷後のウイルスの循環がほとんど、または全くないことが示唆された。
実施例12:ヘンドラウイルスに対する霊長類における臨床試験
[00164]
ヘンドラウイルスによる予防接種及び負荷を評価するために、第2の臨床試験をAGMにおいて行った。実施例9に記載のものと同じ製剤をワクチンとして利用したが、sGHeV及びアジュバントとしてAlhydrogel(商標)のみ(ODN2006は含めなかった)が与えられた別の群との比較も行った。動物に、−21日目に予防接種し、0日目にブースティングを行い、21日目に負荷を行った。別段に指定されない限り、全ての条件は実施例7の条件と同じであった。実験概要を以下に示す。
[00165]
結果:両方の群(A及びB)内の全ての動物(n=4)が、10TCID50のヘンドラウイルスを気管内接種した後、ヘンドラウイルス負荷に対して生存した。対照対象は8日目に死亡した。予防接種された対象のいずれにおいても臨床的疾患は観察されず、健康で良好な状態が試験の終了時点まで維持された。
[00166]
本発明の他の実施形態及び使用は、本明細書において開示される本発明の説明及び実践を考慮すれば、当業者には明らかである。全ての出版物、米国及び外国の特許及び特許出願を含む、本明細書において引用される全ての参考文献は、参照により具体的及び全体的に組み込まれる。明細書及び実施例は例示としてのみ考慮され、本発明の真の範囲及び精神は、以下の特許請求の範囲により示されることが意図される。

Claims (8)

  1. ヘンドラ及び/またはニパウイルスG糖タンパク質と、免疫刺激複合体(ISC)と、1種以上の賦形剤とを含む免疫原性組成物を投与する方法であって、前記免疫原性組成物は、複数投薬で投与され、さらに、第1の投薬に続いて、前記第1の投薬から少なくとも約21日後から約42日後に第2の投薬が行われる、前記方法。
  2. 前記第1の投薬に続いて、前記第1の投薬から28日後に第2の投薬が行われ、さらにそれに続いて、前記第2の投薬から28日後に第3の投薬が行われる、請求項1に記載の前記方法。
  3. 最終投薬から6ヵ月後にブースター投薬が施される、請求項1または2に記載の前記方法。
  4. 前記ブースター投薬から1年後に、追加の投薬が施される、請求項3に記載の前記方法。
  5. 各投薬は、約50μgまたは約100μgの可溶性ヘンドラウイルスG糖タンパク質を含有する、請求項1〜4のいずれか一項に記載の前記方法。
  6. 対象は、ヒト、ウマ、ウシ、ヒツジ、ブタ、ヤギ、ニワトリ、イヌまたはネコである、請求項1〜5のいずれか一項に記載の前記方法。
  7. 前記G糖タンパク質は、ヘンドラウイルス由来である、請求項1〜5のいずれか一項に記載の前記方法。
  8. 前記G糖タンパク質は、ニパウイルス由来である、請求項1〜5のいずれか一項に記載の前記方法。
JP2016540020A 2013-12-16 2014-12-15 ヘンドラ及びニパウイルスg糖タンパク質免疫原性組成物 Pending JP2017501162A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361916391P 2013-12-16 2013-12-16
US61/916,391 2013-12-16
PCT/US2014/070273 WO2015095012A1 (en) 2013-12-16 2014-12-15 Hendra and nipah virus g glycoprotein immunogenic compositions

Publications (1)

Publication Number Publication Date
JP2017501162A true JP2017501162A (ja) 2017-01-12

Family

ID=52424096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016540020A Pending JP2017501162A (ja) 2013-12-16 2014-12-15 ヘンドラ及びニパウイルスg糖タンパク質免疫原性組成物

Country Status (11)

Country Link
US (1) US20160331829A1 (ja)
EP (1) EP3082856A1 (ja)
JP (1) JP2017501162A (ja)
KR (1) KR20160077214A (ja)
CN (1) CN105828836A (ja)
AU (1) AU2014366281A1 (ja)
CA (1) CA2931855A1 (ja)
MX (1) MX2016007870A (ja)
PH (1) PH12016500960A1 (ja)
TW (1) TW201526911A (ja)
WO (1) WO2015095012A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160199482A1 (en) * 2013-09-05 2016-07-14 Zoetis Services Llc Hendra and nipah virus g glycoprotein immunogenic compositions
CN110402394B (zh) * 2017-03-01 2024-04-26 豪夫迈·罗氏有限公司 用于将关于分析物的存在的生物样品进行分类的系统和方法
CN108624602B (zh) * 2017-03-24 2020-10-16 华中农业大学 一株具有阻断活性的抗尼帕病毒g蛋白的单克隆抗体及其应用
JP7370983B2 (ja) * 2017-12-20 2023-10-30 ゾエティス・サービシーズ・エルエルシー ヘンドラウイルス感染症及びニパウイルス感染症に対するワクチン
CN113372454B (zh) * 2021-06-16 2023-01-17 军事科学院军事医学研究院军事兽医研究所 尼帕病毒受体结合糖蛋白及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8205892D0 (sv) 1982-10-18 1982-10-18 Bror Morein Immunogent membranproteinkomplex, sett for framstellning och anvendning derav som immunstimulerande medel och sasom vaccin
SE8405493D0 (sv) 1984-11-01 1984-11-01 Bror Morein Immunogent komplex samt sett for framstellning derav och anvendning derav som immunstimulerande medel
EP0362278A4 (en) 1987-06-05 1990-05-14 Us Health FACTORS OF AUTOCRINE MOTILITY IN THE DIAGNOSIS AND TREATMENT OF CANCER.
NZ230747A (en) 1988-09-30 1992-05-26 Bror Morein Immunomodulating matrix comprising a complex of at least one lipid and at least one saponin; certain glycosylated triterpenoid saponins derived from quillaja saponaria molina
SE9600647D0 (sv) 1996-02-21 1996-02-21 Bror Morein Ny användning
GB9817052D0 (en) 1998-08-05 1998-09-30 Smithkline Beecham Biolog Vaccine
AUPP807399A0 (en) 1999-01-08 1999-02-04 Csl Limited Improved immunogenic lhrh composition and methods relating thereto
CN1882704A (zh) * 2003-09-22 2006-12-20 巴斯德研究院 尼帕病毒检测方法和提供抗汉尼巴病毒的免疫保护的方法
ES2673972T3 (es) * 2004-07-09 2018-06-26 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Formas solubles de la glicoproteína G de los virus hendra y nipah
EP1861424B1 (en) 2005-03-14 2011-03-30 The Government of the United States of America as represented by The Secretary of the Department of Health and Human Services Human monoclonal antibodies against hendra and nipah viruses
PT2227483T (pt) 2007-12-19 2017-06-21 Henry M Jackson Found Advancement Military Medicine Inc Formas solúveis da glicoproteína f de vírus hendra e nipah e suas utilizações
MX352604B (es) * 2011-05-13 2017-11-30 Zoetis Llc Composiciones inmunogenicas de la glucoproteina g de los virus hendra y nipah.
US20160199482A1 (en) * 2013-09-05 2016-07-14 Zoetis Services Llc Hendra and nipah virus g glycoprotein immunogenic compositions

Also Published As

Publication number Publication date
PH12016500960A1 (en) 2016-06-20
WO2015095012A1 (en) 2015-06-25
EP3082856A1 (en) 2016-10-26
TW201526911A (zh) 2015-07-16
CA2931855A1 (en) 2015-06-25
AU2014366281A1 (en) 2016-05-26
CN105828836A (zh) 2016-08-03
MX2016007870A (es) 2016-10-07
KR20160077214A (ko) 2016-07-01
US20160331829A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP6898024B2 (ja) ヘンドラ及びニパウイルスg糖タンパク質免疫原性組成物
US20190083604A1 (en) Hendra and nipah virus g glycoprotein immunogenic compositions
JP2017501162A (ja) ヘンドラ及びニパウイルスg糖タンパク質免疫原性組成物
JP2021001205A (ja) 口蹄疫ワクチン
CA3045315A1 (en) Attenuated swine influenza vaccines and methods of making and use thereof
RU2787820C2 (ru) Иммуногенные композиции гликопротеина g вирусов hendra и nipah
NZ617722B2 (en) Hendra and nipah virus g glycoprotein immunogenic compositions
AU2019200943B2 (en) Vaccine against Bovine Viral Diarrhea Virus
JP2021506911A (ja) ヘンドラウイルス感染症及びニパウイルス感染症に対するワクチン
NZ750583B2 (en) Vaccine against bovine viral diarrhea virus