JP2017227241A - Compression type coil spring - Google Patents

Compression type coil spring Download PDF

Info

Publication number
JP2017227241A
JP2017227241A JP2016122533A JP2016122533A JP2017227241A JP 2017227241 A JP2017227241 A JP 2017227241A JP 2016122533 A JP2016122533 A JP 2016122533A JP 2016122533 A JP2016122533 A JP 2016122533A JP 2017227241 A JP2017227241 A JP 2017227241A
Authority
JP
Japan
Prior art keywords
winding
coil spring
spring
waveform
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016122533A
Other languages
Japanese (ja)
Other versions
JP6823762B2 (en
Inventor
健一 川越
Kenichi Kawagoe
健一 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA HATSUJO SEISAKUSHO KK
Original Assignee
SHOWA HATSUJO SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA HATSUJO SEISAKUSHO KK filed Critical SHOWA HATSUJO SEISAKUSHO KK
Priority to JP2016122533A priority Critical patent/JP6823762B2/en
Publication of JP2017227241A publication Critical patent/JP2017227241A/en
Application granted granted Critical
Publication of JP6823762B2 publication Critical patent/JP6823762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compression type coil spring in which a compression repulsion acts homogeneously in a circumferential direction.SOLUTION: In this compression type coil spring 1, one band-shaped spring material 3 is wound in a plurality of layers of a coil shape, and is formed with a waveform H continuing periodically in the longitudinal direction of the spring material 3. The length of one circumference of each layer S is equal to integer times of the wavelength of a wave form, and the spring material 3 is formed with a phase conversion part 5 for phase-shifting the waveform H.SELECTED DRAWING: Figure 1

Description

この発明は、ばね材をコイル状に複数層巻回すると共に、ばね材の長手方向に沿って周期的に連続する波形を形成した圧縮型コイルばねに関する。   The present invention relates to a compression type coil spring in which a spring material is wound in a plurality of layers in a coil shape and a waveform that is periodically continuous along the longitudinal direction of the spring material is formed.

従来より、例えば自動車などの車両では、帯状のばね材を複数層巻回してコイル状に構成すると共に、ばね材の長手方向に沿って周期的に連続する波形を形成したウエーブスプリングと呼ばれる圧縮型コイルばねが使用されている。   2. Description of the Related Art Conventionally, in vehicles such as automobiles, a compression type called a wave spring in which a plurality of layers of a belt-shaped spring material is wound into a coil shape and a waveform that is periodically continuous along the longitudinal direction of the spring material is formed. A coil spring is used.

このような圧縮型コイルばねは、ばね材をコイル状に複数層巻回した1周分の長さを、波形の波長の整数倍に半波長を加えた長さに設定することで、隣合う各層間において波形の凹状頂部と凸状頂部とを当接させることができ、所望のバネ定数と圧縮ストローク量を確保している(特許文献1)。   Such compression type coil springs are adjacent to each other by setting the length of one turn obtained by winding a plurality of layers of a spring material in a coil shape to a length obtained by adding a half wavelength to an integral multiple of the waveform wavelength. A corrugated concave top and a convex top can be brought into contact with each other, and a desired spring constant and compression stroke amount are ensured (Patent Document 1).

しかしながら、上述したように、圧縮型コイルばねの1周分の長さを、波形の波長の整数倍に半波長を加えた長さに設定するため、例えば、1周分の複数の凸状頂部のうち、最初の凸状頂部と最後の凸状頂部とは、他の凸状頂部同士の周方向の間隔に比べて近接する。つまり、波形が周方向に均等に形成されていないため、圧縮型コイルばねの圧縮反発力が周方向で偏るおそれがあった。   However, as described above, in order to set the length of one rotation of the compression coil spring to a length obtained by adding a half wavelength to an integral multiple of the waveform wavelength, for example, a plurality of convex tops for one rotation. Of these, the first convex top and the last convex top are closer to each other than the circumferential spacing between the other convex tops. That is, since the waveform is not uniformly formed in the circumferential direction, the compression repulsion force of the compression coil spring may be biased in the circumferential direction.

特開2015−48868号公報Japanese Unexamined Patent Publication No. 2015-48868

本発明は、上記課題に鑑みてなされたもので、圧縮反発力が周方向に沿って均等に作用する圧縮型コイルばねを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a compression type coil spring in which a compression repulsion force acts evenly in the circumferential direction.

この発明は、一本の帯状のばね材をコイル状に複数層巻回すると共に、前記ばね材の長手方向に沿って周期的に連続する波形を形成した圧縮型コイルばねにおいて、前記各層の1周分の長さは前記波形の波長の整数倍に等しく、前記ばね材に、前記波形を位相シフトさせる位相変換部が設けられたことを特徴とする。   The present invention relates to a compression type coil spring in which a single strip-shaped spring material is wound in a plurality of layers in a coil shape, and a waveform that is periodically continuous along the longitudinal direction of the spring material is formed. The length of the circumference is equal to an integral multiple of the wavelength of the waveform, and the spring material is provided with a phase conversion unit for phase shifting the waveform.

なお、この発明では、各層の1周分の長さを波長の整数倍にすることで、各層の間で波形の凸状頂部同士及び凹状頂部同士を接触させ、そして、ばね材に位相変換部を設けることで、位相変換部で接続される2つの層の間では、波形の凸状頂部同士及び凹状頂部同士を周方向にずらした構造を可能とする。特に、全ての隣合う層の間の接続部分に位相変換部を設けることで、全ての隣合う層の間で波形の凸状頂部同士及び凹状頂部同士を周方向にずらした構造を可能とする。   In the present invention, the length of one round of each layer is set to an integral multiple of the wavelength so that the convex tops and the concave tops of the corrugations are brought into contact with each other, and the phase converter is connected to the spring material. By providing this, a structure in which the convex tops and the concave tops of the waveform are shifted in the circumferential direction between the two layers connected by the phase conversion unit is made possible. In particular, by providing a phase conversion part at the connection part between all adjacent layers, a structure in which the convex tops of the corrugations and the concave tops are shifted in the circumferential direction between all the adjacent layers is possible. .

また、位相変換部は1つ又は複数設けることができ、複数設ける場合は、ばね材の長手方向に沿って互いに間隔を空けて設けられる。位相のシフト量は、1波長未満の範囲で所望の長さに設定される。   One or a plurality of phase conversion units can be provided. When a plurality of phase conversion units are provided, they are provided at intervals from each other along the longitudinal direction of the spring material. The phase shift amount is set to a desired length within a range of less than one wavelength.

この発明により、各層の1周分の長さが波長の整数倍であるため、各層で波形の各凸状頂部を周方向に等間隔で配置でき、つまり波形を周方向に均等に形成でき、これにより、圧縮型コイルばねの圧縮反発力を周方向に均等に作用させることができる。   By this invention, since the length of one round of each layer is an integral multiple of the wavelength, each convex top of the waveform can be arranged at equal intervals in the circumferential direction in each layer, that is, the waveform can be formed uniformly in the circumferential direction, Thereby, the compression repulsion force of a compression type coil spring can be made to act equally in the circumferential direction.

また、ばね材に位相変換部を設けるため、位相変換部で接続される2つの層の間で、波形の凸状頂部同士及び凹状頂部同士を周方向にずらすことができる。これにより、一本のばね材で、隣合う層との間で凸状頂部同士及び凹状頂部同士がずれる層を含むように、圧縮型コイルばねを形成することができる。   Moreover, since the phase conversion part is provided in the spring material, the corrugated convex tops and the concave tops can be shifted in the circumferential direction between two layers connected by the phase conversion part. Accordingly, the compression coil spring can be formed so as to include a layer in which the convex top portions and the concave top portions are shifted from each other with a single spring material.

この発明の態様として、前記位相変換部は、前記波形の位相を半波長シフトすることができる。
この発明により、位相変換部で接続される2つの層の間で、波形の凸状頂部と凹状頂部とを接触させることができる。
As an aspect of the present invention, the phase converter can shift the phase of the waveform by a half wavelength.
According to this invention, the convex top part and the concave top part of the waveform can be brought into contact between two layers connected by the phase conversion part.

また、この発明の態様として、前記ばね材の隣合う2つ以上の層で構成され、前記隣合う2つ以上の層の間で前記波形の凸状頂部同士及び凹状頂部同士が接触する複数の巻回束を備え、隣合う巻回束の接続部分に、前記隣合う巻回束の間で前記波形の凸状頂部同士及び凹状頂部同士がずれるように前記波形を位相シフトさせる前記位相変換部を設けることができる。   Moreover, as an aspect of this invention, it is comprised by two or more layers which the said spring material adjoins, The some convex tops of the said waveform and concave tops contact between the said two or more adjacent layers. Provided with a winding bundle, the phase conversion section for phase-shifting the waveform so that the convex tops and the concave tops of the corrugation are shifted between the adjacent winding bundles is provided at a connection portion of the adjacent winding bundles. be able to.

この発明により、各層の間で波形の凸状頂部同士及び凹状頂部同士が接触する巻回束を備えるため、圧縮型コイルばねを小型化しても、十分に大きなばね定数を得ることができる。   According to the present invention, since the corrugated convex tops and the concave tops are in contact with each other between the layers, a sufficiently large spring constant can be obtained even if the compression coil spring is miniaturized.

また、隣合う巻回束の接続部分に位相変換部を設けることで、隣合う巻回束の間で波形の凸状頂部同士及び凹状頂部同士がずれるように波形を位相シフトするため、各巻回束を互いに独立したばね部として機能させることができる。これにより、圧縮型コイルばねのばね定数を所望の値に設定することが容易になると共に、圧縮荷重が掛かったときの圧縮ストローク量を十分に確保することができる。   Moreover, in order to phase-shift the waveform so that the convex tops and the concave tops of the waveform are shifted between the adjacent winding bundles by providing a phase conversion part at the connection part of the adjacent winding bundles, It can function as a spring part independent of each other. Thereby, it becomes easy to set the spring constant of the compression coil spring to a desired value, and it is possible to secure a sufficient amount of compression stroke when a compression load is applied.

なお、従来より、帯状のばね材を複数層巻回すると共に、ばね材の長手方向に沿って周期的に連続する波形を形成した圧縮型コイルばねでは、小型化しても、十分なばね定数と十分な圧縮ストローク量とを確保するために、前記複数層を複数の巻回束に分け、同じ巻回束内の各層の間では、波形の凸状頂部同士及び凹状頂部同士を接触させ、隣合う巻回束の間では、波形の凸状頂部と凹状頂部とを接触させる構造としている。   Conventionally, a compression-type coil spring in which a plurality of layers of a belt-shaped spring material is wound and a waveform that is periodically continuous along the longitudinal direction of the spring material is formed with a sufficient spring constant even when downsized. In order to ensure a sufficient compression stroke amount, the plurality of layers are divided into a plurality of winding bundles, and between each layer in the same winding bundle, the corrugated convex tops and the concave tops are brought into contact with each other. Between the matching winding bundles, the corrugated convex top and the concave top are brought into contact with each other.

しかしながら、このような構造の圧縮型コイルばねでは、複数のウエーブスプリングを組み合わせて構成する必要があるが、その組み合わせ作業は手作業で行われるため、生産効率が低いという問題や、組み合わせたウエーブスプリングが相対的にずれることで製品精度が低下するという問題があった。即ち、小型で十分なばね定数及び十分な圧縮ストローク量を有し、且つ生産性及び製品精度を向上させることが可能な圧縮型コイルばねを提供することができなかった。   However, in the compression type coil spring having such a structure, it is necessary to configure a plurality of wave springs in combination. However, since the combination work is performed manually, there is a problem that the production efficiency is low, and the combined wave springs. There is a problem that the product accuracy is lowered due to the relative displacement. That is, it has been impossible to provide a compression type coil spring that is small and has a sufficient spring constant and a sufficient amount of compression stroke, and that can improve productivity and product accuracy.

しかし、この発明により、ばね材に位相変換部を設けることで、一本のばね材で、隣合う層との間で波形の凸状頂部同士及び凹状頂部同士が接触する層(即ち巻回束を構成する層)と、隣合う層との間で凸状頂部同士及び凹状頂部同士がずれる層とを含むように、圧縮型コイルばねを形成することができる。これにより、複数のウエーブスプリングを組み合わせなくても、小型で十分なばね定数及び十分な圧縮ストローク量を有し、且つ生産性及び製品精度を向上させることができる。即ち、上記の問題を解消することができる。   However, according to the present invention, by providing the phase conversion portion in the spring material, a layer (that is, a wound bundle) in which the convex top portions and the concave top portions of the corrugated shape contact each other with adjacent spring layers. The compression coil spring can be formed so as to include a layer in which the convex tops and the concave tops are shifted between adjacent layers. Thereby, even if it does not combine several wave springs, it has a small and sufficient spring constant and sufficient compression stroke amount, and can improve productivity and product precision. That is, the above problem can be solved.

また、この発明の態様として、前記複数の巻回束の各々の巻回数を、互いに同じにすることができる。
この発明により、複数の巻回束の各々のばね特性を互いに同じにできる。これにより、圧縮型コイルばね全体のばね特性を線形特性にすることができる。
Moreover, as an aspect of the present invention, the number of turns of each of the plurality of winding bundles can be made the same.
According to the present invention, the spring characteristics of the plurality of winding bundles can be made the same. Thereby, the spring characteristic of the whole compression type coil spring can be made into a linear characteristic.

また、この発明の態様として、前記複数の巻回束のうち、少なくとも1つの巻回束の巻回数を、他の巻回束の巻回数と異ならせることができる。
この発明により、複数の巻回束のうち、少なくとも1つの巻回束のばね定数を、他の巻回束のばね定数と異ならせることができる。これにより、圧縮型コイルばね全体のばね特性を非線形特性にすることができる。
As an aspect of the present invention, the number of windings of at least one winding bundle among the plurality of winding bundles can be made different from the number of windings of other winding bundles.
According to the present invention, the spring constant of at least one winding bundle among the plurality of winding bundles can be made different from the spring constant of other winding bundles. Thereby, the spring characteristic of the whole compression type coil spring can be made into a nonlinear characteristic.

また、この発明の態様として、前記隣合う巻回束の間に、前記波形が形成されない平巻き部を設け、前記隣合う巻回束のうち、一方の巻回束の巻終端に前記平巻き部を介して他方の巻回束を形成することができる。   Further, as an aspect of the present invention, a flat winding portion where the corrugation is not formed is provided between the adjacent winding bundles, and the flat winding portion is provided at the winding end of one winding bundle among the adjacent winding bundles. The other winding bundle can be formed.

この発明により、圧縮荷重が掛かったとき、隣合う巻回束の間で、一方の巻回束側の波形の凸状頂部が他方の巻回束側の波形の傾斜部分に沿ってずれることを防止でき、そのずれによるばね特性の変化を抑制できる。   According to this invention, when a compressive load is applied, it is possible to prevent the convex top portion of the corrugation on one winding bundle side from shifting along the inclined portion of the corrugation on the other winding bundle side between adjacent winding bundles. The change in spring characteristics due to the deviation can be suppressed.

また、この発明の態様として、前記複数の巻回束のうち、少なくとも1つの巻回束の直径を、他の巻回束の直径と異ならせることができる。
この発明により、複数の巻回束のうち、少なくとも1つの巻回束のばね定数を、他の巻回束のばね定数と異ならせることができる。これにより、圧縮型コイルばね全体のばね特性を非線形特性にすることができる。
As an aspect of the present invention, the diameter of at least one of the plurality of winding bundles can be made different from the diameter of the other winding bundles.
According to the present invention, the spring constant of at least one winding bundle among the plurality of winding bundles can be made different from the spring constant of other winding bundles. Thereby, the spring characteristic of the whole compression type coil spring can be made into a nonlinear characteristic.

また、この発明の態様として、前記ばね材の長手方向の両側の端部のうち少なくとも一方の端部を、前記圧縮型コイルばねの内側に突出させることができる。
この発明により、ボルトを圧縮型コイルばねの内部に嵌挿させて所定の締結箇所に締結するとき、圧縮型コイルばねの内側に突出したばね材の端部がボルトの側面に係合することで、圧縮型コイルばねをボルトに仮固定することできる。これにより、圧縮型コイルばねの内部にボルトを嵌挿したものを一体物として扱うことができ、所定の締結箇所への締結が容易に行える。
Moreover, as an aspect of the present invention, at least one end portion of both end portions in the longitudinal direction of the spring material can be protruded inside the compression type coil spring.
According to the present invention, when the bolt is fitted into the compression coil spring and fastened at a predetermined fastening position, the end of the spring material protruding inside the compression coil spring is engaged with the side surface of the bolt. The compression coil spring can be temporarily fixed to the bolt. Thereby, what inserted the volt | bolt inside the compression type coil spring can be handled as an integrated object, and the fastening to a predetermined fastening location can be performed easily.

また、この発明の態様として、前記位相変換部を、前記ばね材の長手方向に沿って複数設け、且つ、前記ばね材の長手方向に沿って隣合うもの同士をばね圧縮方向に一列に並ばないように設けることができる。   Further, as an aspect of the present invention, a plurality of the phase conversion portions are provided along the longitudinal direction of the spring material, and those adjacent to each other along the longitudinal direction of the spring material are not arranged in a line in the spring compression direction. Can be provided.

なお、このような位相変換部の設け方として、ばね材の長手方向に沿って隣合う位相変換部を、ばね圧縮方向に沿ってジグザグにずれるように設けたり、又は、ばね圧縮方向から見て、複数の位相変換部が圧縮型コイルばねの周方向に均等に分布するように設けたり、又は、ばね圧縮方向から見て、ばね材の長手方向に沿って隣合う位相変換部を、圧縮型コイルばねの中心線に対して交互に反対側に配置するように設けることができる。   In addition, as a method of providing such a phase conversion unit, adjacent phase conversion units along the longitudinal direction of the spring material are provided so as to be displaced zigzag along the spring compression direction, or viewed from the spring compression direction. The plurality of phase converters are provided so as to be evenly distributed in the circumferential direction of the compression coil spring, or the phase converters adjacent to each other along the longitudinal direction of the spring material when viewed from the spring compression direction are compressed. It can provide so that it may arrange | position on the opposite side alternately with respect to the centerline of a coil spring.

この発明により、各位相変換部でのばね特性の歪みが圧縮型コイルばね全体のばね特性に与える影響を抑制することができる。特に、ばね圧縮方向から見て、複数の位相変換部を圧縮型コイルばねの周方向に均等に分布させた場合は、各位相変換部でのばね特性の歪みが周方向に均等に分散するため、各位相変換部でのばね特性の歪みが圧縮型コイルばね全体のばね特性に与える影響を最小限度に押さえることができる。   According to the present invention, it is possible to suppress the influence of the distortion of the spring characteristics at each phase converter on the spring characteristics of the entire compression coil spring. In particular, when the plurality of phase converters are evenly distributed in the circumferential direction of the compression coil spring as viewed from the spring compression direction, the distortion of the spring characteristics at each phase converter is evenly distributed in the circumferential direction. The influence of the distortion of the spring characteristics at each phase converter on the spring characteristics of the entire compression coil spring can be minimized.

この発明によれば、圧縮反発力が周方向に沿って均等に作用する圧縮型コイルばねを提供することができる。   According to the present invention, it is possible to provide a compression type coil spring in which a compression repulsion force acts evenly in the circumferential direction.

第1実施形態に係る圧縮型コイルばねを示す斜視図。The perspective view which shows the compression type coil spring which concerns on 1st Embodiment. (a)(b)はそれぞれ、第1実施形態に係る圧縮型コイルばねを示す側面図及び平面図。(A) and (b) are the side view and top view which show the compression type coil spring which concerns on 1st Embodiment, respectively. 第1実施形態に係る圧縮型コイルばねの側面の一部を拡大した部分拡大図。The partial enlarged view which expanded a part of side surface of the compression type coil spring which concerns on 1st Embodiment. 変形例1に係る圧縮型コイルばねの側面を示す拡大図。The enlarged view which shows the side surface of the compression type coil spring which concerns on the modification 1. FIG. 変形例2に係る圧縮型コイルばねの側面を示す拡大図。The enlarged view which shows the side surface of the compression type coil spring which concerns on the modification 2. FIG. (a)は変形例3に係る圧縮型コイルばねを示す側面図、(b)は変形例3に係る圧縮型コイルばねをばね圧縮方向から見た平面図。(A) is the side view which shows the compression type coil spring which concerns on the modification 3, (b) is the top view which looked at the compression type coil spring which concerns on the modification 3 from the spring compression direction. (a)(b)はそれぞれ、変形例4に係る圧縮型コイルばねを示す斜視図及び平面図。(A) and (b) are the perspective views and top views which show the compression type coil spring which concerns on the modification 4, respectively. 変形例5に係る圧縮型コイルばねにおける一のバリエーションの周側面を示す部分拡大図。The elements on larger scale which show the surrounding side surface of the one variation in the compression type coil spring which concerns on the modification 5. FIG. 変形例5に係る圧縮型コイルばねにおける他のバリエーションの周側面を平面に展開した展開図。The expanded view which developed the surrounding side surface of the other variation in the compression type coil spring concerning the modification 5 on the plane. 変形例5に係る圧縮型コイルばねにおける更に他のバリエーションの周側面を平面に展開した展開図。FIG. 14 is a development view in which a peripheral side surface of still another variation in the compression type coil spring according to Modification 5 is developed on a plane. 第2実施形態に係る圧縮型コイルばねの側面を示す側面図。The side view which shows the side surface of the compression type coil spring which concerns on 2nd Embodiment.

この発明の実施形態を以下図面と共に説明する。
(第1実施形態)
図1は、この発明の第1実施形態に係る圧縮型コイルばね1の斜視図であり、図2(a)及び(b)はそれぞれ、第1実施形態に係る圧縮型コイルばね1を示す側面図及び平面図であり、図3は、第1実施形態に係る圧縮型コイルばね1の側面の一部を拡大した部分拡大図である。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view of a compression type coil spring 1 according to a first embodiment of the present invention, and FIGS. 2A and 2B are side views showing the compression type coil spring 1 according to the first embodiment. FIG. 3 is a partial enlarged view in which a part of the side surface of the compression type coil spring 1 according to the first embodiment is enlarged.

圧縮型コイルばね1は、例えば自動車などの車両や機械機器などで使用可能であり、図1、図2(a)及び(b)に示すように、一本の帯状のばね材3を幅方向にコイル状(例えば円筒状)に複数層巻回すると共に、ばね材3の長手方向に沿って周期的に連続し且つばね材3の厚み方向に振幅する波形Hを形成している。ばね材3は、例えば、バネ性を有するステンレス鋼又は硬鋼で形成されている。   The compression-type coil spring 1 can be used, for example, in a vehicle such as an automobile or a mechanical device. As shown in FIGS. 1, 2 (a) and 2 (b), a single strip-shaped spring material 3 is arranged in the width direction. A plurality of layers are wound in a coil shape (for example, a cylindrical shape), and a waveform H that is periodically continuous along the longitudinal direction of the spring material 3 and that swings in the thickness direction of the spring material 3 is formed. The spring material 3 is made of, for example, stainless steel or hard steel having spring properties.

波形Hは、例えば余弦波形又は正弦波形であり、余弦波形の場合は、凸状頂部H1から凹状頂部H2を経て次ぎの凸状頂部H1に至る波形を1周期(即ち1波長)とし、正弦波形の場合は、凹状頂部H2から凸状頂部H1を経て次ぎの凹状頂部H2に至る波形を1周期としている。ばね材3の長手方向に沿って周期的に連続する波形Hが形成されることで、ばね材3の長手方向に沿って凸状頂部H1と凹状頂部H2とが交互に繰り返して形成されている。   The waveform H is, for example, a cosine waveform or a sine waveform. In the case of a cosine waveform, a waveform from the convex top H1 to the next convex top H1 through the concave top H2 is defined as one period (ie, one wavelength), and is a sine waveform. In this case, the waveform from the concave top H2 through the convex top H1 to the next concave top H2 is one cycle. By forming a waveform H that is periodically continuous along the longitudinal direction of the spring material 3, convex top portions H <b> 1 and concave top portions H <b> 2 are alternately and repeatedly formed along the longitudinal direction of the spring material 3. .

ばね材3を巻回した1周分は、層Sを形成している。各層Sの周方向の長さは、互いに同じ長さで、且つ波形Hの波長の整数倍(この実施形態では一例として波長の3倍)の長さである。
各層Sの周方向の長さが波形Hの波長の整数倍の長さであることで、各層Sには、周方向に沿って整数個の波形Hが形成されている。即ち、各層Sには、複数の凸状頂部H1が周方向に等間隔で形成されると共に、複数の凹状頂部H2が、各凸状頂部H1の間に配置するようにして周方向に等間隔で形成されている。
A layer S is formed for one turn around which the spring material 3 is wound. The circumferential lengths of the layers S are the same as each other and are integral multiples of the wavelength of the waveform H (in this embodiment, three times the wavelength as an example).
Since the length in the circumferential direction of each layer S is an integral multiple of the wavelength of the waveform H, an integer number of waveforms H are formed in each layer S along the circumferential direction. That is, in each layer S, a plurality of convex top portions H1 are formed at regular intervals in the circumferential direction, and a plurality of concave top portions H2 are arranged at regular intervals in the circumferential direction so as to be disposed between the convex top portions H1. It is formed with.

更に、各層Sの周方向の長さが波形Hの波長の整数倍であることで、後述の位相変換部5で波形Hが位相シフトされない限り、隣合う各層Sの凸状頂部H1同士及び凹状頂部H2同士が接触する。即ち、隣合う各層Sは互いに隙間無く密接する。   Furthermore, since the circumferential length of each layer S is an integral multiple of the wavelength of the waveform H, the convex tops H1 of each adjacent layer S and the concave shape are formed as long as the waveform H is not phase-shifted by the phase converter 5 described later. The top portions H2 come into contact with each other. That is, the adjacent layers S are in close contact with each other without a gap.

また、圧縮型コイルばね1は、隣合う2つ以上(この実施形態では一例として4つ)の層Sで構成され、構成する各層Sの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士が接触する複数(この実施形態では一例として4つ)の巻回束Tを備えている。複数の巻回束Tの各々の巻回数(即ち構成する各層Sの個数)は、互いに同じ巻回数である。   Further, the compression coil spring 1 is composed of two or more adjacent layers S (four in this embodiment as an example), and the convex tops H1 of the waveform H and the concave tops H2 between the constituent layers S. A plurality of wound bundles T (four in this embodiment as an example) are in contact with each other. The number of turns of each of the plurality of winding bundles T (that is, the number of layers S constituting the same) is the same number of turns.

隣合う巻回束Tは、図3に示すように、それら隣合う巻回束Tのうち、下側の巻回束Tを構成する複数の層Sのうちの一番上の層Saの巻終端と、上側の巻回束Tを構成する複数の層Sのうちの一番下の層Sbの巻始端とで接続されている。   As shown in FIG. 3, the adjacent winding bundle T is a winding of the uppermost layer Sa among the plurality of layers S constituting the lower winding bundle T among the adjacent winding bundles T. The end and the winding start end of the lowermost layer Sb among the plurality of layers S constituting the upper winding bundle T are connected.

隣合う巻回束Tの接続部分には、隣合う巻回束Tの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士がずれるように、波形Hを位相シフトさせる位相変換部5が設けられている。即ち、位相変換部5は、層Saの巻終端と層Sbの巻始端との接続部分に設けられている。   At the connection portion of the adjacent winding bundles T, there is a phase conversion unit 5 that phase-shifts the waveform H so that the convex top portions H1 and the concave top portions H2 of the waveform H are shifted between the adjacent winding bundles T. Is provided. That is, the phase converter 5 is provided at a connection portion between the winding end of the layer Sa and the winding start end of the layer Sb.

このように位相変換部5を設けることで、隣合う巻回束Tの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士がずれる。これにより、隣合う巻回束Tの間に、それら各巻回束Tが独立して圧縮変形するために必要な隙間が確保される。   By providing the phase conversion unit 5 in this way, the convex tops H1 and the concave tops H2 of the waveform H are shifted between adjacent winding bundles T. As a result, a gap necessary for compressing and deforming each winding bundle T independently is secured between adjacent winding bundles T.

この実施形態では、各位相変換部5は、隣合う巻回束Tの間で波形Hの凸状頂部H1と凹状頂部H2とを接触させるように、波形Hの位相を半波長シフトさせている。即ち、層Saの終端部と層Sbの巻始端との間に、波形Hの位相を半波長シフトする位相変換部5を設けることで、層Sbの巻始端を、層Saの巻終端(即ち凸状頂部H1)に連続する凹状頂部H2にしている。   In this embodiment, each phase conversion unit 5 shifts the phase of the waveform H by a half wavelength so that the convex peak H1 and the concave peak H2 of the waveform H are brought into contact between adjacent winding bundles T. . That is, by providing the phase conversion unit 5 that shifts the phase of the waveform H by a half wavelength between the termination portion of the layer Sa and the winding start end of the layer Sb, the winding start end of the layer Sa (that is, the winding end of the layer Sa) Concave top H2 is continuous with convex top H1).

次に、圧縮型コイルばね1の製造手順を説明する。   Next, the manufacturing procedure of the compression type coil spring 1 will be described.

一本のばね材3を、先ずコイル状に層Sを5つ巻回すると共に長手方向に沿って周期的に波形Hを形成することで、先ず1つ目の巻回束T1を形成する。5つの層Sの周方向の長さは波形Hの波長の整数倍の長さであるため、5つの層Sの間では、波形Hの凸状頂部H1同士及び凹状頂部H2同士が接触する。また、5つ目の層Sの巻終端が凸状頂部H1となるようにする。   First, the first wound bundle T1 is formed by winding the five layers S in a coil shape and forming the waveform H periodically along the longitudinal direction. Since the circumferential length of the five layers S is an integral multiple of the wavelength of the waveform H, the convex peaks H1 and the concave peaks H2 of the waveform H are in contact with each other between the five layers S. Further, the winding end of the fifth layer S is made to be the convex top H1.

そして、巻回束T1の5つ目の層Sの巻終端(即ち最後の凸状頂部H1)に、波形Hの位相を半波長シフトする位相変換部5を設け、位相変換部5の続きに2つ目の巻回束T2を形成する。より詳細には、位相変換部5に続けて、引き続き、ばね材3をコイル状に層Sを5つ巻回すると共に、位相変換部5を巻始端とし且つその巻始端が凹状頂部H2となるようにばね材3の長手方向に沿って周期的に波形Hを形成することで、2つ目の巻回束T2を形成する。   A phase conversion unit 5 that shifts the phase of the waveform H by a half wavelength is provided at the winding end of the fifth layer S of the winding bundle T1 (that is, the last convex top H1). A second winding bundle T2 is formed. More specifically, following the phase conversion unit 5, the spring material 3 is continuously wound in five layers S in a coil shape, the phase conversion unit 5 is used as a winding start end, and the winding start end is a concave top H <b> 2. Thus, by forming the waveform H periodically along the longitudinal direction of the spring material 3, the second winding bundle T2 is formed.

巻回束T2の形成の際、位相変換部5による位相シフトにより、巻回束T1の5つ目の層Sと、巻回束T2の1つ目の層Sとの間では、波形Hの凸状頂部H1と凹状頂部H2とが接触する。これにより、各巻回束T1,T2の間に、各巻回束T1,T2が独立して圧縮変形可能な隙間が確保される。また、巻回束T2の5つの層Sの周方向の長さは、波形Hの整数倍であるため、巻回束T2の5つの層Sの間では、波形Hの凸状頂部H1同士及び凹状頂部H2同士が接触する。   When the winding bundle T2 is formed, the waveform H is changed between the fifth layer S of the winding bundle T1 and the first layer S of the winding bundle T2 due to the phase shift by the phase converter 5. The convex top H1 and the concave top H2 come into contact with each other. As a result, a gap is secured between the winding bundles T1 and T2 so that the winding bundles T1 and T2 can be independently compressed and deformed. Further, since the circumferential length of the five layers S of the wound bundle T2 is an integral multiple of the waveform H, the convex tops H1 of the waveform H and the five layers S of the wound bundle T2 The concave top portions H2 come into contact with each other.

なお、巻回束T2の5つ目の層Sの巻終端は、本来は凹状頂部H2で終わるが、4分の1波長延長して凸状頂部H1で終わらせる。そして、巻回束T2の5つ目の層Sの巻終端(即ち最後の凸状頂部H1)に、波形Hの位相を半波長シフトする位相変換部5を設け、位相変換部5の続きに、2つ目の巻回束T2と同様に3つ目の巻回束T3を形成する。そして、同様に4つ目の巻回束T4を形成する。   Note that the winding end of the fifth layer S of the winding bundle T2 originally ends at the concave top H2, but extends by a quarter wavelength and ends at the convex top H1. A phase conversion unit 5 that shifts the phase of the waveform H by a half wavelength is provided at the winding end of the fifth layer S of the winding bundle T2 (that is, the last convex top H1). A third winding bundle T3 is formed in the same manner as the second winding bundle T2. Similarly, a fourth winding bundle T4 is formed.

以上のように、この実施形態によれば、一本の帯状のばね材3をコイル状に複数層巻回すると共に、ばね材3の長手方向に沿って周期的に連続する波形Hを形成した圧縮型コイルばね1において、各層Sの1周分の長さは波形Hの波長の整数倍に等しく、ばね材3に、波形Hを位相シフトさせる位相変換部5が設けられている。   As described above, according to this embodiment, a single strip-shaped spring material 3 is wound in a plurality of layers in a coil shape, and a waveform H that is periodically continuous along the longitudinal direction of the spring material 3 is formed. In the compression coil spring 1, the length of one turn of each layer S is equal to an integer multiple of the wavelength of the waveform H, and the spring material 3 is provided with a phase conversion unit 5 for phase shifting the waveform H.

この構成により、各層Sの1周分の長さが波形Hの波長の整数倍であるため、各層Sで波形Hの各凸状頂部H1を周方向に等間隔で配置でき、つまり波形Hを周方向に均等に形成できる。これにより、圧縮型コイルばね1の圧縮反発力を周方向に均等に作用させることができる。   With this configuration, since the length of one round of each layer S is an integral multiple of the wavelength of the waveform H, the convex peaks H1 of the waveform H can be arranged at equal intervals in the circumferential direction in each layer S. It can be formed evenly in the circumferential direction. Thereby, the compression repulsion force of the compression type coil spring 1 can be made to act equally in the circumferential direction.

また、ばね材3に位相変換部5を設けるため、位相変換部5で接続される2つの層Sの間で、波形Hの凸状頂部H1同士及び凹状頂部H2同士を周方向にずらすことができる。これにより、一本のばね材3で、隣合う層Sとの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士が接触する層Sと、隣合う層Sとの間で凸状頂部H1同士及び凹状頂部H2同士がずれる層Sとを含むように、圧縮型コイルばね1を形成することができる。このように一本のばね材3で圧縮型コイルばね1を構成することで、複数のウエーブスプリングを組み合わせて構成する必要がなくなり、生産性及び製品精度を向上させることができる。   Moreover, in order to provide the phase conversion part 5 in the spring material 3, between the two layers S connected by the phase conversion part 5, the convex top parts H1 and the concave top parts H2 of the waveform H can be shifted in the circumferential direction. it can. Thereby, with one spring material 3, the convex top part between the layer S where the convex top parts H1 of the waveform H and the concave top parts H2 are in contact with the adjacent layer S, and the adjacent layer S. The compression coil spring 1 can be formed so as to include the layer S in which the H1s and the concave tops H2 are displaced from each other. Thus, by comprising the compression type coil spring 1 with the one spring material 3, it becomes unnecessary to comprise a combination of several wave springs, and it can improve productivity and product precision.

また、位相変換部5は、波形Hの位相を半波長シフトするため、位相変換部5で接続される2つの層Sの間で、波形Hの凸状頂部H1と凹状頂部H2とを接触させることができる。これにより、圧縮荷重が掛かったときに、位相変換部5で接続される2つの層Sが相対的に周方向にずれることを抑制でき、そのずれによる圧縮型コイルばねのばね定数の歪みを抑制できる。   Further, since the phase conversion unit 5 shifts the phase of the waveform H by a half wavelength, the convex top H1 and the concave top H2 of the waveform H are brought into contact between the two layers S connected by the phase conversion unit 5. be able to. Thereby, when a compressive load is applied, it is possible to suppress the two layers S connected by the phase converter 5 from being relatively displaced in the circumferential direction, and to suppress the distortion of the spring constant of the compression coil spring due to the displacement. it can.

また、ばね材3の隣合う2つ以上の層Sで構成され、それら隣合う2つ以上の層Sの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士が接触する複数の巻回束Tが備えられ、隣合う巻回束Tの接続部分に、隣合う巻回束Tの間で波形Hの凸状頂部H1同士及び凹状頂部同士がずれるように波形Hを位相シフトさせる位相変換部5が設けられている。   Moreover, it is comprised by the two or more layers S which the spring material 3 adjoins, and the some winding which the convex top parts H1 of the waveform H and the concave top parts H2 contact between these two or more adjacent layers S Phase conversion in which the bundle T is provided, and the waveform H is phase-shifted at the connecting portion of the adjacent winding bundles T so that the convex peaks H1 and the concave peaks of the waveform H are shifted between the adjacent winding bundles T. Part 5 is provided.

この構成により、各層Sの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士が接触する巻回束Tを備えるため、圧縮型コイルばね1を小型化しても、十分に大きなばね定数を得ることができる。   With this configuration, since the winding bundle T in which the convex tops H1 and the concave tops H2 of the waveform H contact each other between the layers S is provided, a sufficiently large spring constant can be obtained even if the compression coil spring 1 is downsized. Can be obtained.

また、隣合う巻回束Tの接続部分に位相変換部5を設けることで、隣合う巻回束Tの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士がずれるように波形Hを位相シフトするため、各巻回束Tを互いに独立した圧縮型コイルばねとして機能させることができる。これにより、圧縮型コイルばね1のばね定数を所望の値に設定することが容易になると共に、圧縮荷重が掛かったときの圧縮ストローク量を十分に確保することができる。   Further, by providing the phase conversion unit 5 at the connection portion of the adjacent winding bundles T, the waveform H is changed so that the convex top portions H1 and the concave top portions H2 of the waveform H are shifted between the adjacent winding bundles T. Due to the phase shift, each winding bundle T can function as a compression coil spring independent of each other. Thereby, it becomes easy to set the spring constant of the compression coil spring 1 to a desired value, and a sufficient amount of compression stroke can be ensured when a compression load is applied.

また、複数の巻回束Tの各々の巻回数(即ち構成する各層Sの個数)は、互いに同じであるため、複数の巻回束Tの各々のばね特性を互いに同じにできる。これにより、圧縮型コイルばね全体のばね特性を線形特性にすることができる。   Further, since the number of turns of each of the plurality of winding bundles T (that is, the number of each layer S constituting the same) is the same, the spring characteristics of each of the plurality of winding bundles T can be made the same. Thereby, the spring characteristic of the whole compression type coil spring can be made into a linear characteristic.

次に、第1実施形態の変形例を説明する。
(変形例1)
図4は、変形例1に係る圧縮型コイルばね1の側面を示す拡大図である。
第1実施形態では、複数の巻回束Tの各々の巻回数(即ち構成する各層Sの個数)は、互いに同じであったが、変形例1では、例えば図4に示すように、複数の巻回束Tのうち少なくとも1つの巻回束Tの巻回数を、他の巻回束Tの巻回数と異ならせている。
Next, a modification of the first embodiment will be described.
(Modification 1)
FIG. 4 is an enlarged view showing a side surface of the compression coil spring 1 according to the first modification.
In the first embodiment, the number of turns of each of the plurality of winding bundles T (that is, the number of constituent layers S) is the same as each other. However, in Modification 1, for example, as shown in FIG. The number of windings of at least one winding bundle T among the winding bundles T is different from the number of windings of other winding bundles T.

図4に示す具体例では、4つの巻回束Tのうち、上側(即ち巻回方向下流側)の2つの巻回束T3,T4の各々の巻回数は5回であり、下側(即ち巻回方向上流側)の2つの巻回束T1,T2の各々の巻回数は3回である。巻回束Tのばね定数は、巻回束Tの巻回数に比例するため、下側の2つの巻回束T1,T2の各々のばね定数は、上側の2つの巻回束T3,T4の各々のばね定数よりも3/5倍小さくなる。   In the specific example shown in FIG. 4, among the four winding bundles T, the number of windings of each of the two winding bundles T3 and T4 on the upper side (that is, the downstream side in the winding direction) is five, and the lower side (that is, The number of turns of each of the two winding bundles T1 and T2 on the upstream side in the winding direction is three. Since the spring constant of the winding bundle T is proportional to the number of turns of the winding bundle T, the spring constant of each of the two lower winding bundles T1, T2 is the same as that of the upper two winding bundles T3, T4. 3/5 times smaller than each spring constant.

以上、変形例1によれば、複数の巻回束Tのうち少なくとも1つの巻回束Tの巻回数を、他の巻回束Tの巻回数と異ならせるため、複数の巻回束Tのうち少なくとも1つの巻回束Tのばね定数を、他の巻回束Tのばね定数と異ならせることができる。これにより、圧縮型コイルばね1全体のばね特性を非線形特性にすることができる。   As described above, according to the first modification, the number of windings of at least one winding bundle T among the plurality of winding bundles T is different from the number of windings of other winding bundles T. Among them, the spring constant of at least one winding bundle T can be made different from the spring constant of other winding bundles T. Thereby, the spring characteristic of the whole compression type coil spring 1 can be made into a nonlinear characteristic.

(変形例2)
図5は、変形例2に係る圧縮型コイルばね1の側面を示す拡大図である。
変形例2に係る圧縮型コイルばね1は、第1実施形態において、各巻回束Tの間に平巻き部10を更に備えたものである。
(Modification 2)
FIG. 5 is an enlarged view showing a side surface of the compression coil spring 1 according to the second modification.
The compression type coil spring 1 according to the modified example 2 further includes a flat winding portion 10 between the winding bundles T in the first embodiment.

平巻き部10は、ばね材3を、波形Hを形成せずに幅方向に1周巻回して形成されている。平巻き部10の巻始端10aは、隣合う巻回束Tのうちの下側の巻回束Tの巻終端(即ち巻回束Tの最後の凸状頂部H1)に接続されており、平巻き部10の巻終端10bは、隣合う巻回束Tのうちの上側の巻回束Tの巻始端に接続されている。平巻き部10は、下側の巻回束Tの5つ目(即ち最後)の層Sの各凸状頂部H1と、上側の巻回束Tの1つ目の層Sの各凹状頂部H2とで挟まれている。   The flat winding portion 10 is formed by winding the spring material 3 once in the width direction without forming the waveform H. The winding start end 10a of the flat winding portion 10 is connected to the winding end of the lower winding bundle T of adjacent winding bundles T (that is, the last convex top H1 of the winding bundle T). The winding end 10 b of the winding part 10 is connected to the winding start end of the upper winding bundle T of the adjacent winding bundles T. The flat winding portion 10 includes convex top portions H1 of the fifth (ie, last) layer S of the lower winding bundle T and concave top portions H2 of the first layer S of the upper winding bundle T. It is sandwiched between.

変形例2では、位相変換部5は、平巻き部10の巻終端10bに設けられており、隣合う巻回束Tのうちの下側の巻回束Tの巻終端(即ち凸状頂部H1)で位相を半波長シフトすることで、上側の巻回束Tの巻始端を凹状頂部H2にしている。   In the second modification, the phase conversion unit 5 is provided at the winding end 10b of the flat winding unit 10, and the winding end of the lower winding bundle T of the adjacent winding bundles T (that is, the convex top H1). ) To shift the phase by a half wavelength, so that the winding start end of the upper winding bundle T is a concave top H2.

以上、変形例2によれば、隣合う巻回束Tの間に平巻き部10を設けるため、圧縮荷重が掛かったとき、隣合う巻回束Tの間で一方(例えば下側)の巻回束T側の波形Hの凸状頂部H1が他方(例えば上側)の巻回束T側の波形Hの傾斜部分に沿ってずれることを防止でき、そのずれによるばね特性の変化を抑制できる。   As described above, according to the second modification, since the flat winding portion 10 is provided between adjacent winding bundles T, when a compression load is applied, one (for example, the lower side) winding between the adjacent winding bundles T is applied. The convex top H1 of the waveform H on the bundle T side can be prevented from shifting along the inclined portion of the waveform H on the other (for example, upper) winding bundle T side, and the change in spring characteristics due to the deviation can be suppressed.

なお、変形例2では、全ての隣合う巻回束Tの間に平巻き部10を設けたが、少なくとも1つの隣合う巻回束Tの間に平巻き部10を設けてもよい。   In Modification 2, the flat winding portion 10 is provided between all adjacent winding bundles T. However, the flat winding portion 10 may be provided between at least one adjacent winding bundle T.

また、変形例2では、平巻き部10は、ばね材3を1周巻回して形成されたが、複数層巻回して形成してもよい。この場合、平巻き部10を構成する各層を互いに密接さてもよい。   In the second modification, the flat wound portion 10 is formed by winding the spring material 3 once, but may be formed by winding a plurality of layers. In this case, the layers constituting the flat winding portion 10 may be in close contact with each other.

(変形例3)
図6(a)は、変形例3に係る圧縮型コイルばね1を示す側面図であり、図6(b)は、変形例3に係る圧縮型コイルばね1をばね圧縮方向Yから見た平面図である。
(Modification 3)
FIG. 6A is a side view showing the compression type coil spring 1 according to Modification Example 3, and FIG. 6B is a plan view of the compression type coil spring 1 according to Modification Example 3 as seen from the spring compression direction Y. FIG.

変形例3に係る圧縮型コイルばね1は、例えば図6(a)に示すように、変形例2において、複数の巻回束Tのうち少なくとも1つの巻回束Tの直径を、他の巻回束Tの直径と異ならせたものである。図6(a)に示す具体例では、4つの巻回束Tのうち、上側の2つの巻回束T4,T3の直径は、互いに同じ直径d2であり、下側の2つの巻回束T1,T2の直径は、互いに同じ直径d1で且つ上側の2つの巻回束Tの直径よりも大きい。   For example, as shown in FIG. 6A, the compression coil spring 1 according to Modification 3 is different from Modification 2 in that the diameter of at least one winding bundle T among the plurality of winding bundles T is changed to other windings. This is different from the diameter of the bundle T. In the specific example shown in FIG. 6A, among the four winding bundles T, the upper two winding bundles T4 and T3 have the same diameter d2 and the lower two winding bundles T1. , T2 have the same diameter d1 and are larger than the diameters of the upper two winding bundles T.

各平巻き部10のうち互いに直径が異なる各巻回束T2,T3の間に設けられた平巻き部10Aは、図6(a)(b)に示すように、ばね材3を幅方向に波形Hを形成せずに複数層(例えば3層)巻回すると共に、巻回束T2側から巻回束T3側に行くに連れて直径が渦状にd1からd2に漸次小さくなるように形成されている。   10A of flat winding parts provided between each winding bundle T2 and T3 from which each diameter differs among each flat winding part 10 are made to corrugate the spring material 3 to the width direction, as shown to Fig.6 (a) (b). A plurality of layers (for example, three layers) are wound without forming H, and the diameter gradually decreases in a spiral shape from d1 to d2 from the winding bundle T2 side to the winding bundle T3 side. Yes.

より詳細には、平巻き部10Aの各層Uのうち、巻回束T2側の1つ目の層U1の直径の最大値は巻回束T1の直径(即ち直径d1)とほぼ同じ値であり、巻回束T3側の3つ目の層U3の直径の最小値は巻回束T2の直径(即ち直径d2)とほぼ同じであり、各層U1,U3の間の層U2の直径は、層U1の直径(即ち直径d1)より小さく且つ層U3の直径(即ち直径d2)よりも大きく形成されている。   More specifically, the maximum value of the diameter of the first layer U1 on the winding bundle T2 side in each layer U of the flat winding portion 10A is substantially the same value as the diameter of the winding bundle T1 (that is, the diameter d1). The minimum value of the diameter of the third layer U3 on the side of the wound bundle T3 is substantially the same as the diameter of the wound bundle T2 (ie, the diameter d2), and the diameter of the layer U2 between the layers U1 and U3 is It is formed smaller than the diameter of U1 (namely, diameter d1) and larger than the diameter of layer U3 (namely, diameter d2).

また、層U2の外周側縁部は層U1の上面に当接し、層U3の外周側縁部は層U2の上面に当接している。これにより、層U2が層U1の内側に落ち込むことが防止され、層U3が層U2の内側に落ち込むことが防止される。   Further, the outer peripheral edge of the layer U2 is in contact with the upper surface of the layer U1, and the outer peripheral edge of the layer U3 is in contact with the upper surface of the layer U2. This prevents the layer U2 from falling inside the layer U1, and prevents the layer U3 from falling inside the layer U2.

なお、平巻き部10A以外の平巻き部10は、変形例2の平巻き部10と同様に形成されている。   The flat winding portion 10 other than the flat winding portion 10A is formed in the same manner as the flat winding portion 10 of the second modification.

以上、変形例3によれば、複数の巻回束Tのうち少なくとも1つの巻回束Tの直径が、他の巻回束Tの直径と異なるため、複数の巻回束Tのうち少なくとも1つの巻回束Tのばね定数を、他の巻回束Tのばね定数と異ならせることができる。これにより、圧縮型コイルばね1全体のばね特性を非線形特性にすることができる。   As described above, according to the third modification, the diameter of at least one winding bundle T among the plurality of winding bundles T is different from the diameter of the other winding bundle T, and therefore, at least one of the plurality of winding bundles T. The spring constant of one winding bundle T can be made different from the spring constant of the other winding bundle T. Thereby, the spring characteristic of the whole compression type coil spring 1 can be made into a nonlinear characteristic.

(変形例4)
図7(a)及び(b)はそれぞれ、変形例4に係る圧縮型コイルばね1を示す斜視図及び平面図である。
変形例4に係る圧縮型コイルばね1は、第1実施形態において、ばね材3の長手方向の両側の端部31(即ち巻始端31a及び巻終端31b)のうち、少なくとも一方の端部31を圧縮型コイルばね1の内側に突出させたものである。図7(a)及び(b)に示す具体例では、ばね材3の巻終端31bが圧縮型コイルばね1の内側に湾曲するように突出されている。
(Modification 4)
FIGS. 7A and 7B are a perspective view and a plan view, respectively, showing a compression type coil spring 1 according to Modification 4. FIG.
In the first embodiment, the compression coil spring 1 according to the modified example 4 includes at least one end portion 31 among the end portions 31 on both sides in the longitudinal direction of the spring material 3 (that is, the winding start end 31a and the winding end 31b). The compression type coil spring 1 is protruded inside. In the specific example shown in FIGS. 7A and 7B, the winding end 31 b of the spring material 3 protrudes so as to bend inward of the compression type coil spring 1.

以上、変形例4によれば、ばね材3の長手方向の両側の端部31のうち少なくとも一方の端部31を、圧縮型コイルばね1の内側に突出させるため、ボルトを圧縮型コイルばね1に嵌挿して所定の締結箇所に締結するとき、圧縮型コイルばね1の内側に突出した端部31がボルトの側面に係合することで、圧縮型コイルばね1をボルトに仮固定することできる。これにより、圧縮型コイルばねの内部にボルトを嵌挿したものを一体物として扱うことができ、所定の締結箇所への締結が容易に行える。   As described above, according to the fourth modification, at least one of the end portions 31 on both sides in the longitudinal direction of the spring material 3 is protruded to the inside of the compression type coil spring 1. When the end portion 31 protruding inside the compression type coil spring 1 is engaged with the side surface of the bolt, the compression type coil spring 1 can be temporarily fixed to the bolt. . Thereby, what inserted the volt | bolt inside the compression type coil spring can be handled as an integrated object, and the fastening to a predetermined fastening location can be performed easily.

(変形例5)
図8は、変形例5に係る圧縮型コイルばね1の一のバリエーションの周側面を示す部分拡大図であり、図9は、変形例5に係る圧縮型コイルばね1の他のバリエーションの周側面を平面に展開した状態を示す展開図であり、図10は、変形例5に係る圧縮型コイルばね1の更に他のバリエーションの周側面を平面に展開した状態を示す展開図である。なお、図9及び図10中の2点鎖線Aは、圧縮型コイルばね1の周側面を平面に展開するために切断した切断線である。
(Modification 5)
FIG. 8 is a partially enlarged view showing a peripheral side surface of one variation of the compression type coil spring 1 according to the modification 5. FIG. 9 shows a peripheral side surface of another variation of the compression type coil spring 1 according to the modification 5. FIG. 10 is a development view showing a state in which the peripheral side surface of still another variation of the compression type coil spring 1 according to the modified example 5 is developed on a plane. In addition, the dashed-two dotted line A in FIG.9 and FIG.10 is a cutting line cut | disconnected in order to expand | deploy the surrounding side surface of the compression type coil spring 1 to a plane.

変形例5に係る圧縮型コイルばね1は、第1実施形態において、複数の位相変換部5を、ばね材3の長手方向に隣合うもの同士がばね圧縮方向Yに一列に並ばないように設けたものである。   In the first embodiment, the compression coil spring 1 according to the modified example 5 is provided with a plurality of phase converters 5 such that those adjacent to the longitudinal direction of the spring material 3 are not aligned in the spring compression direction Y. It is a thing.

具体的には、図8に示すように、ばね材3の長手方向に沿って隣合う複数の位相変換部5(5a,5b,5c)をばね圧縮方向Yに沿ってジグザグにずれるように(即ち、周方向Xの一方側及び他方側に交互にずれるようにしてばね圧縮方向Yに沿って)設けることができる。
また、図9に示すように、ばね圧縮方向Yから見て、複数の位相変換部5が圧縮型コイルばね1の周方向Xに均等に分布するように設けることができる。
Specifically, as shown in FIG. 8, the plurality of adjacent phase converters 5 (5 a, 5 b, 5 c) along the longitudinal direction of the spring material 3 are shifted in a zigzag manner along the spring compression direction Y ( That is, it can be provided along the spring compression direction Y so as to be alternately shifted to one side and the other side in the circumferential direction X.
Further, as shown in FIG. 9, when viewed from the spring compression direction Y, the plurality of phase converters 5 can be provided so as to be evenly distributed in the circumferential direction X of the compression coil spring 1.

また、図10に示すように、ばね圧縮方向Yから見て、ばね材3の長手方向に沿って隣合う位相変換部5を、圧縮型コイルばね1の中心線に対して交互に反対側に配置するように(換言すれば、隣合う3つの位相変換部5a,5b,5cの周方向Xの位置を、1つ目の位相変換部5aの周方向Xの位置を基準(即ち0度)として、2つ目の位相変換部5bの周方向Xの位置を180度とし、3つ目の位相変換部5cの周方向Xの位置を0度とするように)設けることができる。   Further, as shown in FIG. 10, when viewed from the spring compression direction Y, the adjacent phase conversion portions 5 along the longitudinal direction of the spring material 3 are alternately placed on the opposite side with respect to the center line of the compression type coil spring 1. (In other words, the position of the adjacent three phase conversion units 5a, 5b, 5c in the circumferential direction X is based on the position of the first phase conversion unit 5a in the circumferential direction X (ie, 0 degrees). And the position of the second phase converter 5b in the circumferential direction X is 180 degrees, and the position of the third phase converter 5c in the circumferential direction X is 0 degrees).

以上、変形例5によれば、複数の位相変換部5を、ばね材3の長手方向に隣合うもの同士がばね圧縮方向Yに一列に並ばないように設けるため、各位相変換部5でのばね特性の歪みが圧縮型コイルばね1全体のばね特性に与える影響を抑制することができる。   As described above, according to the modified example 5, the plurality of phase conversion units 5 are provided so that the adjacent ones in the longitudinal direction of the spring material 3 are not aligned in the spring compression direction Y. The influence of the distortion of the spring characteristics on the spring characteristics of the entire compression coil spring 1 can be suppressed.

特に、ばね圧縮方向Yから見て、複数の位相変換部5を圧縮型コイルばね1の周方向Xに均等に分布させた場合は、各位相変換部5でのばね特性の歪みが周方向Xに均等に分散するため、各位相変換部5でのばね特性の歪みが圧縮型コイルばね全体のばね特性に与える影響を最小限度に押さえることができる。   In particular, when the plurality of phase converters 5 are evenly distributed in the circumferential direction X of the compression coil spring 1 as viewed from the spring compression direction Y, the distortion of the spring characteristics in each phase converter 5 is the circumferential direction X. Therefore, the influence of the distortion of the spring characteristics at each phase converter 5 on the spring characteristics of the entire compression coil spring can be minimized.

(第2実施形態)
次に、この発明の第2実施形態を説明する。図11は、第2実施形態に係る圧縮型コイルばね1Bを示す側面図である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 11 is a side view showing a compression coil spring 1B according to the second embodiment.

第1実施形態では、複数の巻回束Tを設け、各巻回束Tの間に、波形Hの位相を半波長シフトする位相変換部5を設けたが、第2実施形態では、巻回束Tを設けずに、ばね材3を一周巻回する毎に、波形Hの位相を半波長シフトする位相変換部5を設けている。即ち、全ての隣合う層Sの間では、波形Hの凸状頂部H1と凹状頂部H2とが接触する。   In the first embodiment, a plurality of winding bundles T are provided, and the phase conversion unit 5 that shifts the phase of the waveform H by a half wavelength is provided between the winding bundles T. In the second embodiment, the winding bundles are provided. Without providing T, there is provided a phase conversion unit 5 that shifts the phase of the waveform H by a half wavelength each time the spring material 3 is wound once. That is, between all adjacent layers S, the convex top H1 and the concave top H2 of the waveform H are in contact.

以上、第2実施形態によれば、全ての隣合う層Sの間に位相変換部5を設けることで、全ての隣合う層Sの間で波形Hの凸状頂部H1同士及び凹状頂部H2同士が周方向にずれる構造にしても、第1実施形態と同様に、圧縮型コイルばね1Bの圧縮反発力を周方向に均等に作用させることができる。   As mentioned above, according to 2nd Embodiment, by providing the phase conversion part 5 between all the adjacent layers S, between the convex top parts H1 and the concave top parts H2 of the waveform H between all the adjacent layers S Even if the structure is shifted in the circumferential direction, similarly to the first embodiment, the compression repulsive force of the compression coil spring 1B can be applied evenly in the circumferential direction.

1,1B…圧縮型コイルばね
3…ばね材
10…平巻き部
31…端部
5…位相変換部
H…波形
H1…凸状頂部
H2…凹状頂部
S…層
T…巻回束
DESCRIPTION OF SYMBOLS 1,1B ... Compression type coil spring 3 ... Spring material 10 ... Flat winding part 31 ... End part 5 ... Phase conversion part H ... Waveform H1 ... Convex top part H2 ... Concave top part S ... Layer T ... Winding bundle

Claims (9)

一本の帯状のばね材をコイル状に複数層巻回すると共に、前記ばね材の長手方向に沿って周期的に連続する波形を形成した圧縮型コイルばねにおいて、
前記各層の1周分の長さは前記波形の波長の整数倍に等しく、
前記ばね材に、前記波形を位相シフトさせる位相変換部が設けられた
圧縮型コイルばね。
In a compression type coil spring in which a single strip-shaped spring material is wound in a plurality of layers in a coil shape, and a waveform that is periodically continuous along the longitudinal direction of the spring material is formed.
The length of one round of each layer is equal to an integer multiple of the wavelength of the waveform,
A compression type coil spring in which the spring material is provided with a phase conversion section for phase shifting the waveform.
前記位相変換部は、前記波形の位相を半波長シフトする
請求項1に記載の圧縮型コイルばね。
The compression coil spring according to claim 1, wherein the phase conversion unit shifts the phase of the waveform by a half wavelength.
前記ばね材の隣合う2つ以上の層で構成され、前記隣合う2つ以上の層の間で前記波形の凸状頂部同士及び凹状頂部同士が接触する複数の巻回束が備えられ、
隣合う前記巻回束の接続部分に、前記隣合う巻回束の間で前記波形の凸状頂部同士及び凹状頂部同士がずれるように前記波形を位相シフトさせる前記位相変換部が設けられた
請求項1又は請求項2に記載の圧縮型コイルばね。
It is composed of two or more adjacent layers of the spring material, and includes a plurality of winding bundles in which the corrugated convex ridges and the concave ridges contact each other between the two or more adjacent layers.
2. The phase conversion unit that phase-shifts the waveform so that the convex ridges and the concave ridges of the waveform are shifted between the adjacent winding bundles at a connection portion of the adjacent winding bundles. Or the compression type coil spring of Claim 2.
前記複数の巻回束の各々の巻回数は、互いに同じである
請求項3に記載の圧縮型コイルばね。
The compression type coil spring according to claim 3, wherein the number of turns of each of the plurality of winding bundles is the same.
前記複数の巻回束のうち、少なくとも1つの巻回束の巻回数は、他の巻回束の巻回数と異なる
請求項3に記載の圧縮型コイルばね。
4. The compression coil spring according to claim 3, wherein among the plurality of winding bundles, the number of windings of at least one winding bundle is different from the number of windings of other winding bundles.
前記隣合う巻回束の間に、前記波形が形成されない平巻き部が設けられ、
前記隣合う巻回束のうち、一方の巻回束の巻終端に前記平巻き部を介して他方の巻回束が形成された
請求項3から請求項5のうちの一項に記載の圧縮型コイルばね。
Between the adjacent winding bundles, a flat winding portion where the corrugation is not formed is provided,
The compression according to one of claims 3 to 5, wherein, among the adjacent winding bundles, the other winding bundle is formed at the winding end of one winding bundle via the flat winding portion. Type coil spring.
前記複数の巻回束のうち、少なくとも1つの巻回束の直径は、他の巻回束の直径と異なる
請求項1から請求項6のうちの一項に記載の圧縮型コイルばね。
The compression type coil spring according to one of claims 1 to 6, wherein a diameter of at least one of the plurality of winding bundles is different from a diameter of another winding bundle.
前記ばね材の長手方向の両側の端部のうち少なくとも一方の端部は、前記圧縮型コイルばねの内側に突出した
請求項1から請求項7のうちの一項に記載の圧縮型コイルばね。
The compression type coil spring according to one of claims 1 to 7, wherein at least one end portion of both end portions in the longitudinal direction of the spring material protrudes inside the compression type coil spring.
前記位相変換部は、前記ばね材の長手方向に沿って複数設けられ、且つ、前記ばね材の長手方向に沿って隣合うもの同士がばね圧縮方向に一列に並ばないように設けられた
請求項1から請求項8のうちの一項に記載の圧縮型コイルばね。
A plurality of the phase converters are provided along the longitudinal direction of the spring material, and adjacent ones along the longitudinal direction of the spring material are provided so as not to line up in a row in the spring compression direction. The compression type coil spring according to any one of claims 1 to 8.
JP2016122533A 2016-06-21 2016-06-21 Compression coil spring Active JP6823762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122533A JP6823762B2 (en) 2016-06-21 2016-06-21 Compression coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122533A JP6823762B2 (en) 2016-06-21 2016-06-21 Compression coil spring

Publications (2)

Publication Number Publication Date
JP2017227241A true JP2017227241A (en) 2017-12-28
JP6823762B2 JP6823762B2 (en) 2021-02-03

Family

ID=60891216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122533A Active JP6823762B2 (en) 2016-06-21 2016-06-21 Compression coil spring

Country Status (1)

Country Link
JP (1) JP6823762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862588A1 (en) * 2020-02-10 2021-08-11 Goodrich Actuation Systems Limited Adjustable spring assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610637U (en) * 1992-07-15 1994-02-10 利和 奥野 Coil spring
JPH076537U (en) * 1993-06-30 1995-01-31 加藤発条株式会社 Wave coil spring
JPH09177852A (en) * 1995-12-25 1997-07-11 Mitsubishi Steel Mfg Co Ltd Coiled wave spring having non-linear characteristic
JPH09229119A (en) * 1996-02-21 1997-09-02 Mitsubishi Steel Mfg Co Ltd Coiled wave spring with countermeasure to suppress swelling of terminal in rotating condition
JPH09303456A (en) * 1996-03-12 1997-11-25 Mitsubishi Steel Mfg Co Ltd Coiled wave spring and its manufacture
JP2000274468A (en) * 1999-03-23 2000-10-03 Mitsubishi Steel Mfg Co Ltd Coiled wave spring
JP2002307121A (en) * 2001-04-10 2002-10-22 Fuji Seiko Kk Cylindrical nonlinear-load wave-coil spring and method of manufacturing the same
JP2004225880A (en) * 2002-11-25 2004-08-12 Matsumura Koki Kk Wave spring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610637U (en) * 1992-07-15 1994-02-10 利和 奥野 Coil spring
JPH076537U (en) * 1993-06-30 1995-01-31 加藤発条株式会社 Wave coil spring
JPH09177852A (en) * 1995-12-25 1997-07-11 Mitsubishi Steel Mfg Co Ltd Coiled wave spring having non-linear characteristic
JPH09229119A (en) * 1996-02-21 1997-09-02 Mitsubishi Steel Mfg Co Ltd Coiled wave spring with countermeasure to suppress swelling of terminal in rotating condition
JPH09303456A (en) * 1996-03-12 1997-11-25 Mitsubishi Steel Mfg Co Ltd Coiled wave spring and its manufacture
JP2000274468A (en) * 1999-03-23 2000-10-03 Mitsubishi Steel Mfg Co Ltd Coiled wave spring
JP2002307121A (en) * 2001-04-10 2002-10-22 Fuji Seiko Kk Cylindrical nonlinear-load wave-coil spring and method of manufacturing the same
JP2004225880A (en) * 2002-11-25 2004-08-12 Matsumura Koki Kk Wave spring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862588A1 (en) * 2020-02-10 2021-08-11 Goodrich Actuation Systems Limited Adjustable spring assembly
US11585398B2 (en) 2020-02-10 2023-02-21 Goodrich Actuation Systems Limited Adjustable spring assembly

Also Published As

Publication number Publication date
JP6823762B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
KR100301170B1 (en) Honeycomb body of wound sheet metal layer and its manufacturing method
JPH09303456A (en) Coiled wave spring and its manufacture
US10041620B2 (en) Line assembly
JP2017227241A (en) Compression type coil spring
WO2017209095A1 (en) Wire harness
KR100652093B1 (en) Light press manufacturedlpm wire rope isolator and method of manufacture
JP5469164B2 (en) Metal honeycomb body having defined connecting portions
CN111181282B (en) Wave coil
JP2007116821A (en) Armoring sheet and bending method of linear body
JP2019116948A (en) Spring assembly
JP2010187454A (en) Outer protector for wire harnesses
US8242869B2 (en) Transformer
JP6428284B2 (en) Wire harness wiring structure
JP7395274B2 (en) thermally conductive molded body
CN103004042A (en) Wire-harness protection structure
JP5085402B2 (en) Pressing spring
JP3789299B2 (en) Wave coil spring
JP2018071596A (en) Coil spring used in suspension of vehicle
JP3573360B2 (en) Flexible tube
JP5819253B2 (en) Disc spring
US11692654B2 (en) Corrugated band clamp
JP7157697B2 (en) tire
JP2010130851A (en) Cable routing structure for wiring harness
JPH01210607A (en) Open ring wave washer
JP5914518B2 (en) Fitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201014

R150 Certificate of patent or registration of utility model

Ref document number: 6823762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250