JP2017225393A - Method for producing adzuki bean fermented food product - Google Patents

Method for producing adzuki bean fermented food product Download PDF

Info

Publication number
JP2017225393A
JP2017225393A JP2016123675A JP2016123675A JP2017225393A JP 2017225393 A JP2017225393 A JP 2017225393A JP 2016123675 A JP2016123675 A JP 2016123675A JP 2016123675 A JP2016123675 A JP 2016123675A JP 2017225393 A JP2017225393 A JP 2017225393A
Authority
JP
Japan
Prior art keywords
bean
red bean
red
beans
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016123675A
Other languages
Japanese (ja)
Other versions
JP6823947B2 (en
Inventor
中村 昌弘
Masahiro Nakamura
昌弘 中村
宏規 伊藤
Hiroki Ito
宏規 伊藤
麻美 内藤
Asami Naito
麻美 内藤
栄次 山崎
Eiji Yamazaki
栄次 山崎
栗田 修
Osamu Kurita
修 栗田
藤原 孝之
Takayuki Fujiwara
孝之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imuraya Co Ltd
Mie Prefecture
Original Assignee
Imuraya Co Ltd
Mie Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imuraya Co Ltd, Mie Prefecture filed Critical Imuraya Co Ltd
Priority to JP2016123675A priority Critical patent/JP6823947B2/en
Publication of JP2017225393A publication Critical patent/JP2017225393A/en
Application granted granted Critical
Publication of JP6823947B2 publication Critical patent/JP6823947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an aduki bean fermented food product increasing the treatment efficiency of the protein of aduki beans whose improvement has been difficult heretofore by attaining the pulverization of aduki beans and the size enlargement of the pulverized powder thereof by swelling, and capable of easily and simply saccharifying the protein of adzuki beans.SOLUTION: Provided is a method for producing an aduki bean fermented food product comprising: an aduki bean pulverization step where aduki beans are pulverized so as to be the maximum particle diameter of 500 μm or lower; a heating-kneading step where the azuki bean raw material powder is kneaded while being heated at the inside of a two screw extruder to obtain an aduki bean swollen material; and an enzyme reaction step or fermentation step where diastatic enzyme is added to the aduki bean swollen material, or rice malt or aduki bean malt are added thereto, thus the aduki bean swollen material is liquefied or saccharified to obtain sugar derived from the azuki beans.SELECTED DRAWING: Figure 1

Description

本発明は、小豆発酵食品の製造方法に関し、特に、小豆粉砕物に由来する膨化物を酵素または麹菌により糖化して得た小豆発酵食品であって、膨化小豆の糖化物の製造方法に関する。   The present invention relates to a method for producing a fermented red bean food, and more particularly, to a method for producing a saccharified product of a swollen red bean, which is a fermented red bean food obtained by saccharifying an expanded product derived from a ground bean product with an enzyme or koji mold.

米、麦、とうもろこし等の穀類から糖類を得る際、アミラーゼ等の酵素の添加、または麹菌(Aspergillus oryzae)等の添加(接種)により、穀類中のデンプンの糖鎖が加水分解され、オリゴ糖以下の二糖や単糖等の糖類となる。これらの糖類は、製糖や酒類の原料となり、現在の食品工業において広範に利用されている。   When sugars are obtained from cereals such as rice, wheat and corn, starch sugar chains in cereals are hydrolyzed by addition of enzymes such as amylase, or addition (inoculation) of Aspergillus oryzae, etc. Saccharides such as disaccharides and monosaccharides. These sugars are used as raw materials for sugar production and alcoholic beverages and are widely used in the current food industry.

一般に収穫後の穀類中のデンプンは結晶化状態にあるため、麹菌はそのままの状態のデンプンを利用し難い。そこで、麹菌が穀類のデンプンを利用し易くするため、麹菌の添加に先立ち加水と加熱が必要とされる。当該加水と加熱によりデンプンのアルファ化が促進し、結晶化しているデンプンの糖鎖同士に間隙が生じ、麹菌の産生する酵素が入り込み易くなる。例えば、米が蒸し上げられて蒸し米となり、この蒸し米に種麹が添加されると麹菌の生育とともに液化・糖化酵素が生産され麹になる。この麹に水を加えて加熱すると麹のデンプンは液化される。そのままであれば、産物は甘酒となる。または、糖化後に酵母(Saccharomyces cerevisiae)等が添加され、アルコール発酵により酒(清酒)が製造される。   Generally, starch in cereals after harvesting is in a crystallized state, so that koji molds are difficult to use starch as it is. Therefore, in order to make it easier for koji molds to use the starch of cereals, hydration and heating are required prior to the addition of koji molds. The hydrolysis and heating promote the pregelatinization of starch, and a gap is formed between the sugar chains of the crystallized starch, so that enzymes produced by Aspergillus oryzae can easily enter. For example, when rice is steamed to become steamed rice and seed rice is added to the steamed rice, liquefaction and saccharification enzymes are produced and become koji with the growth of koji mold. When water is added to this koji and heated, koji starch is liquefied. If left as it is, the product becomes amazake. Alternatively, yeast (Saccharomyces cerevisiae) or the like is added after saccharification, and sake (sake) is produced by alcohol fermentation.

前出の穀類に加え豆類の糖化も検討されてきた(特許文献1,2,3等参照)。その中でも、小豆(あずき,adzuki bean,学名:Vigna angularis)は大豆等の他の豆類と比較してデンプンを多く含有する。このことから、糖化、発酵の材料として有望視されている。加えて小豆には、その種皮等に由来する抗腫瘍性成分(特許文献4参照)、抗アレルギー成分(特許文献5参照)、骨代謝活性成分(特許文献6参照)等が含有されていることが明らかとなった。そのため、小豆の糖化、発酵等を通じた小豆の高度利用が模索されてきた。   In addition to the above-mentioned cereals, saccharification of beans has been studied (see Patent Documents 1, 2, 3, etc.). Among them, red beans (adzuki bean, scientific name: Vigna angularis) contain more starch than other beans such as soybeans. Therefore, it is considered promising as a material for saccharification and fermentation. In addition, the red beans contain an antitumor component (see Patent Document 4), an antiallergic component (see Patent Document 5), a bone metabolic active component (see Patent Document 6), etc. derived from the seed coat and the like. Became clear. Therefore, advanced use of red beans through saccharification and fermentation of red beans has been sought.

前出の特許文献1によると、小豆は煮熟後に摩砕され、ここに米麹が添加され発酵により糖化が進められる。特許文献2によると、小豆等の雑豆類の餡(あん)粒子は酵素処理で分解され、同時に酵母が添加され、生成する糖分がアルコールに変換され、このアルコールが分離除去される。特許文献3によると、小豆に麹菌が接種され発酵が行われる。特許文献1ないし3等に開示の手法により、小豆の発酵原料としての有用性は高まった。各引用文献の記載から明らかであるように、加熱は小豆の発酵に際して必須である。   According to the above-mentioned patent document 1, red beans are ground after ripening, rice bran is added thereto, and saccharification proceeds by fermentation. According to Patent Document 2, miscellaneous bean particles such as red beans are decomposed by enzymatic treatment, and at the same time, yeast is added, the resulting sugar is converted into alcohol, and this alcohol is separated and removed. According to Patent Document 3, the red beans are inoculated with koji mold and fermented. By the method disclosed in Patent Documents 1 to 3, etc., the usefulness of red beans as a fermentation raw material has increased. As is clear from the description of each cited document, heating is essential during the fermentation of red beans.

ここで、小豆のデンプンの特徴として、個々のデンプン粒は集合して約100μm前後の複粒が形成されている。小豆のデンプンの場合、生の状態では複粒構造と称されるデンプンが凝集したデンプン粒の構造であり、これが加熱及び含水によりあん粒子(餡粒子)と称される粒構造となる。小豆のようにあん粒子が形成される構造は米等のデンプンの構造と大きく異なる。例えば、小豆を使用する汁粉(しるこ)や善哉(ぜんざい)等の食品においては、加熱後であっても特有の舌触りが残ることが多いのは、このような複粒構造によるためである。すなわち、小豆のデンプンの場合、あん粒子の構造は多少の加熱においても容易に破壊されずあん粒子は残存しがちである。   Here, as a characteristic of the starch of red beans, individual starch grains are aggregated to form a double grain of about 100 μm. In the case of red bean starch, in the raw state, it is a structure of starch granules in which starch called a double-grain structure is aggregated, and this becomes a grain structure called anion particles (wax particles) by heating and water content. The structure in which red bean-like particles are formed is very different from the structure of starch such as rice. For example, in a food such as shiruko or zenzai, which uses red beans, the unique texture often remains after heating because of such a double grain structure. That is, in the case of red bean starch, the structure of the bean particles is not easily broken even by some heating, and the bean particles tend to remain.

そのため、小豆のデンプンにおける複粒構造まで破壊しようとすると、小豆の煮熟や摩砕が過剰となる。そうすると、小豆は糊状(ペースト状)の半流動物状となる。この状態では、酵素の添加は可能ではあるものの、麹菌を添加して麹を調製することは難しい。糊状の溶液中では麹菌が付着して増殖する足場が存在しない。また、隙間も無いため、麹菌は呼吸できず増殖できない。あるいは、発酵等の反応に時間を要して腐敗するおそれもある。このことから、小豆においては、豆の粒を残したままでは麹菌が生育したとしてもあん粒子内にあるデンプンに酵素が作用できず、小豆自身のデンプンを液化・糖化できない。また、デンプンの構造のために加熱や粉砕を進めると豆の粒は消失して麹菌の増殖の障害となりやすい。いずれにおいても小豆は想像以上に糖化処理が困難な材料である。   Therefore, when trying to destroy even the double-grain structure in the starch of red beans, the red beans are excessively boiled and ground. Then, the red beans become a paste-like (paste-like) semi-fluid. In this state, enzyme can be added, but it is difficult to prepare koji by adding koji mold. In the paste-like solution, there is no scaffold for growth of the koji molds. In addition, since there is no gap, gonococci cannot breathe and cannot grow. Alternatively, there is a possibility that the reaction such as fermentation takes time and decays. From this, in red beans, even if the koji mold grows with the beans remaining, the enzyme cannot act on the starch in the bean particles, and the starch of the red beans cannot be liquefied or saccharified. Also, due to the structure of starch, when the heating and grinding are advanced, the bean grains disappear and are likely to hinder the growth of koji mold. In any case, red beans are more difficult to saccharify than expected.

現実問題として、既存の特許文献1ないし3等の手法を用いたとしても、実際に小豆中に含有されるデンプンの大半は有効に活用されているとは言い難い。そこで、前出の特許文献4ないし6等に報告されているような、小豆の利点を生かしつつ小豆の利用の途をさらに拡大するとともに、小豆のデンプンの特性に対応した新たな小豆のデンプンを糖化する方法が望まれるに至った。   As a matter of fact, even if existing techniques such as Patent Documents 1 to 3 are used, it is difficult to say that most of the starch actually contained in the red beans is effectively utilized. Therefore, while utilizing the advantages of red beans as reported in the above-mentioned Patent Documents 4 to 6 and the like, the use of red beans is further expanded, and a new red bean starch corresponding to the characteristics of red beans starch is added. A method of saccharification has been desired.

特開2007−282529号公報JP 2007-282529 A 特許第3967366号公報Japanese Patent No. 3967366 特開2008−263904号公報JP 2008-263904 A 特許第4971566号公報Japanese Patent No. 4971566 特開2011−178680号公報JP 2011-178680 A 特開2014−91686号公報JP 2014-91686 A

前述の小豆に特有のデンプン粒の構造への対処と並行して、発明者らは、小豆の効率の良い粉砕条件を検討してきた。そして、粉砕により得た小豆の粉砕物の膨化による賦形化も鋭意検討してきた。その結果、小豆に特有のデンプン粒構造に対し効果的に対処可能な手法を得るに至った。そして、小豆のデンプンの良好な糖化処理方法を確立することができた。   In parallel with dealing with the structure of starch granules peculiar to the above-mentioned red beans, the inventors have examined efficient grinding conditions for red beans. And the shaping by the expansion of the pulverized product of red beans obtained by pulverization has been intensively studied. As a result, a method capable of effectively dealing with the starch grain structure peculiar to red beans has been obtained. And the good saccharification processing method of the starch of red beans was able to be established.

本発明は、前記の点に鑑みなされたものであり、小豆の粉砕とその粉砕物の膨化による賦形化を図ることにより、従来改善の困難であった小豆のデンプンの処理効率を高め、容易かつ簡便に小豆のデンプンを糖化することが可能な小豆発酵食品の製造方法を提供する。   The present invention has been made in view of the above points, and by improving the processing efficiency of the starch of red beans, which has been difficult to improve conventionally, by easily shaping the red beans by pulverization and expansion of the pulverized product. The present invention also provides a method for producing a fermented red bean food that can easily saccharify the red bean starch.

すなわち、請求項1の発明は、小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、前記小豆膨化物に糖化酵素を添加し前記小豆膨化物を液化及び糖化させて小豆由来の糖を得る酵素反応工程とを備えることを特徴とする小豆発酵食品の製造方法に係る。   That is, the invention of claim 1 is an azuki bean pulverizing step for obtaining a red bean raw material powder having a maximum particle size of 500 μm or less by crushing the red beans, and kneading the red bean raw material powder while heating in a biaxial extruder. A heating and kneading step for obtaining a red bean kneaded product, a swelling step for obtaining a red bean swollen product by expanding the red bean kneaded product at the time of discharge from the discharge part of the biaxial extruder, and adding a saccharifying enzyme to the red bean swollen product, The present invention relates to a method for producing an adzuki bean fermented food, comprising: an enzyme reaction step of liquefying and saccharifying an adzuki bean product to obtain an adzuki-derived sugar.

請求項2の発明は、小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、蒸した米に麹菌を接種して調製した米麹を前記小豆膨化物に添加し、前記米麹を通じた前記小豆膨化物の発酵により小豆由来の糖を得る発酵工程とを備えることを特徴とする小豆発酵食品の製造方法に係る。   The invention of claim 2 is an azuki bean pulverizing step for pulverizing a red bean to obtain a red bean raw material powder having a maximum particle size of 500 μm or less, and kneading the red bean raw material powder while heating in a biaxial extruder. A heating kneading step for obtaining a product, a swelling step for expanding the red bean kneaded product at the time of discharge from the discharge portion of the biaxial extruder to obtain a red bean expanded product, and rice bran prepared by inoculating steamed rice with koji mold And a fermentation process for obtaining sugar derived from red beans by fermentation of the red beans expanded through the rice bran.

請求項3の発明は、小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、前記小豆膨化物に麹菌を接種して調製した小豆麹を、前記小豆膨化物に添加し、前記小豆麹を通じた前記小豆膨化物の発酵により小豆由来の糖を得る発酵工程とを備えることを特徴とする小豆発酵食品の製造方法に係る。   The invention of claim 3 is an azuki bean pulverizing step for pulverizing a red bean to obtain a red bean raw material powder having a maximum particle size of 500 μm or less, and kneading the red bean raw material powder while heating in a biaxial extruder. A heating and kneading step for obtaining a product, a swelling step for expanding the red bean kneaded product at the time of discharge from the discharge part of the biaxial extruder to obtain a red bean expanded product, and a red bean prepared by inoculating koji molds on the red bean expanded product A method for producing a fermented red bean food, comprising: adding a koji to the bean puffed product and obtaining a sugar derived from the red bean by fermentation of the koji bean koji through the red bean koji.

請求項4の発明は、前記小豆粉砕工程における前記小豆の粉砕が気流粉砕機による粉砕である請求項1ないし3のいずれか1項に記載の小豆発酵食品の製造方法に係る。   Invention of Claim 4 concerns on the manufacturing method of the red bean fermented food of any one of Claim 1 thru | or 3 whose grinding | pulverization of the said red beans in the said red beans grinding | pulverization process is grinding | pulverization by an airflow grinder.

請求項5の発明は、前記小豆原料粉末が、最大粒径を500μm以下、かつ平均粒径を100μm以下である請求項1ないし4のいずれか1項に記載の小豆発酵食品の製造方法に係る。   The invention of claim 5 relates to the method for producing an adzuki bean fermented food according to any one of claims 1 to 4, wherein the red bean raw material powder has a maximum particle size of 500 μm or less and an average particle size of 100 μm or less. .

請求項6の発明は、前記小豆膨化物における長軸方向の粒径が、2ないし10mmである請求項1ないし5のいずれか1項に記載の小豆発酵食品の製造方法に係る。   The invention of claim 6 relates to the method for producing a fermented red bean food according to any one of claims 1 to 5, wherein the expanded particle size of the red beans is 2 to 10 mm.

請求項1の発明に係る小豆発酵食品の製造方法によると、小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、前記小豆膨化物に糖化酵素を添加し前記小豆膨化物を液化及び糖化させて小豆由来の糖を得る酵素反応工程とを備えるため、小豆のデンプンの処理効率を高め、容易かつ簡便に小豆のデンプンを糖化することが可能となる。   According to the method for producing an adzuki bean fermented food according to the invention of claim 1, an adzuki bean pulverizing step for obtaining an adzuki bean powder having a maximum particle size of 500 μm or less by crushing the adzuki beans, and the adzuki bean raw material powder in a biaxial extruder A heating and kneading step of obtaining a red bean kneaded product by kneading while heating, an expansion step of expanding the red bean kneaded product at the time of discharge from the discharge part of the biaxial extruder to obtain a red bean expanded product, and the red bean expanded product An enzyme reaction step of adding saccharification enzyme to liquefy and saccharify the azuki bean product to obtain a red bean-derived sugar, thereby improving the processing efficiency of the red bean starch and easily and simply saccharifying the red bean starch Is possible.

請求項2の発明に係る小豆発酵食品の製造方法によると、小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、蒸した米に麹菌を接種して調製した米麹を前記小豆膨化物に添加し、前記米麹を通じた前記小豆膨化物の発酵により小豆由来の糖を得る発酵工程とを備えるため、小豆の粉砕とその粉砕粉の膨化による賦形化を図ることにより、小豆のデンプンの処理効率を高め、容易かつ簡便に小豆のデンプンを糖化することが可能となる。   According to the method for producing a fermented red bean food according to the invention of claim 2, the red bean pulverizing step for obtaining the red bean raw material powder having a maximum particle size of 500 μm or less by pulverizing the red bean, and the red bean raw material powder in the biaxial extruder Heating and kneading step of kneading while heating to obtain a red bean kneaded product, a swelling step of expanding the red bean kneaded product at the time of discharge from the discharge part of the biaxial extruder to obtain a red bean kneaded product, and steamed rice A rice bean prepared by inoculating koji mold is added to the bean puffed product, and a fermentation process for obtaining a sugar derived from the red bean by fermentation of the bean puffed product through the rice koji is provided. By increasing the shape of the bean, it is possible to increase the processing efficiency of the red bean starch and to easily and easily saccharify the red bean starch.

請求項3の発明に係る小豆発酵食品の製造方法によると、小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、前記小豆膨化物に麹菌を接種して調製した小豆麹を、前記小豆膨化物に添加し、前記小豆麹を通じた前記小豆膨化物の発酵により小豆由来の糖を得る発酵工程とを備えるため、小豆の粉砕とその粉砕粉の膨化による賦形化を図ることにより、麹菌の増殖を容易にして小豆のデンプンの処理効率を高め、容易かつ簡便に小豆のデンプンを糖化することが可能となる。   According to the method for producing a fermented bean food according to the invention of claim 3, an azuki bean pulverizing step for obtaining a red bean raw material powder having a maximum particle size of 500 μm or less by pulverizing the red bean, and the red bean raw material powder in a biaxial extruder. A heating and kneading step of obtaining a red bean kneaded product by kneading while heating, an expansion step of expanding the red bean kneaded product at the time of discharge from the discharge part of the biaxial extruder to obtain a red bean expanded product, and the red bean expanded product A fermented rice cake prepared by inoculating a koji mold with a koji mold is added to the koji bean paste, and a fermentation process for obtaining a sugar derived from the koji beans through fermentation of the koji bean koji through the koji bean koji, By shaping the pulverized powder by swelling, it is possible to facilitate the growth of Aspergillus and increase the processing efficiency of the red bean starch, and to easily and easily saccharify the red bean starch.

請求項4の発明に係る小豆発酵食品の製造方法によると、請求項1ないし3のいずれかの発明において、前記小豆粉砕工程における前記小豆の粉砕が気流粉砕機による粉砕であるため、小豆以外の混入は抑制され、しかも、粉砕により生じた小豆原料粉末の粒度分布は比較的揃う。   According to the method for producing an adzuki bean fermented food according to the invention of claim 4, in the invention of any one of claims 1 to 3, since the crushing of the adzuki beans in the adzuki bean crushing process is crushing by an airflow crusher, Mixing is suppressed, and the particle size distribution of the red bean raw material powder produced by pulverization is relatively uniform.

請求項5の発明に係る小豆発酵食品の製造方法によると、請求項1ないし4のいずれかの発明において、前記小豆原料粉末が、最大粒径を500μm以下、かつ平均粒径を100μm以下であるため、粉砕後の小豆原料粉末の粒径は均質化され、粉末自体の品質の安定化も図られる。   According to the method for producing a fermented red bean food according to the invention of claim 5, in the invention of any one of claims 1 to 4, the raw material powder has a maximum particle size of 500 μm or less and an average particle size of 100 μm or less. Therefore, the particle size of the pulverized red bean raw material powder is homogenized, and the quality of the powder itself is also stabilized.

請求項6の発明に係る小豆発酵食品の製造方法によると、請求項1ないし5のいずれかの発明において、前記小豆膨化物における長軸方向の粒径が、2ないし10mmであるため、水を含んだ際であっても形状保持は容易となり、また、含水時の粒同士の隙間が生じやすくなる。   According to the method for producing azuki bean fermented food according to the invention of claim 6, in the invention of any one of claims 1 to 5, since the particle size in the major axis direction of the bean puffed product is 2 to 10 mm, water is added. Even when it is contained, the shape can be easily maintained, and a gap between the grains when water is contained is easily generated.

第1実施形態の小豆発酵食品の製造方法の概略図である。It is the schematic of the manufacturing method of the red bean fermented food of 1st Embodiment. 第2実施形態の小豆発酵食品の製造方法の概略図である。It is the schematic of the manufacturing method of the red bean fermented food of 2nd Embodiment. 第3実施形態の小豆発酵食品の製造方法の概略図である。It is the schematic of the manufacturing method of the red bean fermented food of 3rd Embodiment. 二軸エクストルーダーの概略図である。It is the schematic of a biaxial extruder. 気流粉砕機により小豆を粉砕したときの粒度分布図である。It is a particle size distribution figure when a red bean is grind | pulverized with an airflow grinder. カッティングミルにより小豆を粉砕したときの粒度分布図である。It is a particle size distribution figure when a red bean is grind | pulverized with a cutting mill. 気流粉砕機を使用した小豆のデンプン粒の写真である。It is a photograph of starch granules of red beans using an airflow crusher. 小豆膨化物の第1の写真である。It is a 1st photograph of an adzuki bean expansion thing. 小豆膨化物の第2の写真である。It is a 2nd photograph of an adzuki bean expansion thing. 小豆膨化物の浸漬時の写真である。It is a photograph at the time of immersion of a red bean swelling thing.

本発明における小豆発酵食品の製造方法について、図1ないし図4を用いながら説明する。図1は第1実施形態の製造方法を示す概略図である。はじめに原料である小豆(あずき,adzuki bean,学名:Vigna angularis)が用意される。原料の小豆は、収穫後に適宜選別された加熱されていない生状態の小豆である。この乾燥した生状態の小豆とは、小豆を含水により軟化することなく、収穫、洗浄後、自然乾燥あるいは通風乾燥等により水分含量を10ないし20%にまで低下させた小豆であり、一般に流通している形態である。なお、生状態の小豆には、水蒸気や炒ることにより表面を殺菌した小豆も含まれる。   The manufacturing method of the red bean fermented food in this invention is demonstrated using FIG. 1 thru | or FIG. FIG. 1 is a schematic view showing the manufacturing method of the first embodiment. First, red beans (adzuki bean, scientific name: Vigna angularis) as a raw material are prepared. The raw red beans are unheated raw beans that are appropriately selected after harvesting. This dried green bean is a red bean whose water content has been reduced to 10-20% by harvesting, washing, natural drying or ventilation drying, etc. without softening the bean with water, and is generally distributed. It is a form. In addition, the red beans in the raw state include red beans whose surfaces have been sterilized by steaming or roasting.

小豆は粉砕され、最大粒径は500μm以下の小豆原料粉末にされる(「小豆粉砕工程」)。背景技術にて述べたとおり、小豆のデンプンにあっては、生の状態では複粒構造と称されるデンプンが凝集したデンプン粒の構造である。これが加熱及び含水によりあん粒子と称される粒構造となる。そのため、予め小豆は粉砕されることにより、最終的に小豆内のデンプンのあん粒子の構造は破壊され、内部に含有されるデンプンは利用されやすくなる。小豆原料粉末の最大粒径が500μm以下の場合、小豆の種皮も含めて粉砕される。これに対し最大粒径が500μmを上回る条件の場合、粉砕不足による小豆のデンプンのあん粒子の残存が問題となる。また、種皮の粉砕も不十分である。   The red beans are pulverized into a red bean raw material powder having a maximum particle size of 500 μm or less (“red bean crushing step”). As described in the background art, the starch of red beans has a structure of starch granules in which starch, which is called a double-grain structure in the raw state, is aggregated. This becomes a grain structure referred to as an anion particle by heating and water content. Therefore, the red beans are pulverized in advance, so that the structure of starch starch particles in the red beans is eventually destroyed, and the starch contained therein is easily used. When the maximum particle size of the red bean raw material powder is 500 μm or less, the red bean seed coat is pulverized. On the other hand, when the maximum particle size exceeds 500 μm, the remaining of red bean starch particles due to insufficient grinding becomes a problem. Moreover, the seed coat is not sufficiently pulverized.

さらに、小豆原料粉末は、望ましくは、最大粒径は500μm以下であり、かつ平均粒径は100μm以下である。平均粒径100μm以下、より好ましくは50μm以下とすることにより、あん粒子はほぼ消滅するとともに粉砕後の小豆原料粉末の粒径は均質化され、粉末自体の品質の安定化も図られる。   Furthermore, the red bean raw material powder desirably has a maximum particle size of 500 μm or less and an average particle size of 100 μm or less. By setting the average particle size to 100 μm or less, more preferably 50 μm or less, the particles are almost disappeared, the particle size of the pulverized red bean raw material powder is homogenized, and the quality of the powder itself is also stabilized.

本明細書における「平均粒径」とは、後出の実施例のレーザー回折・散乱式 粒子径・粒度分布測定装置を用いてレーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径(累積平均径)を意味する。   In the present specification, the “average particle size” means an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method using the laser diffraction / scattering type particle size / particle size distribution measuring apparatus of the following examples. It means the particle size (cumulative average diameter).

小豆を粉砕して小豆原料粉末を得る際、乾式による粉砕装置、粉砕方法等は自由に選択される。例えば、カッティングミルやハンマーミル等が挙げられる。しかしながら、カッティングミル等の場合、小豆を粉砕しても粒径の大きな粉末が残ることが多い。そのため、前述の最大粒径値、平均粒径値を充足するべく粉砕後の篩分けが必要となる。また、その分、歩留まりが悪くなりやすい。   When the red beans are pulverized to obtain the red bean raw material powder, a dry-type pulverization apparatus, a pulverization method, and the like are freely selected. For example, a cutting mill, a hammer mill, etc. are mentioned. However, in the case of a cutting mill or the like, a powder having a large particle size often remains even when the red beans are pulverized. Therefore, sieving after pulverization is necessary to satisfy the aforementioned maximum particle size value and average particle size value. In addition, the yield tends to deteriorate accordingly.

そこで、粉砕以外の処理を省略して小豆から小豆原料粉末を得る方法として、小豆は気流粉砕機により粉砕される。気流粉砕とは、粉砕装置の粉砕室内に生じた気流の渦の中に原料の小豆が投入され、この小豆同士が互いに衝突して砕ける現象が利用される。こうして小豆の段階から順次微粉末になるまで粒径は細かく粉化される粉砕方法である。このことから自明なように、仮に含水して膨潤した小豆を気流粉砕機に投入した場合、湿った小豆が装置の粉砕室に貼り付く等、十分な粉砕は不可能である。従って、気流粉砕の場合、小豆は含水していない乾燥生小豆とする必要がある。   Therefore, as a method of obtaining the red bean raw material powder from the red beans while omitting the processes other than the grinding, the red beans are pulverized by an airflow pulverizer. The air pulverization uses a phenomenon in which the raw red beans are introduced into the vortex of the air flow generated in the pulverization chamber of the pulverizer, and the red beans collide with each other to be crushed. Thus, it is a pulverization method in which the particle size is finely pulverized from the red beans stage until it becomes fine powder. As is obvious from this, when the water-swelled and swollen red beans are introduced into the airflow crusher, sufficient crushing is impossible, such as wet red beans sticking to the crushing chamber of the apparatus. Therefore, in the case of airflow pulverization, the red beans need to be dried raw red beans that do not contain water.

気流粉砕の結果、粉砕前の3ないし6mmの豆粒大の小豆は、前述の粉末状まで粉砕される。生小豆を粉砕する気流粉砕機として、例えば、特開2007−275849号公報に開示のジェットミル、特開2011−206621号公報に開示の気流式粉砕機等の各種装置が挙げられる。前記のジェットミルの場合、同装置の粉砕室内に圧縮空気等の気体が噴射され、気流の渦が生成される。また、前記の気流式粉砕機の場合、ファン等の回転翼が粉砕室内に備えられ、当該回転翼により気流の渦が生じる。   As a result of airflow crushing, 3 to 6 mm bean-sized red beans before crushing are crushed to the aforementioned powder form. Examples of the air pulverizer for pulverizing green red beans include various devices such as a jet mill disclosed in Japanese Patent Application Laid-Open No. 2007-275849 and an air flow type pulverizer disclosed in Japanese Patent Application Laid-Open No. 2011-206621. In the case of the jet mill, a gas such as compressed air is injected into the pulverization chamber of the apparatus, and an air current vortex is generated. Further, in the case of the airflow type pulverizer, a rotary blade such as a fan is provided in the pulverization chamber, and an airflow vortex is generated by the rotary blade.

気流粉砕法(気流粉砕機)の一つ目の利点に、小豆が装置内の粉砕部分と接触しない点である。カッティングミル等の通常の粉砕においては、小豆と粉砕用の刃や装置の壁面等との接触は不可避である。しかし、気流粉砕法によると気流に乗った小豆同士の衝突であるため、小豆以外の混入は他の粉砕方法と比較して抑えられる。   The first advantage of the airflow crushing method (airflow crusher) is that the red beans do not come into contact with the pulverized portion in the apparatus. In normal crushing such as a cutting mill, contact between the red beans and the crushing blade, the wall surface of the apparatus, and the like is inevitable. However, according to the airflow crushing method, it is a collision between the red beans riding on the airflow, and therefore, mixing other than the red beans can be suppressed as compared with other crushing methods.

二つ目の利点に、粉砕により生じた小豆原料粉末の粒度分布が比較的揃っていることである。後記実施例において詳述するが、気流粉砕機とカッティングミルとの粒度分布を比較した場合、気流粉砕機を用いた粉砕では粒度分布は小粒径側にまとまり、分散の少ない分布である。従って、気流粉砕機の使用は小豆原料粉末の品質を安定化させる観点から好ましい。   The second advantage is that the particle size distribution of the red bean raw material powder produced by pulverization is relatively uniform. As will be described in detail in Examples below, when the particle size distributions of the airflow pulverizer and the cutting mill are compared, the pulverization using the airflow pulverizer collects the particle size distribution on the small particle size side and is a distribution with little dispersion. Therefore, the use of an airflow grinder is preferable from the viewpoint of stabilizing the quality of the red bean raw material powder.

未粉砕または規定よりも大きい小豆の破片の除去とともに小豆原料粉末の粉砕後の粒径を揃えるため、必要により篩別が加えられる。ここでは小豆原料粉末は20メッシュないし50メッシュの適宜の目開きの篩に通される。使用する篩の規格はJIS Z 8801−1(2006)に準拠する。こうして、まず、小豆から小豆原料粉末を得ることができる。   In order to make the particle size after grinding of the red bean raw material powder as well as removal of unmilled or larger red bean fragments, sieving is added as necessary. Here, the red bean raw material powder is passed through a sieve having an appropriate opening of 20 mesh to 50 mesh. The standard of the sieve to be used is based on JIS Z8801-1 (2006). Thus, first, the red bean raw material powder can be obtained from the red beans.

小豆原料粉末は、図4の概略構造図にて示す二軸エクストルーダー10にて加工される。ここで、二軸エクストルーダー10の構造を説明する。二軸エクストルーダー10の本体筒であるハウジング11の内部に第1スクリュ13と第2スクリュ14が収容される。このように、スクリュが2本備えられていることから二軸であり、第1スクリュ13と第2スクリュ14はモータ20により駆動される。第1スクリュ13の表面には螺旋状の突条15が備えられ、第2スクリュ14の表面にも螺旋状の突条16が備えられる。第1スクリュ13と第2スクリュ14の両突条15,16は相互に噛み合う。二軸エクストルーダー10のハウジング11の上部にはフィーダー(ホッパー)21が備えられる。ここに、原料は投入される。ハウジング11の末端には吐出部17が装着され、吐出部17の吐出口18から混練を終えて吐出される。また、吐出後の切断用にカッター22が備えられる。   The red bean raw material powder is processed by the biaxial extruder 10 shown in the schematic structural diagram of FIG. Here, the structure of the biaxial extruder 10 will be described. A first screw 13 and a second screw 14 are accommodated inside a housing 11 which is a main body cylinder of the biaxial extruder 10. Thus, since two screws are provided, it is biaxial, and the first screw 13 and the second screw 14 are driven by the motor 20. A spiral protrusion 15 is provided on the surface of the first screw 13, and a spiral protrusion 16 is also provided on the surface of the second screw 14. Both protrusions 15 and 16 of the first screw 13 and the second screw 14 mesh with each other. A feeder (hopper) 21 is provided on the upper portion of the housing 11 of the biaxial extruder 10. The raw material is input here. A discharge portion 17 is attached to the end of the housing 11, and the kneading is finished and discharged from the discharge port 18 of the discharge portion 17. A cutter 22 is provided for cutting after discharge.

二軸エクストルーダー10のハウジング11には加熱部12が設けられ、ハウジング11内は加熱可能となる。小豆原料粉末1はフィーダー21内に投入され、ハウジング11内に誘導される。小豆原料粉末1は、ハウジング11内で第1スクリュ13と第2スクリュ14の回転により攪拌とともにハウジング11(加熱部12)を通じて加熱される。螺旋状の両突条15,16の向きと第1スクリュ13及び第2スクリュ14の回転方向から、小豆原料粉末1はフィーダー21の位置から吐出部17側へ徐々に流動される。小豆原料粉末1は、ハウジング11内での加熱とともに、第1スクリュ13及び第2スクリュ14の回転に伴い圧力も加えられる。なお、小豆原料粉末1がハウジング11内を流動しやすくするため、ごく少量の水もフィーダー21から添加される。   A heating unit 12 is provided in the housing 11 of the biaxial extruder 10 so that the inside of the housing 11 can be heated. The red bean raw material powder 1 is put into the feeder 21 and guided into the housing 11. The red bean raw material powder 1 is heated through the housing 11 (heating unit 12) while being stirred by the rotation of the first screw 13 and the second screw 14 in the housing 11. From the direction of the spiral protrusions 15 and 16 and the rotation direction of the first screw 13 and the second screw 14, the red bean raw material powder 1 gradually flows from the position of the feeder 21 toward the discharge unit 17. The red bean raw material powder 1 is heated in the housing 11 and is also subjected to pressure as the first screw 13 and the second screw 14 rotate. A very small amount of water is also added from the feeder 21 so that the red bean raw material powder 1 can easily flow in the housing 11.

従って、小豆原料粉末1は二軸エクストルーダー10により加熱されながら混練されることにより、小豆原料粉末1は二軸エクストルーダー10内にて転化して、これから小豆混練物2が得られる(「加熱混練工程」)。当該加熱混練工程を経ることにより、小豆原料粉末のデンプンのアルファ化は促進する。   Accordingly, the red bean raw material powder 1 is kneaded while being heated by the biaxial extruder 10, whereby the red bean raw material powder 1 is converted in the biaxial extruder 10, thereby obtaining the red bean kneaded product 2 (“heating” Kneading process "). By passing through the heating and kneading step, the pregelatinization of starch in the red bean raw material powder is promoted.

ハウジング11内を流動する小豆混練物2は、両スクリュの回転を通じて吐出部17から二軸エクストルーダー10の外へ押し出される。押し出しされた小豆混練物2はハウジング11内と外部の圧力差から膨張して小豆膨化物3に転化する。さらに、小豆膨化物3は吐出部17から押し出されるとほぼ同時にカッター22により所定の大きさに切断される。従って、小豆混練物2は二軸エクストルーダー10の吐出部17からの吐出時に膨化され、小豆膨化物3が得られる(「膨化工程」)。   The red bean kneaded material 2 flowing in the housing 11 is pushed out of the biaxial extruder 10 from the discharge portion 17 through the rotation of both screws. The extruded red bean kneaded material 2 expands due to a pressure difference between the inside and the outside of the housing 11 and is converted into a red bean expanded product 3. Further, the expanded red beans 3 are cut into a predetermined size by the cutter 22 almost simultaneously with being pushed out from the discharge unit 17. Therefore, the red bean kneaded product 2 is expanded at the time of discharge from the discharge unit 17 of the biaxial extruder 10, and the red bean expanded product 3 is obtained ("expansion step").

この小豆膨化物は所定の大きさを有する粒状物である。形状は円形、円筒形、紡錘形等の適宜である。小豆膨化物の大きさと形状は吐出部17の口金(吐出口)(図示せず)の大きさと形状に依存する。そこで、小豆膨化物の大きさを容易に把握するため、最大部分の大きさ、すなわち長軸方向の粒径が用いられる。小豆膨化物の長軸方向の粒径は、概ね2ないし10mm、好ましくは4ないし7mmとすることが望ましい。この範囲の大きさは、ちょうど米や豆類(小豆)の粒に近い大きさである。   This expanded bean product is a granular material having a predetermined size. The shape is appropriate such as a circular shape, a cylindrical shape, or a spindle shape. The size and shape of the expanded red beans depend on the size and shape of a base (discharge port) (not shown) of the discharge unit 17. Therefore, in order to easily grasp the size of the expanded red beans, the size of the maximum portion, that is, the particle size in the major axis direction is used. The particle size in the major axis direction of the red bean product is desirably about 2 to 10 mm, preferably 4 to 7 mm. The size of this range is close to that of rice or beans (red beans).

粒径が10mmを上回る大きさの場合、粒が大きくなり脆くなりやすい。また、水を含むとさらに脆くなり形状保持が容易ではなくなる。また、粒径が2mmを下回る大きさの場合、粒は小さく硬さも伴う。しかしながら、含水時、粒同士の隙間が小さくなる。そのため、後述の発酵工程に供するには不向きとなる。そこで、前述範囲の粒径が好例である。   When the particle size is larger than 10 mm, the particles are likely to be large and fragile. Moreover, when water is included, it becomes more brittle and shape maintenance becomes difficult. When the particle size is less than 2 mm, the particles are small and accompanied by hardness. However, when water is contained, the gap between grains becomes small. Therefore, it becomes unsuitable to use for the below-mentioned fermentation process. Thus, a particle size in the above range is a good example.

小豆粉砕工程、加熱混練工程、及び膨化工程を経て調製した小豆膨化物は、小豆そのものでも小豆の粉末でもない。小豆膨化物は、小豆の粉砕とともにデンプンのアルファ化が行われ、所定の大きさに再構成(賦形)した粒状物である。従って、小豆膨化物は、小豆または加熱済み小豆のあん粒子への対応、小豆の粉砕物の再構成(賦形)による糖化(後述)を大きく好転させるといえる。   The red bean expanded product prepared through the red bean crushing step, the heat-kneading step, and the expansion step is neither the red beans themselves nor the red beans powder. The bean puffed product is a granular material in which starch is pregelatinized along with the pulverization of the red beans and reconstituted (shaped) into a predetermined size. Therefore, it can be said that the expanded red beans greatly improves the saccharification (described later) by dealing with red beans or heated red beans, or by reconstitution (shaping) of the red beans.

次に、小豆膨化物に糖化酵素が添加され、小豆膨化物の液化及び糖化が行われる。そして、小豆膨化物から小豆由来の糖(膨化小豆糖化物)が産生される(「酵素反応工程」)。一連の流れが小豆発酵食品の第1実施形態の製造方法である。第1実施形態の製造方法において、糖化酵素には、アミラーゼ、グルコアミラーゼ等が使用される。さらに、小豆に由来するタンパク質の分解のためにプロテアーゼ等の分解酵素も添加される。当該酵素反応工程における温度、時間は、小豆膨化物の処理量、添加した酵素の種類等を勘案して、好適な条件に調整される。   Next, a saccharification enzyme is added to the red bean product, and the red bean product is liquefied and saccharified. Then, a red bean-derived sugar (swelled red bean saccharified product) is produced from the red bean expanded product (“enzyme reaction step”). A series of flows is the manufacturing method of the first embodiment of the red bean fermented food. In the production method of the first embodiment, amylase, glucoamylase or the like is used as the saccharifying enzyme. Furthermore, a degrading enzyme such as a protease is also added for degrading proteins derived from red beans. The temperature and time in the enzyme reaction step are adjusted to suitable conditions in consideration of the amount of adzuki bean paste treated, the type of enzyme added, and the like.

図2は第2実施形態の製造方法を示す概略図である。まず、第2実施形態の製造方法において、小豆の粉砕により最大粒径500μm以下の小豆原料粉末が得られる「小豆粉砕工程」、小豆原料粉末の二軸エクストルーダー内における加熱、混練により小豆混練物が得られる「加熱混練工程」、小豆混練物の二軸エクストルーダーの吐出部からの吐出時に膨化されて小豆膨化物が得られる「膨化工程」までの各工程は、前述の第1実施形態の製造方法と共通である。   FIG. 2 is a schematic view showing the manufacturing method of the second embodiment. First, in the production method of the second embodiment, a red bean raw material powder having a maximum particle size of 500 μm or less is obtained by crushing red beans, a red bean kneaded product by heating and kneading the red bean raw material powder in a biaxial extruder. The “heating kneading step” in which the bean kneaded product is discharged from the discharge section of the biaxial extruder and the “expansion step” in which the bean puffed product is obtained by being expanded at the time of discharging from the discharge portion of the biscuit extruder are as described in the first embodiment. It is common with the manufacturing method.

第2実施形態の製造方法の特徴として、米麹が調製されこれが小豆膨化物に添加される。蒸す等により加熱された米に麹菌(Aspergillus oryzaeに代表されるアスペルギルス属)が接種される。麹菌は米の表面で増殖して米麹が出来上がる。この米麹が前述の膨化工程までを終えて得られる小豆膨化物に添加される。そして、米麹の麹菌が分泌する酵素により小豆膨化物のデンプンは分解されて糖が産生される。すなわち、米麹を通じた小豆膨化物の発酵により、小豆由来の糖(膨化小豆糖化物)が得られる(「発酵工程」)。一連の流れが小豆発酵食品の第2実施形態の製造方法である。   As a feature of the production method of the second embodiment, rice bran is prepared and added to the red bean product. Rice heated by steaming or the like is inoculated with koji molds (genus Aspergillus typified by Aspergillus oryzae). Aspergillus oryzae grow on the surface of the rice and rice bran is completed. This rice bran is added to the red bean puffed product obtained after the aforementioned puffing step. The starch of the expanded red beans is decomposed by the enzyme secreted by the koji mold of rice bran to produce sugar. In other words, red bean-derived sugar (swelled red bean saccharified product) is obtained by fermentation of the red bean expanded product through rice bran (“fermentation process”). A series of flows is the manufacturing method of the second embodiment of the red bean fermented food.

図3は第3実施形態の製造方法を示す概略図である。同じく、図3に示す第3実施形態の製造方法においても、小豆の粉砕により最大粒径500μm以下の小豆原料粉末が得られる「小豆粉砕工程」、小豆原料粉末の二軸エクストルーダー内における加熱、混練により小豆混練物が得られる「加熱混練工程」、小豆混練物の二軸エクストルーダーの吐出部からの吐出時に膨化されて小豆膨化物が得られる「膨化工程」までの各工程は、前述の第1実施形態の製造方法と共通である。   FIG. 3 is a schematic view showing the manufacturing method of the third embodiment. Similarly, in the manufacturing method of the third embodiment shown in FIG. 3, a “red bean crushing step” in which a red bean raw material powder having a maximum particle size of 500 μm or less is obtained by crushing red beans, heating the red bean raw material powder in a biaxial extruder, Each process from the “heating kneading step” in which the red bean kneaded product is obtained by kneading and the “expansion step” in which the red bean kneaded product is expanded from the discharge part of the biaxial extruder to obtain the red bean expanded product is as described above. This is common with the manufacturing method of the first embodiment.

第3実施形態の製造方法の特徴として、小豆膨化物そのものに麹菌を接種して小豆麹が調製され、これが小豆膨化物に添加される。製造の途中または事前に作製された小豆膨化物に麹菌(Aspergillus oryzaeに代表されるアスペルギルス属)が接種される。なお、適量の水が小豆膨化物に添加される。麹菌は小豆膨化物の表面等で増殖して小豆麹が出来上がる。この小豆麹は前述の膨化工程までを終えて得られる小豆膨化物に添加される。そして、小豆麹の麹菌が分泌する酵素により小豆膨化物のデンプンは分解されて糖が産生される。すなわち、小豆麹を通じた小豆膨化物の発酵により、小豆由来の糖(膨化小豆糖化物)が得られる(「発酵工程」)。一連の流れが小豆発酵食品の第3実施形態の製造方法である。   As a feature of the manufacturing method of the third embodiment, a red bean koji is inoculated into the red bean puffed product itself to prepare a red bean koji, which is added to the red bean puffed product. A koji mold (Aspergillus genus typified by Aspergillus oryzae) is inoculated into a bean puffed product produced during or in advance of production. An appropriate amount of water is added to the expanded red beans. Aspergillus oryzae grows on the surface of the red bean puffed product, etc., and red bean cake is produced. This red bean koji is added to the red bean puffed product obtained after finishing the above-mentioned puffing step. And the starch of a red bean swelling thing is decomposed | disassembled with the enzyme which the koji mold of red bean koji secretes, and sugar is produced. In other words, red bean-derived sugar (swelled red bean saccharified product) is obtained by fermentation of the red bean expanded product through the red bean koji (“fermentation step”). A series of flows is the manufacturing method of the third embodiment of the red bean fermented food.

第3実施形態の小豆麹のもととなる小豆膨化物は、前述の二軸エクストルーダーによる加工を経ているため加熱済みである。従って、小豆膨化物のデンプンは既にアルファ化されていて、麹菌は利用しやすい状態にある。また、小豆膨化物は膨化の際に生じた多孔質構造であるため、細孔内に麹菌の菌糸等も入り込みやすく、理想的な足場ということができる。なお、小豆麹の調製に際し、麹菌の増殖のため適度な水も添加され、米麹と同様の温度、湿度等の制御下にて作製される。   The red bean expanded product that is the basis of the red bean paste of the third embodiment has been heated because it has been processed by the above-described biaxial extruder. Therefore, the starch of the red bean puff is already pregelatinized, and the koji mold is in an easy-to-use state. In addition, since the red bean puff has a porous structure generated during puffing, it is easy for hyphae hyphae to enter into the pores and can be said to be an ideal scaffold. In addition, when preparing the red bean koji, moderate water is also added for the growth of koji molds, and it is produced under the same control of temperature, humidity and the like as rice koji.

この明細書において、「麹菌」とは、アスペルギルス属の菌体(コウジカビ)そのものであり、菌糸や胞子の状態をいう。「米麹,小豆麹」とは、生育、増殖の足場となる米や小豆膨化物に麹菌を接種(播種)して適度に培養した状態の粒状物をいう。なお、「米麹,小豆麹」には、前述のとおり、自家培養としても、予め出来上がった市販の米麹等を別途購入(別途調達)して添加してもよい。   In this specification, the “gonococcus” is an Aspergillus genus cell body (Aspergillus oryzae) itself and refers to the state of hyphae or spores. “Rice rice cake, red bean rice cake” refers to a granular material in a state where rice or red bean swollen material that is used as a scaffold for growth and proliferation is inoculated (seeded) with koji mold and appropriately cultured. In addition, as described above, commercially available rice bran prepared in advance or separately purchased (separately procured) may be added to “rice koji, red bean koji”.

米麹または小豆麹を小豆膨化物に添加して行う発酵は、一般的な酒造、味噌や醤油の製造の温度、湿度、時間等と同様の条件である。ここで、前述のとおり、小豆膨化物は長軸方向の粒径を概ね2ないし10mm、好ましくは4ないし7mmとする粒状の有形物である。小豆膨化物は米麹または小豆麹とほぼ同様の大きさである。そのため、小豆膨化物と、米麹または小豆麹は、均一に混合されやすい。加えて、各粒の間に適度な間隙が生じる。この間隙を通じて空気が流通する。それゆえ、麹菌の呼吸に必要な酸素は供給される。麹菌の増殖に必要な酸素の供給は、小豆膨化物の使用により大きく改善される。この点、小豆のデンプンを糊状にして、ここに麹菌を接種する手法から大きく前進したといえる。   Fermentation performed by adding rice bran or red bean paste to the red bean expanded product is under the same conditions as temperature, humidity, time, etc. for producing general sake brewing, miso and soy sauce. Here, as described above, the adzuki bean product is a granular tangible material having a major axis direction particle size of approximately 2 to 10 mm, preferably 4 to 7 mm. Azuki bean product is approximately the same size as rice bran or red bean porridge. Therefore, the red bean expanded product and the rice bran or red bean paste are easily mixed uniformly. In addition, moderate gaps are created between the grains. Air flows through this gap. Therefore, the oxygen necessary for the respiration of Neisseria gonorrhoeae is supplied. The supply of oxygen necessary for the growth of Aspergillus is greatly improved by the use of a red bean product. In this regard, it can be said that the method has been greatly advanced from the method in which the starch of red beans is pasty and inoculated with koji molds.

米麹が使用される第2実施形態の製造方法では、麹菌は米のデンプンを利用できるため麹菌の増殖は速い。そこで、小豆膨化物の発酵も速まる。ただし、米のデンプン由来の糖も混入する。そのため、小豆本来の発酵産物の濃度が希釈される。これに対し、小豆麹が使用される第3実施形態の製造方法では、麹菌以外すべて小豆由来の成分である。そのため、小豆由来成分の濃度の高い小豆発酵食品を得ることができる。   In the production method of the second embodiment in which rice bran is used, the koji mold grows fast because koji mold can utilize rice starch. Therefore, the fermentation of the red bean expanded product is also accelerated. However, sugar derived from starch of rice is also mixed. Therefore, the concentration of the original fermentation product of red beans is diluted. In contrast, in the manufacturing method of the third embodiment in which red bean koji is used, all components other than koji mold are derived from red beans. Therefore, an adzuki bean fermented food with a high concentration of the red bean-derived component can be obtained.

これらの点から、効率的な発酵を所望するならば、第2実施形態の米麹を使用が好例である。もしくは、極力小豆の成分または小豆由来の成分のみの抽出を所望するのならば、第3実施形態の小豆麹の使用が好例である。このように、既存の酒造、味噌や醤油の製造技術を効果的に活用して小豆由来の糖(小豆発酵食品)、つまり膨化小豆糖化物を得ることができる。しかも、濃度に応じての使い分けも可能である。   From these points, if efficient fermentation is desired, use of rice bran of the second embodiment is a good example. Alternatively, if it is desired to extract only the components of red beans or the components derived from red beans as much as possible, the use of the red bean paste of the third embodiment is a good example. In this way, sugars derived from red beans (red bean fermented foods), that is, puffed red bean saccharified products, can be obtained by effectively utilizing existing techniques for producing sake, miso and soy sauce. In addition, it is possible to selectively use depending on the concentration.

[粉砕装置の選択]
発明者らは、小豆原料粉末を調製するに当たり、粉砕装置の違いによる影響を検討した。粉砕装置として、気流式粉砕機(ミナミ産業株式会社製,ミナクロンミル)とカッティングミル(株式会社レッチェ製,型番SM100C)の2種類を用いた。そして、小豆を粉砕して小豆原料粉末を得るに際し、粉砕装置に起因する粒度の相違を検証した。原料となる小豆は北海道産(品種:エリモショウズ)、水分含量約15%とし、両粉砕装置とも共通の原料とした。両装置を用いて粉砕した後、生じた小豆粉末の粒度分布を測定した。気流式粉砕機により粉砕した小豆粉末はそのまま測定に供した。カッティングミルにより粉砕した小豆粉末は、JIS Z 8801−1(2006)に準拠した30mesh(目開き500μm)の篩により篩別し、大きい側の粒を除去した。
[Crusher selection]
Inventors examined the influence by the difference in a grinding | pulverization apparatus in preparing azuki bean raw material powder. Two types of pulverizers were used: an airflow pulverizer (Minami Sangyo Co., Ltd., Minaklon Mill) and a cutting mill (manufactured by Lecce Co., Ltd., model number SM100C). And when the red beans were pulverized to obtain the red bean raw material powder, the difference in particle size caused by the pulverizer was verified. The raw red beans were produced in Hokkaido (variety: Erimoshozu) and had a moisture content of about 15%, and were used as a common raw material for both crushers. After grinding using both devices, the particle size distribution of the resulting red bean powder was measured. The red bean powder pulverized by the airflow pulverizer was used for measurement as it was. The red bean powder pulverized by the cutting mill was sieved with a 30 mesh (aperture 500 μm) sieve in accordance with JIS Z8801-1 (2006) to remove the large grains.

図5は気流式粉砕機、図6はカッティングミルの粒度分布図であり、レーザー回折・散乱式 粒子径・粒度分布測定装置(日機装株式会社製,MT3300)による測定結果である。平均粒径は、同測定装置を用いてレーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径とした。   FIG. 5 is a particle size distribution diagram of an air-flow type pulverizer and FIG. 6 is a particle size distribution diagram of a cutting mill, which is a measurement result by a laser diffraction / scattering particle diameter / particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., MT3300). The average particle diameter was the particle diameter at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method using the same measuring apparatus.

気流式粉砕機の粒度分布図(図5)は単一のピークを有し、最大粒径(累積100%)は208.3μm、平均粒径(累積50%)は43.91μmであった。カッティングミルの粒度分布図(図6)は2つのピークを有し、最大粒径(累積100%)は1000μmを超過した。平均粒径(累積50%)は66.76μmであった。双方の粒度分布図の比較から明らかであるように、気流式粉砕機を用いた粉砕の方が、粉砕により生じた小豆粉末の均一性、ばらつきの少なさ、粒子の細かさにおいて優れている。特に、一回の粉砕処理により比較的均質な小豆粉末を得ることができるため、気流式粉砕の利点は大きい。   The particle size distribution diagram (FIG. 5) of the airflow crusher had a single peak, the maximum particle size (cumulative 100%) was 208.3 μm, and the average particle size (cumulative 50%) was 43.91 μm. The particle size distribution diagram of the cutting mill (FIG. 6) had two peaks, and the maximum particle size (cumulative 100%) exceeded 1000 μm. The average particle size (cumulative 50%) was 66.76 μm. As is clear from the comparison of both particle size distribution diagrams, pulverization using an airflow pulverizer is superior in the uniformity, small variation, and fineness of the red bean powder produced by pulverization. In particular, since a relatively homogeneous red bean powder can be obtained by a single pulverization treatment, the advantage of airflow pulverization is great.

両図の粒度分布図から、10ないし100μmの範囲だけ着目すると傾向の相違は小さいようにも思われる。しかし、粉砕しきれていない500μm以上の粒子は無視できず、この除去のための篩別の手間が必要となる。このことからも、気流式粉砕機を用いた粉砕は簡便である。   From the particle size distribution diagrams of both figures, the difference in tendency seems to be small when focusing on the range of 10 to 100 μm. However, particles having a size of 500 μm or more that have not been pulverized cannot be ignored, and it is necessary to perform sieving work for the removal. Also from this fact, pulverization using an airflow pulverizer is simple.

図7は気流式粉砕機により小豆を粉砕して得た小豆原料粉末のデンプンの光学顕微鏡写真である。デンプンを見やすくするため、ヨウ素溶液により染色した。この写真からわかるように、細かな粒が散在している。図示しないが、小豆デンプンのあん粒子の場合、写真の粒が凝集した形態であり、大きさは明らかに相違した。従って、図7の写真中の粒はあん粒子の構造が砕けて生じた個々のデンプンと考える。   FIG. 7 is an optical micrograph of starch of red bean raw material powder obtained by pulverizing red beans with an airflow crusher. In order to make the starch easy to see, it was stained with an iodine solution. As you can see from this picture, fine grains are scattered. Although not shown, in the case of red bean starch anion particles, the grains in the photograph were agglomerated and the sizes were clearly different. Accordingly, the grains in the photograph of FIG. 7 are considered to be individual starches produced by breaking the structure of the bean particles.

[小豆膨化物の作製]
前述の「粉砕装置の選択」の結果を踏まえ、発明者らは気流式粉砕機を小豆の粉砕の最適と判断し、以降の実験に必要な小豆原料粉末を調製した。この小豆原料粉末を二軸エクストルーダー内に投入して5種類の小豆膨化物を作製した(試作例T1,T2,T3,T4,及びT5)。試作例T1,T2,T3,T4は、株式会社スエヒロEPM製,EA−20を使用した。試作例T5は、同社製,α−100を使用した。
[Production of Azuki Bean Puffed Material]
Based on the result of the above-mentioned “selection of pulverizer”, the inventors determined that the air-flow pulverizer is optimal for pulverizing red beans, and prepared the red bean raw material powder necessary for the subsequent experiments. This red bean raw material powder was put into a biaxial extruder to produce five kinds of red bean expanded products (prototype examples T1, T2, T3, T4, and T5). Prototype examples T1, T2, T3, and T4 used EA-20 manufactured by Suehiro EPM Co., Ltd. Prototype Example T5 uses α-100 made by the same company.

〈試作例T1〉
小豆原料粉末を二軸エクストルーダー(EA−20)内に20kg/hrの供給量にて投入した。同時に、混練の都合から、少量の水も添加した。スクリュの回転数は180rpmに設定し、二軸エクストルーダー内の温度は中間部分を約80℃、吐出部部分を約120℃とした。小豆原料粉末は二軸エクストルーダー内で小豆混練物に転化し、吐出部の口金(吐出口)(口径3mm)から押し出し時の膨化と同時にカッターにより切断して小豆膨化物を得た。当該小豆膨化物(T1)は、長軸方向の粒径13mm、短軸方向の粒径約8mmの大きさであった。また、小豆膨化物(T1)の嵩比重は0.143g/mLであった。
<Prototype Example T1>
Azuki bean raw material powder was charged into a biaxial extruder (EA-20) at a supply rate of 20 kg / hr. At the same time, a small amount of water was also added for convenience of kneading. The number of rotations of the screw was set to 180 rpm, and the temperature in the biaxial extruder was about 80 ° C. in the middle part and about 120 ° C. in the discharge part. The red bean raw material powder was converted into a red bean kneaded product in a biaxial extruder and cut with a cutter simultaneously with expansion at the time of extrusion from the base (discharge port) (diameter 3 mm) of the discharge part to obtain an expanded red bean product. The expanded bean paste (T1) had a particle size of 13 mm in the major axis direction and a particle size of about 8 mm in the minor axis direction. Moreover, the bulk specific gravity of the red bean expanded product (T1) was 0.143 g / mL.

〈試作例T2〉
小豆原料粉末を二軸エクストルーダー(EA−20)内に25kg/hrの供給量にて投入した。同時に、混練の都合から、少量の水も添加した。スクリュの回転数は200rpmに設定し、二軸エクストルーダー内の温度は中間部分を約80℃、吐出部部分を約137℃とした。小豆原料粉末は二軸エクストルーダー内で小豆混練物に転化し、吐出部の口金(吐出口)(口径1mm)から押し出し時の膨化と同時にカッターにより切断して小豆膨化物を得た。当該小豆膨化物(T2)はほぼ球状であり粒径約2ないし3mmの大きさであった。また、小豆膨化物(T2)の嵩比重は0.288g/mLであった。
<Prototype T2>
Azuki bean raw material powder was charged into a biaxial extruder (EA-20) at a supply rate of 25 kg / hr. At the same time, a small amount of water was also added for convenience of kneading. The number of rotations of the screw was set to 200 rpm, and the temperature in the biaxial extruder was about 80 ° C. at the middle part and about 137 ° C. at the discharge part. The red bean raw material powder was converted into a red bean kneaded product in a biaxial extruder and cut with a cutter simultaneously with expansion at the time of extrusion from the base (discharge port) (caliber 1 mm) of the discharge part to obtain an expanded red bean product. The expanded bean paste (T2) was almost spherical and had a particle size of about 2 to 3 mm. Moreover, the bulk specific gravity of the expanded red beans (T2) was 0.288 g / mL.

〈試作例T3〉
小豆原料粉末を二軸エクストルーダー(EA−20)内に20kg/hrの供給量にて投入した。同時に、混練の都合から、少量の水も添加した。スクリュの回転数は180rpmに設定し、二軸エクストルーダー内の温度は中間部分を約80℃、吐出部部分を約132℃とした。小豆原料粉末は二軸エクストルーダー内で小豆混練物に転化し、吐出部の口金(吐出口)(口径2mm)から押し出し時の膨化と同時にカッターにより切断して小豆膨化物を得た。当該小豆膨化物(T3)は、長軸方向の粒径約4.5mm、短軸方向の粒径約4mmの大きさであった。また、小豆膨化物(T3)の嵩比重は0.211g/mLであった。
<Prototype T3>
Azuki bean raw material powder was charged into a biaxial extruder (EA-20) at a supply rate of 20 kg / hr. At the same time, a small amount of water was also added for convenience of kneading. The number of rotations of the screw was set to 180 rpm, and the temperature in the biaxial extruder was about 80 ° C. in the middle part and about 132 ° C. in the discharge part. The red bean raw material powder was converted into a red bean kneaded product in a biaxial extruder and cut with a cutter simultaneously with the expansion at the time of extrusion from the die (discharge port) (caliber 2 mm) of the discharge part to obtain an expanded red bean product. The expanded bean paste (T3) had a particle size of about 4.5 mm in the major axis direction and about 4 mm in the minor axis direction. Moreover, the bulk specific gravity of the red bean expanded product (T3) was 0.211 g / mL.

〈試作例T4〉
小豆原料粉末を二軸エクストルーダー(EA−20)内に20kg/hrの供給量にて投入した。同時に、混練の都合から、少量の水も添加した。スクリュの回転数は200rpmに設定し、二軸エクストルーダー内の温度は中間部分を約81℃、吐出部部分を約125℃とした。小豆原料粉末は二軸エクストルーダー内で小豆混練物に転化し、吐出部の口金(吐出口)(口径2.5mm)から押し出し時の膨化と同時にカッターにより切断して小豆膨化物を得た。当該小豆膨化物(T4)は、長軸方向の粒径約7mm、短軸方向の粒径約5mmの大きさであった。また、小豆膨化物(T3)の嵩比重は0.204g/mLであった。
<Prototype T4>
Azuki bean raw material powder was charged into a biaxial extruder (EA-20) at a supply rate of 20 kg / hr. At the same time, a small amount of water was also added for convenience of kneading. The rotation speed of the screw was set to 200 rpm, and the temperature in the biaxial extruder was about 81 ° C. in the middle part and about 125 ° C. in the discharge part. The red bean raw material powder was converted into a red bean kneaded product in a biaxial extruder and cut with a cutter simultaneously with expansion at the time of extrusion from the base (discharge port) (caliber 2.5 mm) of the discharge part to obtain an expanded red bean product. The expanded bean paste (T4) had a particle size of about 7 mm in the major axis direction and about 5 mm in the minor axis direction. Moreover, the bulk specific gravity of the expanded red beans (T3) was 0.204 g / mL.

〈試作例T5〉
試作例T1ないしT4の小豆膨化物を作製した発明者らは製造量を増加するべく、試作例T5の作製に際し、より大きな処理量のエクストルーダーを使用した。小豆原料粉末を二軸エクストルーダー(α−100)内に80kg/hrの供給量にて投入した。同時に、混練の都合から、少量の水も添加した。スクリュの回転数は150rpmに設定し、二軸エクストルーダー内の温度は中間部分を約100℃、吐出部部分を約120℃とした。小豆原料粉末は二軸エクストルーダー内で小豆混練物に転化し、吐出部の口金(吐出口)(口径1.5mm)から押し出し時の膨化と同時にカッターにより切断して小豆膨化物を得た。当該小豆膨化物(T5)はほぼ球状であり粒径約4ないし5mmの大きさであった。また、小豆膨化物(T5)の嵩比重は0.292g/mLであった。
<Prototype T5>
The inventors who produced the red bean expanded products of prototype examples T1 to T4 used an extruder with a larger throughput in producing prototype example T5 in order to increase the production amount. Azuki bean raw material powder was charged into a biaxial extruder (α-100) at a supply rate of 80 kg / hr. At the same time, a small amount of water was also added for convenience of kneading. The rotation speed of the screw was set to 150 rpm, and the temperature in the biaxial extruder was about 100 ° C. at the middle part and about 120 ° C. at the discharge part. The red bean raw material powder was converted into a red bean kneaded product in a biaxial extruder and cut with a cutter simultaneously with expansion at the time of extrusion from the base (discharge port) (caliber 1.5 mm) of the discharge part to obtain an expanded red bean product. The expanded bean paste (T5) was almost spherical and had a particle size of about 4 to 5 mm. Moreover, the bulk specific gravity of the red bean expanded product (T5) was 0.292 g / mL.

〈小豆膨化物の作製結果〉
図8(a)は試作例T1、同(b)はT2、同(c)はT3であり、図9(a)は試作例T4、同(b)はT5である。撮影条件のばらつき等により実際の大きさは把握しにくいものの、いずれの試作例とも、ほぼ大きさ及び形状に揃った粒状物(有形物)として仕上がった。各写真から容易に把握されるように、いずれも豆や米の粒に近似した大きさ、形状である。そのため、麹菌が接種される米等と比較して違和感は少ない。二軸エクストルーダーを使用して小豆原料粉末から小豆膨化物を得る製造方法によると、吐出部の口金部品の交換等により、容易に所望の大きさ、形状の小豆膨化物を得ることができる。さらに、連続処理が可能なため、生産効率も良い。小豆膨化物は二軸エクストルーダー内の加熱を経ているため、小豆膨化物内のデンプンのアルファ化も進む。この小豆膨化物は水分含量も少ないことから保存にも好都合である。そこで、予め半製品の状態で作り置くことも可能である。
<Production results of the red bean puffed product>
8A shows a prototype example T1, FIG. 8B shows T2, and FIG. 8C shows T3, FIG. 9A shows a prototype example T4, and FIG. 9B shows T5. Although the actual size is difficult to grasp due to variations in shooting conditions, etc., all of the prototypes were finished as granular materials (tangible materials) having almost the same size and shape. As is easily grasped from each photograph, the size and shape are similar to those of beans and rice grains. Therefore, there is little discomfort compared with rice etc. inoculated with Neisseria gonorrhoeae. According to the production method for obtaining a red bean expanded product from red bean raw material powder using a biaxial extruder, a red bean expanded product having a desired size and shape can be easily obtained by replacing the base part of the discharge part. Furthermore, since continuous processing is possible, production efficiency is also good. Since the bean puffed product has been heated in the biaxial extruder, the starch in the red bean puffed product is also pregelatinized. This red bean puffed product has a low water content and is convenient for storage. Therefore, it is possible to make it in a semi-finished product in advance.

[湿潤化評価]
小豆膨化物に麹菌を接種する状況を想定すると、湿潤状態である。当該条件下においても小豆膨化物はその形状を安易に崩壊することなく保持し続けることが必要である。そこで、試作例の小豆膨化物に対して湿潤化試験を行った。試作例T1ないしT5の小豆膨化物を10gずつ秤量し、200mLのビーカー内に投入した。図10の上段はその様子である。ビーカーに付した数字が試作例を示す。続いて、各ビーカーの小豆膨化物が浸る量の50℃の湯を注入し、緩やかに攪拌した。図10の下段はその様子である。
[Wetting evaluation]
Assuming a situation in which the koji mold is inoculated into the azuki bean product, it is in a wet state. Even under such conditions, the red bean expanded product needs to keep its shape without easily collapsing. Therefore, a wetting test was performed on the prototype red bean product. Ten grams of the bean puffed products of prototype examples T1 to T5 were weighed and put into a 200 mL beaker. The upper part of FIG. The number attached to the beaker shows a prototype. Subsequently, 50 ° C. hot water was poured in such an amount that the bean swelling of each beaker was immersed, and the mixture was gently stirred. The lower part of FIG.

試作例T1の嵩比重は他よりも低いため、湯を加えても浮き上がった。その分、攪拌を円滑に行うことができなかった。試作例T2ないしT4については、不用意な浮き上がりも無く、攪拌を行うことができた。なお、試作例T4については、攪拌時にやや重く感じた。試作例T5は、試作例T2とT3の中間の大きさを目標に設計した小豆膨化物である。そのため、試作例T2とT3と同程度の感触により攪拌することができた。   Since the bulk specific gravity of Prototype Example T1 was lower than the others, it floated even when hot water was added. Therefore, stirring could not be performed smoothly. With respect to the prototype examples T2 to T4, stirring could be performed without inadvertent lifting. The prototype T4 felt slightly heavy during stirring. Prototype example T5 is an expanded red bean product designed with the goal of intermediate size between trial examples T2 and T3. Therefore, it was able to be stirred with the same degree of feeling as the prototype examples T2 and T3.

湿潤化試験の結果を踏まえると、試作例T1の小豆膨化物の粒径ではやや大きすぎといえる。糖化時の効率化を勘案するのならば、小豆膨化物の粒径は試作例T1よりも小さくすることが望ましい。そこで、最小の試作例T2を下限として、粒径の範囲は2ないし10mmである。   Considering the results of the wetting test, it can be said that the particle size of the red bean puffed product of Prototype Example T1 is slightly too large. If the efficiency improvement at the time of saccharification is taken into consideration, it is desirable that the particle size of the red bean expanded product be smaller than that of the trial example T1. Therefore, the particle size range is 2 to 10 mm, with the minimum prototype T2 being the lower limit.

[小豆膨化物の糖化試験]
試作例を通じて小豆膨化物を作製した発明者らは、前出の試作例T5の小豆膨化物を使用し、第1ないし第3実施形態に対応する3種類の「糖化試験1,2,3」に供した。糖化(酵素または麹菌の作用)により生じた糖の定量に際し、HPLC(高速液体クロマトグラフィー)を使用し、予め濃度を調製したグルコース、マルトースのピーク面積を同HPLCにて測定し、糖量の検量線を作成した上でHPLCのピーク面積同士を比較し糖の量を算出した。測定に際し、HPLCのカラムにSugar−D(ナカライテスク株式会社製)、溶離液に70%アセトニトリルを用い40℃にて流通した。検出器は示差屈折率計を用いた。当該測定において、グルコースは単糖の代表として、マルトースは二糖の代表として選択した。糖化試験1ないし3の結果は次に示す表1である。
[Saccharification test of Azuki bean product]
The inventors who produced the bean puffed product through the prototype example used the red bean puffed product of the above-described prototype example T5 and used three types of “saccharification tests 1, 2, and 3” corresponding to the first to third embodiments. It was used for. When quantifying the sugar produced by saccharification (the action of an enzyme or Neisseria gonorrhoeae), HPLC (high performance liquid chromatography) is used, and the peak areas of glucose and maltose prepared in advance are measured with the same HPLC, and the amount of sugar is calibrated. After creating a line, the peak areas of HPLC were compared to calculate the amount of sugar. In the measurement, Sugar-D (manufactured by Nacalai Tesque Co., Ltd.) was used for the HPLC column and 70% acetonitrile was used for the eluent, and the mixture was distributed at 40 ° C. A differential refractometer was used as the detector. In the measurement, glucose was selected as a representative monosaccharide and maltose was selected as a representative disaccharide. The results of saccharification tests 1 to 3 are shown in Table 1 below.

〈糖化試験1:第1実施形態に対応(酵素添加)〉
試作例T5の小豆膨化物を36g秤量し、ここに水100mL、αアミラーゼ(天野エンザイム株式会社製,クライスターゼT10S)9000U以上とプロテアーゼ(同社製,プロテアーゼ A「アマノ」SD)16500U以上を添加した。そして、1時間に1回攪拌しながら60℃、6時間静置した。反応後、溶液を分取し前述のHPLCにより糖の量を測定した。
<Saccharification test 1: Corresponding to the first embodiment (addition of enzyme)>
36 g of the red bean puffed product of Prototype Example T5 was weighed, and 100 mL of water, 9000 U of α-amylase (manufactured by Amano Enzyme Inc., Christase T10S) and 16500 U of protease (manufactured by the company, Protease A “Amano” SD) were added thereto. . And it left still at 60 degreeC for 6 hours, stirring once per hour. After the reaction, the solution was separated and the amount of sugar was measured by the above-mentioned HPLC.

比較として、試作例T5の小豆膨化物を36g秤量し、ここに水100mLを注入するとともに、前出の酵素を添加せず、60℃、6時間静置した。また、対照として、小豆膨化物を使用せずに水100mLに前出の酵素を添加して60℃、6時間静置した。比較と対照についても前述のHPLCにより糖の量を測定した。   As a comparison, 36 g of the red bean puffed product of Prototype Example T5 was weighed, and 100 mL of water was poured therein, and the above enzyme was not added, and the mixture was allowed to stand at 60 ° C. for 6 hours. Moreover, as a control, the above-mentioned enzyme was added to 100 mL of water without using the red bean product, and the mixture was allowed to stand at 60 ° C. for 6 hours. For the comparison and control, the amount of sugar was measured by the aforementioned HPLC.

〈糖化試験2:第2実施形態に対応(米麹添加)〉
試作例T5の小豆膨化物を22.5g秤量し、米麹(株式会社ビオック製,清酒用種麹経済酒用で製麹)13.5g(以降、米麹Aと称す。)、及び水100mLを混合した。当該混合物を1時間に1回攪拌しながら60℃、6時間静置した。発酵後、溶液を分取し前述のHPLCにより糖の量を測定した(米麹Aの発酵)。また、前出の米麹を「株式会社ビオック製,清酒用種麹白銀」(以降、米麹Bと称す。)に変更し、その他の条件、添加量を米麹Aの発酵と同一として発酵した。発酵後、溶液を分取し前述のHPLCにより糖の量を測定した(米麹Bの発酵)。
<Saccharification test 2: Corresponding to the second embodiment (addition of rice bran)>
Weighing 22.5 g of the red bean product of Prototype Example T5, 13.5 g of rice bran (produced by Bioc Co., Ltd., made with sake for sake sake), and 100 mL of water. Were mixed. The mixture was allowed to stand at 60 ° C. for 6 hours with stirring once per hour. After fermentation, the solution was fractionated and the amount of sugar was measured by the aforementioned HPLC (fermentation of rice bran A). In addition, the previous rice bran was changed to “BIOC Co., Ltd., sake brewed rice white silver” (hereinafter referred to as “rice koji B”), and other conditions and addition amounts were the same as those for rice koji A fermentation. did. After fermentation, the solution was collected and the amount of sugar was measured by HPLC as described above (fermentation of rice bran B).

〈糖化試験3:第3実施形態に対応(小豆麹添加)〉
はじめに、試作例T5の小豆膨化物を15g秤量し、ここに麹菌(株式会社ビオック製,白金)を約1.5mgと適宜の水を添加して35℃、38時間静置した。こうして小豆膨化物に麹菌が増殖した小豆麹を調製した。
<Saccharification test 3: Corresponding to the third embodiment (addition of red soybean cake)>
First, 15 g of the bean puffed product of Prototype Example T5 was weighed, and about 1.5 mg of Aspergillus (produced by Bioc Co., Ltd., platinum) and appropriate water were added thereto and allowed to stand at 35 ° C. for 38 hours. In this way, a red bean koji in which koji molds were grown on the red bean puffed product was prepared.

次に、試作例T5の小豆膨化物を22.5g秤量し、前述の調製により得た小豆麹13.5g、及び水100mLを混合した。当該混合物を1時間に1回攪拌しながら60℃、6時間静置した。発酵後、溶液を分取し前述のHPLCにより糖の量を測定した(小豆麹の発酵)。   Next, 22.5 g of the red bean expanded product of Prototype Example T5 was weighed, and 13.5 g of red bean koji obtained by the above preparation and 100 mL of water were mixed. The mixture was allowed to stand at 60 ° C. for 6 hours with stirring once per hour. After fermentation, the solution was fractionated and the amount of sugar was measured by HPLC as described above (fermentation of red soybean cake).

Figure 2017225393
Figure 2017225393

〈糖化試験の結果と考察〉
生成したグルコース及びマルトースは単位体積当たりの重量パーセント濃度(wt%/vol)として表記した。同表1より、酵素による小豆膨化物の液化及び糖化を確認した。並びに米麹、小豆麹の添加においても小豆膨化物の液化及び糖化も確認した。特に、米麹、小豆麹の接種において、麹菌の増殖を阻害する要因は見当たらず、順調に発酵を促進することができた。
<Results and discussion of saccharification test>
The produced glucose and maltose were expressed as weight percent concentration per unit volume (wt% / vol). From Table 1, liquefaction and saccharification of the red bean swelled product by enzyme were confirmed. In addition, liquefaction and saccharification of the red bean swell were also confirmed in the addition of rice bran and red bean koji. In particular, in the inoculation of rice bran and red bean koji, there was no factor inhibiting the growth of koji mold, and the fermentation could be promoted smoothly.

すなわち、小豆膨化物は、麹菌増殖の足場としても良好であるとともに、麹菌の呼吸も容易とする理想的な材料であるといえる。小豆全体を粉砕して小豆膨化物を調製可能であることから、小豆の成分の全てを得ることができ、小豆中の未利用成分の活用も容易となる。また、麹菌の発酵代謝産物も小豆の成分に加わることから、より栄養価や薬理効果も期待できる。   That is, it can be said that the bean puffed product is an ideal material that is good as a scaffold for gonococcal growth and also facilitates gonococcal respiration. Since the whole red beans can be pulverized to prepare an expanded red beans, all the components of the red beans can be obtained, and the utilization of unused components in the red beans is facilitated. Moreover, since the fermented metabolite of Aspergillus is added to the red beans component, more nutritional value and pharmacological effect can be expected.

本発明は、小豆を粉末状体から小豆膨化物に加工することによって小豆の粉末の賦形化を可能とした。そこで、麹菌のための足場を作り出すことに成功し、麹菌の効率の良い増殖を可能とすることができた。従って、小豆の成分の酵素処理、麹菌による発酵を通じて新規な糖化産物を作り出すことができる。   The present invention makes it possible to shape the red bean powder by processing the red beans from the powder form into an expanded red beans. Therefore, we succeeded in creating a scaffold for Neisseria gonorrhoeae and enabled efficient multiplication of Neisseria gonorrhoeae. Therefore, a novel saccharification product can be produced through enzyme treatment of red bean components and fermentation by Aspergillus.

Claims (6)

小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、
前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、
前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、
前記小豆膨化物に糖化酵素を添加し前記小豆膨化物を液化及び糖化させて小豆由来の糖を得る酵素反応工程とを備える
ことを特徴とする小豆発酵食品の製造方法。
An azuki bean pulverizing step for obtaining a red bean raw material powder having a maximum particle size of 500 μm or less by crushing the azuki beans;
A heating and kneading step of obtaining a red bean kneaded product by kneading while heating the red bean raw material powder in a biaxial extruder,
An expansion step of expanding the red bean kneaded product at the time of discharge from the discharge portion of the biaxial extruder to obtain an expanded red bean;
A method for producing a fermented red bean food, comprising: an enzyme reaction step of adding a saccharification enzyme to the expanded red beans and liquefying and saccharifying the expanded red beans to obtain sugar derived from the red beans.
小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、
前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、
前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、
蒸した米に麹菌を接種して調製した米麹を前記小豆膨化物に添加し、前記米麹を通じた前記小豆膨化物の発酵により小豆由来の糖を得る発酵工程とを備える
ことを特徴とする小豆発酵食品の製造方法。
An azuki bean pulverizing step for obtaining a red bean raw material powder having a maximum particle size of 500 μm or less by crushing the azuki beans;
A heating and kneading step of obtaining a red bean kneaded product by kneading while heating the red bean raw material powder in a biaxial extruder,
An expansion step of expanding the red bean kneaded product at the time of discharge from the discharge portion of the biaxial extruder to obtain an expanded red bean;
A rice bran prepared by inoculating steamed rice with koji mold is added to the azuki bean product, and a fermentation process for obtaining a sugar derived from a red bean by fermentation of the azuki bean product through the rice koji is provided. A method for producing azuki bean fermented food.
小豆を粉砕して最大粒径を500μm以下とする小豆原料粉末を得る小豆粉砕工程と、
前記小豆原料粉末を二軸エクストルーダー内にて加熱しながら混練して小豆混練物を得る加熱混練工程と、
前記小豆混練物を前記二軸エクストルーダーの吐出部からの吐出時に膨化させて小豆膨化物を得る膨化工程と、
前記小豆膨化物に麹菌を接種して調製した小豆麹を、前記小豆膨化物に添加し、前記小豆麹を通じた前記小豆膨化物の発酵により小豆由来の糖を得る発酵工程とを備える
ことを特徴とする小豆発酵食品の製造方法。
An azuki bean pulverizing step for obtaining a red bean raw material powder having a maximum particle size of 500 μm or less by crushing the azuki beans;
A heating and kneading step of obtaining a red bean kneaded product by kneading while heating the red bean raw material powder in a biaxial extruder,
An expansion step of expanding the red bean kneaded product at the time of discharge from the discharge portion of the biaxial extruder to obtain an expanded red bean;
A fermentation step of adding a red bean koji prepared by inoculating koji mold to the red bean paste to the red bean paste and obtaining sugar derived from the red beans by fermentation of the red bean paste through the red bean paste. A method for producing a fermented red bean food.
前記小豆粉砕工程における前記小豆の粉砕が気流粉砕機による粉砕である請求項1ないし3のいずれか1項に記載の小豆発酵食品の製造方法。   The method for producing an adzuki bean fermented food according to any one of claims 1 to 3, wherein the crushing of the azuki beans in the azuki beans crushing step is crushing by an airflow crusher. 前記小豆原料粉末が、最大粒径を500μm以下、かつ平均粒径を100μm以下である請求項1ないし4のいずれか1項に記載の小豆発酵食品の製造方法。   The method for producing a red bean fermented food according to any one of claims 1 to 4, wherein the red bean raw material powder has a maximum particle size of 500 µm or less and an average particle size of 100 µm or less. 前記小豆膨化物における長軸方向の粒径が、2ないし10mmである請求項1ないし5のいずれか1項に記載の小豆発酵食品の製造方法。   The method for producing an adzuki bean fermented food according to any one of claims 1 to 5, wherein a particle size in a major axis direction of the adzuki bean product is 2 to 10 mm.
JP2016123675A 2016-06-22 2016-06-22 Manufacturing method of fermented red bean food Active JP6823947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016123675A JP6823947B2 (en) 2016-06-22 2016-06-22 Manufacturing method of fermented red bean food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123675A JP6823947B2 (en) 2016-06-22 2016-06-22 Manufacturing method of fermented red bean food

Publications (2)

Publication Number Publication Date
JP2017225393A true JP2017225393A (en) 2017-12-28
JP6823947B2 JP6823947B2 (en) 2021-02-03

Family

ID=60888811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123675A Active JP6823947B2 (en) 2016-06-22 2016-06-22 Manufacturing method of fermented red bean food

Country Status (1)

Country Link
JP (1) JP6823947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981980A (en) * 2019-12-11 2020-04-10 黑龙江八一农垦大学 Extraction process of small red bean starch
JP7471920B2 (en) 2020-06-02 2024-04-22 井村屋グループ株式会社 Manufacturing method for adzuki bean gel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221078B2 (en) * 1972-01-24 1977-06-08
JP2006122002A (en) * 2004-10-29 2006-05-18 Takahashi Shoten:Kk Malt and seasoning using broad bean and red bean as raw materials
JP2014226083A (en) * 2013-05-22 2014-12-08 井村屋グループ株式会社 Airflow pulverized adzuki bean food product
JP2016154452A (en) * 2015-02-23 2016-09-01 井村屋グループ株式会社 Adzuki bean puffed food

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221078B2 (en) * 1972-01-24 1977-06-08
JP2006122002A (en) * 2004-10-29 2006-05-18 Takahashi Shoten:Kk Malt and seasoning using broad bean and red bean as raw materials
JP2014226083A (en) * 2013-05-22 2014-12-08 井村屋グループ株式会社 Airflow pulverized adzuki bean food product
JP2016154452A (en) * 2015-02-23 2016-09-01 井村屋グループ株式会社 Adzuki bean puffed food

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981980A (en) * 2019-12-11 2020-04-10 黑龙江八一农垦大学 Extraction process of small red bean starch
JP7471920B2 (en) 2020-06-02 2024-04-22 井村屋グループ株式会社 Manufacturing method for adzuki bean gel

Also Published As

Publication number Publication date
JP6823947B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP4841360B2 (en) Production method of whole wheat flour
TWI593364B (en) Method for the preparation of stabilized rice bran fine powder
JP2005287365A (en) Method for producing rice flour
CN103494076A (en) Method for preparing high-quality rice flour by using lactobacillus fermentation and product of high-quality rice flour
CN106173732B (en) A kind of rice milk beverage and preparation method thereof
CN105661328A (en) Production method of instant whole grain flour
CN109907229A (en) A kind of wet process corn powder production method
CN102614960A (en) Making method of non-wheat bread flour
JP2017225393A (en) Method for producing adzuki bean fermented food product
CN105685961A (en) Method of preparing instant Tremella powder through microwave-assisted compound enzyme process
CN107904096A (en) A kind of liquor made from sorghum production technology
KR102367919B1 (en) Manufacturing methods for whole wheat flour
JP2019110809A (en) Process for producing miso-like azuki-bean fermented material
CN101513234B (en) Cereal powder composite for instant noodles and instant noodle production method using the same
CN105010961A (en) Bran nutritious flour manufacturing method
CN107125555A (en) The wholemeal production technology of middle extraction process offals
KR101482987B1 (en) Hot pepper paste using rice and manufacturing method thereof
JP2008119627A (en) Conditioning method for mortar milling
CN112219973A (en) Preparation method of whole oat flour
JP2012244936A (en) Rice starch-containing flour, and method for producing the same
CN114287557B (en) Edible plant micro powder with high ethoxy rutinose content and preparation method thereof
RU2627560C1 (en) Production method of dough foundation from whole hydrolized sprouted wheat grain and dough piece composition, produced by indicated method
JP5878324B2 (en) Uchi rice flour for bakery food and bakery food using the same
CN110918186B (en) Production method and production system of stone mill flour
JP2005295919A (en) Method for producing granulated body of buckwheat flour and granulated buckwheat malt, method for producing liquors using them, raw material for producing liquors using buckwheat, granulated buckwheat malt, and liquors using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191220

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200120

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200824

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201020

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201222

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R150 Certificate of patent or registration of utility model

Ref document number: 6823947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250