JP2017225354A - Method and apparatus for imaging cultured cells - Google Patents

Method and apparatus for imaging cultured cells Download PDF

Info

Publication number
JP2017225354A
JP2017225354A JP2016121483A JP2016121483A JP2017225354A JP 2017225354 A JP2017225354 A JP 2017225354A JP 2016121483 A JP2016121483 A JP 2016121483A JP 2016121483 A JP2016121483 A JP 2016121483A JP 2017225354 A JP2017225354 A JP 2017225354A
Authority
JP
Japan
Prior art keywords
observation image
imaging
brightness
image
focal position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016121483A
Other languages
Japanese (ja)
Inventor
正広 村井
Masahiro Murai
正広 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2016121483A priority Critical patent/JP2017225354A/en
Priority to PCT/JP2017/019233 priority patent/WO2017221616A1/en
Priority to TW106118128A priority patent/TW201804211A/en
Publication of JP2017225354A publication Critical patent/JP2017225354A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Multimedia (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide optimized imaging conditions for cultured cells.SOLUTION: According to the present invention, there is provided a method for imaging cultured cells. Here, the method comprises: imaging cultured cells 11 while changing a current-setting value of an LED lamp 2 within a predetermined variation range with a predetermined increment; for each captured observation image, calculating an average luminance (L) and average saturation (S) of the observed image in the HLS color space; for each observation image, calculating an index (I) expressed by the following equation (1); and setting the current set value of the LED lamp 2 at the time of imaging the observation image whose index (I) is the maximum value as an optimum value. Index (I)=(255-L)×(L+S)....(1)SELECTED DRAWING: Figure 1

Description

本発明は、培養細胞の撮像方法及び装置に係り、より詳細には、培養細胞の撮像条件の最適化を図ることができる撮像方法及び装置に関する。   The present invention relates to a cultured cell imaging method and apparatus, and more particularly to an imaging method and apparatus capable of optimizing the imaging conditions of cultured cells.

細胞培養においては、培養中の細胞を所定時間ごとに撮像するタイムラプス撮像が行われることがある。撮像された観察像に対しては、培養細胞に関する様々な情報を抽出するために画像処理が行われる。その場合、観察像は、画像の明るさ及び焦点が画像処理に適切なものである必要がある。   In cell culture, time-lapse imaging in which cells in culture are imaged every predetermined time may be performed. Image processing is performed on the captured observation image in order to extract various information about the cultured cells. In this case, the observation image needs to have an image brightness and focus suitable for image processing.

観察像の明るさを調節する撮像条件及び焦点位置を調節して撮像する技術が、特許文献1に記載されている。特許文献1に記載の観察システムでは、タイムラプス撮像を行う際に、観察像の輝度制御(図13のS64)とオートフォーカス制御(図13のS65)が実行されている。輝度制御にあたっては、観察像の平均輝度が、予め設定された所定範囲内に入るように、LED制御等が行われる(図14)。   Japanese Patent Application Laid-Open Publication No. 2004-228561 describes an imaging condition for adjusting the brightness of an observation image and a technique for imaging by adjusting a focal position. In the observation system described in Patent Literature 1, when performing time-lapse imaging, luminance control (S64 in FIG. 13) and autofocus control (S65 in FIG. 13) are performed on the observation image. In the luminance control, LED control or the like is performed so that the average luminance of the observation image falls within a predetermined range set in advance (FIG. 14).

特開2011−141407号公報JP 2011-141407 A

ところで、細胞培養を継続していると、細胞濃度が変化し、かつ乳酸等の細胞代謝産物が発生して培養液のpHが変化するため、培養液の濁度及び色調が変化する。その結果、観察像の平均輝度が所定範囲内であっても、観察像が画像処理に適切なものとならない場合が生じ得る。   By the way, when the cell culture is continued, the cell concentration is changed, and cell metabolites such as lactic acid are generated to change the pH of the culture solution, so that the turbidity and color tone of the culture solution are changed. As a result, the observed image may not be suitable for image processing even if the average luminance of the observed image is within a predetermined range.

また、細胞培養において培地を流加し、培養液の液深が変化した場合も、細胞濃度及び培養液のpHが変化するため、培養液の濁度及び色調が変化する。その結果、観察像の平均輝度が所定範囲内であっても、観察像が画像処理に適切なものとならない場合が生じ得る。また、培地を流加した後、培養液を撹拌するため、観察像の焦点位置が変化してしまう。そのうえ、撮像は培養細胞が培養液中で沈殿した状態で行うが、必ずしも培養液中で同一平面上に位置しているわけではなく、全ての培養細胞に同時に焦点を合わせることが困難な場合が生じ得る。   In addition, when the culture medium is fed in cell culture and the depth of the culture solution changes, the turbidity and color tone of the culture solution also change because the cell concentration and the pH of the culture solution change. As a result, the observed image may not be suitable for image processing even if the average luminance of the observed image is within a predetermined range. Moreover, since the culture solution is stirred after feeding the culture medium, the focal position of the observation image changes. In addition, imaging is performed with the cultured cells settled in the culture solution, but it is not necessarily located on the same plane in the culture solution, and it may be difficult to focus on all the cultured cells at the same time. Can occur.

このように、継続的な細胞培養の過程では、培養容器の内部の色調や液深等の条件が変化していく。このため、画像処理するために最適な観察像の明るさや焦点位置が、細胞培養の初期段階と時間経過後とでは異なってしまうことがあった。   Thus, in the process of continuous cell culture, conditions such as color tone and liquid depth inside the culture vessel change. For this reason, the brightness and focus position of the observation image optimum for image processing sometimes differ between the initial stage of cell culture and after the passage of time.

本発明は、上記事情に鑑み成されたものであり、培養細胞の撮像条件の最適化を図ることができる培養細胞の撮像方法及び装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a culture cell imaging method and apparatus capable of optimizing the imaging conditions of cultured cells.

上記目的を達成するため、本発明の第1の培養細胞の撮像方法は、培養容器内の培養細胞の観察像を撮像する撮像方法であって、観察像の明るさを調節する撮像条件を設定する明るさ設定工程と、観察像を取得する画像取得工程とを有し、前記明るさ設定工程は、観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて前記培養細胞を撮像する工程と、撮像した各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出する工程と、前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出する工程と、前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定する工程とを有することを特徴としている。   In order to achieve the above object, the first cultured cell imaging method of the present invention is an imaging method for imaging an observation image of a cultured cell in a culture vessel, and sets imaging conditions for adjusting the brightness of the observation image A brightness setting step for performing observation, and an image acquisition step for acquiring an observation image, wherein the brightness setting step changes an imaging condition for adjusting the brightness of the observation image within a predetermined change range with a predetermined step size. Imaging the cultured cells, calculating the average luminance and average saturation of the observation image in the HLS color space for each of the captured observation images, and calculating the average luminance and the average saturation for each observation image. And a step of setting an imaging condition for adjusting brightness when an observation image having the maximum value is taken as an optimum value.

また、本発明の第2の培養細胞の撮像方法は、培養容器内の培養細胞の観察像を撮像する撮像方法であって、観察像の焦点位置を設定する焦点位置設定工程と、観察像を取得する画像取得工程とを有し、前記焦点位置設定工程は、焦点位置を所定の変化範囲内で所定の刻み幅で変えて前記培養細胞を撮像する工程と、撮像した各観察像について、観察像中の粒子数を計測する工程と、前記粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定する工程とを有することを特徴としている。   The second cultured cell imaging method of the present invention is an imaging method for imaging an observation image of a cultured cell in a culture container, and includes a focal position setting step for setting a focal position of the observation image, and an observation image. An image acquisition step of acquiring, and the focus position setting step includes: a step of imaging the cultured cells by changing the focus position within a predetermined change range with a predetermined step size; and observing each of the captured observation images. The method includes a step of measuring the number of particles in the image and a step of setting the focal position when an observation image having the maximum number of particles is captured as an optimum value.

また、本発明の第3の培養細胞の撮像方法は、培養容器内の培養細胞の観察像を撮像する撮像方法であって、観察像の明るさを調節する撮像条件を設定する明るさ設定工程と、観察像の焦点位置を設定する焦点位置設定工程と、観察像を取得する画像取得工程とを有し、前記明るさ設定工程は、観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて前記培養細胞を撮像する工程と、撮像した各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出する工程と、前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出する工程と、前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定する工程とを有し、前記焦点位置設定工程は、焦点位置を所定の変化範囲内で所定の刻み幅で変えて前記培養細胞を撮像する工程と、撮像した各観察像について、観察像中の粒子数を計測する工程と、前記粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定する工程とを有することを特徴としている。   The third cultured cell imaging method of the present invention is an imaging method for capturing an observation image of a cultured cell in a culture vessel, and a brightness setting step for setting an imaging condition for adjusting the brightness of the observation image And a focus position setting step for setting the focus position of the observation image, and an image acquisition step for acquiring the observation image, wherein the brightness setting step changes the imaging condition for adjusting the brightness of the observation image with a predetermined change. The step of imaging the cultured cells with a predetermined step size within the range, the step of calculating the average luminance and the average saturation of the observation image in the HLS color space for each of the captured observation images, and the observation image A step of calculating an index based on the average luminance and the average saturation, and a step of setting an imaging condition for adjusting brightness when an observation image having the maximum value of the index is captured as an optimum value. The focal position setting step The step of imaging the cultured cells by changing the focal position by a predetermined step within a predetermined change range, the step of measuring the number of particles in the observed image for each of the captured observation images, and the maximum number of particles And a step of setting, as an optimum value, a focal position when an observation image is captured.

また、本発明の第1の培養細胞の撮像装置は、培養容器内の培養細胞の観察像を撮像する撮像装置であって、前記培養細胞を照明する照明部と、前記培養細胞を撮像して観察像を生成する撮像部と、観察像の明るさを調節する撮像条件を設定する明るさ制御部とを備え、前記明るさ制御部は、観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出し、前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出し、前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定することを特徴としている。   The first cultured cell imaging apparatus of the present invention is an imaging apparatus that captures an observation image of a cultured cell in a culture container, and illuminates the cultured cell and images the cultured cell. An imaging unit that generates an observation image; and a brightness control unit that sets an imaging condition for adjusting the brightness of the observation image. The brightness control unit sets an imaging condition for adjusting the brightness of the observation image to a predetermined value. The imaging unit is caused to capture the cultured cells with a predetermined step size within a change range, and the average luminance and average saturation of the observation image in the HLS color space are calculated for each observation image captured by the imaging unit. For each of the observation images, an index is calculated based on the average luminance and the average saturation, and an imaging condition for adjusting brightness when the observation image having the maximum index is captured is set as an optimal value. It is characterized by that.

また、本発明の第2の培養細胞の撮像装置は、培養容器内の培養細胞の観察像を撮像する撮像装置であって、前記培養細胞を照明する照明部と、前記培養細胞を撮像して観察像を生成する撮像部と、観察像の焦点位置を設定する焦点位置制御部とを備え、前記焦点位置制御部は、焦点位置を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、観察像中の粒子数を計測し、前記粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定することを特徴としている。   The second cultured cell imaging device of the present invention is an imaging device that captures an observation image of a cultured cell in a culture container, and illuminates the cultured cell and images the cultured cell. An imaging unit that generates an observation image; and a focal position control unit that sets a focal position of the observation image. The focal position control unit changes the focal position within a predetermined change range with a predetermined step size and performs the imaging. Optimum focus position when the number of particles in the observed image is measured for each observation image captured by the imaging unit and the observation image with the maximum number of particles is captured. It is characterized by being set as a value.

また、本発明の第3の培養細胞の撮像装置は、培養容器内の培養細胞の観察像を撮像する撮像装置であって、前記培養細胞を照明する照明部と、前記培養細胞を撮像して観察像を生成する撮像部と、観察像の明るさを調節する撮像条件を設定する明るさ制御部と、観察像の焦点位置を設定する焦点位置制御部とを備え、前記明るさ制御部は、観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出し、前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出し、前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を設定し、前記焦点位置制御部は、焦点位置を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、観察像中の粒子数を計測し、前記粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定することを特徴としている。   The third cultured cell imaging device of the present invention is an imaging device that captures an observation image of a cultured cell in a culture container, and illuminates the cultured cell and images the cultured cell. An imaging unit that generates an observation image, a brightness control unit that sets an imaging condition for adjusting the brightness of the observation image, and a focal position control unit that sets a focal position of the observation image, the brightness control unit The imaging condition for adjusting the brightness of the observation image is changed within a predetermined change range by a predetermined step size, and the cultured cell is imaged by the imaging unit, and an HLS color is obtained for each observation image captured by the imaging unit. When the average luminance and average saturation of the observation image in space are calculated, and for each observation image, an index is calculated based on the average luminance and the average saturation, and an observation image in which the index is the maximum value is captured Set the imaging conditions to adjust the brightness of The focal position control unit changes the focal position by a predetermined step size within a predetermined change range, causes the imaging unit to image the cultured cells, and for each observation image captured by the imaging unit, The number of particles is measured, and the focal position when an observation image having the maximum number of particles is captured is set as an optimum value.

本発明の第1及び第3の培養細胞の撮像方法及び装置は、観察像の明るさを調節する撮像条件を変えて撮像した各観察像について、HLS色空間における観察像の平均輝度及び平均彩度に基づいた指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定し、その最適値で観察像を取得する。これにより、細胞培養を継続中に培養液の濁度及び色調が変化した場合であっても、培養細胞の撮像条件の最適化を図ることができる。   According to the first and third cultured cell imaging methods and apparatuses of the present invention, the average luminance and average color of the observed image in the HLS color space are obtained for each observed image captured by changing the imaging condition for adjusting the brightness of the observed image. An imaging condition for adjusting the brightness when an observation image having a maximum index based on the degree is captured is set as an optimal value, and the observation image is acquired with the optimal value. Thereby, even if it is a case where the turbidity and color tone of a culture solution change while continuing cell culture, the imaging conditions of a cultured cell can be optimized.

また、本発明の第2及び第3の培養細胞の撮像方法及び装置は、焦点位置を変えて撮像した観察像中の粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定し、その最適値で観察像を取得する。これにより、培養細胞が培養液中で同一平面上に位置していない場合であっても、培養細胞の撮像条件の最適化を図ることができる。   In the second and third cultured cell imaging methods and apparatuses of the present invention, the focal position when the observation image with the maximum number of particles in the observation image captured by changing the focal position is captured is the optimum value. And an observation image is acquired with the optimum value. Thereby, even if it is a case where a cultured cell is not located on the same plane in a culture solution, the imaging condition of a cultured cell can be optimized.

本発明の第1実施形態に係る培養細胞の撮像装置の模式図である。It is a schematic diagram of the imaging device of the cultured cell which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る培養細胞の撮像方法のフローチャートである。It is a flowchart of the imaging method of the cultured cell which concerns on 1st Embodiment of this invention. 観察像の明るさを調節する撮像条件を設定するフローチャートである。It is a flowchart which sets the imaging condition which adjusts the brightness of an observation image. (a)〜(e)は、観察像の明るさを調節する撮像条件を変えて撮像した観察像である。(A)-(e) is the observation image imaged by changing the imaging condition which adjusts the brightness of an observation image. 観察像の明るさを調節する撮像条件と指標との関係を示すグラフである。It is a graph which shows the relationship between the imaging condition which adjusts the brightness of an observation image, and a parameter | index. 観察像の焦点位置を設定するフローチャートである。It is a flowchart which sets the focus position of an observation image. (a)〜(e)は、焦点位置を変えて撮像した観察像である。(A)-(e) is the observation image imaged by changing a focus position. 焦点位置と粒子数との関係を示すグラフである。It is a graph which shows the relationship between a focus position and the number of particles. (a)〜(c)は、焦点位置と粒子数との関係を示す観察像である。(A)-(c) is an observation image which shows the relationship between a focus position and the number of particles. 本発明の第2実施形態に係る培養細胞の撮像方法のフローチャートである。It is a flowchart of the imaging method of the cultured cell which concerns on 2nd Embodiment of this invention. (a)〜(e)は、明るさ設定と、焦点位置設定とを交互に繰り返して撮像した観察像である。(A)-(e) are the observation images imaged by alternately repeating the brightness setting and the focus position setting. (a)は、1回目の明るさ設定工程における明るさを調節する撮像条件と指標との関係を示すグラフであり、(b)は、2回目の明るさ設定工程における明るさを調節する撮像条件と指標との関係を示すグラフであり、(c)は、3回目の明るさ設定工程における明るさを調節する撮像条件と指標との関係を示すグラフである。(A) is a graph which shows the relationship between the imaging condition and index which adjust the brightness in the 1st brightness setting process, (b) is the imaging which adjusts the brightness in the 2nd brightness setting process. It is a graph which shows the relationship between conditions and a parameter | index, (c) is a graph which shows the relationship between the imaging condition which adjusts the brightness in the brightness setting process of the 3rd time, and a parameter | index. (a)は、1回目の焦点位置設定工程における焦点位置と粒子数との関係を示すグラフであり、(b)は、2回目の焦点位置設定工程における焦点位置と粒子数との関係を示すグラフである。(A) is a graph showing the relationship between the focal position and the number of particles in the first focal position setting step, and (b) shows the relationship between the focal position and the number of particles in the second focal position setting step. It is a graph.

以下、図面を参照して本発明の実施形態を説明する。
[第1実施形態]
(撮像装置)
先ず、図1を参照して、第1実施形態の培養細胞の撮像装置(以下、撮像装置とも称する。)を説明する。図1は、本実施形態の撮像装置の模式図である。撮像装置は、培養容器1に収容された培養液10中の培養細胞11を、所定時間(例えば60分)ごとにタイムラプス撮像する装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
(Imaging device)
First, with reference to FIG. 1, the cultured cell imaging device (hereinafter also referred to as an imaging device) of the first embodiment will be described. FIG. 1 is a schematic diagram of an imaging apparatus according to the present embodiment. The imaging device is a device that performs time-lapse imaging of the cultured cells 11 in the culture solution 10 accommodated in the culture vessel 1 every predetermined time (for example, 60 minutes).

図1に示すように、本実施形態の撮像装置は、培養容器1内の培養細胞11の観察像を撮像する撮像装置であって、培養細胞11を照明する照明部としてのLEDランプ2と、培養細胞11を撮像して観察像を生成する撮像部としてのCCDカメラ3とを備えている。CCDカメラ3は、培養容器1を挟んでLEDランプ2の反対側に配置され、透過像を撮像する。   As shown in FIG. 1, the imaging device of the present embodiment is an imaging device that captures an observation image of a cultured cell 11 in a culture vessel 1, and an LED lamp 2 as an illumination unit that illuminates the cultured cell 11; A CCD camera 3 is provided as an imaging unit that images the cultured cells 11 and generates an observation image. The CCD camera 3 is disposed on the opposite side of the LED lamp 2 with the culture vessel 1 in between, and takes a transmission image.

本実施形態の撮像装置は、LEDランプ2の明るさを調節する調光器4と、CCDカメラ3を移動させるアクチュエータ5と、調光器4及びアクチュエータ5を制御するコンピュータである制御部6とを更に備えている。制御部6は、CCDカメラ3を制御して、自動的にタイムラプス撮像を実行する。   The imaging apparatus according to the present embodiment includes a dimmer 4 that adjusts the brightness of the LED lamp 2, an actuator 5 that moves the CCD camera 3, and a control unit 6 that is a computer that controls the dimmer 4 and the actuator 5. Is further provided. The control unit 6 controls the CCD camera 3 to automatically execute time-lapse imaging.

制御部6はまた、観察像の明るさを調節する撮像条件を設定する明るさ制御部としても機能する。制御部6が調光器4を制御することにより、LEDランプ2に印加する電流値が調節されて、観察像の明るさが調節される。したがって、本実施形態では、LEDランプ2の電流値が、観察像の明るさを調節する撮像条件となる。
なお、観察像の明るさは、LEDランプ2の電流値だけでなく、絞りの開度、CCDカメラのシャッター速度によって調節してもよいし、これらを組み合わせて調節してもよい。
The control unit 6 also functions as a brightness control unit that sets an imaging condition for adjusting the brightness of the observation image. When the controller 6 controls the dimmer 4, the current value applied to the LED lamp 2 is adjusted, and the brightness of the observation image is adjusted. Therefore, in the present embodiment, the current value of the LED lamp 2 is an imaging condition for adjusting the brightness of the observation image.
Note that the brightness of the observation image may be adjusted not only by the current value of the LED lamp 2 but also by the aperture of the diaphragm and the shutter speed of the CCD camera, or may be adjusted in combination.

制御部6はまた、観察像の焦点位置を設定する焦点位置制御部としても機能する。制御部6がアクチュエータ5を制御することにより、CCDカメラ3の位置が調節される。CCDカメラ3が、図1中の矢印の方向(z軸方向)に移動することにより、CCDカメラ3と培養容器1との距離が調節される。したがって、本実施形態では、CCDカメラ3の位置によって、焦点位置が調節される。
なお、焦点位置は、CCDカメラ3を移動させるだけでなく、CCDカメラ3のレンズ等の光学系によって調節してもよいし、培養容器1を移動させて調節してもよいし、これらを組み合わせて調節してもよい。
The control unit 6 also functions as a focal position control unit that sets the focal position of the observation image. The position of the CCD camera 3 is adjusted by the control unit 6 controlling the actuator 5. The distance between the CCD camera 3 and the culture vessel 1 is adjusted by moving the CCD camera 3 in the direction of the arrow in FIG. Therefore, in the present embodiment, the focal position is adjusted according to the position of the CCD camera 3.
The focal position may be adjusted not only by moving the CCD camera 3, but also by an optical system such as a lens of the CCD camera 3, or may be adjusted by moving the culture vessel 1, or a combination thereof. May be adjusted.

(撮像方法)
次に、図2を参照して、本実施形態の撮像装置による撮像方法を説明する。図2のフローチャートに示すように、培養細胞11の観察像を撮像する際の撮像条件を設定するにあたっては、まず、観察像の明るさを調節するための撮像条件として、LEDランプ2の電流値を設定し(S1)、続いて、CCDカメラ3を移動させて焦点位置を設定する(S2)。そして、LEDランプ2の電流値及びCCDカメラ3の焦点位置を最適化した撮像条件で撮像した観察像を取得する(S3)。
(Imaging method)
Next, with reference to FIG. 2, the imaging method by the imaging device of this embodiment is demonstrated. As shown in the flowchart of FIG. 2, in setting the imaging conditions for capturing the observation image of the cultured cell 11, first, the current value of the LED lamp 2 is set as the imaging condition for adjusting the brightness of the observation image. Is set (S1), and then the CCD camera 3 is moved to set the focal position (S2). And the observation image imaged on the imaging condition which optimized the electric current value of LED lamp 2, and the focus position of CCD camera 3 is acquired (S3).

(明るさ設定工程)
図3のフローチャートを参照して、図2の明るさ設定工程(S1)における、観察像の明るさを設定するために、LEDランプ2の電流値を設定する方法を説明する。
まず、観察像の明るさを調節する撮像条件として、LEDランプ2の電流設定値を所定の変化範囲内で所定の刻み幅で変えて培養細胞11を撮像し、複数の観察像を生成する(S11)。本実施形態のLEDランプ2の電流設定値は最小値が「0」、最大値が「100」であり、ここでは、調光器4が、電流設定値を「10」刻みで、「10」から「100」まで変化させ、CCDカメラ3が、各電流設定値で培養細胞11を撮像し、合計10枚の観察像が生成された。
(Brightness setting process)
A method of setting the current value of the LED lamp 2 in order to set the brightness of the observation image in the brightness setting step (S1) of FIG. 2 will be described with reference to the flowchart of FIG.
First, as an imaging condition for adjusting the brightness of the observation image, the cultured cell 11 is imaged by changing the current setting value of the LED lamp 2 within a predetermined change range at a predetermined step size to generate a plurality of observation images ( S11). The current setting value of the LED lamp 2 of the present embodiment is “0” as the minimum value and “100” as the maximum value. Here, the dimmer 4 sets the current setting value to “10” in increments of “10”. The CCD camera 3 images the cultured cells 11 at each current setting value, and a total of 10 observation images are generated.

図4(a)〜図4(e)に、10枚の観察像のうち、電流設定値が「10」〜「50」の場合の5枚の観察像を示す。図4の各観察像は黒白画像であるが、実際の画像では、培養液10が黄色く変色している。
これらの観察像から分かるように、LEDランプ2の電流設定値が低すぎると、図4(a)に示すように、観察像中で培養細胞11の粒子の判別が困難となる。一方、LEDランプ2の電流設定値が高すぎても、図4(e)に示すように、観察像全体が白くなって小さい粒子が消えてしまい、粒子の判別が困難になる。また、図4には示していないが、LEDランプ2の電流設定値を更に高くすると、観察像全体が更に白くなり、粒子の判別が一層困難となる。
FIG. 4A to FIG. 4E show five observation images when the current set value is “10” to “50” among the ten observation images. Each observation image in FIG. 4 is a black-and-white image, but in the actual image, the culture solution 10 is yellow.
As can be seen from these observation images, if the current setting value of the LED lamp 2 is too low, it becomes difficult to distinguish the particles of the cultured cells 11 in the observation image as shown in FIG. On the other hand, even if the current setting value of the LED lamp 2 is too high, as shown in FIG. 4E, the entire observation image becomes white and small particles disappear, making it difficult to distinguish the particles. Although not shown in FIG. 4, when the current setting value of the LED lamp 2 is further increased, the entire observation image becomes whiter and particle discrimination becomes more difficult.

次に、図4(a)〜図4(e)に示した観察像を含む、撮像した各観察像について、制御部6により、HLS色空間における観察像の平均輝度(L)及び平均彩度(S)を算出する(S12)。   Next, for each of the captured observation images including the observation images shown in FIGS. 4A to 4E, the control unit 6 causes the average luminance (L) and average saturation of the observation image in the HLS color space. (S) is calculated (S12).

HLS色空間(HSL色空間ともいう。)とは、色相(hue)、輝度(lightness/luminance)及び彩度(saturation)の3成分で表される色空間をいう。色相は、色味を360度の角度で表す。輝度は、特許文献1に記載された「輝度」とは意味が異なり、白色を最大値とし、黒色を最小値として、色の明るさを表し、輝度が最大値と最小値との半分のときに純色となる。彩度は、純色を最大値とし、灰色を最低値として、色の鮮やかさを表す。   The HLS color space (also referred to as HSL color space) refers to a color space represented by three components of hue (hue), luminance (lightness / luminance), and saturation (saturation). Hue represents the hue with an angle of 360 degrees. Brightness has a different meaning from “luminance” described in Patent Document 1, and represents the brightness of a color with white as a maximum value and black as a minimum value, and when the brightness is half of the maximum value and the minimum value. It becomes a pure color. Saturation represents the vividness of a color, with a pure color as the maximum value and gray as the minimum value.

観察像の平均輝度(L)及び平均彩度(S)は、CCDカメラ3のRGBの各色の受光素子の受光強度を表したRGB表色系の画素ごとのデータを観察像全体で平均した値を、HLS表色系に変換することにより算出される。下記の表1に、LEDランプ2の電流設定値ごとの、観察像全体の平均輝度(L)及び平均彩度(S)を示す。表1では、平均輝度(L)及び平均彩度(S)を0〜255の256階調で表している。   The average luminance (L) and average saturation (S) of the observation image are values obtained by averaging the data for each pixel of the RGB color system representing the received light intensity of the RGB light receiving elements of the CCD camera 3 over the entire observation image. Is converted into the HLS color system. Table 1 below shows the average luminance (L) and average saturation (S) of the entire observation image for each current setting value of the LED lamp 2. In Table 1, the average luminance (L) and the average saturation (S) are represented by 256 gradations from 0 to 255.

次に、各観察像について、平均輝度(L)及び平均彩度(S)に基づいて、制御部6が指標を算出する(S13)。
ここで、指標は、下記の(1)式のように、輝度階調の最大値である最大輝度(255)と観察像の平均輝度(L)との差(255―L)と、平均輝度(L)と平均彩度(S)との和(L+S)との積を含む。
指標(I)=(255−L)×(L+S) ・・・・(1)
上記の式(1)は、本発明者が種々の実験及び検討を重ね、経験的に見出したものである。
Next, for each observation image, the control unit 6 calculates an index based on the average luminance (L) and the average saturation (S) (S13).
Here, the index is the difference (255−L) between the maximum luminance (255), which is the maximum value of the luminance gradation, and the average luminance (L) of the observation image, and the average luminance as in the following equation (1). It includes the product of (L) and the sum (L + S) of average saturation (S).
Index (I) = (255−L) × (L + S) (1)
The above formula (1) has been found empirically by the present inventor through various experiments and studies.

表1に、LEDランプ2の電流設定値ごとの指標(I)の値を示す。表1に示すように、LEDランプ2の電流設定値が「20」のときに、指標(I)が、最大値「25652」となっている。   Table 1 shows the value of the index (I) for each current setting value of the LED lamp 2. As shown in Table 1, when the current setting value of the LED lamp 2 is “20”, the index (I) is the maximum value “25652”.

また、図5のグラフに、LEDランプ2の電流設定値ごとの指標(I)を示す。図5から、LEDランプ2の電流設定値が「20」のときに、指標(I)が極大となっていることが分かる。   Further, the index (I) for each current setting value of the LED lamp 2 is shown in the graph of FIG. FIG. 5 shows that the index (I) is maximum when the current setting value of the LED lamp 2 is “20”.

次に、指標(I)が最大値である観察像を撮像したときのLEDランプ2の電流設定値を最適値として設定する(S14)。ここでは、LEDランプ2の電流設定値「20」が、明るさを調節する撮像条件の最適値として設定される。   Next, the current setting value of the LED lamp 2 when the observation image having the maximum index (I) is captured is set as the optimum value (S14). Here, the current set value “20” of the LED lamp 2 is set as the optimum value of the imaging condition for adjusting the brightness.

(焦点位置設定工程)
次に、図6のフローチャートを参照して、図2の焦点位置設定工程(S2)における、焦点位置を設定する方法を説明する。
まず、焦点位置を所定の変化範囲内で所定の刻み幅で変えて培養細胞11を撮像して、複数の観察像を生成する(S21)。ここでは、アクチュエータ5が、CCDカメラ3を移動して、焦点位置を表すZ座標(任意単位)が「250」刻みで、「0」から「9750」まで変化させ、CCDカメラ3が、各Z座標で培養細胞11を撮像し、合計40枚の観察像が生成された。
(Focus position setting process)
Next, a method for setting the focal position in the focal position setting step (S2) of FIG. 2 will be described with reference to the flowchart of FIG.
First, the cultured cell 11 is imaged while changing the focal position within a predetermined change range with a predetermined step size, and a plurality of observation images are generated (S21). Here, the actuator 5 moves the CCD camera 3 to change the Z coordinate (arbitrary unit) representing the focal position in increments of “250” from “0” to “9750”. The cultured cells 11 were imaged at the coordinates, and a total of 40 observation images were generated.

図7(a)〜図7(e)に、40枚の観察像のうち、焦点位置のZ座標が「0」、「3000」、「4250」、「6000」及び「9750」のときの5枚の観察像を代表して示す。   FIG. 7A to FIG. 7E show 5 when the Z coordinate of the focal position is “0”, “3000”, “4250”, “6000”, and “9750” among the 40 observation images. A representative observation image is shown.

次に、図7(a)〜図7(e)に示した観察像を含む、撮像した各観察像について、観察像中の粒子数を計測する(S22)。観察像中の個々の粒子は、画像処理により計測される。
図8のグラフに、Z座標の設定値ごとの、粒子数を示す。図8から、Z座標が「4250」のときに、粒子数が極大となっていることが分かる。
Next, for each captured observation image including the observation images shown in FIGS. 7A to 7E, the number of particles in the observation image is measured (S22). Individual particles in the observation image are measured by image processing.
The number of particles for each set value of the Z coordinate is shown in the graph of FIG. FIG. 8 shows that the number of particles is maximum when the Z coordinate is “4250”.

また、表2に、焦点位置のZ座標が「3000」〜「6000」のときの観察像中から計測された粒子数を示す。表2に示すように、Z座標が「4250」のときに、粒子数が、最大値「6110」となっている。   Table 2 shows the number of particles measured from the observed image when the Z coordinate of the focal position is “3000” to “6000”. As shown in Table 2, when the Z coordinate is “4250”, the number of particles is the maximum value “6110”.

図9(a)及び図9(c)に、焦点が合っていないときの観察像を示し、図9(b)に焦点が合っているときの観察像を示す。図9(a)及び図9(c)に示すように、焦点が合っていないときには、個々の粒子の輪郭が不鮮明となり、隣接する粒子と一体となってしまっている。このため、画像処理の際に、個々の粒子を切り分けて抽出することが困難となり、計測される粒子数が減少する。また、図7(a)及び図7 (c)に示したように、焦点が全く合っていない場合には、観察像中の粒子そのものの判別が困難となるため、計測される粒子数は大きく低下する。   9A and 9C show an observation image when the focus is not achieved, and FIG. 9B shows an observation image when the focus is achieved. As shown in FIGS. 9 (a) and 9 (c), when the focus is not achieved, the contours of the individual particles are unclear and integrated with the adjacent particles. For this reason, it becomes difficult to separate and extract individual particles during image processing, and the number of particles to be measured is reduced. In addition, as shown in FIGS. 7A and 7C, when the focus is not at all, it is difficult to determine the particles themselves in the observation image, and thus the number of particles to be measured is large. descend.

一方、図9(b)に示すように、焦点が合っているときには、個々の粒子の輪郭が鮮明となり、画像処理の際に、個々の粒子を隣接する粒子から切り分けて抽出することができる。このため、計測される粒子数が増加する。したがって、最も多くの粒子が計測されるときには、最も多くの粒子に焦点が合っていることになる。   On the other hand, as shown in FIG. 9B, when the image is in focus, the outline of each particle becomes clear, and each particle can be extracted from adjacent particles during image processing. For this reason, the number of particles to be measured increases. Therefore, when the most particles are measured, the most particles are in focus.

次に、粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定する(S23)。ここでは、Z座標「4250」がCCDカメラ3の焦点位置の最適値として設定される。   Next, the focal position when an observation image having the maximum number of particles is captured is set as an optimum value (S23). Here, the Z coordinate “4250” is set as the optimum value of the focal position of the CCD camera 3.

(画像取得工程)
次に、LEDランプ2の最適な電流設定値、及びCCDカメラ3の最適な焦点位置の撮像条件で撮像された画像を取得する(図2のS3)。
なお、この画像の取得にあたっては、最適化した撮像条件で改めて観察像を撮像してもよいし、撮像条件を設定する過程で、最適化された撮像条件と同一条件で撮像された観察像のデータを選択して利用してもよい。
(Image acquisition process)
Next, an image captured under the imaging condition of the optimal current setting value of the LED lamp 2 and the optimal focal position of the CCD camera 3 is acquired (S3 in FIG. 2).
In acquiring this image, an observation image may be taken again under the optimized imaging conditions, or in the process of setting the imaging conditions, the observation image captured under the same conditions as the optimized imaging conditions may be captured. Data may be selected and used.

このように、本実施形態では、LEDランプ2の電流設定値を変えて撮像した各観察像について、HLS色空間における観察像の平均輝度(L)及び平均彩度(S)に基づいた指標(I)が最大値となる撮像条件を設定した。さらに、本実施形態では、焦点位置を変えて撮像した観察像中の粒子数が最大となる撮像条件を設定した。これにより、細胞培養を継続中に培養液10の色調が変化したり、透明度が低下したりした場合であっても、また、培養細胞11が培養液10中で同一平面上に位置していない場合であっても、培養細胞11の撮像条件の最適化を図ることができる。   As described above, in the present embodiment, for each observation image captured by changing the current setting value of the LED lamp 2, an index based on the average luminance (L) and average saturation (S) of the observation image in the HLS color space ( An imaging condition was set so that I) was a maximum value. Furthermore, in this embodiment, an imaging condition is set that maximizes the number of particles in the observed image captured by changing the focal position. Thereby, even if the color tone of the culture solution 10 is changed or the transparency is lowered while the cell culture is continued, the cultured cells 11 are not located on the same plane in the culture solution 10. Even in this case, the imaging conditions of the cultured cell 11 can be optimized.

[第2実施形態]
第2実施形態の撮像装置は、第1実施形態のものと同一であるので、その詳細な説明を省略する。
本実施形態の撮像方法では、図10のフローチャートに示すように、培養細胞11の観察像を撮像する際の撮像条件を設定するにあたって、観察像の明るさを調節するための撮像条件としてLEDランプ2の電流値を設定する明るさ設定工程(S1、S3及びS5)と、CCDカメラ3を移動させて焦点位置を設定する焦点位置設定工程(S2及びS4)とを交互に繰り返す。そして、最後に設定されたLEDランプ2の電流値及びCCDカメラ3の焦点位置で最適化した撮像条件で撮像した観察像を取得する(S6)。
[Second Embodiment]
Since the imaging apparatus of the second embodiment is the same as that of the first embodiment, a detailed description thereof will be omitted.
In the imaging method of the present embodiment, as shown in the flowchart of FIG. 10, an LED lamp is used as the imaging condition for adjusting the brightness of the observation image when setting the imaging condition when imaging the observation image of the cultured cell 11. The brightness setting step (S1, S3 and S5) for setting the current value of 2 and the focus position setting step (S2 and S4) for setting the focus position by moving the CCD camera 3 are repeated alternately. And the observation image imaged on the imaging condition optimized with the electric current value of the LED lamp 2 set last and the focus position of the CCD camera 3 is acquired (S6).

図11(a)〜図11(e)に、図10のS1〜S5の各工程において最適化された撮像条件で撮像した観察像を示す。
図11(a)に、1回目の明るさ設定工程(図10のS1)において最適化されたLEDランプ2の電流設定値で撮像した観察像を示す。この段階では未だ焦点が合っていないため、粒子が判別できない。
FIG. 11A to FIG. 11E show observation images picked up under the image pickup conditions optimized in steps S1 to S5 in FIG.
FIG. 11A shows an observation image taken with the current setting value of the LED lamp 2 optimized in the first brightness setting step (S1 in FIG. 10). At this stage, the particles cannot be identified because they are not yet in focus.

図12(a)のグラフに、1回目の明るさ設定工程(S1)における、LEDランプ2の電流設定値ごとの指標(I)を示す。1回目の明るさ設定工程(S1)では、LEDランプ2の電流設定値を「2」刻みで、「2」から「40」まで変化させて、各電流設定値で培養細胞11を撮像し、合計20枚の観察像を生成している。   The graph of FIG. 12A shows the index (I) for each current setting value of the LED lamp 2 in the first brightness setting step (S1). In the first brightness setting step (S1), the current setting value of the LED lamp 2 is changed from “2” to “40” in increments of “2”, and the cultured cells 11 are imaged at each current setting value. A total of 20 observation images are generated.

図12(a)に示すように、LEDランプ2の電流設定値が「14」のときに、指標(I)が極大となっている。図11(a)に示した観察像は、電流設定値を「14」とした撮像条件で撮像したものである。   As shown in FIG. 12A, when the current setting value of the LED lamp 2 is “14”, the index (I) is maximized. The observation image shown in FIG. 11A is an image taken under an imaging condition where the current set value is “14”.

次に、図11(b)に、1回目の焦点位置設定工程(図10のS2)において最適化された焦点位置で撮像した観察像を示す。この段階では、焦点が合っているため、観察像中の粒子が判別できる。   Next, FIG. 11B shows an observation image captured at the focus position optimized in the first focus position setting step (S2 in FIG. 10). At this stage, the particles in the observed image can be distinguished because they are in focus.

図13(a)のグラフに、1回目の焦点位置設定工程(S2)における、CCDカメラ3の焦点位置ごとの粒子数を示す。1回目の焦点位置設定工程(S2)では、焦点位置を表すZ座標を「250」刻みで「0」から「9750」まで変化させて、各Z座標で培養細胞11を撮像し、合計40枚の観察像を生成している。   The graph of FIG. 13A shows the number of particles for each focal position of the CCD camera 3 in the first focal position setting step (S2). In the first focus position setting step (S2), the Z coordinate representing the focus position is changed from “0” to “9750” in increments of “250”, and the cultured cells 11 are imaged at each Z coordinate, for a total of 40 sheets. The observed image is generated.

図13(a)に示すように、Z座標が「3500」のときに、粒子数が最大となっている。図11(b)に示した観察像は、電流設定値を「14」としたまま、Z座標を「3500」とした撮像条件で撮像したものである。   As shown in FIG. 13A, when the Z coordinate is “3500”, the number of particles is maximum. The observation image shown in FIG. 11B is an image taken under an imaging condition in which the Z coordinate is “3500” while the current setting value is “14”.

次に、図11(c)に、2回目の明るさ設定工程(図10のS3)において最適化されたLEDランプ2の電流設定値で撮像した観察像を示す。1回目の焦点調節の結果、観察像の明るさが最適でなくなった場合であっても、2回目の明るさ調整によって、観察像の明るさが再び最適化される。   Next, FIG. 11C shows an observation image captured with the current setting value of the LED lamp 2 optimized in the second brightness setting step (S3 in FIG. 10). Even if the brightness of the observation image is not optimal as a result of the first focus adjustment, the brightness of the observation image is optimized again by the second brightness adjustment.

図12(b)のグラフに、2回目の明るさ設定工程(S3)における、LEDランプ2の電流設定値ごとの指標(I)を示す。2回目の明るさ設定工程(S3)も、1回目の明るさ設定工程と同様に、LEDランプ2の電流設定値を「2」刻みで、「2」から「40」まで変化させて、各電流設定値で培養細胞11を撮像し、合計20枚の観察像を生成している。   In the graph of FIG. 12B, the index (I) for each current setting value of the LED lamp 2 in the second brightness setting step (S3) is shown. Similarly to the first brightness setting process, the second brightness setting process (S3) is also performed by changing the current setting value of the LED lamp 2 from “2” to “40” in increments of “2”. The cultured cells 11 are imaged with the current setting value, and a total of 20 observation images are generated.

図12(b)に示すように、LEDランプ2の電流設定値が「14」のときに、指標(I)が極大となっている。図11(c)に示した観察像は、Z座標を「3500」としたまま、電流設定値を「14」とした撮像条件で撮像したものである。   As shown in FIG. 12B, when the current setting value of the LED lamp 2 is “14”, the index (I) is maximized. The observation image shown in FIG. 11C is an image taken under an imaging condition in which the current set value is “14” while the Z coordinate is “3500”.

図11(d)に、2回目の焦点位置設定工程(図10のS4)において2回目の焦点調整によって最適化された焦点位置で撮像した観察像を示す。   FIG. 11D shows an observation image captured at the focus position optimized by the second focus adjustment in the second focus position setting step (S4 in FIG. 10).

図13(b)のグラフに、2回目の焦点位置設定工程(S4)における、CCDカメラ3の焦点位置ごとの粒子数を示す。2回目の焦点位置設定工程(S4)では、焦点位置を表すZ座標の刻み幅を、1回目よりも狭い「100」刻みとし、Z座標の変化範囲を、1回目の最適値である「3500」を含み、かつ、1回目よりも狭い範囲である「2800」から「4200」として、各Z座標で培養細胞11を撮像し、合計15枚の観察像を生成している。   The graph of FIG. 13B shows the number of particles for each focal position of the CCD camera 3 in the second focal position setting step (S4). In the second focus position setting step (S4), the step size of the Z coordinate representing the focus position is set to “100” units narrower than the first time, and the change range of the Z coordinate is “3500, which is the first optimum value. ”And a range narrower than the first time,“ 2800 ”to“ 4200 ”, the cultured cells 11 are imaged at each Z coordinate, and a total of 15 observation images are generated.

図13(b)に示すように、2回目の焦点位置設定工程(S4)では、Z座標が「3600」のときに、粒子数が最大となっている。図11(d)に示した観察像は、電流設定値を「14」としたまま、Z座標を「3600」とした撮像条件で撮像したものである。
このように、2回目の焦点位置設定における刻み幅を、1回目のものよりも狭くしつつ、2回目の焦点位置設定における変化範囲を、1回目のものよりも狭くした結果、撮像枚数の増大を回避しつつ、CCDカメラ3の焦点位置の撮像条件の設定精度の向上を図ることができる。
As shown in FIG. 13B, in the second focus position setting step (S4), the number of particles is maximum when the Z coordinate is “3600”. The observation image shown in FIG. 11D is an image taken under an imaging condition in which the Z coordinate is “3600” while the current setting value is “14”.
As described above, the step size in the second focus position setting is made narrower than that in the first time, and the change range in the second focus position setting is made narrower than that in the first time. The accuracy of setting the imaging conditions for the focal position of the CCD camera 3 can be improved.

次に、図11(e)に、3回目の明るさ設定工程(図10のS5)において最適化されたLEDランプ2の電流設定値で撮像した観察像を示す。   Next, FIG. 11E shows an observation image captured with the current setting value of the LED lamp 2 optimized in the third brightness setting step (S5 in FIG. 10).

図12(c)のグラフに、3回目の明るさ設定工程(S5)における、LEDランプ2の電流設定値ごとの指標(I)を示す。3回目の明るさ設定工程(S5)では、LEDランプ2の電流設定値の刻み幅を、1回目よりも狭い「1」刻みとし、電流設定値の変化範囲を、2回目の最適値である「14」を含む「9」から「18」として、各電流設定値で培養細胞11を撮像し、合計10枚の観察像を生成している。   FIG. 12C shows an index (I) for each current setting value of the LED lamp 2 in the third brightness setting step (S5). In the third brightness setting step (S5), the step size of the current setting value of the LED lamp 2 is set to “1” units narrower than the first time, and the change range of the current setting value is the optimum value for the second time. From “9” to “18” including “14”, the cultured cells 11 are imaged at each current setting value, and a total of ten observation images are generated.

図12(c)に示すように、3回目の明るさ設定工程(S5)では、LEDランプ2の電流設定値が「15」のときに、指標(I)が極大となっている。図11(e)に示した観察像は、Z座標を「3600」としたまま、電流設定値を「15」とした撮像条件で撮像したものである。
このように、3回目の明るさ設定工程(S5)におけるLEDランプ2の電流設定値の刻み幅を、2回目のものよりも狭くしつつ、3回目の明るさ設定工程(S5)における電流設定値の変化範囲を、2回目のものよりも狭くした結果、撮像枚数の増大を回避しつつ、LEDランプ2の電流設定値の撮像条件の設定精度の向上を図ることができる。
As shown in FIG. 12C, in the third brightness setting step (S5), when the current setting value of the LED lamp 2 is “15”, the index (I) is maximized. The observation image shown in FIG. 11E is an image taken under an imaging condition where the current set value is “15” while the Z coordinate is “3600”.
As described above, the current setting value in the third brightness setting step (S5) is set while the step size of the current setting value of the LED lamp 2 in the third brightness setting step (S5) is made narrower than that in the second time. As a result of making the change range of the value narrower than that of the second time, it is possible to improve the setting accuracy of the imaging condition of the current setting value of the LED lamp 2 while avoiding an increase in the number of captured images.

このようにして、図11(e)に示した観察像が最適画像として取得される(図10のS6)。   In this way, the observation image shown in FIG. 11E is acquired as the optimum image (S6 in FIG. 10).

以上、本発明の実施形態を説明したが、本発明は種々の変更及び変形を行うことができる。例えば、上述した各実施形態では、撮像部であるCCDカメラを、培養容器を挟んで、LEDランプの反対側に配置し、透過光を撮像した観察像を生成した例を説明したが、本発明では、観察像は透過光像に限定されず、例えば、反射光像であってもよい。   As mentioned above, although embodiment of this invention was described, this invention can perform a various change and deformation | transformation. For example, in each of the above-described embodiments, an example in which a CCD camera as an imaging unit is arranged on the opposite side of the LED lamp with the culture vessel interposed therebetween and an observation image in which transmitted light is imaged is generated has been described. Then, the observation image is not limited to the transmitted light image, and may be a reflected light image, for example.

また、上述した実施形態では、観察像の明るさを調節する撮像条件として、LEDランプの電流値を設定した例を説明したが、本発明では、観察像の明るさを調節する撮像条件は、これに限定されず、例えば、絞りの開度で明るさを調節してもよいし、CCDカメラのシャッター速度で明るさを調節してもよい。   In the above-described embodiment, the example in which the LED lamp current value is set as the imaging condition for adjusting the brightness of the observation image has been described. However, in the present invention, the imaging condition for adjusting the brightness of the observation image is However, the present invention is not limited to this. For example, the brightness may be adjusted by the aperture of the aperture, or the brightness may be adjusted by the shutter speed of the CCD camera.

また、HSV表色系で指標を算出してもよい。HSV表色系は、色相(hue)、彩度(Saturation)及び明度(value)の3成分で表される。色相は、色味を360度の角度で表す。彩度は、純色を最大値とし、灰色を最低値として、色の鮮やかさを表す。明度は、色の明るさを表す。   The index may be calculated using the HSV color system. The HSV color system is represented by three components of hue, saturation, and value. Hue represents the hue with an angle of 360 degrees. Saturation represents the vividness of a color, with a pure color as the maximum value and gray as the minimum value. The brightness represents the brightness of the color.

また、上述した実施形態では、焦点位置を変化させるにあたり、撮像部としてのCCDカメラを移動させた例を説明したが、本発明では、焦点位置の調節方法はこれに限定されず、CCDカメラの光学系を移動させて焦点位置を調節してもよいし、培養容器を移動させて焦点位置を調節してもよい。   In the above-described embodiment, the example in which the CCD camera as the imaging unit is moved in changing the focal position has been described. However, in the present invention, the method for adjusting the focal position is not limited to this, and the CCD camera is not limited to this. The focal position may be adjusted by moving the optical system, or the focal position may be adjusted by moving the culture vessel.

また、上述した実施形態では、照明部としてLEDランプを使用した例を説明したが、本発明では、照明部はこれに限定されない。また、上述した実施形態では、撮像部としてCCDカメラを使用した例を説明したが、本発明では、撮像部はこれに限定されない。   In the above-described embodiment, an example in which an LED lamp is used as the illumination unit has been described. However, in the present invention, the illumination unit is not limited to this. In the above-described embodiment, an example in which a CCD camera is used as the imaging unit has been described. However, in the present invention, the imaging unit is not limited to this.

本発明は培養細胞の自動タイムラプス撮像に適用して好適である。   The present invention is suitable for application to automatic time-lapse imaging of cultured cells.

1 培養容器
2 LEDランプ
3 CCDカメラ
4 調光器
5 アクチュエータ
6 制御部
10 培養液
11 培養細胞
DESCRIPTION OF SYMBOLS 1 Culture container 2 LED lamp 3 CCD camera 4 Dimmer 5 Actuator 6 Control part 10 Culture solution 11 Culture cell

Claims (9)

培養容器内の培養細胞の観察像を撮像する撮像方法であって、
観察像の明るさを調節する撮像条件を設定する明るさ設定工程と、
観察像を取得する画像取得工程と
を有し、
前記明るさ設定工程は、
観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて培養細胞を撮像する工程と、
撮像した各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出する工程と、
前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出する工程と、
前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定する工程と
を有することを特徴とする、培養細胞の撮像方法。
An imaging method for imaging an observation image of cultured cells in a culture vessel,
A brightness setting step for setting imaging conditions for adjusting the brightness of the observation image;
An image acquisition step of acquiring an observation image,
The brightness setting step includes
Changing the imaging condition for adjusting the brightness of the observed image at a predetermined step size within a predetermined change range, and imaging the cultured cells;
A step of calculating an average luminance and an average saturation of the observation image in the HLS color space for each captured observation image;
For each observation image, calculating an index based on the average luminance and the average saturation;
And a step of setting, as an optimum value, an imaging condition for adjusting brightness when an observation image having the maximum index value is captured.
培養容器内の培養細胞の観察像を撮像する撮像方法であって、
観察像の焦点位置を設定する焦点位置設定工程と、
観察像を取得する画像取得工程と
を有し、
前記焦点位置設定工程は、
焦点位置を所定の変化範囲内で所定の刻み幅で変えて培養細胞を撮像する工程と、
撮像した各観察像について、観察像中の粒子数を計測する工程と、
前記粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定する工程と
を有することを特徴とする、培養細胞の撮像方法。
An imaging method for imaging an observation image of cultured cells in a culture vessel,
A focus position setting step for setting the focus position of the observation image;
An image acquisition step of acquiring an observation image,
The focal position setting step includes
Changing the focal position within a predetermined change range at a predetermined step size and imaging cultured cells;
For each captured image, a step of measuring the number of particles in the observed image;
And a step of setting, as an optimum value, a focal position when an observation image having the maximum number of particles is captured.
培養容器内の培養細胞の観察像を撮像する撮像方法であって、
観察像の明るさを調節する撮像条件を設定する明るさ設定工程と、
観察像の焦点位置を設定する焦点位置設定工程と、
観察像を取得する画像取得工程と
を有し、
前記明るさ設定工程は、
観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて培養細胞を撮像する工程と、
撮像した各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出する工程と、
前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出する工程と、
前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定する工程と
を有し、
前記焦点位置設定工程は、
焦点位置を所定の変化範囲内で所定の刻み幅で変えて培養細胞を撮像する工程と、
撮像した各観察像について、観察像中の粒子数を計測する工程と、
前記粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定する工程と
を有することを特徴とする、培養細胞の撮像方法。
An imaging method for imaging an observation image of cultured cells in a culture vessel,
A brightness setting step for setting imaging conditions for adjusting the brightness of the observation image;
A focus position setting step for setting the focus position of the observation image;
An image acquisition step of acquiring an observation image,
The brightness setting step includes
Changing the imaging condition for adjusting the brightness of the observed image at a predetermined step size within a predetermined change range, and imaging the cultured cells;
A step of calculating an average luminance and an average saturation of the observation image in the HLS color space for each captured observation image;
For each observation image, calculating an index based on the average luminance and the average saturation;
A step of setting an imaging condition for adjusting brightness when an observation image having the maximum value as the index is captured as an optimum value,
The focal position setting step includes
Changing the focal position within a predetermined change range at a predetermined step size and imaging cultured cells;
For each captured image, a step of measuring the number of particles in the observed image;
And a step of setting, as an optimum value, a focal position when an observation image having the maximum number of particles is captured.
前記明るさ設定工程と、前記焦点位置設定工程とを交互に繰り返し、
2回目以降の前記明るさ設定工程において、
明るさを調節する撮像条件の変化範囲を、前回の前記明るさ設定工程において設定された明るさを調節する撮像条件を含み、かつ、前回の前記明るさ設定工程の明るさを調節する撮像条件の変化範囲よりも狭くし、
明るさを調節する撮像条件の変化の刻み幅を、前回の前記明るさ設定工程の明るさを調節する撮像条件の変化の刻み幅よりも狭くする
ことを特徴とする、請求項3記載の培養細胞の撮像方法。
The brightness setting step and the focus position setting step are alternately repeated,
In the second and subsequent brightness setting steps,
The imaging condition changing range of the imaging condition for adjusting the brightness includes the imaging condition for adjusting the brightness set in the previous brightness setting step, and the imaging condition for adjusting the brightness in the previous brightness setting step Narrower than the change range of
4. The culture according to claim 3, wherein the step size of the change in the imaging condition for adjusting the brightness is narrower than the step size of the change in the imaging condition for adjusting the brightness in the previous brightness setting step. Cell imaging method.
前記明るさ設定工程と、前記焦点位置設定工程とを交互に繰り返し、
2回目以降の前記焦点位置設定工程において、
焦点位置の変化範囲を、前回の前記焦点位置設定工程において設定された焦点位置を含み、かつ、前回の前記焦点位置設定工程の焦点位置の変化範囲よりも狭くし、
焦点位置の変化の刻み幅を、前回の前記焦点位置設定工程の焦点位置の変化の刻み幅よりも狭くする
ことを特徴とする、請求項3又は4記載の培養細胞の撮像方法。
The brightness setting step and the focus position setting step are alternately repeated,
In the second and subsequent focal position setting steps,
The focal position change range includes the focal position set in the previous focal position setting step, and is narrower than the focal position change range in the previous focal position setting step,
5. The method for imaging cultured cells according to claim 3, wherein the step size of the focal position change is narrower than the step size of the focal position change in the previous focal position setting step.
前記指標は、輝度階調の最大値である最大輝度と前記観察像の平均輝度との差と、前記平均輝度と前記観察像の平均彩度との和との積を含む
ことを特徴とする、請求項1、3〜5のいずれか一項に記載の培養細胞の撮像方法。
The index includes a product of a difference between a maximum luminance which is a maximum value of luminance gradation and an average luminance of the observation image, and a sum of the average luminance and the average saturation of the observation image. The imaging method of the cultured cell as described in any one of Claim 1, 3-5.
培養容器内の培養細胞の観察像を撮像する撮像装置であって、
前記培養細胞を照明する照明部と、
前記培養細胞を撮像して観察像を生成する撮像部と、
観察像の明るさを調節する撮像条件を設定する明るさ制御部と
を備え、
前記明るさ制御部は、観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出し、前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出し、前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定する
ことを特徴とする、培養細胞の撮像装置。
An imaging device for imaging an observation image of cultured cells in a culture vessel,
An illumination unit for illuminating the cultured cells;
An imaging unit that images the cultured cells and generates an observation image;
A brightness control unit for setting imaging conditions for adjusting the brightness of the observation image,
The brightness control unit changes the imaging condition for adjusting the brightness of the observation image at a predetermined step size within a predetermined change range, causes the imaging unit to image the cultured cells, and each image captured by the imaging unit For the observation image, the average luminance and the average saturation of the observation image in the HLS color space are calculated. For each observation image, an index is calculated based on the average luminance and the average saturation, and the index is the maximum value. An imaging device for cultured cells, wherein an imaging condition for adjusting brightness when an observation image is captured is set as an optimum value.
培養容器内の培養細胞の観察像を撮像する撮像装置であって、
前記培養細胞を照明する照明部と、
前記培養細胞を撮像して観察像を生成する撮像部と、
観察像の焦点位置を設定する焦点位置制御部と
を備え、
前記焦点位置制御部は、焦点位置を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、観察像中の粒子数を計測し、前記粒子数が最大値である観察像を撮像したときの最適値として焦点位置を設定する
ことを特徴とする、培養細胞の撮像装置。
An imaging device for imaging an observation image of cultured cells in a culture vessel,
An illumination unit for illuminating the cultured cells;
An imaging unit that images the cultured cells and generates an observation image;
A focal position control unit for setting the focal position of the observation image,
The focal position control unit changes the focal position at a predetermined step size within a predetermined change range, causes the imaging unit to image the cultured cells, and for each observation image captured by the imaging unit, An apparatus for imaging cultured cells, wherein the number of particles is measured and a focal position is set as an optimum value when an observation image having the maximum number of particles is captured.
培養容器内の培養細胞の観察像を撮像する撮像装置であって、
前記培養細胞を照明する照明部と、
前記培養細胞を撮像して観察像を生成する撮像部と、
観察像の明るさを調節する撮像条件を設定する明るさ制御部と、
観察像の焦点位置を設定する焦点位置制御部と
を備え、
前記明るさ制御部は、観察像の明るさを調節する撮像条件を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、HLS色空間における観察像の平均輝度及び平均彩度を算出し、前記各観察像について、前記平均輝度及び前記平均彩度に基づいて指標を算出し、前記指標が最大値である観察像を撮像したときの明るさを調節する撮像条件を最適値として設定し、
前記焦点位置制御部は、焦点位置を所定の変化範囲内で所定の刻み幅で変えて前記撮像部に前記培養細胞を撮像させ、前記撮像部によって撮像された各観察像について、観察像中の粒子数を計測し、前記粒子数が最大値である観察像を撮像したときの焦点位置を最適値として設定することを特徴とする、培養細胞の撮像装置。
An imaging device for imaging an observation image of cultured cells in a culture vessel,
An illumination unit for illuminating the cultured cells;
An imaging unit that images the cultured cells and generates an observation image;
A brightness control unit for setting imaging conditions for adjusting the brightness of the observation image;
A focal position control unit for setting the focal position of the observation image,
The brightness control unit changes the imaging condition for adjusting the brightness of the observation image at a predetermined step size within a predetermined change range, causes the imaging unit to image the cultured cells, and each image captured by the imaging unit For the observation image, the average luminance and the average saturation of the observation image in the HLS color space are calculated. For each observation image, an index is calculated based on the average luminance and the average saturation, and the index is the maximum value. Set the imaging condition to adjust the brightness when the observation image is captured as the optimal value,
The focal position control unit changes the focal position at a predetermined step size within a predetermined change range, causes the imaging unit to image the cultured cells, and for each observation image captured by the imaging unit, A culture cell imaging apparatus, wherein the number of particles is measured, and a focal position when an observation image having the maximum number of particles is captured is set as an optimum value.
JP2016121483A 2016-06-20 2016-06-20 Method and apparatus for imaging cultured cells Pending JP2017225354A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016121483A JP2017225354A (en) 2016-06-20 2016-06-20 Method and apparatus for imaging cultured cells
PCT/JP2017/019233 WO2017221616A1 (en) 2016-06-20 2017-05-23 Method and device for imaging cells being cultured
TW106118128A TW201804211A (en) 2016-06-20 2017-06-01 Method and device for imaging cells being cultured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121483A JP2017225354A (en) 2016-06-20 2016-06-20 Method and apparatus for imaging cultured cells

Publications (1)

Publication Number Publication Date
JP2017225354A true JP2017225354A (en) 2017-12-28

Family

ID=60784056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121483A Pending JP2017225354A (en) 2016-06-20 2016-06-20 Method and apparatus for imaging cultured cells

Country Status (3)

Country Link
JP (1) JP2017225354A (en)
TW (1) TW201804211A (en)
WO (1) WO2017221616A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510956B2 (en) * 2010-01-07 2014-06-04 パナソニックヘルスケア株式会社 Control unit, control program and control method for observation unit, and observation system
EP2520923A1 (en) * 2011-05-06 2012-11-07 bioMérieux Bio-imaging method and system
EP3336195B1 (en) * 2012-12-20 2020-02-26 3M Innovative Properties Company Method of differentiating microbial colonies in an image
JP6318755B2 (en) * 2014-03-24 2018-05-09 東レ株式会社 Filamentous bacteria detection apparatus and filamentous bacteria detection method
JP6219214B2 (en) * 2014-03-31 2017-10-25 富士フイルム株式会社 Cell imaging control apparatus and method, and program

Also Published As

Publication number Publication date
WO2017221616A1 (en) 2017-12-28
TW201804211A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
CN105960586B (en) System and method for image acquisition using supervised high quality imaging
WO2015023074A1 (en) A method and apparatus for dynamic range enhancement of an image
CN109856164A (en) A kind of machine vision acquires the optimization device and its detection method of a wide range of image
US20130070054A1 (en) Image processing apparatus, fluorescence microscope apparatus, and image processing program
JP6219214B2 (en) Cell imaging control apparatus and method, and program
CN112839216B (en) Image color correction method and device
CN107079107A (en) Microscope and method for the HDR composograph that obtains object
US9105105B2 (en) Imaging device, imaging system, and imaging method utilizing white balance correction
JP2006308884A (en) Automatic focusing device
CN107644437B (en) Color cast detection system and method based on blocks
CN1918902A (en) Multi-eye imaging apparatus
US20120249862A1 (en) Imaging device, imaging method, and computer readable storage medium
JP2012235465A (en) Apparatus and method for processing image in digital camera
WO2017221616A1 (en) Method and device for imaging cells being cultured
JP6738553B2 (en) Change degree deriving device, change degree deriving system, change degree deriving method and program
US11756190B2 (en) Cell image evaluation device, method, and program
CN1464479A (en) Programmable self-adapting image quality non-linear enhancement processing process
CN109285151B (en) AI intelligent dimming method
JP6499506B2 (en) Imaging apparatus and method, and imaging control program
WO2019160041A1 (en) Image processing device, microscope system, image processing method and image processing program
JP5609459B2 (en) Binarization processing method and image processing apparatus
KR101517554B1 (en) Control method for color lighting of vision system by conjugate gradient algorithm
CN116324888A (en) Three-dimensional modeling method and device using same
JP2022025360A (en) Imaging apparatus, method, and program
US8471950B2 (en) Signal processor for adjusting image quality of an input picture signal