JP2017225211A - Capacitor controller - Google Patents

Capacitor controller Download PDF

Info

Publication number
JP2017225211A
JP2017225211A JP2016117030A JP2016117030A JP2017225211A JP 2017225211 A JP2017225211 A JP 2017225211A JP 2016117030 A JP2016117030 A JP 2016117030A JP 2016117030 A JP2016117030 A JP 2016117030A JP 2017225211 A JP2017225211 A JP 2017225211A
Authority
JP
Japan
Prior art keywords
capacitor
current
storage device
power storage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016117030A
Other languages
Japanese (ja)
Other versions
JP6387372B2 (en
Inventor
堤 泰樹
Yasuki Tsutsumi
泰樹 堤
泰介 鶴谷
Taisuke Tsuruya
泰介 鶴谷
創 安部
So Abe
創 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016117030A priority Critical patent/JP6387372B2/en
Publication of JP2017225211A publication Critical patent/JP2017225211A/en
Application granted granted Critical
Publication of JP6387372B2 publication Critical patent/JP6387372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor controller that is able to protect deterioration of each of capacitors even if there is difference between the capacitors.SOLUTION: A capacitor controller comprises: a plurality of capacitors connected in parallel; a state acquiring section that acquires a state of each capacitor; and a control section that controls output of each of the plurality of capacitors on the basis of information acquired by the state acquiring section. On the basis of information acquired by the state acquiring section, the control section derives a permissible current value and target current value for each capacitor, and exerts control such that each capacitor outputs a current corresponding to the permissible current value and target current value of each capacitor.SELECTED DRAWING: Figure 4

Description

本発明は、並列接続された複数の蓄電器の出力を制御する蓄電器制御装置に関する。   The present invention relates to a capacitor control device that controls the outputs of a plurality of capacitors connected in parallel.

特許文献1には、並列接続された2つの蓄電装置の各残容量に基づいて各蓄電装置の出力許可電力を設定し、2つの蓄電装置全体から出力される許可電力を、2つの蓄電装置の出力許可電力の最小値を倍にした値に設定する制御装置を備えた電動車両が記載されている。   In Patent Document 1, the output permitted power of each power storage device is set based on the remaining capacity of two power storage devices connected in parallel, and the permitted power output from the entire two power storage devices is set between the two power storage devices. An electric vehicle including a control device that sets a value that doubles the minimum value of output permission power is described.

特開2013−183524号公報JP2013-183524A

図6は、上記説明した特許文献1に記載の技術に基づく、2つの蓄電装置の一方で内部抵抗が変化して蓄電装置間に偏りが生じた際の、2つの蓄電装置全体の出力電力、並びに、各蓄電装置の電流及び電圧の各経時変化の一例を示すグラフである。なお、図6に示す例は、図7に示すように、内部抵抗が9mΩである第1蓄電装置の出力許可電力が10kW、内部抵抗が9mΩである第2蓄電装置の出力許可電力が20kWに設定され、第1蓄電装置の内部抵抗が9(=3+3+3)mΩから7(=1+5+1)mΩに変化した状態でのグラフである。特許文献1の制御装置は、第1蓄電装置の出力許可電力が10kW、第2蓄電装置の出力許可電力が20kWであるため、2つの蓄電装置全体から出力される許可電力(全体許可電力)を、10kWを倍にした値(=20kW)に設定する。その結果、第1蓄電装置からは11.25(=20×{9/(7+9)})kWの電力が出力され、第2蓄電装置からは8.75(=20×{7/(7+9)})kWの電力が出力される。   FIG. 6 shows the output power of the entire two power storage devices when the internal resistance changes and bias occurs between the power storage devices based on the technology described in Patent Document 1 described above. And it is a graph which shows an example of each time-dependent change of the electric current and voltage of each electrical storage apparatus. In the example shown in FIG. 6, as shown in FIG. 7, the output permission power of the first power storage device having an internal resistance of 9 mΩ is 10 kW, and the output permission power of the second power storage device having an internal resistance of 9 mΩ is 20 kW. It is a graph in a state where the internal resistance of the first power storage device is changed from 9 (= 3 + 3 + 3) mΩ to 7 (= 1 + 5 + 1) mΩ. Since the output permission power of the first power storage device is 10 kW and the output permission power of the second power storage device is 20 kW, the control device of Patent Document 1 uses the permitted power (total permission power) output from the entire two power storage devices. A value obtained by doubling 10 kW (= 20 kW) is set. As a result, 11.25 (= 20 × {9 / (7 + 9)}) kW of power is output from the first power storage device, and 8.75 (= 20 × {7 / (7 + 9)) from the second power storage device. }) KW power is output.

第2蓄電装置の出力許可電力は20kWであるため8.75kWの電力を出力することに問題はないが、出力許可電力が10kWである第1蓄電装置が11.25kWの電力を出力すると、第1蓄電装置の劣化が促進してしまう。すなわち、図6に示すように、第1蓄電装置の実電流が10kWの出力許可電力に応じた許可電流を上回るため、第1蓄電装置の最小セル電圧は、劣化が促進しない電圧範囲の下限値である制限値を下回ってしまう。このように、並列接続された複数の蓄電装置の一部に抵抗ばらつき等が発生し、蓄電装置間に偏りが生じると、特許文献1に記載の技術では、蓄電装置を劣化から保護できないという問題があった。   Since the output permission power of the second power storage device is 20 kW, there is no problem in outputting 8.75 kW power, but when the first power storage device with output permission power of 10 kW outputs 11.25 kW power, 1 The deterioration of the power storage device is promoted. That is, as shown in FIG. 6, since the actual current of the first power storage device exceeds the permitted current according to the output permitted power of 10 kW, the minimum cell voltage of the first power storage device is the lower limit value of the voltage range in which deterioration does not accelerate It is below the limit value. As described above, when resistance variation or the like occurs in a part of the plurality of power storage devices connected in parallel and deviation occurs between the power storage devices, the technology described in Patent Document 1 cannot protect the power storage device from deterioration. was there.

本発明の目的は、蓄電器間に偏りがあっても蓄電器の劣化に対する保護を行うことができる蓄電器制御装置を提供することである。   An object of the present invention is to provide a capacitor control device that can protect against deterioration of a capacitor even if there is a bias between the capacitors.

上記の目的を達成するために、請求項1に記載の発明は、
並列接続された複数の蓄電器(例えば、後述の実施形態での第1蓄電装置ES1の蓄電セルC11〜C1n、第2蓄電装置ES2の蓄電セルC21〜C2n)と、
各蓄電器の状態を取得する状態取得部(例えば、後述の実施形態での電圧センサSV11〜SV1n,SV21〜SV2n、電流センサSI1,SI2)と、
前記状態取得部が取得した情報に基づいて、前記複数の蓄電器の出力を制御する制御部(例えば、後述の実施形態でのECU109)と、を備え、
前記制御部は、前記状態取得部が取得した情報に基づいて、各蓄電器の許可電流値及び目標電流値を導出し、前記蓄電器毎の前記許可電流値及び前記目標電流値に応じた値の電流を各蓄電器が出力するよう前記複数の蓄電器全体の出力電力を制御する、蓄電器制御装置である。
In order to achieve the above object, the invention described in claim 1
A plurality of power storage devices connected in parallel (for example, power storage cells C11 to C1n of the first power storage device ES1 and power storage cells C21 to C2n of the second power storage device ES2 in embodiments described later),
A state acquisition unit (for example, voltage sensors SV11 to SV1n, SV21 to SV2n, current sensors SI1 and SI2 in embodiments described later) for acquiring the state of each capacitor;
A control unit (e.g., an ECU 109 in an embodiment described later) that controls the outputs of the plurality of capacitors based on the information acquired by the state acquisition unit,
The control unit derives a permitted current value and a target current value for each capacitor based on the information acquired by the state acquisition unit, and a current having a value corresponding to the permitted current value and the target current value for each capacitor. Is a capacitor control device that controls the output power of the plurality of capacitors as a whole.

請求項2に記載の発明は、請求項1に記載の発明において、
前記制御部は、前記蓄電器毎の前記許可電流値と前記目標電流値のいずれか小さい方の値以下の電流を各蓄電器が出力するよう各蓄電器の出力許可電力を決定する。
The invention according to claim 2 is the invention according to claim 1,
The control unit determines output permission power of each capacitor so that each capacitor outputs a current equal to or smaller than the smaller one of the permitted current value and the target current value for each capacitor.

請求項3に記載の発明では、請求項1又は2に記載の発明において、
前記複数の蓄電器は、2つの蓄電器を含み、
前記制御部は、一方の蓄電器の状態を示す第1情報と、他方の蓄電器の状態を示す第2情報と、から得られる、前記2つの蓄電器間の特性の偏りを示す係数に基づいて、各蓄電器の前記目標電流値を導出する。
In the invention according to claim 3, in the invention according to claim 1 or 2,
The plurality of capacitors include two capacitors,
The control unit is configured based on a coefficient indicating the characteristic deviation between the two capacitors obtained from the first information indicating the state of one capacitor and the second information indicating the state of the other capacitor. The target current value of the battery is derived.

請求項4に記載の発明は、請求項3に記載の発明において、
前記第1情報及び前記第2情報は、前記蓄電器を流れる電流又は前記蓄電器の内部抵抗を示す情報である。
The invention according to claim 4 is the invention according to claim 3,
The first information and the second information are information indicating a current flowing through the capacitor or an internal resistance of the capacitor.

請求項5に記載の発明は、請求項4に記載の発明において、
前記制御部は、
前記2つの蓄電器を流れる各電流の絶対値が所定値以上であれば、前記蓄電器を流れる電流を示す前記第1情報及び前記第2情報から得られる前記係数に基づいて、各蓄電器の前記目標電流値を導出し、
前記2つの蓄電器を流れる各電流の絶対値が前記所定値未満であれば、前記蓄電器の内部抵抗を示す前記第1情報及び前記第2情報から得られる前記係数に基づいて、各蓄電器の前記目標電流値を導出する。
The invention according to claim 5 is the invention according to claim 4,
The controller is
If the absolute value of each current flowing through the two capacitors is greater than or equal to a predetermined value, the target current of each capacitor based on the coefficient obtained from the first information and the second information indicating the current flowing through the capacitor Derive the value,
If the absolute value of each current flowing through the two capacitors is less than the predetermined value, the target of each capacitor is based on the coefficient obtained from the first information and the second information indicating the internal resistance of the capacitor. The current value is derived.

請求項6に記載の発明は、請求項4に記載の発明において、
前記制御部は、
前記2つの蓄電器を流れる各電流の絶対値の少なくとも1つの単位時間当たりの変化量が大きいほど大きな重み付け係数、前記蓄電器を流れる電流を示す前記第1情報及び前記第2情報、並びに、前記蓄電器の内部抵抗を示す前記第1情報及び前記第2情報から得られる前記係数に基づいて、各蓄電器の前記目標電流値を導出する。
The invention according to claim 6 is the invention according to claim 4,
The controller is
The larger the amount of change per unit time of the absolute value of each current flowing through the two capacitors, the larger the weighting coefficient, the first information and the second information indicating the current flowing through the capacitor, and the Based on the coefficient obtained from the first information and the second information indicating the internal resistance, the target current value of each capacitor is derived.

請求項1の発明によれば、並列接続された複数の蓄電器間に特性の偏りがあっても、蓄電器毎の許可電流値及び目標電流値に基づき、上記偏りに応じた値の電流が各蓄電器を流れるよう複数の蓄電器全体の出力電力を制御する。その結果、各蓄電器は劣化が促進するような出力を行わない。このように、蓄電器間に特性の偏りがあっても、蓄電器の劣化に対する保護を行うことができる。   According to the first aspect of the present invention, even if there is a bias in characteristics among a plurality of capacitors connected in parallel, based on the permitted current value and the target current value for each capacitor, a current corresponding to the bias is supplied to each capacitor. To control the output power of the entire plurality of capacitors. As a result, each capacitor does not perform output that promotes deterioration. Thus, even if there is a bias in characteristics between the capacitors, protection against deterioration of the capacitors can be performed.

請求項2の発明によれば、蓄電器毎の許可電流値と目標電流値との最小値の電流を出力するよう各蓄電器の出力許可電力が決定されるため、各蓄電器の出力電圧は下限値を下回らない。蓄電器は劣化が促進しない電圧範囲での使用が望ましいため、当該電圧範囲に収まるよう各蓄電器の出力電圧が制御されることによって、蓄電器の劣化に対する保護を行うことができる。   According to the second aspect of the present invention, since the output permission power of each capacitor is determined so as to output the minimum current between the permitted current value and the target current value for each capacitor, the output voltage of each capacitor has a lower limit value. Not below. Since it is desirable to use a capacitor within a voltage range in which deterioration does not accelerate, it is possible to protect the capacitor against deterioration by controlling the output voltage of each capacitor so as to be within the voltage range.

請求項3の発明によれば、各蓄電器の目標電流値は、2つの蓄電器間の特性の偏りに基づき導出される。このため、偏りの程度に応じた適当な目標電流値と許可電流値とに基づき、劣化を促進しないよう各蓄電器の出力を制御できる。   According to the invention of claim 3, the target current value of each capacitor is derived based on the characteristic deviation between the two capacitors. For this reason, the output of each capacitor can be controlled so as not to promote deterioration based on an appropriate target current value and allowable current value corresponding to the degree of bias.

請求項4の発明によれば、2つの蓄電器間の特性の偏りが、蓄電器を流れる電流又は蓄電器の内部抵抗によって設定される。したがって、2つの蓄電器間に電流ばらつき及び内部抵抗ばらつきのいずれかが生じた場合には、蓄電器の劣化に対する保護を行うことがきる。   According to the invention of claim 4, the characteristic deviation between the two capacitors is set by the current flowing through the capacitor or the internal resistance of the capacitor. Therefore, when either current variation or internal resistance variation occurs between the two capacitors, it is possible to protect against degradation of the capacitor.

請求項5の発明によれば、2つの蓄電器を流れる各電流の絶対値が所定値以上であれば、当該2つの蓄電器間の特性の偏りが電流によって設定され、所定値未満であれば上記偏りが内部抵抗によって設定される。このため、電流ばらつきの大きさがセンサ誤差よりも小さい場合であっても、偏りを示す係数は内部抵抗によって表されるため、各蓄電器の目標電流値を適切に導出できる。その結果、蓄電器の劣化に対する保護を行うことができる。   According to the invention of claim 5, if the absolute value of each current flowing through two capacitors is greater than or equal to a predetermined value, the characteristic bias between the two capacitors is set by the current, and if less than the predetermined value, the bias Is set by the internal resistance. For this reason, even when the magnitude of the current variation is smaller than the sensor error, the coefficient indicating the bias is represented by the internal resistance, so that the target current value of each capacitor can be derived appropriately. As a result, it is possible to protect against deterioration of the battery.

請求項6の発明によれば、2つの蓄電器を流れる各電流の絶対値の単位時間当たりの変化量に応じた重み付け係数を用いて、第1情報及び第2情報から当該2つの蓄電器間の特性の偏りを示す係数を算出することで、精度の良い偏流係数Kを算出できる。   According to the invention of claim 6, the characteristic between the two capacitors from the first information and the second information using the weighting coefficient according to the amount of change per unit time of the absolute value of each current flowing through the two capacitors. By calculating a coefficient indicating the deviation of the current, a precise drift coefficient K can be calculated.

一実施形態の電動車両が有する駆動系の回路構成を示す図である。It is a figure which shows the circuit structure of the drive system which the electric vehicle of one Embodiment has. ECUの第1機能部に係る内部構成を示すブロック図である。It is a block diagram which shows the internal structure which concerns on the 1st function part of ECU. ECUの第1機能部に係る内部構成を示すブロック図である。It is a block diagram which shows the internal structure which concerns on the 1st function part of ECU. 第1蓄電装置で蓄電セルの内部抵抗が変化して、第1蓄電装置と第2蓄電装置の間に特性の偏りが生じた際の、電池パックの出力電力、各蓄電装置の電流及び電圧、並びに、偏流係数の各経時変化の一例を示すグラフである。The output power of the battery pack, the current and voltage of each power storage device when the internal resistance of the power storage cell changes in the first power storage device and a characteristic bias occurs between the first power storage device and the second power storage device, And it is a graph which shows an example of each time-dependent change of a drift coefficient. 第1蓄電装置で内部抵抗が変化したことによって、蓄電装置間に特性の偏りが発生した状態を示す図である。It is a figure which shows the state by which the bias | inclination of the characteristic generate | occur | produced between the electrical storage apparatuses because internal resistance changed in the 1st electrical storage apparatus. 特許文献1に記載の技術に基づく、2つの蓄電装置の一方で内部抵抗が変化して蓄電装置間に偏りが生じた際の、2つの蓄電装置全体の出力電力、並びに、各蓄電装置の電流及び電圧の各経時変化の一例を示すグラフである。Based on the technology described in Patent Literature 1, when the internal resistance changes in one of the two power storage devices and a bias occurs between the power storage devices, the output power of the entire two power storage devices and the current of each power storage device It is a graph which shows an example of each time-dependent change of voltage. 2つの蓄電装置の一方で内部抵抗が変化した場合の各蓄電装置の出力電力と各出力許可電力との関係を示す図である。It is a figure which shows the relationship between the output electric power of each electrical storage apparatus, and each output permission electric power when internal resistance changes in one of two electrical storage apparatuses.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、一実施形態の電動車両が有する駆動系の回路構成を示す図である。図1に示す1MOT型の電動車両は、モータジェネレータ(MG)101と、電池パック103と、VCU(Voltage Control Unit)105と、PDU(Power Drive Unit)107と、ECU(Electronic Control Unit)109とを備える。   FIG. 1 is a diagram illustrating a circuit configuration of a drive system included in an electric vehicle according to an embodiment. A 1MOT type electric vehicle shown in FIG. 1 includes a motor generator (MG) 101, a battery pack 103, a VCU (Voltage Control Unit) 105, a PDU (Power Drive Unit) 107, an ECU (Electronic Control Unit) 109, Is provided.

モータジェネレータ101は、電池パック103から得られる電力によって駆動して、電動車両が走行するための動力を発生する。   The motor generator 101 is driven by electric power obtained from the battery pack 103 to generate power for the electric vehicle to travel.

電池パック103は、第1蓄電装置ES1と第2蓄電装置ES2とが並列に接続されて構成されている。第1蓄電装置ES1は、リチウムイオン電池やニッケル水素電池等といった直列接続された複数の蓄電セルC11〜C1nと、各蓄電セルのセル電圧であるOCV(開回路電圧)又は端子電圧を検出する電圧センサSV11〜SV1nと、第1蓄電装置ES1の入出力電流I1を検出する電流センサSI1とを有する。また、第2蓄電装置ES2は、リチウムイオン電池やニッケル水素電池等といった直列接続された複数の蓄電セルC21〜C2nと、各蓄電セルのセル電圧であるOCV(開回路電圧)又は端子電圧を検出する電圧センサSV21〜SV2nと、第2蓄電装置ES2の入出力電流I2を検出する電流センサSI2とを有する。電圧センサSV11〜SV1n及び電圧センサSV21〜SV2nが検出した電圧を示す各信号はECU109に送られる。また、電流センサSI1が検出した電流I1を示す信号及び電流センサSI2が検出した電流I2を示す信号もECU109に送られる。   The battery pack 103 is configured by connecting a first power storage device ES1 and a second power storage device ES2 in parallel. The first power storage device ES1 includes a plurality of power storage cells C11 to C1n connected in series such as a lithium ion battery or a nickel metal hydride battery, and a voltage for detecting an OCV (open circuit voltage) or a terminal voltage that is a cell voltage of each power storage cell. Sensors SV11 to SV1n and a current sensor SI1 that detects an input / output current I1 of the first power storage device ES1. The second power storage device ES2 detects a plurality of power storage cells C21 to C2n connected in series such as a lithium ion battery or a nickel metal hydride battery, and an OCV (open circuit voltage) or terminal voltage that is a cell voltage of each power storage cell. Voltage sensors SV21 to SV2n, and a current sensor SI2 that detects an input / output current I2 of the second power storage device ES2. Each signal indicating the voltage detected by the voltage sensors SV11 to SV1n and the voltage sensors SV21 to SV2n is sent to the ECU 109. A signal indicating the current I1 detected by the current sensor SI1 and a signal indicating the current I2 detected by the current sensor SI2 are also sent to the ECU 109.

なお、第1蓄電装置ES1又は第2蓄電装置ES2の充放電における蓄電セルの劣化耐性を示す劣化係数は、充電率(SOC:State of Charge)が高い状態の電圧から充電率が低い状態の電圧の範囲では一定以下であるが、当該範囲外での電圧を出力する際の劣化係数は大きい。したがって、劣化係数が所定値以下となる電圧の範囲が、各蓄電装置における好適領域に設定される。   Note that the deterioration coefficient indicating the deterioration resistance of the storage cell in charging / discharging of the first power storage device ES1 or the second power storage device ES2 is a voltage in a state where the charge rate (SOC) is high to a state where the charge rate is low. In this range, the degradation coefficient is large when a voltage outside the range is output. Therefore, a voltage range in which the deterioration coefficient is equal to or less than a predetermined value is set as a suitable region in each power storage device.

VCU105は、電池パック103の電圧を入力電圧として、複数のスイッチング素子をオンオフ切換動作することによって、電池パック103の電圧を昇圧して出力する。なお、VCU105が出力する直流電力の電圧レベル又は電流レベルは、ECU109によって制御される。   The VCU 105 boosts and outputs the voltage of the battery pack 103 by switching on and off the plurality of switching elements using the voltage of the battery pack 103 as an input voltage. Note that the ECU 109 controls the voltage level or current level of the DC power output from the VCU 105.

PDU107は、複数のスイッチング素子をオンオフ切換動作することによって直流電圧を交流電圧に変換して、3相電流をモータジェネレータ101に供給する。   PDU 107 converts a DC voltage into an AC voltage by switching on and off a plurality of switching elements, and supplies a three-phase current to motor generator 101.

ECU109は、電池パック103の許可電力を決定する第1機能部と、第1機能部が決定した許可電力に基づきVCU105及びPDU107を制御する第2機能部とを有する。図2及び図3は、ECU109の第1機能部に係る内部構成を示すブロック図である。図2及び図3に示すように、ECU109の第1機能部は、内部抵抗算出部111,112と、第1許可電流算出部131と、第2許可電流算出部132と、偏流係数算出部150と、第1目標電流算出部171と、第2目標電流算出部172と、第1支流電流最大値設定部191と、第2支流電流最大値設定部192と、第1許可電力算出部201と、第2許可電力算出部202と、電池パック許可電力設定部211とを有する。   The ECU 109 includes a first function unit that determines the permitted power of the battery pack 103 and a second function unit that controls the VCU 105 and the PDU 107 based on the permitted power determined by the first function unit. 2 and 3 are block diagrams showing the internal configuration of the first functional unit of the ECU 109. As shown in FIG. As shown in FIGS. 2 and 3, the first functional unit of the ECU 109 includes internal resistance calculation units 111 and 112, a first permitted current calculation unit 131, a second permitted current calculation unit 132, and a drift coefficient calculation unit 150. A first target current calculation unit 171, a second target current calculation unit 172, a first branch current maximum value setting unit 191, a second branch current maximum value setting unit 192, and a first permitted power calculation unit 201. The second permitted power calculation unit 202 and the battery pack permitted power setting unit 211 are included.

内部抵抗算出部111は、第1蓄電装置ES1の電圧センサSV11〜SV1nが検出した各端子電圧V11…V1nの変化量(dV1i)と、第1蓄電装置ES1の電流センサSI1が検出した電流I1の変化量(dI1)とに基づき、以下の式(1)から、第1蓄電装置ES1が有する蓄電セルC11〜C1nの各内部抵抗R11…R1nを算出する。
R1i=dV1i/dI1 …(1)
(i=1〜n)
The internal resistance calculation unit 111 includes the amount of change (dV1i) of each terminal voltage V11... V1n detected by the voltage sensors SV11 to SV1n of the first power storage device ES1 and the current I1 detected by the current sensor SI1 of the first power storage device ES1. Based on the change amount (dI1), the internal resistances R11... R1n of the power storage cells C11 to C1n included in the first power storage device ES1 are calculated from the following formula (1).
R1i = dV1i / dI1 (1)
(I = 1 to n)

内部抵抗算出部112は、第2蓄電装置ES2の電圧センサSV21〜SV2nが検出した各端子電圧V21…V2nの変化量(dV2i)と、第2蓄電装置ES2の電流センサSI2が検出した電流I2の変化量(dI2)とに基づき、以下の式(2)から、第2蓄電装置ES2が有する蓄電セルC21〜C2nの各内部抵抗R21…R2nを算出する。
R2i=dV2i/dI2 …(2)
(i=1〜n)
The internal resistance calculation unit 112 calculates the amount of change (dV2i) of each terminal voltage V21 ... V2n detected by the voltage sensors SV21 to SV2n of the second power storage device ES2 and the current I2 detected by the current sensor SI2 of the second power storage device ES2. Based on the amount of change (dI2), the internal resistances R21... R2n of the power storage cells C21 to C2n included in the second power storage device ES2 are calculated from the following formula (2).
R2i = dV2i / dI2 (2)
(I = 1 to n)

第1許可電流算出部131は、第1蓄電装置ES1の電圧センサSV11〜SV1nが検出した各OCV11…OCV1nと、制限値Vlimと、内部抵抗算出部111が算出した第1蓄電装置ES1が有する蓄電セルC11〜C1nの各内部抵抗R11…R1nとに基づき、以下の式(3)から、第1蓄電装置ES1の第1支流電流I1に対する許可電流Ilim1を算出する。なお、制限値Vlimは、第1蓄電装置ES1において劣化係数が所定値以下となる好適領域の電圧下限値である。

Figure 2017225211
The first allowed current calculation unit 131 includes the OCV11... OCV1n detected by the voltage sensors SV11 to SV1n of the first power storage device ES1, the limit value Vlim, and the power storage included in the first power storage device ES1 calculated by the internal resistance calculation unit 111. Based on the internal resistances R11... R1n of the cells C11 to C1n, the permission current Ilim1 for the first branch current I1 of the first power storage device ES1 is calculated from the following equation (3). The limit value Vlim is a voltage lower limit value in a suitable region where the deterioration coefficient is equal to or less than a predetermined value in the first power storage device ES1.
Figure 2017225211

第2許可電流算出部132は、第2蓄電装置ES2の電圧センサSV21〜SV2nが検出した各OCV21…OCV2nと、制限値Vlimと、内部抵抗算出部112が算出した第2蓄電装置ES2が有する蓄電セルC21〜C2nの各内部抵抗R21…R2nとに基づき、以下の式(4)から、第2蓄電装置ES2の第2支流電流I2に対する許可電流Ilim2を算出する。なお、制限値Vlimは、第2蓄電装置ES2において劣化係数が所定値以下となる好適領域の電圧下限値である。

Figure 2017225211
The second permitted current calculation unit 132 includes the OCV21... OCV2n detected by the voltage sensors SV21 to SV2n of the second power storage device ES2, the limit value Vlim, and the power storage included in the second power storage device ES2 calculated by the internal resistance calculation unit 112. Based on the internal resistances R21... R2n of the cells C21 to C2n, the permission current Ilim2 for the second branch current I2 of the second power storage device ES2 is calculated from the following equation (4). The limit value Vlim is a voltage lower limit value in a suitable region where the deterioration coefficient is equal to or less than a predetermined value in the second power storage device ES2.
Figure 2017225211

偏流係数算出部150は、第1蓄電装置ES1の電流センサSI1が検出した電流I1及び第2蓄電装置ES2の電流センサSI2が検出した電流I2、又は、内部抵抗算出部111が算出した内部抵抗R11…R1nの合計値ΣR1i及び内部抵抗算出部112が算出した内部抵抗R21…R2nの合計値ΣR2iに基づき、以下の式(5)から、第1蓄電装置ES1と第2蓄電装置ES2の間の特性の偏りの程度を示す偏流係数Kを算出する。なお、第1蓄電装置ES1と第2蓄電装置ES2の間の特性の偏りは、少なくともいずれか一方の蓄電装置における内部抵抗の変化等によって生じる。
K=I2/I1 or ΣR1i/ΣR2i …(5)
(i=1〜n)
The drift coefficient calculation unit 150 includes the current I1 detected by the current sensor SI1 of the first power storage device ES1 and the current I2 detected by the current sensor SI2 of the second power storage device ES2, or the internal resistance R11 calculated by the internal resistance calculation unit 111. ... based on the total value ΣR1i of R1n and the total value ΣR2i of the internal resistances R21 ... R2n calculated by the internal resistance calculation unit 112, from the following formula (5), the characteristics between the first power storage device ES1 and the second power storage device ES2 A drift coefficient K indicating the degree of bias is calculated. Note that the characteristic bias between the first power storage device ES1 and the second power storage device ES2 is caused by a change in internal resistance in at least one of the power storage devices.
K = I2 / I1 or ΣR1i / ΣR2i (5)
(I = 1 to n)

偏流係数算出部150は、電流I1及び電流I2の各値の絶対値が電流センサSI1,SI2の検出値に含まれ得る誤差よりも大きな値であれば、「K=I2/I1」の式から偏流係数Kを算出し、電流I1及び電流I2の少なくとも1つの絶対値が上記誤差よりも小さな値であれば「K=ΣR1i/ΣR2i」の式から偏流係数Kを算出する。   If the absolute value of each value of the current I1 and the current I2 is larger than the error that can be included in the detection values of the current sensors SI1 and SI2, the drift coefficient calculation unit 150 calculates from the equation “K = I2 / I1”. The drift coefficient K is calculated, and if the absolute value of at least one of the currents I1 and I2 is smaller than the error, the drift coefficient K is calculated from the equation “K = ΣR1i / ΣR2i”.

また、偏流係数算出部150は、電流I1及び電流I2の少なくとも1つの絶対値の単位時間当たりの変化量に応じて異なる重み付けがなされた「I2/I1」と「ΣR1i/ΣR2i」の2つから偏流係数Kを算出しても良い。すなわち、重み付け係数が「h(0≦h≦1)」であって、K=hΣR1i/ΣR2i+(1−h)I2/I1の計算式を用いる際、偏流係数算出部150は、電流I1及び電流I2の少なくとも1つの絶対値の単位時間当たりの変化量が大きいほど重み付け係数hを1に近い値に設定する。   In addition, the drift coefficient calculation unit 150 uses two weights “I2 / I1” and “ΣR1i / ΣR2i” that are weighted differently according to the amount of change per unit time of at least one absolute value of the current I1 and the current I2. The drift coefficient K may be calculated. That is, when the weighting coefficient is “h (0 ≦ h ≦ 1)” and the calculation formula of K = hΣR1i / ΣR2i + (1-h) I2 / I1 is used, the drift coefficient calculation unit 150 calculates the current I1 and the current The weighting coefficient h is set to a value closer to 1 as the amount of change per unit time of at least one absolute value of I2 increases.

第1目標電流算出部171は、第2許可電流算出部132が算出した許可電流Ilim2と、偏流係数算出部150が算出した偏流係数Kとに基づき、以下の式(6)から、第1蓄電装置ES1の第1支流電流I1に対する目標電流Itar1を算出する。目標電流Itar1は、第2蓄電装置ES2の第2支流電流I2を許可電流Ilim2以内に収めるために設定される電流値である。
Itar1=Ilim2×1/K …(6)
The first target current calculation unit 171 calculates the first power storage from the following equation (6) based on the permission current Ilim2 calculated by the second permission current calculation unit 132 and the drift coefficient K calculated by the drift coefficient calculation unit 150. A target current Itar1 for the first branch current I1 of the device ES1 is calculated. The target current Itar1 is a current value set in order to keep the second branch current I2 of the second power storage device ES2 within the permitted current Ilim2.
Itar1 = Ilim2 × 1 / K (6)

第2目標電流算出部172は、第1許可電流算出部131が算出した許可電流Ilim1と、偏流係数算出部150が算出した偏流係数Kとに基づき、以下の式(7)から、第2蓄電装置ES2の第2支流電流I2に対する目標電流Itar2を算出する。目標電流Itar2は、第1蓄電装置ES1の第1支流電流I1を許可電流Ilim1以内に収めるために設定される電流値である。
Itar2=Ilim1×K …(7)
The second target current calculation unit 172 calculates the second power storage from the following equation (7) based on the permission current Ilim1 calculated by the first permission current calculation unit 131 and the drift coefficient K calculated by the drift coefficient calculation unit 150. A target current Itar2 for the second branch current I2 of the device ES2 is calculated. The target current Itar2 is a current value set in order to keep the first branch current I1 of the first power storage device ES1 within the permitted current Ilim1.
Itar2 = Ilim1 × K (7)

第1支流電流最大値設定部191は、第1蓄電装置ES1の第1支流電流I1の最大値I1maxを、第1許可電流算出部131が算出した許可電流Ilim1と第1目標電流算出部171が算出した目標電流Itar1のいずれか小さい方の電流値に設定する。また、第2支流電流最大値設定部192は、第2蓄電装置ES2の第2支流電流I2の最大値I2maxを、第2許可電流算出部132が算出した許可電流Ilim2と第2目標電流算出部172が算出した目標電流Itar2のいずれか小さい方の電流値に設定する。   The first tributary current maximum value setting unit 191 includes a permission current Ilim1 calculated by the first permission current calculation unit 131 and a first target current calculation unit 171 for the maximum value I1max of the first branch current I1 of the first power storage device ES1. A smaller current value of the calculated target current Itar1 is set. In addition, the second branch current maximum value setting unit 192 includes the permitted current Ilim2 calculated by the second permitted current calculation unit 132 and the second target current calculation unit for the maximum value I2max of the second branch current I2 of the second power storage device ES2. 172 is set to the smaller current value of the target current Itar2 calculated.

第1許可電力算出部201は、第1支流電流I1の最大値I1maxと第1蓄電装置ES1が有する各電池セルの内部抵抗の合計値ΣR1iとを乗算した値(電圧)から、電圧センサSV11〜SV1nが検出した各OCV11…OCV1nの合計値ΣOCV1iを引いた値ΔV1に、第1支流電流I1の最大値I1maxを乗算した値(電力)を、第1蓄電装置ES1の出力許可電力として算出する。   The first allowed power calculation unit 201 calculates voltage sensors SV11 to SV1 from values (voltages) obtained by multiplying the maximum value I1max of the first branch current I1 and the total value ΣR1i of the internal resistances of the battery cells of the first power storage device ES1. A value (power) obtained by multiplying a value ΔV1 obtained by subtracting the total value ΣOCV1i of each OCV11... OCV1n detected by SV1n by the maximum value I1max of the first tributary current I1 is calculated as output permission power of the first power storage device ES1.

第2許可電力算出部202は、第2支流電流I2の最大値I2maxと第2蓄電装置ES2が有する各電池セルの内部抵抗の合計値ΣR2iとを乗算した値(電圧)から、電圧センサSV21〜SV2nが検出した各OCV21…OCV2nの合計値ΣOCV2iを引いた値ΔV2に、第2支流電流I2の最大値I2maxを乗算した値(電力)を、第2蓄電装置ES2の出力許可電力として算出する。   The second allowed power calculation unit 202 calculates the voltage sensor SV21 to the value (voltage) obtained by multiplying the maximum value I2max of the second branch current I2 by the total value ΣR2i of the internal resistances of the battery cells of the second power storage device ES2. A value (power) obtained by multiplying the value ΔV2 obtained by subtracting the total value ΣOCV2i of each OCV21... OCV2n detected by SV2n by the maximum value I2max of the second branch current I2 is calculated as the output permission power of the second power storage device ES2.

電池パック許可電力設定部211は、第1許可電力算出部201が算出した第1蓄電装置ES1の出力許可電力に、第2許可電力算出部202が算出した第2蓄電装置ES2の出力許可電力を加算した値を、電池パック103の出力許可電力(以下「電池パック許可電力」という。)として設定する。ECU109の第2機能部は、電池パック103の出力電力が電池パック許可電力以下となるよう、VCU105及びPDU107をスイッチング制御する。   The battery pack permitted power setting unit 211 uses the output permitted power of the second power storage device ES2 calculated by the second permitted power calculation unit 202 to the output permitted power of the first power storage device ES1 calculated by the first permitted power calculation unit 201. The added value is set as the output permission power of the battery pack 103 (hereinafter referred to as “battery pack permission power”). The second functional unit of the ECU 109 performs switching control of the VCU 105 and the PDU 107 so that the output power of the battery pack 103 is equal to or lower than the battery pack permission power.

図4は、第1蓄電装置ES1で蓄電セルの内部抵抗が変化して、第1蓄電装置ES1と第2蓄電装置ES2の間に特性の偏りが生じた際の、電池パック103の出力電力、各蓄電装置の電流及び電圧、並びに、偏流係数Kの各経時変化の一例を示すグラフである。図4に示す例は、図5に示すように、第1蓄電装置ES1及び第2蓄電装置ES2の双方が3mΩの内部抵抗を有する蓄電セルが3つ直列接続されて構成され、第1蓄電装置ES1の出力許可電力が10kW、第2蓄電装置ES2の出力許可電力が20kWに設定されており、第1蓄電装置ES1の内部抵抗が9(=3+3+3)mΩから7(=1+5+1)mΩに変化したことにより、第1蓄電装置ES1と第2蓄電装置ES2の間に特性の偏りが生じた場合を示している。上記内部抵抗の変化によって第1蓄電装置ES1の許可電流Ilim1は低下し、偏流係数Kが1から約0.8(=7/9)に変化する。その結果、第2蓄電装置ES2の目標電流Itar2(=Ilim1×K)は低下し、第1蓄電装置ES1の目標電流Itar1(=Ilim2×1/K)は増加する。   FIG. 4 shows the output power of the battery pack 103 when the internal resistance of the power storage cell changes in the first power storage device ES1 and a characteristic bias occurs between the first power storage device ES1 and the second power storage device ES2. It is a graph which shows an example of each time-dependent change of the electric current and voltage of each electrical storage apparatus, and the drift coefficient K. In the example shown in FIG. 4, as shown in FIG. 5, the first power storage device ES1 and the second power storage device ES2 are configured by connecting three power storage cells each having an internal resistance of 3 mΩ in series. The output permission power of ES1 is set to 10 kW, the output permission power of the second power storage device ES2 is set to 20 kW, and the internal resistance of the first power storage device ES1 is changed from 9 (= 3 + 3 + 3) mΩ to 7 (= 1 + 5 + 1) mΩ. As a result, a case is shown in which a bias in characteristics occurs between the first power storage device ES1 and the second power storage device ES2. Due to the change in the internal resistance, the allowed current Ilim1 of the first power storage device ES1 is decreased, and the drift coefficient K is changed from 1 to about 0.8 (= 7/9). As a result, the target current Itar2 (= Ilim1 × K) of the second power storage device ES2 decreases, and the target current Itar1 (= Ilim2 × 1 / K) of the first power storage device ES1 increases.

第1蓄電装置ES1の第1支流電流I1は、許可電流Ilim1と目標電流Itar1のいずれか小さい方の電流値以下になるよう制御される。図4に示した例では、目標電流Itar1は増加するが、許可電流Ilim1は低下するため、第1蓄電装置ES1の第1支流電流I1は、許可電流Ilim1が上限となるよう制御される。また、第2蓄電装置ES2の第2支流電流I2は、許可電流Ilim2と目標電流Itar2のいずれか小さい方の電流値以下になるよう制御される。図4に示した例では、許可電流Ilim2は変わらないが、目標電流Itar2は低下するため、第2蓄電装置ES2の第2支流電流I2は、目標電流Itar2が上限となるよう制御される。   The first branch current I1 of the first power storage device ES1 is controlled to be equal to or smaller than the smaller one of the permitted current Ilim1 and the target current Itar1. In the example shown in FIG. 4, the target current Itar1 increases, but the permission current Ilim1 decreases. Therefore, the first branch current I1 of the first power storage device ES1 is controlled so that the permission current Ilim1 becomes the upper limit. Further, the second branch current I2 of the second power storage device ES2 is controlled to be equal to or smaller than the smaller one of the permission current Ilim2 and the target current Itar2. In the example illustrated in FIG. 4, the permission current Ilim2 is not changed, but the target current Itar2 is decreased. Therefore, the second branch current I2 of the second power storage device ES2 is controlled so that the target current Itar2 becomes the upper limit.

このように、内部抵抗の変化等によって蓄電装置間に特性の偏りが発生しても、偏流係数Kに基づく目標電流が各蓄電装置に対して設定され、当該目標電流と許可電流のいずれか小さい方の値が上限となるよう各蓄電装置を流れる電流が制御され、偏りによる電流の増加が抑制される。その結果、図4に示すように、どちらの蓄電装置の最小セル電圧も制限値Vlimを下回らないため、蓄電装置が有する蓄電セルを劣化から保護できる。   As described above, even if a characteristic deviation occurs between the power storage devices due to a change in internal resistance or the like, a target current based on the drift coefficient K is set for each power storage device, and either the target current or the permitted current is smaller. The current flowing through each power storage device is controlled so that the upper limit is the upper limit, and an increase in current due to bias is suppressed. As a result, as shown in FIG. 4, since the minimum cell voltage of either power storage device does not fall below the limit value Vlim, the power storage cell of the power storage device can be protected from deterioration.

以上説明したように、本実施形態によれば、並列接続された複数の蓄電装置間に特性の偏りがあっても、蓄電装置毎の許可電流及び目標電流に基づき、上記偏りに応じた値の電流が各蓄電装置を流れるよう電池パック許可電力を設定する。このとき、各蓄電装置は、蓄電装置毎の許可電流と目標電流との最小値を上限とした電流を出力するよう制御されるため、各蓄電装置の最小セル電圧は下限値を下回らない。蓄電装置は劣化が促進しない電圧範囲での使用が望ましいため、当該電圧範囲に収まるよう各蓄電装置の蓄電セルの出力電圧が制御されることによって、各蓄電装置は劣化が促進するような出力を行わない。したがって、蓄電装置間に特性の偏りがあっても、蓄電装置の劣化に対する保護を行うことができる。   As described above, according to the present embodiment, even if there is a bias in characteristics among a plurality of power storage devices connected in parallel, a value corresponding to the bias is obtained based on the permitted current and the target current for each power storage device. The battery pack permission power is set so that current flows through each power storage device. At this time, each power storage device is controlled to output a current having an upper limit of the minimum value of the permitted current and the target current for each power storage device, so the minimum cell voltage of each power storage device does not fall below the lower limit value. Since it is desirable to use the power storage device in a voltage range in which deterioration does not promote, each power storage device outputs an output that promotes deterioration by controlling the output voltage of the power storage cell of each power storage device so as to be within the voltage range. Not performed. Therefore, even if there is a bias in characteristics between the power storage devices, protection against deterioration of the power storage devices can be performed.

また、目標電流を算出するために用いられる偏流係数Kは、2つの蓄電装置を流れる各電流の絶対値が電流センサSI1,SI2の検出値に含まれ得る誤差よりも大きな値であれば上記電流の比率によって算出され、上記誤差より小さな値であれば内部抵抗の比率によって算出される。このため、電流ばらつきの大きさがセンサ誤差よりも小さい場合であっても、偏りを示す偏流係数Kは内部抵抗によって表されるため、各蓄電装置の目標電流を適切に導出できる。また、2つの蓄電装置を流れる各電流の絶対値の単位時間当たりの変化量に応じた重み付け係数を用いて、電流の比率と内部抵抗の比率から偏流係数Kを算出することで、精度の良い偏流係数Kを算出できる。   The drift coefficient K used to calculate the target current is the current if the absolute value of each current flowing through the two power storage devices is larger than an error that can be included in the detection values of the current sensors SI1 and SI2. If the value is smaller than the above error, it is calculated by the ratio of the internal resistance. For this reason, even if the magnitude of current variation is smaller than the sensor error, the drift coefficient K indicating the bias is represented by the internal resistance, so that the target current of each power storage device can be derived appropriately. Also, by using the weighting coefficient according to the amount of change per unit time of the absolute value of each current flowing through the two power storage devices, the drift coefficient K is calculated from the ratio of the current and the ratio of the internal resistance, thereby providing high accuracy. The drift coefficient K can be calculated.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、第1蓄電装置ES1及び第2蓄電装置ES2がそれぞれ有する蓄電セルは、前述したリチウムイオン電池やニッケル水素電池といった二次電池に限定されない。例えば、蓄電容量が少ないものの、短時間に大量の電力を充放電可能なコンデンサやキャパシタを蓄電セルとして用いても構わない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. For example, the power storage cells included in each of the first power storage device ES1 and the second power storage device ES2 are not limited to the secondary battery such as the above-described lithium ion battery or nickel hydride battery. For example, a capacitor or a capacitor that has a small storage capacity but can charge and discharge a large amount of power in a short time may be used as the storage cell.

101 モータジェネレータ
103 電池パック
105 VCU
107 PDU
109 ECU
111,112 内部抵抗算出部
131 第1許可電流算出部
132 第2許可電流算出部
150 偏流係数算出部
171 第1目標電流算出部
172 第2目標電流算出部
191 第1支流電流最大値設定部
192 第2支流電流最大値設定部
201 第1許可電力算出部
202 第2許可電力算出部
211 電池パック許可電力設定部
ES1 第1蓄電装置
ES2 第2蓄電装置
101 Motor generator 103 Battery pack 105 VCU
107 PDU
109 ECU
111, 112 Internal resistance calculation unit 131 First permission current calculation unit 132 Second permission current calculation unit 150 Drift coefficient calculation unit 171 First target current calculation unit 172 Second target current calculation unit 191 First branch current maximum value setting unit 192 Second branch current maximum value setting unit 201 First permitted power calculation unit 202 Second permitted power calculation unit 211 Battery pack permitted power setting unit ES1 First power storage device ES2 Second power storage device

Claims (6)

並列接続された複数の蓄電器と、
各蓄電器の状態を取得する状態取得部と、
前記状態取得部が取得した情報に基づいて、前記複数の蓄電器の出力を制御する制御部と、を備え、
前記制御部は、前記状態取得部が取得した情報に基づいて、各蓄電器の許可電流値及び目標電流値を導出し、前記蓄電器毎の前記許可電流値及び前記目標電流値に応じた値の電流を各蓄電器が出力するよう前記複数の蓄電器全体の出力電力を制御する、蓄電器制御装置。
A plurality of capacitors connected in parallel;
A state acquisition unit for acquiring the state of each capacitor;
A control unit that controls the outputs of the plurality of capacitors based on the information acquired by the state acquisition unit;
The control unit derives a permitted current value and a target current value for each capacitor based on the information acquired by the state acquisition unit, and a current having a value corresponding to the permitted current value and the target current value for each capacitor. Is a capacitor control device that controls output power of the plurality of capacitors as a whole.
請求項1に記載の蓄電器制御装置であって、
前記制御部は、前記蓄電器毎の前記許可電流値と前記目標電流値のいずれか小さい方の値以下の電流を各蓄電器が出力するよう各蓄電器の出力許可電力を決定する、蓄電器制御装置。
The capacitor control device according to claim 1,
The said control part is an electrical storage device control apparatus which determines the output permission electric power of each electrical storage device so that each electrical storage device outputs the electric current below the value of the said permission electric current value and the said target electric current value for every said electrical storage device.
請求項1又は2に記載の蓄電器制御装置であって、
前記複数の蓄電器は、2つの蓄電器を含み、
前記制御部は、一方の蓄電器の状態を示す第1情報と、他方の蓄電器の状態を示す第2情報と、から得られる、前記2つの蓄電器間の特性の偏りを示す係数に基づいて、各蓄電器の前記目標電流値を導出する、蓄電器制御装置。
It is a capacitor | condenser control apparatus of Claim 1 or 2, Comprising:
The plurality of capacitors include two capacitors,
The control unit is configured based on a coefficient indicating the characteristic deviation between the two capacitors obtained from the first information indicating the state of one capacitor and the second information indicating the state of the other capacitor. A capacitor control device for deriving the target current value of the capacitor.
請求項3に記載の蓄電器制御装置であって、
前記第1情報及び前記第2情報は、前記蓄電器を流れる電流又は前記蓄電器の内部抵抗を示す情報である、蓄電器制御装置。
The capacitor control device according to claim 3,
The storage device control apparatus, wherein the first information and the second information are information indicating a current flowing through the storage device or an internal resistance of the storage device.
請求項4に記載の蓄電器制御装置であって、
前記制御部は、
前記2つの蓄電器を流れる各電流の絶対値が所定値以上であれば、前記蓄電器を流れる電流を示す前記第1情報及び前記第2情報から得られる前記係数に基づいて、各蓄電器の前記目標電流値を導出し、
前記2つの蓄電器を流れる各電流の絶対値が前記所定値未満であれば、前記蓄電器の内部抵抗を示す前記第1情報及び前記第2情報から得られる前記係数に基づいて、各蓄電器の前記目標電流値を導出する、蓄電器制御装置。
The capacitor control device according to claim 4,
The controller is
If the absolute value of each current flowing through the two capacitors is greater than or equal to a predetermined value, the target current of each capacitor based on the coefficient obtained from the first information and the second information indicating the current flowing through the capacitor Derive the value,
If the absolute value of each current flowing through the two capacitors is less than the predetermined value, the target of each capacitor is based on the coefficient obtained from the first information and the second information indicating the internal resistance of the capacitor. A capacitor control device for deriving a current value.
請求項4に記載の蓄電器制御装置であって、
前記制御部は、
前記2つの蓄電器を流れる各電流の絶対値の少なくとも1つの単位時間当たりの変化量に応じて異なる重み付け係数、前記蓄電器を流れる電流を示す前記第1情報及び前記第2情報、並びに、前記蓄電器の内部抵抗を示す前記第1情報及び前記第2情報から得られる前記係数に基づいて、各蓄電器の前記目標電流値を導出する、蓄電器制御装置。
The capacitor control device according to claim 4,
The controller is
A weighting factor that varies depending on a change amount per unit time of an absolute value of each current flowing through the two capacitors, the first information and the second information indicating the current flowing through the capacitor, and the capacitor A capacitor control device that derives the target current value of each capacitor based on the coefficient obtained from the first information and the second information indicating internal resistance.
JP2016117030A 2016-06-13 2016-06-13 Capacitor control device Active JP6387372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117030A JP6387372B2 (en) 2016-06-13 2016-06-13 Capacitor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117030A JP6387372B2 (en) 2016-06-13 2016-06-13 Capacitor control device

Publications (2)

Publication Number Publication Date
JP2017225211A true JP2017225211A (en) 2017-12-21
JP6387372B2 JP6387372B2 (en) 2018-09-05

Family

ID=60687242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117030A Active JP6387372B2 (en) 2016-06-13 2016-06-13 Capacitor control device

Country Status (1)

Country Link
JP (1) JP6387372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735781B2 (en) 2020-01-17 2023-08-22 Kabushiki Kaisha Toshiba Charge and discharge control device, charge and discharge system, charge and discharge control method, and non-transitory storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050228A (en) * 2010-08-26 2012-03-08 Nissan Motor Co Ltd Battery control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050228A (en) * 2010-08-26 2012-03-08 Nissan Motor Co Ltd Battery control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735781B2 (en) 2020-01-17 2023-08-22 Kabushiki Kaisha Toshiba Charge and discharge control device, charge and discharge system, charge and discharge control method, and non-transitory storage medium

Also Published As

Publication number Publication date
JP6387372B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6571268B2 (en) Battery monitoring apparatus and method
RU2736777C1 (en) Charging method or discharge of energy accumulator
KR101854557B1 (en) System for determining a discharge power limit value and a charge power limit value of a battery cell
Koch et al. Electrochemical impedance spectroscopy for online battery monitoring-power electronics control
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
US10502791B1 (en) System for determining an accurate ohmic resistance value associated with a battery cell
JP6196466B2 (en) Power supply
JPWO2019049571A1 (en) Power storage system, management device
JP6867478B2 (en) Battery control and vehicle system
US20150048795A1 (en) Charge control apparatus and charge control method
WO2014068271A1 (en) Enhanced battery management system
CN112105940A (en) Parameter estimation device, parameter estimation method, and computer program
EP3828568A1 (en) Battery management device, battery management method and battery pack
CN111740457A (en) Charging control device and charging control method
US20190004121A1 (en) Assembled battery circuit, capacitance coefficient detection method, and capacitance coefficient detection program
EP2533393A1 (en) Storage-module control device
EP2393182A9 (en) Method and arrangement for balancing voltages of series connection of storage units for electrical energy
CN108701846B (en) Circuit arrangement for supplying an electrical signal to an electrochemical energy supply device
JP5886225B2 (en) Battery control device and battery control method
US10749345B2 (en) Method and installation for stabilizing a frequency in an AC voltage grid
JP6387372B2 (en) Capacitor control device
US20160118818A1 (en) Lithium Battery System and Control Method Therefor
EP3323665B1 (en) A battery pack balancing system and method
JP6458441B2 (en) Battery charge state estimation apparatus and method
JP6827527B2 (en) Battery control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6387372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150