JP2017223647A - Flow rate measurement device - Google Patents

Flow rate measurement device Download PDF

Info

Publication number
JP2017223647A
JP2017223647A JP2017044476A JP2017044476A JP2017223647A JP 2017223647 A JP2017223647 A JP 2017223647A JP 2017044476 A JP2017044476 A JP 2017044476A JP 2017044476 A JP2017044476 A JP 2017044476A JP 2017223647 A JP2017223647 A JP 2017223647A
Authority
JP
Japan
Prior art keywords
passage
reference direction
gas
flow rate
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017044476A
Other languages
Japanese (ja)
Inventor
健悟 伊藤
Kengo Ito
健悟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to DE102017110556.5A priority Critical patent/DE102017110556A1/en
Priority to US15/619,832 priority patent/US10684150B2/en
Publication of JP2017223647A publication Critical patent/JP2017223647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve a state running short of an amount flow of measured air to a sub-channel 5 upon reverse flow in a thermal type flow rate measurement device 1, and to suppress measurement accuracy from falling.SOLUTION: In a flow rate measurement device 1, let a direction of a line connecting an upstream end of a seal part to a downstream end be defined as a reference direction α, and, when supposing an angle θ1 to be formed between a direction heading for an apex 23 of a bump 21 from the upstream end 24 and the reference direction α, and an angle θ2 to be formed between a direction heading for the apex 23 from the downstream end 25 and the reference direction α regarding the apex 23, upstream end 24 and downstream end 25, α, a relation of θ1<θ2<90° is established. Accordingly, upon a reverse flow, separation of a flow in the vicinity of the apex 23 of the bump 21 can be prevented. In the flow rate measurement device 1, upon the reverse flow, a state running short of an amount of flow of inhalation air to a sub-channel 5 is resolved to enable suppression of accuracy from falling.SELECTED DRAWING: Figure 2

Description

本発明は、測定対象としての被測定気体の流量を測定する熱式の流量測定装置に関する。   The present invention relates to a thermal flow rate measuring apparatus for measuring a flow rate of a gas to be measured as a measurement target.

従来から、熱式の流量測定装置では、次のような筐体および流量センサを備える構造が周知である。すなわち、この周知の構造によれば、筐体は、主通路を流れる被測定気体が取り込まれて流れる副通路を有し、流量センサは、副通路に配置されて副通路を流れる被測定気体との伝熱により、主通路を流れる被測定気体の流量に応じた信号を発生する。そして、流量測定装置は、流量センサを通過した被測定気体を、副通路の出口から主通路に戻す。   2. Description of the Related Art Conventionally, a structure including a housing and a flow sensor as described below is well known in a thermal flow measuring device. That is, according to this known structure, the housing has a sub-passage through which the gas to be measured flowing through the main passage is taken in, and the flow rate sensor is arranged in the sub-passage and flows through the sub-passage. A signal corresponding to the flow rate of the gas to be measured flowing through the main passage is generated by the heat transfer. Then, the flow measuring device returns the gas to be measured that has passed through the flow sensor from the outlet of the sub passage to the main passage.

ところで、このような流量測定装置を、内燃機関に吸入される吸入空気の流量を測定するために使用する場合、流量測定装置には、吸入空気が順方向に流れるときの流量ばかりでなく、逆方向に流れるときの流量についても測定することが要求される。すなわち、吸入空気の流量は内燃機関の動作に基づいて脈動し、さらに、内燃機関の運転状態が特定の領域になると、吸入空気は、脈動により順方向だけでなく逆方向に流れ、逆流現象が周期的に繰り返される。   By the way, when such a flow rate measuring device is used to measure the flow rate of intake air sucked into the internal combustion engine, the flow rate measuring device includes not only the flow rate when the intake air flows in the forward direction but also the reverse flow. It is also required to measure the flow rate when flowing in the direction. That is, the flow rate of the intake air pulsates based on the operation of the internal combustion engine, and when the operating state of the internal combustion engine reaches a specific region, the intake air flows not only in the forward direction but also in the reverse direction due to the pulsation, and the reverse flow phenomenon occurs. Repeated periodically.

このため、内燃機関に取り込まれる吸入空気の量を測定するには、順流時の流量だけでなく、逆流時の流量を測定し、順流時、逆流時両方の流量から、内燃機関に取り込まれた吸入空気の量を求めることが望ましい。そこで、逆流時に出口から副通路に被測定気体を取り込んで流量センサに感応させ、逆流時にも流量の測定を可能とする流量測定装置が公知となっている。   For this reason, in order to measure the amount of intake air taken into the internal combustion engine, not only the flow rate during forward flow but also the flow rate during reverse flow is measured and taken into the internal combustion engine from both forward flow and reverse flow rates. It is desirable to determine the amount of intake air. In view of this, a flow rate measuring apparatus is known that takes in the gas to be measured from the outlet into the auxiliary passage at the time of reverse flow and makes it sensitive to the flow rate sensor, and can measure the flow rate even at the time of reverse flow.

そして、逆流時の流量を測定可能とする流量測定装置において、測定精度を高めるべく、出口の下流側に隆起を設けて逆流時の吸入空気の流入を制限する構成が公知となっている(例えば、特許文献1参照。)。
すなわち、特許文献1の流量測定装置によれば、出口は、主通路の流れの方向の下流側に向かって開口している。また、順流時に出口から流出した被測定気体は、筐体外壁の平面に沿って主通路の流れと同じ方向に流れる。そして、この筐体外壁の平面において出口の下流側に隆起が存在し、この隆起により、逆流時の吸入空気の流入が制限される。
And in the flow measuring device which can measure the flow at the time of backflow, in order to improve the measurement accuracy, a configuration is known in which a ridge is provided on the downstream side of the outlet to restrict the inflow of intake air at the time of backflow (for example, , See Patent Document 1).
In other words, according to the flow rate measuring device of Patent Document 1, the outlet opens toward the downstream side in the flow direction of the main passage. Further, the gas to be measured that flows out from the outlet during forward flow flows in the same direction as the flow of the main passage along the plane of the outer wall of the housing. Further, a bulge exists on the downstream side of the outlet in the plane of the outer wall of the housing, and the bulge restricts the inflow of intake air during backflow.

しかし、特許文献1の隆起の形状は、下流側の面が筐体外壁の平面に対して垂直に立ち上がっている。このため、逆流時に、隆起の頂近傍で流れの剥離が発生しやすく、副通路への流入量が不足気味になる。この結果、内燃機関の運転状態によっては、測定精度が低下する可能性がある。   However, as for the shape of the bulge in Patent Document 1, the downstream surface rises perpendicular to the plane of the outer wall of the housing. For this reason, at the time of reverse flow, separation of the flow is likely to occur near the top of the bulge, and the amount of inflow into the sub-passage is insufficient. As a result, depending on the operating state of the internal combustion engine, the measurement accuracy may be reduced.

特開2013−019674号公報JP 2013-019674 A

本発明は、この問題点を解決するためになされたものであり、その目的は、流量測定装置において、逆流時に副通路への被測定気体の流入量が不足する状態を解消して測定精度の低下を抑制することにある。   The present invention has been made in order to solve this problem, and the object of the present invention is to eliminate the state in which the amount of gas to be measured flowing into the auxiliary passage is insufficient at the time of backflow in the flow rate measurement device, thereby improving measurement accuracy. It is in suppressing the decrease.

本願第1発明の流量測定装置は、主通路を形成する配管に設けられた穴から主通路に差し入れられて固定され、主通路における被測定気体の流量に応じた信号を発生し、次の筐体および流量センサを備える。まず、筐体は、主通路を流れる被測定気体が取り込まれて流れる副通路を有し、主通路に差し入れられる。また、流量センサは、副通路に配置されて副通路を流れる被測定気体との伝熱により、主通路を流れる被測定気体の流量に応じた信号を発生する。ここで、筐体の内、穴における被測定気体の漏れを防止するシール部において、上流端と下流端とを結ぶ方向を基準方向と定義する。   The flow rate measuring device according to the first invention of the present application is inserted into the main passage through a hole provided in a pipe forming the main passage and fixed, and generates a signal corresponding to the flow rate of the gas to be measured in the main passage. Body and flow sensor. First, the housing has a sub-passage through which the gas to be measured flowing through the main passage flows and is inserted into the main passage. The flow sensor generates a signal corresponding to the flow rate of the gas to be measured flowing through the main passage by heat transfer with the gas to be measured that is disposed in the sub passage and flows through the sub passage. Here, the direction connecting the upstream end and the downstream end is defined as the reference direction in the seal portion that prevents leakage of the gas to be measured in the hole in the housing.

筐体の外壁には、流量センサを通過した被測定気体を副通路から主通路に戻す出口が基準方向の下流側に向かって開口しており、さらに、筐体の外壁には、出口の下流側に隆起が存在する。また、出口および隆起を、基準方向に垂直な投影面に投影したときに、投影面において、出口と隆起とは部分的に重なる。
そして、隆起の上流端、下流端および頂に関し、上流端から頂に向かう方向と、基準方向との間に形成される角度θ1、下流端から頂に向かう方向と、基準方向との間に形成される角度θ2を想定すると、θ1<θ2<90°の関係が成立する。
An outlet for returning the gas to be measured that has passed through the flow sensor from the sub-passage to the main passage is opened toward the downstream side in the reference direction on the outer wall of the housing. There is a ridge on the side. Further, when the exit and the ridge are projected on a projection plane perpendicular to the reference direction, the exit and the ridge partially overlap on the projection plane.
Then, with respect to the upstream end, the downstream end and the top of the ridge, an angle θ1 formed between the direction from the upstream end to the top and the reference direction, and formed between the direction from the downstream end to the top and the reference direction If the angle θ2 is assumed, the relationship θ1 <θ2 <90 ° is established.

これにより、逆流時に、隆起の頂近傍で流れの剥離が発生するのを抑制することができる。このため、流量測定装置において、逆流時に副通路への被測定気体の流入量が不足する状態を解消して測定精度の低下を抑制することができる。   Thereby, it is possible to suppress the occurrence of flow separation near the top of the ridge during backflow. For this reason, in the flow rate measuring device, it is possible to eliminate a state where the amount of the gas to be measured flowing into the sub-passage is insufficient at the time of backflow, and to suppress a decrease in measurement accuracy.

また、本願第2発明の流量測定装置によれば、隆起の頂は、平らな頂面であり、基準方向に平行、かつ、頂面を切断するように描かれる断面において、頂面は線分である。そして、隆起の上流端、下流端、および、線分の中点に関し、上流端から線分の中点に向かう方向と、基準方向との間に形成される角度θ3、下流端から線分の中点に向かう方向と、基準方向との間に形成される角度θ4を想定すると、θ3<θ4<90°の関係が成立する。   Further, according to the flow measuring device of the second invention of the present application, the top of the ridge is a flat top surface, and the top surface is a line segment in a cross section that is parallel to the reference direction and drawn so as to cut the top surface. It is. Then, with respect to the upstream end, the downstream end, and the midpoint of the line segment, the angle θ3 formed between the direction from the upstream end toward the midpoint of the line segment and the reference direction, and the line segment from the downstream end Assuming an angle θ4 formed between the direction toward the midpoint and the reference direction, the relationship θ3 <θ4 <90 ° is established.

また、本願第3発明の流量測定装置によれば、出口の下流側に柱体が存在し、出口および柱体を、基準方向に垂直な投影面に投影したときに、投影面において、出口と柱体とが部分的に重なる。さらに、柱体の断面の内、投影面における出口の長手方向に垂直な特定断面では、基準方向に対して垂直に突き出る2つの頂、上流側に突き出る上流端、および、下流側に突き出る下流端が存在する。そして、特定断面では、2つの頂と上流端とで形成される角度θ5、2つの頂と下流端とで形成される角度θ6を想定すると、θ5<θ6<90°の関係が成立する。   Further, according to the flow measuring device of the third invention of the present application, there is a column body on the downstream side of the outlet, and when the outlet and the column body are projected onto a projection plane perpendicular to the reference direction, The column overlaps partly. Furthermore, in a specific cross section perpendicular to the longitudinal direction of the exit on the projection plane, two apexes projecting perpendicular to the reference direction, an upstream end projecting upstream, and a downstream end projecting downstream Exists. In the specific cross section, assuming an angle θ5 formed between the two apexes and the upstream end, and an angle θ6 formed between the two apexes and the downstream end, the relationship θ5 <θ6 <90 ° is established.

さらに、本願第4発明の流量測定装置によれば、副通路は、出口から基準方向と逆の方向に伸びる直進路を有し、直進路に柱体が存在する。
本願第2〜第4発明でも、本願第1発明と同様の作用効果を得ることができる。
Furthermore, according to the flow measuring device of the fourth invention of the present application, the sub-passage has a straight path extending from the outlet in the direction opposite to the reference direction, and the columnar body exists in the straight path.
In the second to fourth inventions of the present application, the same effects as those of the first invention of the present application can be obtained.

(a)は流量測定装置の側面図であり、(b)は流量測定装置の背面図である(実施例1)。(A) is a side view of a flow measuring device, (b) is a rear view of a flow measuring device (Example 1). 流量測定装置の要部を示す図1のII−II断面図である(実施例1)。It is II-II sectional drawing of FIG. 1 which shows the principal part of a flow measuring apparatus (Example 1). 流量測定装置の基準方向を示す説明図である(実施例1)。It is explanatory drawing which shows the reference | standard direction of a flow measuring device (Example 1). 角度θ1、θ2の大小関係を変化させたときの測定誤差の評価結果を示す棒グラフである(実施例1)。10 is a bar graph showing evaluation results of measurement errors when the magnitude relationship between the angles θ1 and θ2 is changed (Example 1). 出口と隆起との距離を変化させたときの測定誤差の評価結果を示す棒グラフである(実施例1)。It is a bar graph which shows the evaluation result of the measurement error when changing the distance of an exit and a protrusion (Example 1). 流量測定装置の要部を示す断面図である(実施例2)。(Example 2) which is sectional drawing which shows the principal part of a flow measuring device. 流量測定装置の要部を示す断面図である(実施例3)。(Example 3) which is sectional drawing which shows the principal part of a flow measuring device. 流量測定装置の要部を示す断面図である(実施例4)。(Example 4) which is sectional drawing which shows the principal part of a flow measuring device. (a)は流量測定装置の側面図であり、(b)は流量測定装置の背面図である(実施例5)。(A) is a side view of a flow measuring device, (b) is a rear view of a flow measuring device (Example 5). 流量測定装置の要部を示す図9のX−X断面図である(実施例5)。(Example 5) which is XX sectional drawing of FIG. 9 which shows the principal part of a flow measuring device. 流量測定装置の側面図である(実施例6)。(Example 6) which is a side view of a flow measuring device. (a)は流量測定装置の正面図であり、(b)は流量測定装置の背面図である(実施例6)。(A) is a front view of a flow measuring device, (b) is a rear view of a flow measuring device (Example 6). 流量測定装置の要部を示す図11のXIII−XIII断面図である(実施例6)。FIG. 13 is a sectional view taken along line XIII-XIII in FIG. 11 showing a main part of the flow rate measuring device (Example 6). 流量測定装置の側面図である(実施例7)。(Example 7) which is a side view of a flow measuring device. (a)は流量測定装置の正面図であり、(b)は流量測定装置の背面図である(実施例7)。(A) is a front view of a flow measuring device, (b) is a rear view of a flow measuring device (Example 7). 流量測定装置の要部を示す図14のXVI−XVI断面図である(実施例7)。FIG. 15 is a cross-sectional view taken along the line XVI-XVI of FIG. 14 showing a main part of the flow rate measuring device (Example 7). 流量測定装置の側面図である(実施例8)。(Example 8) which is a side view of a flow measuring device. (a)は流量測定装置の正面図であり、(b)は流量測定装置の背面図である(実施例8)。(A) is a front view of a flow measuring device, (b) is a rear view of a flow measuring device (Example 8). 流量測定装置の要部を示す図17のXIX−XIX断面図である(実施例8)。FIG. 18 is a sectional view taken along line XIX-XIX in FIG. 流量測定装置の正面図である(実施例9)。(Example 9) which is a front view of a flow measuring device. 流量測定装置の背面図である(実施例9)。(Example 9) which is a rear view of a flow measuring device. 図20のXXII−XXII断面図である(実施例9)。(Example 9) which is XXII-XXII sectional drawing of FIG. 流量測定装置の基準方向を、図22のXXIII−XXIII断面を用いて示す説明図である(実施例9)。FIG. 23 is an explanatory diagram showing the reference direction of the flow rate measuring device using the XXIII-XXIII cross section of FIG. 22 (Example 9). 流量測定装置の要部を示す断面図である(変形例)。It is sectional drawing which shows the principal part of a flow measuring device (modification). 流量測定装置の要部を示す断面図である(変形例)。It is sectional drawing which shows the principal part of a flow measuring device (modification). 流量測定装置の要部を示す断面図である(変形例)。It is sectional drawing which shows the principal part of a flow measuring device (modification).

以下、発明を実施するための形態を実施例に基づいて説明する。なお、実施例は具体例を開示するものであり、本発明が実施例に限定されないことは言うまでもない。   Hereinafter, modes for carrying out the invention will be described based on examples. In addition, an Example discloses a specific example, and it cannot be overemphasized that this invention is not limited to an Example.

〔実施例1の構成〕
実施例1の流量測定装置1は、熱式の測定原理を用いて測定対象としての被測定気体の流量を測定するものである。
また、以下の説明では、流量測定装置1を、内燃機関に吸入される吸入空気の流量を測定するため、吸入空気が流れる主通路2に差し入れられて固定される態様を例示する。なお、主通路2では、内燃機関の運転状態が特定の領域になると、脈動により、吸入空気は、内燃機関に向かう順方向だけでなく、内燃機関から逆方向に流れ、逆流現象が周期的に繰り返される。
[Configuration of Example 1]
The flow rate measuring device 1 according to the first embodiment measures the flow rate of a gas to be measured as a measurement target using a thermal measurement principle.
Further, in the following description, a mode in which the flow rate measuring device 1 is inserted and fixed to the main passage 2 through which intake air flows in order to measure the flow rate of intake air taken into the internal combustion engine will be exemplified. In the main passage 2, when the operating state of the internal combustion engine is in a specific region, the intake air flows not only in the forward direction toward the internal combustion engine but also in the reverse direction due to pulsation, and the reverse flow phenomenon occurs periodically. Repeated.

流量測定装置1は、図1に示すように、筐体3および流量センサ4を備える。
すなわち、筐体3は、主通路2を流れる吸入空気が取り込まれて流れる副通路5を有し、流量センサ4は、副通路5に配置されて副通路5を流れる吸入空気との伝熱により、主通路2における流量に応じた信号を発生する。そして、流量測定装置1は、流量センサ4を通過した吸入空気を、副通路5の出口6から主通路2に戻す。また、流量センサ4で発生した信号は、所定の処理が施されて流量測定装置1から外部の電子制御装置(図示せず。以下、ECUと呼ぶことがある。)に出力され、例えば、燃料噴射制御等の各種の制御処理に利用される。
As shown in FIG. 1, the flow rate measuring device 1 includes a housing 3 and a flow rate sensor 4.
That is, the housing 3 has a sub-passage 5 in which intake air flowing through the main passage 2 is taken in and flows, and the flow rate sensor 4 is disposed in the sub-passage 5 by heat transfer with the intake air flowing through the sub-passage 5. A signal corresponding to the flow rate in the main passage 2 is generated. Then, the flow measuring device 1 returns the intake air that has passed through the flow sensor 4 from the outlet 6 of the sub passage 5 to the main passage 2. The signal generated by the flow sensor 4 is subjected to predetermined processing and is output from the flow measurement device 1 to an external electronic control device (not shown; hereinafter sometimes referred to as ECU), for example, fuel It is used for various control processes such as injection control.

以下、筐体3について詳述する。
なお、流量センサ4は、例えば、所定の半導体チップと、この半導体チップの表面に形成された発熱素子や感温素子等とを有し、樹脂製のフレーム7に保持されて副通路5に突き出ている。
Hereinafter, the housing 3 will be described in detail.
The flow sensor 4 includes, for example, a predetermined semiconductor chip and a heating element, a temperature sensing element, and the like formed on the surface of the semiconductor chip. The flow sensor 4 is held by a resin frame 7 and protrudes into the sub passage 5. ing.

筐体3は、例えば、樹脂を素材として設けられるものであり、主に、副通路5を有して主通路2内に突き出る通路構成部9と、主通路2を形成する配管10に取り付けられて固定される被取付部11とを備える。   The housing 3 is provided with, for example, resin as a raw material, and is mainly attached to a passage constituting portion 9 that has a sub passage 5 and projects into the main passage 2 and a pipe 10 that forms the main passage 2. Attached portion 11 to be fixed.

なお、通路構成部9は、配管10に設けられた円形の穴10aから主通路2に差し入れられ、被取付部11は、主通路2と配管10の外部との間をシールするシール部11aを有する。そして、実施例1のシール部11aは、被取付部11に設けられた円形の溝11bにOリング11cを装着することで構成され、Oリング11cによって主通路2と配管10の外部との間が実質的にシールされている。   The passage component 9 is inserted into the main passage 2 from a circular hole 10 a provided in the pipe 10, and the mounted portion 11 has a seal portion 11 a that seals between the main passage 2 and the outside of the pipe 10. Have. The seal portion 11a according to the first embodiment is configured by attaching an O-ring 11c to a circular groove 11b provided in the attached portion 11, and the O-ring 11c is provided between the main passage 2 and the outside of the pipe 10. Is substantially sealed.

ここで、図3に示すように、シール部11aの上流端11upと下流端11dnとを結ぶ線の方向を基準方向αと定義する。また、基準方向αは、穴10aの上流端10upと下流端10dnとを結ぶ線の方向と同じ方向であり、さらに、主通路2の内、流量測定装置1が存在する領域における流路軸の方向と同じ方向である。   Here, as shown in FIG. 3, the direction of a line connecting the upstream end 11up and the downstream end 11dn of the seal portion 11a is defined as a reference direction α. Further, the reference direction α is the same as the direction of the line connecting the upstream end 10up and the downstream end 10dn of the hole 10a, and further, the flow path axis in the region of the main passage 2 where the flow rate measuring device 1 exists. The same direction as the direction.

通路構成部9は、外形が矩形板状の略直方体に成形されている。そして、通路構成部9は、略直方体をなす面の内、最も面積が広い矩形状の2面が主通路2の順流時の基準方向αに平行となるように、主通路2に突き出ている(以下、略直方体をなす面の内、最も面積が広い矩形状の2面を側面12と呼ぶことがある。)。また、通路構成部9は、側面12の長手方向aが基準方向αに直角をなすように、かつ、側面12の短手方向bが基準方向αと平行をなすように、主通路2に突き出ている。   The channel | path structure part 9 is shape | molded by the substantially rectangular parallelepiped whose external shape is a rectangular plate shape. And the channel | path structure part 9 protrudes in the main channel | path 2 so that two rectangular surfaces with the largest area among the surfaces which make a substantially rectangular parallelepiped may become parallel to the reference direction (alpha) at the time of the forward flow of the main channel | path 2. (Hereinafter, two rectangular surfaces having the largest area among the surfaces forming a substantially rectangular parallelepiped may be referred to as side surfaces 12). In addition, the passage component 9 protrudes into the main passage 2 so that the longitudinal direction a of the side surface 12 is perpendicular to the reference direction α and the short direction b of the side surface 12 is parallel to the reference direction α. ing.

また、通路構成部9において、副通路5は、次の第1、第2通路13、14を有するような通路構成となっている。すなわち、第1通路13は、吸入空気の入口15から、出口6とは別の出口16に向かう流れの流線が緩やかな曲線弧を描くように吸入空気を導くものである。また、第2通路14は、第1通路13から分岐しており、入口15から第1通路13に流入した吸入空気の流れの一部を分流させて周回させ、出口6から主通路2に戻すものである。   Moreover, in the channel | path structure part 9, the subchannel | path 5 becomes a channel | path structure which has the following 1st, 2nd channel | paths 13 and 14. FIG. That is, the first passage 13 guides the intake air so that the streamline of the flow from the intake air inlet 15 toward the outlet 16 different from the outlet 6 draws a gentle curved arc. The second passage 14 is branched from the first passage 13, and a part of the flow of the intake air flowing into the first passage 13 from the inlet 15 is diverted and circulated, and is returned from the outlet 6 to the main passage 2. Is.

ここで、入口15は、基準方向αに関して上流側に配置される細長の端面17において、上流側に向かって開口しており、基準方向αに垂直である。また、第2通路14は、流量センサ4の下流側で2つに分岐しており、出口6は、それぞれの側面12に存在する。なお、出口16は、基準方向αにおいて端面17とは反対側に配置される側で、基準方向αに関して下流側、かつ、主通路2の外周側に向かって開口している。   Here, the inlet 15 opens toward the upstream side at the elongated end surface 17 disposed on the upstream side with respect to the reference direction α, and is perpendicular to the reference direction α. Further, the second passage 14 is branched into two on the downstream side of the flow sensor 4, and the outlet 6 exists on each side surface 12. Note that the outlet 16 is a side disposed on the side opposite to the end face 17 in the reference direction α, and is open toward the downstream side with respect to the reference direction α and toward the outer peripheral side of the main passage 2.

以上により、通路構成部9では、順流時において、入口15から第1通路13に流入した吸入空気の一部が第2通路14に流入して流量センサ4を通過し、流量センサ4を通過した吸入空気は、2つの流れに分かれて出口6から主通路2に戻る。また、逆流時において、2つの出口6から第2通路14に流入した吸入空気が合流して流量センサ4を通過し、流量センサ4を通過した吸入空気は、第1通路13に流入して入口15から主通路2に戻る。   As described above, in the passage component 9, part of the intake air flowing into the first passage 13 from the inlet 15 flows into the second passage 14 through the flow sensor 4 and passes through the flow sensor 4 during forward flow. The intake air is divided into two flows and returns from the outlet 6 to the main passage 2. Further, during reverse flow, the intake air that has flowed into the second passage 14 from the two outlets 6 merges and passes through the flow sensor 4, and the intake air that has passed through the flow sensor 4 flows into the first passage 13 and enters the inlet Return to main passage 2 from 15.

このため、流量測定装置1は、順流時の主通路2における流量だけでなく、逆流時の流量を測定することができ、ECUは、順流時、逆流時両方の流量から、内燃機関に取り込まれた吸入空気の量を求めることができる。
なお、順流時に入口15から第1通路13に流入した吸入空気の内、第2通路14に流入せずに第1通路13を流れた吸入空気は出口16から主通路2に戻る。そして、第1通路13の内、第2通路14との分岐口よりも下流側の部分は、吸入空気とともに入口15から流入したダストが第2通路14に向かうのを抑制して流量センサ4がダストにより傷つくのを防止する機能を有する。
Therefore, the flow rate measuring device 1 can measure not only the flow rate in the main passage 2 at the time of forward flow but also the flow rate at the time of reverse flow. The amount of intake air can be determined.
Of the intake air that flows into the first passage 13 from the inlet 15 during forward flow, the intake air that flows through the first passage 13 without flowing into the second passage 14 returns from the outlet 16 to the main passage 2. A portion of the first passage 13 downstream of the branch port with respect to the second passage 14 suppresses the dust flowing in from the inlet 15 together with the intake air toward the second passage 14, and the flow sensor 4 Has the function of preventing damage from dust.

〔実施例1の特徴〕
実施例1の流量測定装置1によれば、図1〜図2に示すように、筐体3のそれぞれの側面12には、基準方向αに平行に配置される平面19が存在し、それぞれの平面19には、第2通路14の開口(図示せず。)が存在する。そして、この開口をカバー20により覆うことで、カバー20と平面19との間に出口6が形成され、出口6は基準方向αの下流側に向かって開口する。このため、出口6から流出した吸入空気は、平面19に沿って基準方向αに流れる。
[Features of Example 1]
According to the flow measuring device 1 of the first embodiment, as shown in FIGS. 1 to 2, each side surface 12 of the housing 3 has a plane 19 arranged in parallel to the reference direction α. In the plane 19, there is an opening (not shown) of the second passage 14. Then, by covering this opening with the cover 20, the outlet 6 is formed between the cover 20 and the flat surface 19, and the outlet 6 opens toward the downstream side in the reference direction α. For this reason, the intake air flowing out from the outlet 6 flows along the plane 19 in the reference direction α.

平面19には、出口6の下流側に隆起21が存在する。隆起21は、長手方向aに平行な線状であり、隆起21の平面19からの高さhは、平面19に垂直な方向(以下、隆起方向βと呼ぶことがある。)に関する出口6の幅Wよりも高い。また、出口6および隆起21を、基準方向αに垂直な投影面Aに投影したときに、投影面Aにおいて、出口6と隆起21とは部分的に重なる。より具体的には、投影面Aにおいて、長手方向aの範囲に関し、出口6は隆起21に含まれ、隆起方向βの範囲に関し、出口6は隆起21に含まれる。   On the plane 19, a ridge 21 exists on the downstream side of the outlet 6. The ridges 21 are linear parallel to the longitudinal direction a, and the height h of the ridges 21 from the plane 19 is the outlet 6 in the direction perpendicular to the plane 19 (hereinafter sometimes referred to as the ridge direction β). It is higher than the width W. Further, when the exit 6 and the ridge 21 are projected onto the projection plane A perpendicular to the reference direction α, the exit 6 and the ridge 21 partially overlap on the projection plane A. More specifically, on the projection plane A, the exit 6 is included in the ridge 21 with respect to the range in the longitudinal direction a, and the exit 6 is included in the ridge 21 with respect to the range in the ridge direction β.

そして、隆起21の頂23は、長手方向aに平行な線であり、基準方向αに関する上流端24、下流端25も長手方向aに平行な線である。そして、上流端24と頂23との間は、基準方向αに対して角度θ1だけ傾斜する平面26であり、下流端25と頂23との間は、基準方向αに対して角度θ2だけ傾斜する平面27である。   The apex 23 of the ridge 21 is a line parallel to the longitudinal direction a, and the upstream end 24 and the downstream end 25 with respect to the reference direction α are also parallel to the longitudinal direction a. A plane 26 is inclined between the upstream end 24 and the apex 23 by an angle θ1 with respect to the reference direction α, and an angle θ2 is inclined between the downstream end 25 and the apex 23 with respect to the reference direction α. This is a flat surface 27.

また、角度θ1、θ2を、隆起21の断面の内、平面19に垂直、かつ、基準方向αに平行な特定断面Bにおいて、別の表現に言い換えると、角度θ1は、上流端24から頂23に向かう方向と、平面19との間に形成され、角度θ2は、下流端25から頂23に向かう方向と、平面19との間に形成される。
そして、角度θ1、θ2の間には、θ1<θ2<90°の関係が成立している。
In other words, the angles θ1 and θ2 are expressed in another way in the specific cross section B perpendicular to the plane 19 and parallel to the reference direction α in the cross section of the ridge 21. The angle θ <b> 2 is formed between the direction from the downstream end 25 toward the top 23 and the plane 19.
A relationship of θ1 <θ2 <90 ° is established between the angles θ1 and θ2.

〔実施例1の効果〕
実施例1の流量測定装置1によれば、筐体3の外壁をなす平面19が存在し、平面19は基準方向αに平行である。また、出口6は、出口6から流出した吸入空気が平面19に沿って基準方向αに流れるように、基準方向αの下流側に向かって開口する。また、平面19には、出口6の下流側に隆起21が存在する。さらに、投影面Αにおいて、出口6と隆起21とは部分的に重なる。
[Effect of Example 1]
According to the flow rate measuring apparatus 1 of the first embodiment, the flat surface 19 that forms the outer wall of the housing 3 exists, and the flat surface 19 is parallel to the reference direction α. Further, the outlet 6 opens toward the downstream side in the reference direction α so that the intake air flowing out from the outlet 6 flows in the reference direction α along the plane 19. Further, a ridge 21 exists on the plane 19 on the downstream side of the outlet 6. Furthermore, the exit 6 and the ridge 21 partially overlap in the projection plane.

そして、隆起21の特定断面Bにおいて、隆起21の頂23および上流端24、下流端25に関し、上流端24から頂23に向かう方向と、基準方向αとの間に形成される角度θ1、下流端25から頂23に向かう方向と、基準方向αとの間に形成される角度θ2を想定すると、θ1<θ2<90°の関係が成立する。
これにより、逆流時に、隆起21の頂23近傍で流れの剥離が発生するのを抑制することができる。このため、流量測定装置1において、逆流時に副通路5への吸入空気の流入量が不足する状態を解消して測定精度の低下を抑制することができる。
In the specific cross section B of the ridge 21, with respect to the top 23, the upstream end 24, and the downstream end 25 of the ridge 21, an angle θ <b> 1 formed between the direction from the upstream end 24 toward the top 23 and the reference direction α, downstream Assuming an angle θ2 formed between the direction from the end 25 toward the apex 23 and the reference direction α, the relationship θ1 <θ2 <90 ° is established.
Thereby, it is possible to suppress the occurrence of separation of the flow in the vicinity of the top 23 of the ridge 21 during the backflow. For this reason, in the flow measurement device 1, it is possible to eliminate a state where the inflow amount of the intake air into the sub-passage 5 is insufficient at the time of backflow, thereby suppressing a decrease in measurement accuracy.

すなわち、図4に示すように、角度θ1、θ2が90°よりも小さい範囲で角度θ1、θ2の大小関係を変化させて測定誤差を調査すると、角度θ1が角度θ2以下のときには、角度θ1が角度θ2よりも大きいときよりも、測定誤差が大幅に小さいことを確認することができた。
なお、図5に示すように、θ1<θ2<90°の関係が成立する隆起21において、出口6と上流端24との距離Fを変化させても、測定誤差は小さい数値を維持してほとんど変動しないことも確認することができた。
That is, as shown in FIG. 4, when the measurement error is investigated by changing the magnitude relationship between the angles θ1 and θ2 in a range where the angles θ1 and θ2 are smaller than 90 °, when the angle θ1 is equal to or smaller than the angle θ2, the angle θ1 is It was confirmed that the measurement error was significantly smaller than when the angle was larger than the angle θ2.
As shown in FIG. 5, in the ridge 21 where the relationship of θ1 <θ2 <90 ° is established, even if the distance F between the outlet 6 and the upstream end 24 is changed, the measurement error is kept small and almost constant. It was also confirmed that there was no fluctuation.

〔実施例2〕
実施例2の流量測定装置1によれば、実施例1の隆起21と同様に、隆起21は、長手方向aに平行な線状であり、隆起21の頂23、上流端24および下流端25は、長手方向aに平行な線である。
そして、実施例2の隆起21によれば、実施例1の隆起21と異なり、図6に示すように、上流端24と頂23との間、および、下流端25と頂23との間は、それぞれ、隆起方向βに凸をなす曲面29、30であり、曲面29、30は、頂23において滑らかに連続している。
また、実施例1と同様に、角度θ1、θ2について、θ1<θ2<90°の関係が成立する。このため、実施例1と同様の作用効果を得ることができる。
[Example 2]
According to the flow rate measuring device 1 of the second embodiment, the ridge 21 is a line parallel to the longitudinal direction “a”, like the ridge 21 of the first embodiment, and the top 23, the upstream end 24, and the downstream end 25 of the ridge 21. Is a line parallel to the longitudinal direction a.
And according to the ridge 21 of Example 2, unlike the ridge 21 of Example 1, as shown in FIG. 6, between the upstream end 24 and the top 23 and between the downstream end 25 and the top 23, , Respectively, are curved surfaces 29 and 30 that are convex in the rising direction β, and the curved surfaces 29 and 30 are smoothly continuous at the apex 23.
As in the first embodiment, the relationship θ1 <θ2 <90 ° is established for the angles θ1 and θ2. For this reason, the same effect as Example 1 can be acquired.

〔実施例3〕
実施例3の流量測定装置1によれば、実施例1の隆起21と同様に、隆起21は、長手方向aに平行な線状であり、隆起21の頂23、上流端24および下流端25は、長手方向aに平行な線である。
そして、実施例3の隆起21によれば、実施例1の隆起21と異なり、図7に示すように、上流端24と頂23との間、および、下流端25と頂23との間は、それぞれ、隆起方向βの逆方向に凹をなす曲面31、32である。
また、実施例1と同様に、角度θ1、θ2について、θ1<θ2<90°の関係が成立する。このため、実施例1と同様の作用効果を得ることができる。
Example 3
According to the flow rate measuring device 1 of the third embodiment, the ridge 21 is a line parallel to the longitudinal direction a, like the ridge 21 of the first embodiment, and the top 23, the upstream end 24, and the downstream end 25 of the ridge 21. Is a line parallel to the longitudinal direction a.
And according to the bump 21 of Example 3, unlike the bump 21 of Example 1, as shown in FIG. 7, between the upstream end 24 and the top 23 and between the downstream end 25 and the top 23, , Respectively, are curved surfaces 31 and 32 that are concave in the direction opposite to the bulging direction β.
As in the first embodiment, the relationship θ1 <θ2 <90 ° is established for the angles θ1 and θ2. For this reason, the same effect as Example 1 can be acquired.

〔実施例4〕
実施例4の流量測定装置1によれば、実施例1の隆起21と同様に、隆起21は、長手方向aに平行な線状であり、隆起21の上流端24および下流端25は、長手方向aに平行な線である。
そして、実施例4の隆起21によれば、実施例1の隆起21と異なり、図8に示すように、隆起21の頂23は、平らであって平面19に平行な頂面23Αである。このため、隆起21の特定断面Bにおいて頂面23Αは線分である。
Example 4
According to the flow rate measuring device 1 of the fourth embodiment, the ridge 21 is a line parallel to the longitudinal direction a, and the upstream end 24 and the downstream end 25 of the ridge 21 are longitudinal. A line parallel to the direction a.
Then, according to the bump 21 of the fourth embodiment, unlike the bump 21 of the first embodiment, as shown in FIG. 8, the top 23 of the bump 21 is a flat top surface 23 平行 that is flat and parallel to the plane 19. For this reason, the top surface 23 に お い て is a line segment in the specific cross section B of the ridge 21.

また、上流端24、下流端25、および、線分の中点34mに関し、上流端24から中点34mに向かう方向と、基準方向αとの間に形成される角度θ3、下流端25から中点34mに向かう方向と、基準方向αとの間に形成される角度θ4を想定すると、θ3<θ4<90°の関係が成立する。このため、実施例1と同様の作用効果を得ることができる。
なお、上流端24と頂面23Αとの間、および、下流端25と頂面23Αとの間は、それぞれ、隆起方向βに凸をなす曲面35、36であり、曲面35、36は、それぞれ頂面23Αの上流端、下流端において頂面23Αと滑らかに連続している。
Further, regarding the upstream end 24, the downstream end 25, and the midpoint 34m of the line segment, an angle θ3 formed between the direction from the upstream end 24 toward the midpoint 34m and the reference direction α, and the midpoint from the downstream end 25 Assuming an angle θ4 formed between the direction toward the point 34m and the reference direction α, the relationship θ3 <θ4 <90 ° is established. For this reason, the same effect as Example 1 can be acquired.
In addition, between the upstream end 24 and the top surface 23 、, and between the downstream end 25 and the top surface 23 で, respectively, are curved surfaces 35 and 36 that protrude in the rising direction β, and the curved surfaces 35 and 36 are respectively At the upstream end and the downstream end of the top surface 23Α, the top surface 23Α is smoothly continuous.

〔実施例5〕
実施例5の流量測定装置1によれば、隆起21は、実施例1の隆起21と同様の形状である。
そして、実施例5の隆起21によれば、実施例1の隆起21と異なり、図9および図10に示すように、隆起21が2つ存在し、それぞれの隆起21は、長手方向aの長さが実施例1の隆起21よりも短い。また、2つの隆起21は、長手方向aに並んでいる。つまり、実施例5の隆起21の構成は、実施例1の隆起21を長手方向aの中央で分断した態様となっている。このため、実施例1と同様の作用効果を得ることができる。
Example 5
According to the flow measuring device 1 of the fifth embodiment, the ridge 21 has the same shape as the ridge 21 of the first embodiment.
And according to the bump 21 of Example 5, unlike the bump 21 of Example 1, as shown in FIG.9 and FIG.10, two bumps 21 exist, and each bump 21 is long in the longitudinal direction a. Is shorter than the ridge 21 of the first embodiment. The two ridges 21 are arranged in the longitudinal direction a. That is, the configuration of the ridge 21 of the fifth embodiment is a mode in which the ridge 21 of the first embodiment is divided at the center in the longitudinal direction a. For this reason, the same effect as Example 1 can be acquired.

〔実施例6〕
実施例6の流量測定装置1によれば、図11〜図13に示すように、通路構成部9は、実施例1と同様に外形が矩形板状の略直方位体に成形され、短手方向bが基準方向αと平行をなすように主通路2に突き出ている。また、副通路5は、短手方向bと平行に入口15と出口6との間を一直線に貫通する直進路38であり、直進路38に流量センサ4が突き出ている。また、出口6および入口15は、長手方向aに長い同一の矩形であり、基準方向αに垂直な投影面Αに投影したときに、互いに重なり合う。
Example 6
According to the flow rate measuring apparatus 1 of the sixth embodiment, as shown in FIGS. 11 to 13, the passage constituting portion 9 is formed into a substantially straight body having a rectangular plate shape as in the first embodiment. The direction b projects into the main passage 2 so as to be parallel to the reference direction α. The sub-passage 5 is a straight path 38 that passes through the straight line between the inlet 15 and the outlet 6 in parallel with the short direction b, and the flow rate sensor 4 protrudes from the straight path 38. The outlet 6 and the inlet 15 have the same rectangular shape that is long in the longitudinal direction a, and overlap each other when projected onto a projection plane that is perpendicular to the reference direction α.

また、入口15は、基準方向αの上流側に配置される細長の端面39において、上流側に向かって開口しており、出口6は、基準方向αに関して端面39とは反対側の端面40において、下流側に向かって開口している。そして、直進路38における吸入空気の流れの方向は、順流時、逆流時ともに基準方向αと同じになる。
以上により、実施例6の流量測定装置1は、実施例1と同様に、順流時の主通路2における流量だけでなく、逆流時の流量を測定することができ、ECUは、順流時、逆流時両方の流量から、内燃機関に取り込まれた吸入空気の量を求めることができる。
In addition, the inlet 15 opens toward the upstream side at the elongated end surface 39 disposed on the upstream side in the reference direction α, and the outlet 6 opens on the end surface 40 opposite to the end surface 39 with respect to the reference direction α. , Opening toward the downstream side. And the direction of the flow of the intake air in the straight path 38 is the same as the reference direction α in both the forward flow and the reverse flow.
As described above, the flow rate measuring device 1 according to the sixth embodiment can measure not only the flow rate in the main passage 2 during the forward flow but also the flow rate during the reverse flow as in the first embodiment. From both flow rates, the amount of intake air taken into the internal combustion engine can be determined.

また、実施例6の流量測定装置1によれば、筐体3は、出口6の下流側に配置される柱体41を有する。ここで、柱体41は、長手方向aと平行に伸びる四角柱である。そして、柱体41には、基準方向αに対して垂直に突き出る2つの頂42、上流側に突き出る上流端43、および、下流側に突き出る下流端44が存在し、2つの頂42、上流端43および下流端44は、長手方向aに平行な線分である。また、柱体41および出口6を、投影面Αに投影したときに、投影面Αにおいて、出口6と柱体41はが部分的に重なり合う。より具体的には、投影面Αにおいて、長手方向aの範囲に関し、出口6と柱体41とは略一致し、頂42が突き出る方向の範囲に関し、柱体41は出口6に含まれる。   Further, according to the flow rate measuring device 1 of the sixth embodiment, the housing 3 has the column body 41 disposed on the downstream side of the outlet 6. Here, the column body 41 is a quadrangular column extending in parallel with the longitudinal direction a. The column body 41 has two apexes 42 projecting perpendicular to the reference direction α, an upstream end 43 projecting upstream, and a downstream end 44 projecting downstream, and the two apexes 42, upstream end 43 and the downstream end 44 are line segments parallel to the longitudinal direction a. Further, when the column body 41 and the outlet 6 are projected onto the projection plane Α, the outlet 6 and the column body 41 partially overlap on the projection plane Α. More specifically, in the projection plane に 関 し, the outlet 6 and the column 41 substantially coincide with each other with respect to the range in the longitudinal direction a, and the column 41 is included in the outlet 6 with respect to the range in the direction in which the top 42 protrudes.

そして、柱体41の断面の内、長手方向aに垂直な特定断面Bでは、2つの頂42と上流端43とで形成される角度θ5、2つの頂42と下流端44とで形成される角度θ6を想定すると、θ5<θ6<90°の関係が成立する。このため、実施例1と同様の作用効果を得ることができる。
なお、柱体41は、端面40から基準方向αの下流側に伸びる2つの支持部45により、支持されている。また、特定断面Bとは別に、上流端43と下流端44とを含む別断面Cを考えると、柱体41は、別断面Cを対称面として面対称をなし、2つの頂42は、基準方向αに関して同じ位置に存在する。
And in the specific cross section B perpendicular | vertical to the longitudinal direction a among the cross sections of the column 41, it forms with the angle (theta) 5 formed by the two tops 42 and the upstream end 43, and the two tops 42 and the downstream end 44. Assuming an angle θ6, the relationship θ5 <θ6 <90 ° is established. For this reason, the same effect as Example 1 can be acquired.
The column body 41 is supported by two support portions 45 extending from the end face 40 to the downstream side in the reference direction α. Further, considering another cross section C including the upstream end 43 and the downstream end 44 separately from the specific cross section B, the column 41 has a plane symmetry with another cross section C as a symmetry plane, and the two apexes 42 are defined as a reference. It exists at the same position with respect to the direction α.

〔実施例7〕
実施例7の流量測定装置1によれば、図14〜図16に示すように、筐体3、副通路5および柱体41は、それぞれ、実施例6の筐体3、副通路5および柱体41と同一形状である。
そして、実施例7の柱体41は、部分的に副通路5内に存在しており、具体的には、2つの頂42よりも基準方向αの上流側の部分の内、上流端43を含む一部分が副通路5内に存在している。これにより、実施例1と同様の作用効果を得ることができる。
Example 7
According to the flow measurement device 1 of the seventh embodiment, as shown in FIGS. 14 to 16, the housing 3, the sub passage 5, and the column body 41 are respectively the housing 3, the sub passage 5, and the column of the sixth embodiment. It has the same shape as the body 41.
The column body 41 of the seventh embodiment partially exists in the sub-passage 5. Specifically, the upstream end 43 of the upstream portion of the reference direction α with respect to the two apexes 42 is formed. A part including the same exists in the auxiliary passage 5. Thereby, the same effect as Example 1 can be acquired.

〔実施例8〕
実施例8の流量測定装置1によれば、図17〜図19に示すように、筐体3、副通路5および柱体41は、それぞれ、実施例6の筐体3、副通路5および柱体41と同一形状である。
そして、実施例8の柱体41は、全体が副通路5内に存在している。これにより、実施例1と同様の作用効果を得ることができる。
Example 8
According to the flow measurement device 1 of the eighth embodiment, as shown in FIGS. 17 to 19, the housing 3, the sub passage 5, and the column body 41 are respectively the housing 3, the sub passage 5, and the column of the sixth embodiment. It has the same shape as the body 41.
The entire column 41 of the eighth embodiment exists in the sub passage 5. Thereby, the same effect as Example 1 can be acquired.

〔実施例9〕
実施例9の流量測定装置1によれば、図20〜図23に示すように、副通路5は、取り込んだ吸入空気の流れを全て周回させるように設けられている。また、出口6および入口15は、長手方向aに長い矩形であり、基準方向αに垂直な投影面Αに投影したときに、出口15の片側に入口15が偏って重なる。つまり、長手方向aおよび短手方向bの両方に垂直な第3の方向cを考えると、投影面Aにおいて、入口15は出口6の第3の方向cの一方側に偏って存在する(図20および図21参照。)。
Example 9
According to the flow rate measuring device 1 of the ninth embodiment, as shown in FIGS. 20 to 23, the auxiliary passage 5 is provided so as to circulate all the flow of the intake air taken in. In addition, the outlet 6 and the inlet 15 have a rectangular shape that is long in the longitudinal direction “a”, and the inlet 15 is biased to overlap with one side of the outlet 15 when projected onto a projection plane that is perpendicular to the reference direction α. That is, when the third direction c perpendicular to both the longitudinal direction a and the short direction b is considered, the entrance 15 is biased to one side of the exit 6 in the third direction c on the projection plane A (see FIG. 20 and FIG. 21).

また、筐体3は、実施例6〜8と同様の形状の柱体41を有し、柱体41は、部分的に出口6から副通路5の外側に突き出ている。具体的には、2つの頂42よりも基準方向αの下流側の部分の内、下流端44を含む一部分が副通路5の外側に存在している。また、柱体41は、出口6の内、第3の方向cの他方側に偏って存在する。
以上により、実施例1と同様の作用効果を得ることができる。
Moreover, the housing | casing 3 has the pillar 41 of the shape similar to Examples 6-8, and the pillar 41 protrudes outside the sub channel | path 5 from the exit 6 partially. Specifically, a portion including the downstream end 44 of the portion on the downstream side in the reference direction α from the two apexes 42 exists outside the sub-passage 5. Further, the column body 41 is present on the other side in the third direction c in the outlet 6.
As described above, the same effects as those of the first embodiment can be obtained.

さらに、実施例9において、穴10aは矩形であり、穴10aの開口縁は配管10の外面において、一様に隆起して矩形状の筒10bを形成している。また、被取付部11は、筒10bの先端面を覆うことができる鍔部11dを有する。そして、筒10bの先端面に、ゴム等の弾性材料を素材とする矩形のリング11eを載せ、リング11eを筒10bと鍔部11dとで挟み込むことで、シール部11aを構成している。   Furthermore, in Example 9, the hole 10a is rectangular, and the opening edge of the hole 10a is uniformly raised on the outer surface of the pipe 10 to form a rectangular tube 10b. Moreover, the to-be-attached part 11 has the collar part 11d which can cover the front end surface of the cylinder 10b. A rectangular ring 11e made of an elastic material such as rubber is placed on the distal end surface of the cylinder 10b, and the ring 11e is sandwiched between the cylinder 10b and the flange part 11d to constitute the seal part 11a.

なお、実施例9では、図23に示すように、シール部11aの上流端11upおよび下流端11dn、ならびに、穴10aの上流端10upおよび下流端10dnは、線分である。そして、基準方向αは、上流端11up、下流端11dnそれぞれの中点を結ぶ直線の方向として定義することができる。また、基準方向αは、上流端10up、下流端10dnそれぞれの中点を結ぶ直線の方向と同じ方向であり、さらに、主通路2の内、流量測定装置1が存在する領域における流路軸の方向と同じ方向である。   In Example 9, as shown in FIG. 23, the upstream end 11up and the downstream end 11dn of the seal portion 11a and the upstream end 10up and the downstream end 10dn of the hole 10a are line segments. The reference direction α can be defined as the direction of a straight line connecting the midpoints of the upstream end 11up and the downstream end 11dn. Further, the reference direction α is the same as the direction of the straight line connecting the midpoints of the upstream end 10up and the downstream end 10dn, and further, the flow path axis in the region where the flow rate measuring device 1 exists in the main passage 2. The same direction as the direction.

〔変形例〕
本発明は、その要旨を逸脱しない範囲で様々な変形例を考えることができる。
つまり、流量測定装置1の筐体3、通路構成部9、副通路5、隆起21および柱体41等の態様は実施例に限定されず、様々な態様をとり得る。
また、実施例1〜8では、流量測定装置1を、内燃機関に吸入される吸入空気の流量を測定するため、吸入空気が流れる主通路2に配置する態様を例示していたが、流量測定装置1の使用の態様はこのようなものに限定されない。
[Modification]
Various modifications can be considered for the present invention without departing from the gist thereof.
That is, aspects, such as the housing | casing 3 of the flow volume measuring apparatus 1, the channel | path structure part 9, the subchannel | path 5, the protruding part 21, and the column 41, are not limited to an Example, Various aspects can be taken.
In the first to eighth embodiments, the flow measuring device 1 is illustrated as being disposed in the main passage 2 through which the intake air flows in order to measure the flow rate of the intake air sucked into the internal combustion engine. The mode of use of the device 1 is not limited to this.

また、実施例1〜5の流量測定装置1によれば、隆起21は、基準方向αに平行な平面19に存在していたが、隆起21が存在する面はこのような態様に限定されない。例えば、出口6の下流側の外壁を曲面19Aとし、曲面19Aに隆起21を設けてもよく(図24参照。)、出口6の下流側の外壁を、基準方向αに対して傾斜する傾斜面19Bとし、傾斜面19Bに隆起21を設けてもよく(図25参照。)、さらに、出口6の下流側の外壁を曲面19Aおよび傾斜面19Bの2つで構成し、曲面19Aおよび傾斜面19Bの両方に跨るように隆起21を設けてもよい(図26参照。)。   Moreover, according to the flow measuring device 1 of Examples 1-5, although the bump 21 existed in the plane 19 parallel to the reference direction (alpha), the surface where the bump 21 exists is not limited to such an aspect. For example, the outer wall on the downstream side of the outlet 6 may be a curved surface 19A, and a ridge 21 may be provided on the curved surface 19A (see FIG. 24), and the inclined outer surface on the downstream side of the outlet 6 is inclined with respect to the reference direction α. 19B, and the ridge 21 may be provided on the inclined surface 19B (see FIG. 25). Further, the outer wall on the downstream side of the outlet 6 is composed of the curved surface 19A and the inclined surface 19B, and the curved surface 19A and the inclined surface 19B. A ridge 21 may be provided so as to straddle both (see FIG. 26).

さらに、実施例の流量測定装置1によれば、シール部11aは、Oリング11bやリング11eによって主通路2と配管10の外部との間を実質的にシールしていたが、シール部11aによるシールの態様は、このような態様に限定されない。例えば、実施例9の流量測定装置1において、筒10bと鍔部11dと溶着することにより、シール部11aを構成して主通路2と配管10の外部との間をシールしてもよい。   Furthermore, according to the flow rate measuring apparatus 1 of the embodiment, the seal portion 11a substantially seals between the main passage 2 and the outside of the pipe 10 by the O-ring 11b and the ring 11e. The aspect of the seal is not limited to such an aspect. For example, in the flow rate measuring device 1 according to the ninth embodiment, the seal portion 11a may be configured to seal between the main passage 2 and the outside of the pipe 10 by welding the tube 10b and the flange portion 11d.

1 流量測定装置 2 主通路 3 筐体 4 流量センサ 5 副通路 6 出口 10 配管 10a 穴 11a シール部 21 隆起 Α 投影面 23 頂 24 上流端 25 下流端 α 基準方向 θ1、θ2 角度 DESCRIPTION OF SYMBOLS 1 Flow measuring device 2 Main passage 3 Case 4 Flow sensor 5 Sub passage 6 Outlet 10 Piping 10a Hole 11a Seal part 21 Bump 投影 Projection surface 23 Top 24 Upstream end 25 Downstream end α Reference direction θ1, θ2 Angle

Claims (7)

主通路(2)を形成する配管(10)に設けられた穴(10a)から前記主通路に差し入れられて固定され、前記主通路における被測定気体の流量に応じた信号を発生する流量測定装置(1)において、
前記主通路を流れる被測定気体が取り込まれて流れる副通路(5)を有し、前記主通路に差し入れられる筐体(3)と、
前記副通路に配置されて前記副通路を流れる被測定気体との伝熱により、前記主通路における被測定気体の流量に応じた信号を発生する流量センサ(4)とを備え、
前記筐体の内、前記穴における被測定気体の漏れを防止するシール部(11a)において、上流端と下流端とを結ぶ方向を基準方向(α)と定義すると、
前記筐体の外壁には、前記流量センサを通過した被測定気体を前記副通路から前記主通路に戻す出口(6)が前記基準方向の下流側に向かって開口しており、さらに、前記筐体の外壁には、前記出口の下流側に隆起(21)が存在し、
前記出口および前記隆起を、前記基準方向に垂直な投影面(Α)に投影したときに、この投影面において、前記出口と前記隆起とは部分的に重なり、
前記隆起の上流端(24)、下流端(25)および頂(23)に関し、前記上流端から前記頂に向かう方向と、前記基準方向との間に形成される角度θ1、前記下流端から前記頂に向かう方向と、前記基準方向との間に形成される角度θ2を想定すると、θ1<θ2<90°の関係が成立することを特徴とする流量測定装置。
A flow measuring device that is inserted into and fixed to the main passage from a hole (10a) provided in the pipe (10) forming the main passage (2) and generates a signal corresponding to the flow rate of the gas to be measured in the main passage. In (1),
A housing (3) having a sub-passage (5) through which the gas to be measured flowing through the main passage flows and flows, and inserted into the main passage;
A flow sensor (4) that generates a signal corresponding to the flow rate of the gas to be measured in the main passage by heat transfer with the gas to be measured that is arranged in the sub passage and flows through the sub passage;
In the seal portion (11a) that prevents leakage of the gas to be measured in the hole in the casing, the direction connecting the upstream end and the downstream end is defined as a reference direction (α).
On the outer wall of the housing, an outlet (6) for returning the gas to be measured that has passed through the flow sensor from the sub-passage to the main passage is opened toward the downstream side in the reference direction. On the outer wall of the body there is a ridge (21) downstream of the outlet,
When the exit and the ridge are projected onto a projection plane (Α) perpendicular to the reference direction, the exit and the ridge partially overlap on the projection plane,
With respect to the upstream end (24), the downstream end (25) and the top (23) of the ridge, an angle θ1 formed between a direction from the upstream end toward the top and the reference direction, and from the downstream end to the top Assuming an angle θ2 formed between the direction toward the apex and the reference direction, a flow rate measuring device satisfying the relationship θ1 <θ2 <90 °.
請求項1に記載の流量測定装置において、
前記頂は、突き出る側に凸をなす曲面に含まれていることを特徴とする流量測定装置。
The flow measurement device according to claim 1,
The apex is included in a curved surface that protrudes toward the protruding side.
主通路を形成する配管に設けられた穴から前記主通路に差し入れられて固定され、前記主通路における被測定気体の流量に応じた信号を発生する流量測定装置において、
前記主通路を流れる被測定気体が取り込まれて流れる副通路を有し、前記主通路に差し入れられる筐体と、
前記副通路に配置されて前記副通路を流れる被測定気体との伝熱により、前記主通路における被測定気体の流量に応じた信号を発生する流量センサとを備え、
前記筐体の内、前記穴における被測定気体の漏れを防止するシール部において、上流端と下流端とを結ぶ方向を基準方向と定義すると、
前記筐体の外壁には、前記流量センサを通過した被測定気体を前記副通路から前記主通路に戻す出口が前記基準方向の下流側に向かって開口しており、さらに、前記筐体の外壁には、前記出口の下流側に隆起が存在し、この隆起の頂は、平らな頂面(23Α)であり、
前記出口および前記隆起を、前記基準方向に垂直な投影面(Α)に投影したときに、この投影面において、前記出口と前記隆起とは部分的に重なり、
前記基準方向に平行、かつ、前記頂面を切断するように描かれる断面において、前記頂面は線分であり、前記隆起の上流端、下流端、および、前記線分の中点(34m)に関し、前記上流端から前記線分の中点に向かう方向と、前記基準方向との間に形成される角度θ3、前記下流端から前記線分の中点に向かう方向と、前記基準方向との間に形成される角度θ4を想定すると、θ3<θ4<90°の関係が成立することを特徴とする流量測定装置。
In the flow measuring device that is inserted and fixed to the main passage from the hole provided in the pipe forming the main passage, and generates a signal corresponding to the flow rate of the gas to be measured in the main passage,
A housing having a sub-passage through which the gas to be measured flowing through the main passage flows and is inserted into the main passage;
A flow rate sensor that generates a signal according to the flow rate of the gas to be measured in the main passage by heat transfer with the gas to be measured that is arranged in the sub passage and flows through the sub passage;
In the seal part that prevents leakage of the gas to be measured in the hole in the casing, the direction connecting the upstream end and the downstream end is defined as a reference direction.
An outlet for returning the gas to be measured that has passed through the flow sensor from the sub-passage to the main passage opens toward the downstream side in the reference direction on the outer wall of the housing, and further, the outer wall of the housing Have a ridge downstream of the outlet, the top of which is a flat top surface (23 cm),
When the exit and the ridge are projected onto a projection plane (Α) perpendicular to the reference direction, the exit and the ridge partially overlap on the projection plane,
In the cross section drawn to be parallel to the reference direction and cut along the top surface, the top surface is a line segment, and the upstream end, the downstream end, and the midpoint (34 m) of the line segment of the ridge The angle θ3 formed between the direction from the upstream end toward the midpoint of the line segment and the reference direction, the direction from the downstream end toward the midpoint of the line segment, and the reference direction Assuming an angle θ4 formed therebetween, a flow rate measuring device characterized by the relationship θ3 <θ4 <90 °.
請求項1ないし請求項3の内のいずれか1つに記載の流量測定装置において、
前記隆起は、複数、存在しており、
複数の前記隆起は、前記基準方向に垂直な方向(a)に並んでいることを特徴とする流量測定装置。
In the flow measurement device according to any one of claims 1 to 3,
A plurality of the ridges exist,
The plurality of ridges are arranged in a direction (a) perpendicular to the reference direction.
主通路を形成する配管に設けられた穴から前記主通路に差し入れられて固定され、前記主通路における被測定気体の流量に応じた信号を発生する流量測定装置において、
前記主通路を流れる被測定気体が取り込まれて流れる副通路を有する筐体と、
前記副通路に配置されて前記副通路を流れる被測定気体との伝熱により、前記主通路を流れる被測定気体の流量に応じた信号を発生する流量センサとを備え、
前記筐体の内、前記穴における被測定気体の漏れを防止するシール部において、上流端と下流端とを結ぶ方向を基準方向と定義すると、
前記副通路の出口は、この出口から流出した被測定気体が前記基準方向に流れるように、前記基準方向の下流側に向かって開口し、
前記出口の下流側に柱体(41)が存在し、
前記出口および前記柱体を、前記基準方向に垂直な投影面に投影したときに、この投影面において、前記出口と前記柱体とが部分的に重なり、
この柱体の断面の内、前記投影面における前記柱体の長手方向に垂直な特定断面では、前記基準方向に対して垂直に突き出る2つの頂(42)、上流側に突き出る上流端(43)、および、下流側に突き出る下流端(44)が存在し、
さらに、前記特定断面では、前記2つの頂と前記上流端とで形成される角度θ5、前記2つの頂と前記下流端とで形成される角度θ6を想定すると、θ5<θ6<90°の関係が成立することを特徴とする流量測定装置。
In the flow measuring device that is inserted and fixed to the main passage from the hole provided in the pipe forming the main passage, and generates a signal corresponding to the flow rate of the gas to be measured in the main passage,
A housing having a sub-passage through which the gas to be measured flowing through the main passage flows.
A flow rate sensor that generates a signal corresponding to the flow rate of the gas to be measured flowing through the main passage by heat transfer with the gas to be measured that is disposed in the sub passage and flows through the sub passage;
In the seal part that prevents leakage of the gas to be measured in the hole in the casing, the direction connecting the upstream end and the downstream end is defined as a reference direction.
The outlet of the sub passage opens toward the downstream side of the reference direction so that the gas to be measured flowing out of the outlet flows in the reference direction,
There is a column (41) downstream of the outlet,
When the exit and the column are projected onto a projection plane perpendicular to the reference direction, the exit and the column partially overlap on the projection plane,
Among the cross sections of the column bodies, in a specific cross section perpendicular to the longitudinal direction of the column bodies on the projection plane, two peaks (42) projecting perpendicular to the reference direction, and an upstream end (43) projecting upstream And there is a downstream end (44) protruding downstream,
Furthermore, in the specific cross section, assuming an angle θ5 formed between the two apexes and the upstream end and an angle θ6 formed between the two apexes and the downstream end, a relationship of θ5 <θ6 <90 ° is assumed. A flow rate measuring device characterized by the fact that
請求項5に記載の流量測定装置において、
前記柱体は、部分的に前記副通路内に存在していることを特徴とする流量測定装置。
The flow rate measuring device according to claim 5,
The flow rate measuring apparatus according to claim 1, wherein the column body partially exists in the sub-passage.
主通路を形成する配管に設けられた穴から前記主通路に差し入れられて固定され、前記主通路における被測定気体の流量に応じた信号を発生する流量測定装置において、
前記主通路を流れる被測定気体が取り込まれて流れる副通路を有する筐体と、
前記副通路に配置されて前記副通路を流れる被測定気体との伝熱により、前記主通路を流れる被測定気体の流量に応じた信号を発生する流量センサとを備え、
前記筐体の内、前記穴における被測定気体の漏れを防止するシール部において、上流端と下流端とを結ぶ方向を基準方向と定義すると、
前記副通路の出口は、この出口から流出した被測定気体が前記基準方向に流れるように、前記基準方向の下流側に向かって開口し、
前記副通路は、前記出口から前記基準方向と逆の方向に伸びる直進路(38)を有し、
この直進路に柱体が存在し、
前記出口および前記柱体を、前記基準方向に垂直な投影面に投影したときに、この投影面において、前記出口と前記柱体とが部分的に重なり、
この柱体の断面の内、前記投影面における前記柱体の長手方向に垂直な特定断面では、前記基準方向に対して垂直に突き出る2つの頂、上流側に突き出る上流端、および、下流側に突き出る下流端が存在し、
さらに、前記特定断面では、前記2つの頂と前記上流端とで形成される角度θ5、前記2つの頂と前記下流端とで形成される角度θ6を想定すると、θ5<θ6<90°の関係が成立することを特徴とする流量測定装置。
In the flow measuring device that is inserted and fixed to the main passage from the hole provided in the pipe forming the main passage, and generates a signal corresponding to the flow rate of the gas to be measured in the main passage,
A housing having a sub-passage through which the gas to be measured flowing through the main passage flows.
A flow rate sensor that generates a signal corresponding to the flow rate of the gas to be measured flowing through the main passage by heat transfer with the gas to be measured that is disposed in the sub passage and flows through the sub passage;
In the seal part that prevents leakage of the gas to be measured in the hole in the casing, the direction connecting the upstream end and the downstream end is defined as a reference direction.
The outlet of the sub passage opens toward the downstream side of the reference direction so that the gas to be measured flowing out of the outlet flows in the reference direction,
The secondary passage has a straight path (38) extending from the outlet in a direction opposite to the reference direction,
There is a pillar in this straight path,
When the exit and the column are projected onto a projection plane perpendicular to the reference direction, the exit and the column partially overlap on the projection plane,
Among the cross sections of the pillars, in a specific cross section perpendicular to the longitudinal direction of the pillars on the projection plane, two peaks projecting perpendicular to the reference direction, an upstream end projecting upstream, and a downstream side There is a protruding downstream end,
Furthermore, in the specific cross section, assuming an angle θ5 formed between the two apexes and the upstream end and an angle θ6 formed between the two apexes and the downstream end, a relationship of θ5 <θ6 <90 ° is assumed. A flow rate measuring device characterized by the fact that
JP2017044476A 2016-06-14 2017-03-09 Flow rate measurement device Pending JP2017223647A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017110556.5A DE102017110556A1 (en) 2016-06-14 2017-05-16 Flow measurement device
US15/619,832 US10684150B2 (en) 2016-06-14 2017-06-12 Flow measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016118317 2016-06-14
JP2016118317 2016-06-14

Publications (1)

Publication Number Publication Date
JP2017223647A true JP2017223647A (en) 2017-12-21

Family

ID=60686346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044476A Pending JP2017223647A (en) 2016-06-14 2017-03-09 Flow rate measurement device

Country Status (1)

Country Link
JP (1) JP2017223647A (en)

Similar Documents

Publication Publication Date Title
JP5799682B2 (en) Air flow measurement device
US8590368B2 (en) Airflow measuring device
JP4412357B2 (en) Air flow measurement device
JP5338864B2 (en) Air flow measurement device
US8950248B2 (en) Air flow measuring device having a sensor accommodated in a bypass flow passage
CN106716078B (en) For determining the sensor module for flowing through at least one parameter of fluid media (medium) of Measurement channel
JP6477195B2 (en) Flow measuring device
JP5675707B2 (en) Thermal flow meter
US20220065671A1 (en) Physical quantity measurement device for measuring a physical quantity of a fluid
WO2012032901A1 (en) Thermal type fluid flow rate measuring device
JP6365388B2 (en) Flow measuring device
JP4752472B2 (en) Air flow measurement device
JP6069504B2 (en) Temperature / humidity sensor
US10928231B2 (en) Thermal flow meter with housing surfaces that minimize vortex formation
US10605639B2 (en) Flow rate measuring device
JP2017223647A (en) Flow rate measurement device
US10684150B2 (en) Flow measuring device
WO2018193764A1 (en) Physical quantity measuring device
US11009378B2 (en) Flow rate measuring device
JP7087811B2 (en) Flow measuring device and piping equipment to which the flow measuring device is applied
JP5527297B2 (en) Air flow measurement device
JP6674917B2 (en) Thermal flow meter
JP2020003312A (en) Physical quantity detector
JP2020098179A (en) Physical quantity measurement device
JP2020106320A (en) Physical quantity measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222