JP2017223548A - Measuring device and wearable apparatus - Google Patents

Measuring device and wearable apparatus Download PDF

Info

Publication number
JP2017223548A
JP2017223548A JP2016118993A JP2016118993A JP2017223548A JP 2017223548 A JP2017223548 A JP 2017223548A JP 2016118993 A JP2016118993 A JP 2016118993A JP 2016118993 A JP2016118993 A JP 2016118993A JP 2017223548 A JP2017223548 A JP 2017223548A
Authority
JP
Japan
Prior art keywords
temperature
heat
base material
heat flow
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016118993A
Other languages
Japanese (ja)
Inventor
興子 清水
Kyoko Shimizu
興子 清水
陽 池田
Hiromi Ikeda
陽 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016118993A priority Critical patent/JP2017223548A/en
Publication of JP2017223548A publication Critical patent/JP2017223548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy in measuring the temperature of a deep part of a measurement target body.SOLUTION: There is provided a measuring device in contact with a measurement target body for measuring the temperature and heat flow thereof, the measuring device comprising: a sensor part including a plurality of temperature sensors or a temperature sensor and a heat flow sensor; and a substrate including the sensor part therein, and having a shortest distance from the center of a contact surface with the measurement target body to an outer edge of 5 mm or more and a longest distance of 71 mm or less, and a thermal conductivity of 0.1 W/m K or more and 3.0 W/m K or less.SELECTED DRAWING: Figure 4

Description

本発明は、被測定体の温度および熱流を測定する測定装置等に関する。   The present invention relates to a measuring device for measuring the temperature and heat flow of a measurement object.

被測定体表面に温度センサーを設置し、被測定体の深部温度を測定する技術が知られている。例えば、特許文献1には、複数の温度センサーの検出値を用いて熱流を測定し、測定結果から深部温度を求める技術が開示されている。   A technique is known in which a temperature sensor is installed on the surface of a measurement object and the depth temperature of the measurement object is measured. For example, Patent Document 1 discloses a technique for measuring a heat flow using detection values of a plurality of temperature sensors and obtaining a deep temperature from a measurement result.

特開2015−64369号公報Japanese Patent Laying-Open No. 2015-64369

しかし、特許文献1の技術では熱伝導方程式が成立する理想的な状態を想定しており、被測定体内部の熱源から放出された熱流が、被測定体表面においても保存されることを前提に深部温度を算出するものである。そのため、熱源から被測定体表面まで熱が伝導する過程で熱流が増減し、両者に誤差が生じると、深部温度の測定精度が低下する問題があった。   However, the technique of Patent Document 1 assumes an ideal state in which the heat conduction equation is established, and assumes that the heat flow released from the heat source inside the measured object is stored also on the measured object surface. The deep temperature is calculated. Therefore, when the heat flow increases or decreases in the process of conducting heat from the heat source to the surface of the object to be measured and an error occurs in both, there is a problem that the measurement accuracy of the deep temperature is lowered.

本発明は、こうした事情に鑑みてなされたものであり、被測定体の深部温度の測定精度を向上させることを目的とする。   This invention is made | formed in view of such a situation, and it aims at improving the measurement precision of the deep part temperature of a to-be-measured body.

上記課題を解決するための第1の発明は、被測定体に接して温度および熱流を測定するための測定装置であって、複数の温度センサー、又は温度センサーと熱流センサーとを有するセンサー部と、前記センサー部を内部に含み、前記被測定体への接触面の中心から外縁までの最短距離が5[mm]以上且つ最長距離が71[mm]以下であり、さらに熱伝導率が0.1[W/m・K]以上3.0[W/m・K]以下の基材と、を備えた測定装置である。   A first invention for solving the above-described problem is a measuring device for measuring temperature and heat flow in contact with a measurement object, and a plurality of temperature sensors, or a sensor unit having a temperature sensor and a heat flow sensor; The shortest distance from the center of the contact surface to the object to be measured to the outer edge is 5 [mm] or more and the longest distance is 71 [mm] or less, and the thermal conductivity is 0. 1 [W / m · K] to 3.0 [W / m · K] base material.

後述するように、基材の被測定体への接触面を、その中心から外縁までの最短距離が5[mm]以上且つ最長距離が71[mm]以下であって、熱伝導率が0.1[W/m・K]以上3.0[W/m・K]以下とすることで、被測定体内部の熱源から放出される熱流と、被測定体表面から放出される熱流との誤差を抑制できる。したがって、第1の発明によれば、被測定体の深部温度の測定精度を向上させることができる。   As will be described later, the contact surface of the substrate to the object to be measured has a shortest distance from the center to the outer edge of 5 [mm] or more and a longest distance of 71 [mm] or less and a thermal conductivity of 0. An error between the heat flow emitted from the heat source inside the measured object and the heat flow emitted from the measured object surface by setting the power to 1 [W / m · K] or more and 3.0 [W / m · K] or less. Can be suppressed. Therefore, according to 1st invention, the measurement precision of the deep temperature of a to-be-measured body can be improved.

また、第2の発明として、前記基材は、熱伝導率が0.5[W/m・K]以上である、第1の発明の測定装置を構成してもよい。   As a second invention, the base material may constitute the measuring device according to the first invention having a thermal conductivity of 0.5 [W / m · K] or more.

第2の発明によれば、基材の熱伝導率を、0.5[W/m・K]以上3.0[W/m・K]以下とすることができる。   According to the second invention, the thermal conductivity of the substrate can be set to 0.5 [W / m · K] to 3.0 [W / m · K].

また、第3の発明として、前記基材は、縦横の長さが10[mm]×10[mm]以上100[mm]×100[mm]以下の矩形状の前記接触面を有する、第1又は第2の発明の測定装置を構成してもよい。   In addition, as a third invention, the base material has the rectangular contact surface having a length and width of 10 [mm] × 10 [mm] or more and 100 [mm] × 100 [mm] or less. Or you may comprise the measuring apparatus of 2nd invention.

第3の発明によれば、基材の接触面を、縦横の長さが10[mm]×10[mm]以上100[mm]×100[mm]以下の矩形状とすることができる。   According to the third aspect of the invention, the contact surface of the base material can be formed in a rectangular shape having a vertical and horizontal length of 10 [mm] × 10 [mm] or more and 100 [mm] × 100 [mm] or less.

また、第4の発明として、前記基材は、直径10[mm]以上100[mm]以下の円状、又は、短軸の長さが10[mm]以上で且つ長軸の長さが100[mm]以下の楕円状の前記接触面を有する、第1又は第2の発明の測定装置を構成してもよい。   As a fourth invention, the base material has a circular shape with a diameter of 10 [mm] or more and 100 [mm] or less, or a short axis length of 10 [mm] or more and a long axis length of 100. You may comprise the measuring apparatus of the 1st or 2nd invention which has the said elliptical contact surface of [mm] or less.

第4の発明によれば、基材の接触面を、直径10[mm]以上100[mm]以下の円状とし、又は、短軸の長さが10[mm]以上で且つ長軸の長さが100[mm]以下の楕円状とすることができる。   According to the fourth invention, the contact surface of the base material has a circular shape with a diameter of 10 [mm] or more and 100 [mm] or less, or the length of the short axis is 10 [mm] or more and the length of the long axis The length may be an ellipse of 100 [mm] or less.

また、第5の発明として、第1〜第4の何れかの発明の測定装置を備えたウェアラブル機器を構成してもよい。   Further, as a fifth invention, a wearable device including the measuring device according to any one of the first to fourth inventions may be configured.

第5の発明によれば、第1〜第4の何れかの発明と同様の作用効果を奏するウェアラブル機器を実現することができる。   According to the fifth invention, it is possible to realize a wearable device that exhibits the same effects as any of the first to fourth inventions.

また、第6の発明として、前記被測定体は人であり、前記人の何れかの四肢に、前記接触面の中央部が動脈の上方に位置するように装着可能に前記測定装置を装着させる装着部、を備えた第5の発明のウェアラブル機器を構成してもよい。   According to a sixth aspect of the present invention, the object to be measured is a person, and the measurement apparatus is attached to any one of the limbs of the person so that the central portion of the contact surface is located above the artery. You may comprise the wearable apparatus of 5th invention provided with the mounting part.

第6の発明によれば、人の四肢において、皮下を流れる動脈の温度を精度よく測定することができる。   According to the sixth invention, the temperature of the artery flowing under the skin can be accurately measured in the human limb.

ウェアラブル機器をユーザーに装着した状態を示す図。The figure which shows the state which mounted | wore the wearable apparatus with the user. ウェアラブル機器を表面側から見た外観図。The external view which looked at the wearable apparatus from the surface side. ウェアラブル機器を裏面側から見た外観図。The external view which looked at the wearable apparatus from the back side. 熱流測定を説明する模式図。The schematic diagram explaining a heat flow measurement. 基材の熱伝導率に起因する熱流の測定誤差を説明する図。The figure explaining the measurement error of the heat flow resulting from the heat conductivity of a base material. 基材の熱伝導率に起因する熱流の測定誤差を説明する他の図。The other figure explaining the measurement error of the heat flow resulting from the heat conductivity of a base material. シミュレーション条件を説明する図。The figure explaining simulation conditions. シミュレーション条件を説明する他の図。Other figures explaining simulation conditions. 所定のシミュレーション条件での熱伝達層の温度変化を示す図。The figure which shows the temperature change of the heat-transfer layer on predetermined | prescribed simulation conditions. 他のシミュレーション条件での熱伝達層の温度変化を示す図。The figure which shows the temperature change of the heat-transfer layer on other simulation conditions. 他のシミュレーション条件での熱伝達層の温度変化を示す図。The figure which shows the temperature change of the heat-transfer layer on other simulation conditions. 図9のシミュレーション条件での熱伝達層の熱流変化を示す図。The figure which shows the heat flow change of the heat transfer layer on the simulation conditions of FIG. 図10のシミュレーション条件での熱伝達層の熱流変化を示す図。The figure which shows the heat flow change of the heat transfer layer on the simulation conditions of FIG. 図11のシミュレーション条件での熱伝達層の熱流変化を示す図。The figure which shows the heat flow change of the heat transfer layer on the simulation conditions of FIG. 変形例における基材の接触面を示す模式図。The schematic diagram which shows the contact surface of the base material in a modification.

以下、本発明を実施するための一形態について説明する。なお、以下説明する実施形態によって本発明が限定されるものではなく、本発明を適用可能な形態が以下の実施形態に限定されるものでもない。また、図面の記載において、同一部分には同一の符号を付す。   Hereinafter, an embodiment for carrying out the present invention will be described. It should be noted that the present invention is not limited to the embodiments described below, and modes to which the present invention can be applied are not limited to the following embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.

図1は、本実施形態のウェアラブル機器1をユーザー100に装着した状態を示す図である。また、図2および図3は、ウェアラブル機器1の全体構成例を示す外観図であり、図2は表面側(ユーザー100に装着したときに外環境側になる面)を、図3は裏面側(ユーザー100に装着したときに皮膚面と接触する側の面)をそれぞれ示す。本実施形態のウェアラブル機器1は、本体ケース(外装枠体)11に設けられた装着部としてのバンド13をバックル等で留める腕時計型の電子機器であり、使用時には、バンド13をユーザー100の手首に巻き付けることで皮膚面に装着・固定される。なお、手首に装着する構成に限らず、例えば、上腕部、足首、大腿部といったユーザー100の何れかの四肢の部位の他、頸部、胸回り、胴回り、額等の別の部位に巻き付ける構成としてもよい。また、バンドにより皮膚面に巻き付ける構成に限らず、例えば皮膚面に着脱自在な粘着シートを装着部として測定装置20の裏面側端縁部等の適所に設け、ユーザー100に貼り付けて装着するのでもよい。   FIG. 1 is a diagram illustrating a state in which the wearable device 1 according to the present embodiment is mounted on a user 100. 2 and 3 are external views showing an example of the overall configuration of the wearable device 1. FIG. 2 shows the front side (the surface that becomes the outside environment when worn on the user 100), and FIG. 3 shows the back side. (Surfaces that come into contact with the skin surface when worn by the user 100) are shown. The wearable device 1 according to the present embodiment is a wristwatch-type electronic device that fastens a band 13 as a mounting portion provided on a main body case (exterior frame) 11 with a buckle or the like. It is attached and fixed to the skin surface by wrapping around. It is not limited to the configuration worn on the wrist, and for example, it is wrapped around another part such as the neck, chest, waist, forehead, etc. in addition to any part of the limb of the user 100 such as the upper arm, ankle, or thigh. It is good also as a structure. Further, the configuration is not limited to the configuration in which the band is wound around the skin surface. For example, an adhesive sheet that is detachable from the skin surface is provided as a mounting portion at an appropriate position such as an edge on the back surface side of the measuring device 20 and is attached to the user 100 for mounting. But you can.

本体ケース11は、ウェアラブル機器1の表面側および裏面側に測定装置20の端面を露出した状態で保持する外装枠体である。具体的には、測定装置20は、その基材23の一方の端面が接触面231として裏面側に露出し、他方の端面が表面側に露出するように本体ケース11に組み付けられる。なお、図示しないが、本体ケース11の内部には、測定装置20の他にも、測定結果を演算処理する演算装置、測定結果等が記憶される記憶装置、外部装置との間で測定結果等のデータを送受するための通信装置等が適所に配置される。   The main body case 11 is an exterior frame body that holds the wearable device 1 with the end face of the measuring device 20 exposed on the front surface side and the back surface side of the wearable device 1. Specifically, the measuring device 20 is assembled to the main body case 11 so that one end surface of the base material 23 is exposed as the contact surface 231 on the back surface side and the other end surface is exposed on the front surface side. Although not shown in the figure, in addition to the measurement device 20, the main body case 11 includes a calculation device that performs calculation processing of the measurement result, a storage device that stores the measurement result, a measurement result with the external device, and the like. A communication device or the like for transmitting / receiving the data is arranged at an appropriate place.

測定装置20は、センサー部21と、センサー部21を内部に含む基材23とを備える。後述するように、基材23は、その熱伝導率λが規定される範囲内(0.1[W/m・K]以上3.0[W/m・K]以下)の材料を用い、規定される範囲内の大きさ(例えば、接触面231の縦横の長さが10[mm]×10[mm]以上100[mm]×100[mm]以下の矩形状)に形成される。これらの設計条件については後述する。 The measuring device 20 includes a sensor unit 21 and a base material 23 that includes the sensor unit 21 therein. As will be described later, the base material 23 is made of a material having a thermal conductivity λ D within a range (0.1 [W / m · K] to 3.0 [W / m · K]). The contact surface 231 is formed in a size within a specified range (for example, a rectangular shape in which the vertical and horizontal lengths of the contact surface 231 are 10 [mm] × 10 [mm] or more and 100 [mm] × 100 [mm] or less). These design conditions will be described later.

センサー部21は、ウェアラブル機器1を装着した生体表面(本実施形態ではユーザー100の手首の皮膚面)と外環境との間の熱伝達によってセンサー部21の内部に生じた温度差を検出し、皮膚面に生じる熱流を測定する。また、センサー部21は、熱流と併せて皮膚面の温度(皮膚温度)を測定する。装着に際し、ウェアラブル機器1は、センサー部21の中央部(接触面231の中央部)が手首を走行する動脈(例えば橈骨動脈)101の上方に位置するように位置決めされる。   The sensor unit 21 detects a temperature difference generated inside the sensor unit 21 due to heat transfer between the living body surface on which the wearable device 1 is worn (in this embodiment, the skin surface of the wrist of the user 100) and the external environment, Measure the heat flow generated on the skin surface. The sensor unit 21 measures the temperature of the skin surface (skin temperature) together with the heat flow. At the time of wearing, the wearable device 1 is positioned such that the central portion of the sensor portion 21 (the central portion of the contact surface 231) is located above the artery 101 (for example, radial artery) 101 that runs on the wrist.

[概要]
図4は、測定装置20による熱流測定を説明する模式図である。人体のような生体における主な熱源の1つに、動脈血管がある。手首の場合であれば、橈骨動脈等を流れる血液が大きな熱源となる。そして、図4中に矢印で示すように、熱源である動脈101からは、放射状に熱が放出される。ここで、測定装置20は、基材23を皮膚面に接触させることで基材23を介して外環境に熱を放出させ、その熱流を人体から放出される熱流として測定するものである。したがって、動脈(本実施形態では橈骨動脈)101の上方に測定装置20を設置すれば、動脈101からの熱の放出に伴う熱流を測定し、併せて設置された皮膚面の皮膚温度を測定することができる。
[Overview]
FIG. 4 is a schematic diagram for explaining the heat flow measurement by the measuring device 20. One of the main heat sources in a living body such as a human body is an arterial blood vessel. In the case of the wrist, blood flowing through the radial artery or the like becomes a large heat source. And as shown by the arrow in FIG. 4, the heat | fever is discharge | released radially from the artery 101 which is a heat source. Here, the measuring apparatus 20 measures the heat flow as a heat flow released from the human body by bringing the base material 23 into contact with the skin surface to release heat to the external environment via the base material 23. Therefore, if the measuring device 20 is installed above the artery (radial artery in the present embodiment) 101, the heat flow accompanying the release of heat from the artery 101 is measured, and the skin temperature of the installed skin surface is also measured. be able to.

例えば、センサー部21は、基材23の中央部(接触面231の中央部)でその厚み方向において互いに対向するように(或いは、厚み方向の位置が異なるが平面視において互いが重なるように)配置された2つの温度センサー211,213を有し、各温度センサー211,213による検出温度の温度差(上下温度差)から、直下の皮膚面位置P11における熱流束(単位面積当たりの熱流)を測定する。また、装着時に皮膚面側となる温度センサー211の検出温度を皮膚温度として測定する。なお、センサー部21の構成は2つの温度センサーを用いた構成に限らず、熱流を測定する熱流センサーと、皮膚温度を測定する温度センサーとで構成するとしてもよい。   For example, the sensor units 21 are opposed to each other in the thickness direction at the center portion of the base material 23 (the center portion of the contact surface 231) (or so that the positions in the thickness direction are different but overlap each other in plan view). It has two temperature sensors 211 and 213 arranged, and the heat flux (heat flow per unit area) at the skin surface position P11 immediately below is determined from the temperature difference (upper and lower temperature difference) detected by each temperature sensor 211 and 213. taking measurement. Further, the temperature detected by the temperature sensor 211 on the skin surface side when worn is measured as the skin temperature. The configuration of the sensor unit 21 is not limited to the configuration using two temperature sensors, and may be configured by a heat flow sensor that measures heat flow and a temperature sensor that measures skin temperature.

このようにして皮膚面の熱流と皮膚温度が得られれば、皮下の深部温度、例えば、熱源である動脈101の温度(以下、「熱源温度」という)を測定(算出)することができる。熱源温度Tは、次式(1)で表される。式(1)において、Rは熱抵抗、Qは熱流、Tは皮膚温度をそれぞれ表す。熱抵抗Rは、皮膚面位置P11と直下の血管位置P13との間の層(動脈101から放出された熱が伝達する層)の熱伝導率を用いて求めることができる。以下、当該生体組織の層を「熱伝達層」という。また、熱流Qは、センサー部21が検出した上下温度差に比例する値として求めることができる。
=R・Q+T ・・・(1)
If the heat flow and skin temperature of the skin surface are obtained in this way, the subcutaneous deep temperature, for example, the temperature of the artery 101 as the heat source (hereinafter referred to as “heat source temperature”) can be measured (calculated). Heat source temperature T C is expressed by the following equation (1). In the formula (1), R is the thermal resistance, Q is each represent heat flow, T S is the skin temperature. The thermal resistance R can be obtained using the thermal conductivity of the layer between the skin surface position P11 and the blood vessel position P13 immediately below (the layer to which heat released from the artery 101 is transmitted). Hereinafter, the biological tissue layer is referred to as a “heat transfer layer”. Further, the heat flow Q can be obtained as a value proportional to the upper and lower temperature difference detected by the sensor unit 21.
T C = R · Q + T S (1)

ところで、式(1)による熱源温度の算出は、熱伝導方程式が成立することを前提としている。すなわち、被測定体の任意の外表面から熱源までの距離が一定であり且つ熱源から等方的に均一に熱流が発生していること、或いは、被測定体の中心に熱源が存在し且つ熱源から等方的に均一に熱流が発生しているという理想状態にあって、発生した熱流が熱伝導によって被測定体の表面において保存されるということを大前提とした原理に基づいている。熱伝導方程式は、例えば、熱源を血管という円筒状に例えて、円筒状の熱源を想定した二次元熱伝導方程式を用いることができる。しかし、手首の動脈(例えば橈骨動脈)101の位置(深さ)は手首の断面中心ではなく、手首の掌側の表皮寄りに位置し、断面中心から偏っている。これは、熱流の測定精度に影響し得る。
また、被測定体側の問題ばかりではない。測定装置の設計条件等に、熱流測定の誤差要因となり得る要素がある。
By the way, calculation of the heat source temperature by Formula (1) presupposes that a heat conduction equation is materialized. That is, the distance from an arbitrary outer surface of the measured object to the heat source is constant and the heat flow is generated isotropically and uniformly from the heat source, or the heat source exists at the center of the measured object and the heat source It is based on the principle based on the premise that the generated heat flow is preserved on the surface of the measured object by heat conduction in an ideal state where the heat flow is generated isotropically and uniformly. As the heat conduction equation, for example, a heat source can be compared with a cylindrical shape called a blood vessel, and a two-dimensional heat conduction equation assuming a cylindrical heat source can be used. However, the position (depth) of the wrist artery (for example, radial artery) 101 is not near the wrist cross-sectional center but is located near the epidermis on the palm side of the wrist and is offset from the cross-sectional center. This can affect the measurement accuracy of the heat flow.
Moreover, it is not only the problem on the measured object side. There are factors that can cause errors in heat flow measurement, such as the design conditions of the measuring device.

第1に、基材23の熱伝導率λが挙げられる。図5および図6は、基材23の熱伝導率λに起因する熱流の測定誤差を説明する図である。図5では、動脈101を熱源とする生体内の熱伝導を、皮膚層103の熱伝導率λが基材23の熱伝導率λよりも大きい(λ<λ)場合について模式的に示し、図6では逆の場合(λ>λ)を示している。皮膚層103は、熱伝達層において被測定体内の表皮側に存在し、動脈101と測定装置20間に必ず存在することとなる。なお、図5および図6では、動脈101から鉛直上方(血管位置P13における動脈血管の法線方向)への熱流のみに着目した熱の伝達経路を示している。図5に示すように、λ<λの場合では、皮膚面を横切って基材23側へと熱が伝達し難いことから一部の熱が側方に逃れ、結果測定される皮膚面位置P11の熱流は動脈101からの熱流(血管位置P13の熱流)に比べて減少する。これに対し、図6に示すλ>λの場合は基材23側へと熱が伝達し易いため、図5の場合とは逆に、測定される熱流が増加する現象が生じる。 First, the thermal conductivity λ D of the base material 23 is mentioned. 5 and 6 are diagrams for explaining the measurement error of the heat flow caused by the thermal conductivity λ D of the base material 23. FIG. In FIG. 5, the heat conduction in the living body using the artery 101 as a heat source is schematically shown in the case where the heat conductivity λ S of the skin layer 103 is larger than the heat conductivity λ D of the base material 23 (λ DS ). FIG. 6 shows the opposite case (λ D > λ S ). The skin layer 103 exists on the epidermis side in the body to be measured in the heat transfer layer, and is necessarily present between the artery 101 and the measuring device 20. 5 and 6 show heat transfer paths focusing only on heat flow vertically upward from the artery 101 (in the normal direction of the arterial blood vessel at the blood vessel position P13). As shown in FIG. 5, in the case of λ DS , since it is difficult to transfer heat across the skin surface to the base material 23 side, a part of the heat escapes to the side, and the skin surface measured as a result The heat flow at the position P11 decreases compared to the heat flow from the artery 101 (heat flow at the blood vessel position P13). On the other hand, in the case of λ D > λ S shown in FIG. 6, heat is easily transferred to the base material 23 side, and thus a phenomenon occurs in which the measured heat flow increases, contrary to the case of FIG. 5.

第2に、基材23の大きさが挙げられる。基材23の大きさのみを考えれば、接触面231が広いほど熱流の測定精度は向上するといえる。仮に被測定体の全域を基材で覆えば、熱源から放出される全ての熱が基材を介して外環境に放出されることとなるからである。   Secondly, the size of the base material 23 is mentioned. Considering only the size of the base material 23, it can be said that the measurement accuracy of the heat flow is improved as the contact surface 231 is wider. This is because if the entire area of the object to be measured is covered with the base material, all the heat released from the heat source is released to the outside environment through the base material.

第3に、皮膚層103の熱伝導率λが挙げられる。熱伝達層を形成する生体組織自体の熱伝導率は、固有の値で固定である。しかし、そのうちの皮膚層103については、毛細血管が発達していることから、その熱伝導率λは、毛細血管の血流状態に応じて見かけ上変動する。具体的には、血流状態が悪いときの皮膚層103の熱伝導率λは、皮膚の熱伝導率である0.5[W/m・K]程度であるのに対し、血流状態が良いと3.0[W/m・K]程度まで上昇する。したがって、皮膚層103における毛細血管の血流状態は、測定される熱流の増減を招く。 Thirdly, the thermal conductivity λ S of the skin layer 103 is mentioned. The thermal conductivity of the living tissue itself forming the heat transfer layer is fixed at a specific value. However, since the capillaries have developed in the skin layer 103, the thermal conductivity λ S apparently varies depending on the blood flow state of the capillaries. Specifically, the thermal conductivity λ S of the skin layer 103 when the blood flow state is bad is about 0.5 [W / m · K], which is the thermal conductivity of the skin, whereas the blood flow state When it is good, it rises to about 3.0 [W / m · K]. Therefore, the blood flow state of the capillaries in the skin layer 103 causes an increase or decrease in the measured heat flow.

そこで、手首を想定した被測定体モデル(手首モデル)を定義し、シミュレーションによって熱伝達層の複数の温度分布を検証した。シミュレーションは、基材23の熱伝導率λおよび大きさが異なる条件下で、皮膚層103の熱伝導率λを血流状態が良いときの(見かけ上の上限値である)3.0[W/m・K]とした場合と、皮膚層103の熱伝導率λを血流状態が悪いときの(見かけ上の下限値である)0.5[W/m・K]とした場合とでそれぞれ行った。 Therefore, a model to be measured (wrist model) assuming the wrist was defined, and a plurality of temperature distributions in the heat transfer layer were verified by simulation. The simulation shows that the heat conductivity λ S of the skin layer 103 is 3.0 (the apparent upper limit value) when the blood flow state is good under the condition that the heat conductivity λ D and the size of the base material 23 are different. In the case of [W / m · K], the thermal conductivity λ S of the skin layer 103 is 0.5 [W / m · K] when the blood flow state is bad (which is an apparent lower limit value). In each case.

図7および図8は、シミュレーション条件を説明する図である。図7は、基材M23を設置した手首モデルM100の概略斜視図を示し、図8は、基材M23の設置位置を含む手首モデルM100の断面を模式的に示している。手首モデルM100は、半径が25[mm]の円柱体として設定した。また、熱源M101として、動脈(橈骨動脈)101を想定した半径2.3[mm]の円柱体をその深さ位置が5[mm]となるように設定した。   7 and 8 are diagrams for explaining simulation conditions. FIG. 7 shows a schematic perspective view of the wrist model M100 on which the base material M23 is installed, and FIG. 8 schematically shows a cross section of the wrist model M100 including the installation position of the base material M23. The wrist model M100 was set as a cylindrical body having a radius of 25 [mm]. Further, a cylindrical body having a radius of 2.3 [mm] assuming the artery (radial artery) 101 was set as the heat source M101 so that the depth position thereof was 5 [mm].

基材M23の熱伝導率λは、空気と同程度である0.0241[W/m・K]、0.1[W/m・K]、皮膚層103の見かけ上の熱伝導率λの下限値である0.5[W/m・K]、当該見かけ上の上限値である3.0[W/m・K]、ステンレス等と同程度である10.0[W/m・K]の各値を含む0.0241[W/m・K]から10.0[W/m・K]の範囲内で段階的に設定した。 The thermal conductivity λ D of the base material M23 is approximately 0.0241 [W / m · K], 0.1 [W / m · K], which is similar to that of air, and the apparent thermal conductivity λ of the skin layer 103. 0.5 [W / m · K] which is the lower limit of S , 3.0 [W / m · K] which is the apparent upper limit, 10.0 [W / m] which is similar to stainless steel and the like -It was set stepwise within a range of 0.0241 [W / m · K] including each value of K] to 10.0 [W / m · K].

基材M23は、その接触面M231の中心部が熱源M101の上方に位置するように設定した。そして、基材M23の大きさは、手首モデルM100の断面(図8)において、熱源M101から、対向する接触面M231の中心に向かう方向を中心とする角度範囲θにより定め、60[°]、120[°]、180[°]の3段階で設定した。具体的な大きさは、θ=60[°]の場合の基材M23の接触面M231をその縦横の長さが5[mm]×5[mm]の矩形状とし、θ=120[°]の場合の基材M23の接触面M231をその縦横の長さが10[mm]×10[mm]の矩形状とし、θ=180[°]の場合の基材M23の接触面M231をその縦横の長さが16[mm]×16[mm]の矩形状とした。   The base material M23 was set so that the center of the contact surface M231 was positioned above the heat source M101. And the magnitude | size of the base material M23 is defined by angle range (theta) centering on the direction which goes to the center of the contact surface M231 which opposes from the heat source M101 in the cross section (FIG. 8) of the wrist model M100, 60 [degree], It was set in three stages of 120 [°] and 180 [°]. Specifically, the contact surface M231 of the base material M23 in the case of θ = 60 [°] is a rectangular shape having a vertical and horizontal length of 5 [mm] × 5 [mm], and θ = 120 [°]. In this case, the contact surface M231 of the base material M23 has a rectangular shape with a vertical and horizontal length of 10 [mm] × 10 [mm], and the contact surface M231 of the base material M23 in the case of θ = 180 [°] The length was 16 [mm] × 16 [mm] in a rectangular shape.

図9〜図11は、横軸を熱抵抗Rとして、シミュレーションの結果得られた熱伝達層の温度変化をグラフ化した図である。図9がθ=60[°]、図10がθ=120[°]、図11がθ=180[°]のシミュレーション結果をそれぞれ示している。各図において、一点鎖線で一部を囲った下段側の一群が皮膚層103の熱伝導率λを0.5[W/m・K]とした場合の温度変化に対応し、個々のグラフが、それぞれ数値を付記しているように上から基材M23の熱伝導率λを0.0241[W/m・K]、0.5[W/m・K]、3.0[W/m・K]、および10.0[W/m・K]の各値としたときの温度変化に対応する。また、各図において、二点鎖線で一部を囲った上段側の一群が、皮膚層103の熱伝導率λを3.0[W/m・K]とした場合の温度変化に対応する。個々のグラフに係る基材M23の熱伝導率λは、付記した数値の通りである。なお、図9〜図11では、基材M23の熱伝導率λが0.1[W/m・K]の場合のシミュレーション結果の図示を省略している。 9 to 11 are graphs showing the temperature change of the heat transfer layer obtained as a result of the simulation with the horizontal axis as the thermal resistance R. FIG. FIG. 9 shows the simulation results of θ = 60 [°], FIG. 10 shows the simulation results of θ = 120 [°], and FIG. 11 shows the simulation results of θ = 180 [°]. In each figure, a group of lower sides surrounded by a one-dot chain line corresponds to a temperature change when the thermal conductivity λ S of the skin layer 103 is 0.5 [W / m · K], and each graph However, the thermal conductivity λ D of the base material M23 is 0.0241 [W / m · K], 0.5 [W / m · K], 3.0 [W / M · K] and 10.0 [W / m · K], corresponding to temperature changes. Further, in each figure, a group on the upper side partially surrounded by a two-dot chain line corresponds to a temperature change when the thermal conductivity λ S of the skin layer 103 is set to 3.0 [W / m · K]. . The thermal conductivity λ D of the base material M23 according to each graph is as shown in the attached numerical values. 9 to 11, illustration of simulation results when the thermal conductivity λ D of the base material M23 is 0.1 [W / m · K] is omitted.

また、図12〜図14は、横軸を熱抵抗Rとして、図9〜図11のシミュレーション結果から求めた熱伝達層の熱流変化をグラフ化した図である。図12がθ=60[°]、図13がθ=120[°]、図14がθ=180[°]のシミュレーション結果にそれぞれ対応する。各図において、一点鎖線で一部を囲った上段側の一群が皮膚層103の熱伝導率λを0.5[W/m・K]とした場合の温度変化に対応し、個々のグラフが、それぞれ数値を付記しているように上から基材M23の熱伝導率λを10.0[W/m・K]、3.0[W/m・K]、0.5[W/m・K]、0.1[W/m・K]、および0.0241[W/m・K]の各値としたときの温度変化に対応する。また、各図において、二点鎖線で一部を囲った下段側の一群が、皮膚層103の熱伝導率λを3.0[W/m・K]とした場合の温度変化に対応する。個々のグラフに係る基材M23の熱伝導率λは、付記した数値の通りである。 12 to 14 are graphs showing the heat flow change of the heat transfer layer obtained from the simulation results of FIGS. 9 to 11 with the horizontal axis as the thermal resistance R. FIG. FIG. 12 corresponds to the simulation result of θ = 60 [°], FIG. 13 corresponds to the simulation result of θ = 120 [°], and FIG. 14 corresponds to the simulation result of θ = 180 [°]. In each figure, a group of the upper side partly surrounded by an alternate long and short dash line corresponds to a temperature change when the thermal conductivity λ S of the skin layer 103 is set to 0.5 [W / m · K], and each graph However, as indicated by numerical values, the thermal conductivity λ D of the base material M23 is 10.0 [W / m · K], 3.0 [W / m · K], 0.5 [W] from above. / M · K], 0.1 [W / m · K], and 0.0241 [W / m · K], corresponding to temperature changes. In each figure, a group on the lower side surrounded by a two-dot chain line corresponds to a temperature change when the thermal conductivity λ S of the skin layer 103 is 3.0 [W / m · K]. . The thermal conductivity λ D of the base material M23 according to each graph is as shown in the attached numerical values.

ここで、横軸としている熱抵抗Rは、熱伝達層の深さ方向の各位置における熱抵抗値であり、深さに置き換えて考えることができる。熱源位置において熱抵抗Rの値は「0」であり、右端のグラフ終端の値P2が皮膚面位置(シミュレーション上は、接触面M231が接する手首モデルM100の表面位置)に対応する。そして、各図中、一点鎖線および二点鎖線で囲った熱抵抗Rの範囲が皮膚層103の領域に対応する。   Here, the thermal resistance R on the horizontal axis is the thermal resistance value at each position in the depth direction of the heat transfer layer, and can be considered in place of the depth. The value of the thermal resistance R at the heat source position is “0”, and the value P2 at the right end of the graph corresponds to the skin surface position (on the simulation, the surface position of the wrist model M100 with which the contact surface M231 contacts). In each figure, the range of the thermal resistance R surrounded by the alternate long and short dash line corresponds to the region of the skin layer 103.

先ず、θ=60[°]の場合、図9に示すように、各条件下の熱伝達層の温度変化に大きな違いは見られなかった。そして、図12に示すように、熱伝達層の熱流変化は、何れの条件下の場合も全体として減少傾向を示しており、皮膚面位置において熱源位置の熱流が保存されていないことがわかる。   First, in the case of θ = 60 [°], as shown in FIG. 9, there was no significant difference in the temperature change of the heat transfer layer under each condition. And as shown in FIG. 12, the heat flow change of a heat transfer layer shows the decreasing tendency as a whole under any conditions, and it turns out that the heat flow of a heat source position is not preserve | saved in the skin surface position.

これに対し、図10や図11に示すように、θ=120[°]およびθ=180[°]の場合では、熱伝達層の温度変化は、基材M23の熱伝導率λによって異なる結果となった。また、個々のグラフに着目するとその傾きは一定ではなく、皮膚層103の領域で緩やかになったり急になったりしている。例えば、図10のθ=120[°]の場合で、皮膚層103の熱伝導率λが0.5[W/m・K]且つ基材M23の熱伝導率λが0.0241[W/m・K]の場合、該当するグラフG211の傾きが皮膚層103の領域でそれより深部の領域と比べて小さくなっている。対応する図13の熱流変化で見ると、グラフG213は皮膚層103の領域で下降傾向を示し、熱流が減少している。一方、図10において、皮膚層103の熱伝導率λが0.5[W/m・K]且つ基材M23の熱伝導率λが10.0[W/m・K]の場合に着目すると、グラフG231の傾きが皮膚層103の領域でそれより深部の領域と比べて大きくなっている。対応する図13の熱流変化で見ると、グラフG233は皮膚層103の領域で上昇傾向を示し、熱流が増加している。 On the other hand, as shown in FIGS. 10 and 11, in the case of θ = 120 [°] and θ = 180 [°], the temperature change of the heat transfer layer varies depending on the thermal conductivity λ D of the base material M23. As a result. Further, when paying attention to each graph, the inclination is not constant, and is gentle or steep in the region of the skin layer 103. For example, in the case of θ = 120 [°] in FIG. 10, the thermal conductivity λ S of the skin layer 103 is 0.5 [W / m · K] and the thermal conductivity λ D of the base material M23 is 0.0241 [ W / m · K], the slope of the corresponding graph G211 is smaller in the region of the skin layer 103 than in the deeper region. Looking at the corresponding change in heat flow in FIG. 13, the graph G213 shows a downward trend in the region of the skin layer 103, and the heat flow is decreasing. On the other hand, in FIG. 10, when the thermal conductivity λ S of the skin layer 103 is 0.5 [W / m · K] and the thermal conductivity λ D of the base material M23 is 10.0 [W / m · K]. When paying attention, the slope of the graph G231 is larger in the region of the skin layer 103 than in the deeper region. Looking at the corresponding heat flow change in FIG. 13, the graph G233 shows an upward trend in the region of the skin layer 103, and the heat flow is increased.

上記したように、式(1)を用いた熱源温度の測定精度には、熱源位置の熱流と皮膚面位置の熱流との誤差(熱流測定誤差)が影響する。両者が一致していれば、熱源温度を正確に測定できる。よって、熱流変化のグラフの傾きが水平となる条件が最適条件と考えられる。したがって、シミュレーション結果によれば、θ=120[°]以上とすれば、皮膚層103の熱伝導率λが0.5[W/m・K]の場合、すなわち、皮膚層103の血流状態が悪いときに、基材M23の熱伝導率λが0.5[W/m・K]から3.0[W/m・K]の間で最適条件となる。 As described above, the measurement accuracy of the heat source temperature using the equation (1) is affected by an error (heat flow measurement error) between the heat flow at the heat source position and the heat flow at the skin surface position. If they match, the heat source temperature can be measured accurately. Therefore, the condition where the slope of the heat flow change graph is horizontal is considered as the optimum condition. Therefore, according to the simulation result, when θ = 120 [°] or more, the thermal conductivity λ S of the skin layer 103 is 0.5 [W / m · K], that is, the blood flow of the skin layer 103. When the state is poor, the thermal conductivity λ D of the base material M23 is the optimum condition between 0.5 [W / m · K] and 3.0 [W / m · K].

ここで、皮膚層103の熱伝導率λが3.0[W/m・K]の場合、すなわち、皮膚層103の血流状態が良いときについては、θ=120[°]以上としても熱流変化は全体的に減少傾向を示している。しかし、血流状態が良いときの熱源温度Tは皮膚温度Tと概ね一致していることがわかっており、式(1)を用いることなく熱源温度Tが得られる。つまり、皮膚層103の熱伝導率λを0.5[W/m・K]としたシミュレーション結果に基づく最適条件を用いて基材M23の熱伝導率λおよび大きさを規定すれば、皮膚層103の血流状態に関わらず、熱源温度を精度よく測定することが可能となる。 Here, when the thermal conductivity λ S of the skin layer 103 is 3.0 [W / m · K], that is, when the blood flow state of the skin layer 103 is good, θ = 120 [°] or more may be used. The heat flow change shows an overall decreasing trend. However, it is known that the heat source temperature T C when the blood flow state is good is substantially equal to the skin temperature T S, and the heat source temperature T C can be obtained without using Equation (1). That is, if the thermal conductivity λ D and the size of the base material M23 are defined using the optimum conditions based on the simulation result in which the thermal conductivity λ S of the skin layer 103 is 0.5 [W / m · K], Regardless of the blood flow state of the skin layer 103, the heat source temperature can be accurately measured.

具体的には、以上のシミュレーション結果から、熱源温度の許容される測定誤差範囲を考慮して、基材23の熱伝導率λを0.1[W/m・K]以上3.0[W/m・K]以下とするとよい。皮膚層103の見かけ上の熱伝導率λの範囲である0.5[W/m・K]以上3.0[W/m・K]以下とするとより好ましい。 Specifically, from the above simulation results, considering the allowable measurement error range of the heat source temperature, the thermal conductivity λ D of the base material 23 is 0.1 [W / m · K] or more and 3.0 [ W / m · K] or less. It is more preferable that the skin layer 103 has an apparent thermal conductivity λ S in the range of 0.5 [W / m · K] to 3.0 [W / m · K].

次に、基材23の大きさは、接触面231の中心から外縁までの最短距離が5[mm]以上且つ最長距離が71[mm]以下とするとよい。最長距離の71[mm]は、100[mm]の正方形の中心から頂点までの距離(50×√2)である。例えば、接触面231を矩形形状とする場合、縦横の長さが10[mm]×10[mm]以上100[mm]×100[mm]以下とするとよい。   Next, as for the size of the base material 23, the shortest distance from the center of the contact surface 231 to the outer edge is preferably 5 [mm] or more and the longest distance is 71 [mm] or less. The longest distance 71 [mm] is the distance (50 × √2) from the center of the 100 [mm] square to the vertex. For example, when the contact surface 231 has a rectangular shape, the vertical and horizontal lengths may be 10 [mm] × 10 [mm] or more and 100 [mm] × 100 [mm] or less.

なお、上記規定の範囲内であれば、基材の接触面の形状は矩形形状に限らず、どのような形状としてもよい。例えば、接触面の形状は、直径10[mm]以上100[mm]以下の円状としてもよい。あるいは、図15に示すように、接触面231aの形状は、短軸の長さL31が10[mm]以上で且つ長軸の長さL33が100[mm]以下の楕円状としてもよい。   Note that the shape of the contact surface of the substrate is not limited to the rectangular shape, and may be any shape as long as it is within the above prescribed range. For example, the shape of the contact surface may be a circle having a diameter of 10 [mm] or more and 100 [mm] or less. Alternatively, as shown in FIG. 15, the shape of the contact surface 231a may be an ellipse having a short axis length L31 of 10 [mm] or more and a long axis length L33 of 100 [mm] or less.

また、基材23の厚みについては限定しないが、薄型の温度センサーや熱流センサーを採用してセンサー部21を構成することで、測定装置20の薄型化が図れる。   Moreover, although it does not limit about the thickness of the base material 23, thickness reduction of the measuring apparatus 20 can be achieved by employ | adopting a thin temperature sensor and a heat flow sensor, and comprising the sensor part 21. FIG.

以上説明したように、上記規定を満たす熱伝導率λおよび大きさの基材23を用いることで、熱源位置の熱流と皮膚面位置の熱流との誤差を十分に抑制できる。これによれば、熱源温度の測定精度を向上させることができる。 As described above, by using the base material 23 having the thermal conductivity λ D and the size satisfying the above-mentioned definition, the error between the heat flow at the heat source position and the heat flow at the skin surface position can be sufficiently suppressed. According to this, the measurement accuracy of the heat source temperature can be improved.

なお、上記実施形態では被測定体として人体を例示したが、内部に線状又は円筒状の熱源が存在する被測定体を対象に熱源温度を測定する場合にも同様に適用できる。また、血管位置の温度(熱源温度)を測定する場合に限らず、熱伝達層の任意の深さ位置の深部温度を測定することとしてもよい。   In the above-described embodiment, the human body is exemplified as the body to be measured. However, the present invention can be similarly applied to the case where the heat source temperature is measured for a body to be measured in which a linear or cylindrical heat source exists. In addition, the temperature of the blood vessel position (heat source temperature) is not limited to the measurement, and the depth temperature at an arbitrary depth position of the heat transfer layer may be measured.

また、上記実施形態では橈骨動脈を熱源として例示したが、他の動脈を対象に熱源温度を測定する場合にも同様に適用できる。例えば、尺骨動脈、上腕動脈、大腿動脈等、頸動脈、鎖骨下動脈、大動脈等を対象にしてもよい。基材23の接触面231の中央部が当該動脈の上方に位置するように装着して、熱源温度を測定することができる。ここで、「動脈の上方に位置する」とは、直下に当該動脈が走行している皮膚面位置の上に位置する、という意味であり、当該動脈から直近の皮膚面位置の上に位置する、と言い換えることもできる。   In the above embodiment, the radial artery is exemplified as the heat source. However, the present invention can be similarly applied to the case where the heat source temperature is measured for another artery. For example, ulnar artery, brachial artery, femoral artery, etc., carotid artery, subclavian artery, aorta, etc. may be targeted. The heat source temperature can be measured by mounting so that the central portion of the contact surface 231 of the base material 23 is located above the artery. Here, “located above the artery” means that it is located above the skin surface position where the artery is running immediately below, and is located above the skin surface position closest to the artery. In other words,

ウェアラブル機器…1、本体ケース…11、バンド…13、測定装置…20、センサー部…21、温度センサー…211,213、基材…23、接触面…231、ユーザー…100、動脈…101、皮膚層…103   Wearable device ... 1, body case ... 11, band ... 13, measuring device ... 20, sensor unit ... 21, temperature sensor ... 211,213, base material ... 23, contact surface ... 231, user ... 100, artery ... 101, skin Layer ... 103

Claims (6)

被測定体に接して温度および熱流を測定するための測定装置であって、
複数の温度センサー、又は温度センサーと熱流センサーとを有するセンサー部と、
前記センサー部を内部に含み、前記被測定体への接触面の中心から外縁までの最短距離が5[mm]以上且つ最長距離が71[mm]以下であり、さらに熱伝導率が0.1[W/m・K]以上3.0[W/m・K]以下の基材と、
を備えた測定装置。
A measuring device for measuring temperature and heat flow in contact with a measured object,
A plurality of temperature sensors, or a sensor unit having a temperature sensor and a heat flow sensor;
The sensor section is included inside, the shortest distance from the center of the contact surface to the object to be measured to the outer edge is 5 [mm] or more and the longest distance is 71 [mm] or less, and the thermal conductivity is 0.1. [W / m · K] to 3.0 [W / m · K] base material;
Measuring device.
前記基材は、熱伝導率が0.5[W/m・K]以上である、
請求項1に記載の測定装置。
The base material has a thermal conductivity of 0.5 [W / m · K] or more.
The measuring apparatus according to claim 1.
前記基材は、縦横の長さが10[mm]×10[mm]以上100[mm]×100[mm]以下の矩形状の前記接触面を有する、
請求項1又は2に記載の測定装置。
The base material has the rectangular contact surface whose length and width are 10 [mm] × 10 [mm] or more and 100 [mm] × 100 [mm] or less,
The measuring apparatus according to claim 1 or 2.
前記基材は、直径10[mm]以上100[mm]以下の円状、又は、短軸の長さが10[mm]以上で且つ長軸の長さが100[mm]以下の楕円状の前記接触面を有する、
請求項1又は2に記載の測定装置。
The substrate has a circular shape with a diameter of 10 [mm] or more and 100 [mm] or less, or an elliptical shape with a short axis length of 10 [mm] or more and a long axis length of 100 [mm] or less. Having the contact surface,
The measuring apparatus according to claim 1 or 2.
請求項1〜4の何れか一項に記載の測定装置を備えたウェアラブル機器。   A wearable device comprising the measurement device according to claim 1. 前記被測定体は人であり、
前記人の何れかの四肢に、前記接触面の中央部が動脈の上方に位置するように装着可能に前記測定装置を装着させる装着部、
を備えた請求項5に記載のウェアラブル機器。
The measured object is a person,
An attachment part for attaching the measurement device to any one of the extremities of the person so that the center part of the contact surface is located above the artery,
The wearable device according to claim 5, comprising:
JP2016118993A 2016-06-15 2016-06-15 Measuring device and wearable apparatus Pending JP2017223548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118993A JP2017223548A (en) 2016-06-15 2016-06-15 Measuring device and wearable apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118993A JP2017223548A (en) 2016-06-15 2016-06-15 Measuring device and wearable apparatus

Publications (1)

Publication Number Publication Date
JP2017223548A true JP2017223548A (en) 2017-12-21

Family

ID=60686336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118993A Pending JP2017223548A (en) 2016-06-15 2016-06-15 Measuring device and wearable apparatus

Country Status (1)

Country Link
JP (1) JP2017223548A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207124A (en) * 2018-05-28 2019-12-05 日本電信電話株式会社 In-vivo temperature measurement instrument and in-vivo temperature measurement method
WO2019230392A1 (en) * 2018-06-01 2019-12-05 日本電信電話株式会社 Living body internal temperature measuring device and living body internal temperature measuring method
CN113164109A (en) * 2018-12-14 2021-07-23 天津先阳科技发展有限公司 Method, device and system for noninvasive detection of tissue division and wearable equipment
JPWO2021220396A1 (en) * 2020-04-28 2021-11-04

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207124A (en) * 2018-05-28 2019-12-05 日本電信電話株式会社 In-vivo temperature measurement instrument and in-vivo temperature measurement method
WO2019230370A1 (en) * 2018-05-28 2019-12-05 日本電信電話株式会社 Living body internal temperature measuring device and living body internal temperature measuring method
WO2019230392A1 (en) * 2018-06-01 2019-12-05 日本電信電話株式会社 Living body internal temperature measuring device and living body internal temperature measuring method
JP2019211270A (en) * 2018-06-01 2019-12-12 日本電信電話株式会社 Internal body temperature measuring device and internal body temperature measuring method
JP7073919B2 (en) 2018-06-01 2022-05-24 日本電信電話株式会社 In-vivo temperature measuring device and in-vivo temperature measuring method
CN113164109A (en) * 2018-12-14 2021-07-23 天津先阳科技发展有限公司 Method, device and system for noninvasive detection of tissue division and wearable equipment
JPWO2021220396A1 (en) * 2020-04-28 2021-11-04
WO2021220396A1 (en) * 2020-04-28 2021-11-04 日本電信電話株式会社 Temperature measurement device and temperature measurement method
JP7392837B2 (en) 2020-04-28 2023-12-06 日本電信電話株式会社 Temperature measurement device and temperature measurement method

Similar Documents

Publication Publication Date Title
US11672428B2 (en) Biological data measurement device
JP2017223548A (en) Measuring device and wearable apparatus
US20180028072A1 (en) Wearable thermometer patch capable of measuring human skin temperature at high duty cycle
CN110121291B (en) Patch for determining temperature
US20120109572A1 (en) Temperature measurement device and temperature measuring method
JP6763142B2 (en) Internal temperature measuring device, wrist-mounted device and internal temperature measuring method
US10420473B2 (en) Wearable thermometer patch for correct measurement of human skin temperature
US9528887B2 (en) Temperature measurement device
US10251565B2 (en) Multi-channel vitals device
US20160235306A1 (en) Thermal monitoring and control
US20170000347A1 (en) Vital sign monitoring and control
JP7073919B2 (en) In-vivo temperature measuring device and in-vivo temperature measuring method
MX2011002173A (en) Temperature sensor structure.
EP2995247B1 (en) Heat flow measuring apparatus and metabolism measuring apparatus
RU2015134538A (en) DEVICE AND METHOD FOR SLEEP CONTROL
GB2533079A (en) Battery thermal mass
BR112020001070A2 (en) sensor apparatus for measuring a physiological parameter of an individual
US9226697B1 (en) Electronic splint
CN109115368B (en) Non-invasive core temperature measurement probe and method for acquiring core temperature
JP2018151322A (en) Internal temperature measuring device
CN208704917U (en) A kind of non-intrusion type DIE Temperature measuring probe
JP2017131413A (en) Pulse measuring device
JP2021162453A (en) Wearable finger internal thermometer
WO2023112251A1 (en) Temperature measurement device
JP6334907B2 (en) Scratch detection notification device with band