JP2017223380A - Multi-pressure condenser - Google Patents

Multi-pressure condenser Download PDF

Info

Publication number
JP2017223380A
JP2017223380A JP2016116947A JP2016116947A JP2017223380A JP 2017223380 A JP2017223380 A JP 2017223380A JP 2016116947 A JP2016116947 A JP 2016116947A JP 2016116947 A JP2016116947 A JP 2016116947A JP 2017223380 A JP2017223380 A JP 2017223380A
Authority
JP
Japan
Prior art keywords
condenser
pressure
low
condensers
pressure condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016116947A
Other languages
Japanese (ja)
Other versions
JP6578247B2 (en
Inventor
晴彦 池田
Haruhiko Ikeda
晴彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2016116947A priority Critical patent/JP6578247B2/en
Priority to GB1709083.8A priority patent/GB2553882B/en
Publication of JP2017223380A publication Critical patent/JP2017223380A/en
Application granted granted Critical
Publication of JP6578247B2 publication Critical patent/JP6578247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/184Indirect-contact condenser
    • Y10S165/192Indirect-contact condenser including means to heat collected condensate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/10Steam heaters and condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-pressure condenser capable of suppressing a height of a condenser, in a large-sized high-capacity power generation plant enabling large output and installing three or more condensers therein.SOLUTION: A multi-pressure condenser is provided in a high-capacity power generation plant, and is configured to operate three or more condensers at difference degrees of vacuum. In the three or more condensers, included is a communication pipe connecting between a first condenser whose inner pressure is minimum, a second condenser whose inner pressure is higher than that of the first condenser, and a condenser other than the first and second condensers so as to guide condensed water from the first condenser to the condenser other than the second condenser.SELECTED DRAWING: Figure 1

Description

本発明は複圧式復水器に関する。   The present invention relates to a double pressure condenser.

蒸気タービン等を備えた発電プラントの発電効率は、復水器の真空度に密接に関連しており、復水器真空度を高真空に保つことが高効率運転を達成するために重要である。復水器真空度は冷却水の温度の影響を受ける。このため、内陸地に配置されて、河川や湖の水を冷媒として冷却水を冷却するクーリングタワーを使用する発電プラント等では、冷却水の温度が十分に低下せず、高真空度を保つことが難しい場合がある。   The power generation efficiency of a power plant equipped with a steam turbine, etc. is closely related to the vacuum level of the condenser, and maintaining the condenser vacuum level at a high vacuum is important to achieve high efficiency operation. . The condenser vacuum is affected by the temperature of the cooling water. For this reason, in power plants and the like that are placed inland and use cooling towers that cool cooling water using river or lake water as a coolant, the temperature of the cooling water does not decrease sufficiently, and a high degree of vacuum can be maintained. It can be difficult.

このような問題に対して、複圧式復水器を用いることで、復水器真空度を改善することが知られている。この方式は、低圧蒸気タービンが複数設置されるプラントにおいて、低圧蒸気タービンがその上部に配置された複数の復水器の蒸気室を各々区切り、各復水器を異なる真空度で運転するものである。本方式を採用した場合、単圧式復水器に比べて平均真空度が向上し、プラント効率が向上する。   In order to solve such a problem, it is known to improve the degree of condenser vacuum by using a double pressure condenser. In this method, in a plant where a plurality of low-pressure steam turbines are installed, the steam chambers of a plurality of condensers each having a low-pressure steam turbine are separated from each other, and each condenser is operated at a different degree of vacuum. is there. When this method is adopted, the average vacuum degree is improved and the plant efficiency is improved as compared with the single pressure condenser.

ところで、複圧式復水器においては、高真空(低圧)の復水器におけるホットウェルに貯まった凝縮水の温度が、他の真空度の復水器における凝縮水の温度より低温となる。復水器から出た凝縮水は、熱交換器を用いて加熱されボイラーや原子炉へ送られるが、凝縮水が低温の場合、加熱に必要な例えば抽気蒸気量が増加してしまうので、プラント効率を低下させる要因となる。このため、低圧復水器の凝縮水を高圧復水器の比較的温度が高い蒸気で加熱し、比較的高温となってから下流側へ送る方式が採用されている。凝縮水加熱方法の一例としては、低圧復水器の凝縮水を一旦高圧復水器へ連絡管を介して移送し加熱する方法がある(例えば、非特許文献1参照)。   By the way, in the double pressure condenser, the temperature of the condensed water stored in the hot well in the high vacuum (low pressure) condenser is lower than the temperature of the condensed water in the condensers of other vacuum degrees. Condensate water coming out of the condenser is heated using a heat exchanger and sent to a boiler or nuclear reactor. However, if the condensate is at a low temperature, for example, the amount of extracted steam required for heating will increase. It becomes a factor which reduces efficiency. For this reason, the system which heats the condensed water of a low-pressure condenser with the steam whose comparatively high temperature of a high-pressure condenser is comparatively high, and sends it downstream is adopted. As an example of the condensed water heating method, there is a method in which the condensed water of the low-pressure condenser is once transferred to the high-pressure condenser through a connecting pipe and heated (for example, see Non-Patent Document 1).

このように、凝縮水の加熱のために、異なる器内圧力の復水器の間に連絡管を設ける場合には、器内圧力の偏差分の水頭を連絡管に持たせる必要があるため、連絡管の縦方向に所定の長さ(高さ)を設ける必要がある。また、高圧復水器に導かれた凝縮水が十分加熱されてホットウェルに滴下するよう、高圧復水器にある連絡管の出口とホットウェル水面との距離(高さ)を確保する必要がある。   Thus, when a connecting pipe is provided between condensers with different internal pressures for heating condensed water, it is necessary to provide the connecting pipe with a head for the deviation of the internal pressure. It is necessary to provide a predetermined length (height) in the longitudinal direction of the connecting pipe. Also, it is necessary to secure the distance (height) between the outlet of the connecting pipe in the high pressure condenser and the hot well water surface so that the condensed water led to the high pressure condenser is sufficiently heated and dripped into the hot well. is there.

したがって、複圧式復水器は、単圧式復水器と比較して復水器の高さが増加することが知られている。復水器の高さが増加すると、復水器及び建屋の製造コストが影響を受けるため、復水器の高さの増加を抑制する対策として、加熱部の形状を工夫した複圧式復水器(多段圧復水器)がある(例えば、特許文献1参照)。   Therefore, it is known that the height of the condenser increases in the double pressure condenser as compared with the single pressure condenser. As the height of the condenser increases, the manufacturing cost of the condenser and the building will be affected. Therefore, as a measure to suppress the increase in the height of the condenser, the double pressure condenser with a devised shape of the heating section (For example, refer to Patent Document 1).

特開平11−173768号公報JP-A-11-173768

小島晨敬、「多段圧力復水器」、火力発電、社団法人火力発電技術協会、昭和45年10月、Vol.21、No.10、P23−P27Akinori Kojima, “Multistage Pressure Condenser”, Thermal Power Generation, Thermal Power Generation Technology Association, October 1970, Vol. 21, No. 10, P23-P27

発電出力が大きい大容量発電プラントでは、一般に、原子炉やボイラーで発生する比較的多量な蒸気を発電エネルギへ変換するために、3基あるいはそれ以上の低圧蒸気タービンを設置する必要がある。このため、例えば、3基の低圧蒸気タービンに対して複圧式復水器を採用する場合には、高圧、中圧、低圧の3つの復水器が必要になる。   In a large-capacity power plant having a large power generation output, it is generally necessary to install three or more low-pressure steam turbines in order to convert a relatively large amount of steam generated in a nuclear reactor or boiler into power generation energy. For this reason, for example, when adopting a multi-pressure condenser for three low-pressure steam turbines, three condensers of high pressure, medium pressure, and low pressure are required.

このような複圧式復水器では、各復水器の圧力に応じて、連絡管設置の高さを段階的にずらして配置する必要がある。従って高圧と低圧の2つの復水器からなる複圧式復水器に対して、復水器の高さは更に増加するという課題がある。   In such a multi-pressure condenser, it is necessary to dispose the connecting pipes in a stepwise manner according to the pressure of each condenser. Therefore, there is a problem that the height of the condenser further increases with respect to the double pressure condenser comprising two condensers of high pressure and low pressure.

この様な課題に対して、特許文献1に記載の技術により、各復水器に設置される滴下部の形状を変更することで復水器高さの増加を抑制したとしても、連絡管の高さを確保することの必要性は変わらないので、この技術による復水器の高さ増加の抑制には限度が生じる。   For such a problem, even if the increase in the height of the condenser is suppressed by changing the shape of the dropping portion installed in each condenser by the technique described in Patent Document 1, the connection pipe The need to ensure the height remains the same, so there is a limit to the suppression of condenser height increase with this technique.

本発明は上述した事柄に基づいてなされたものであって、その目的は、復水器を3基以上設置する大規模な大容量発電プラントにおいて、復水器の高さを抑制した複圧式復水器を提供することにある。   The present invention has been made on the basis of the above-described matters, and the object of the present invention is to provide a multi-pressure type condenser in which the height of the condenser is suppressed in a large-scale large-capacity power plant in which three or more condensers are installed. To provide a water bottle.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、大容量発電プラントに設けられ、3基以上の復水器の各々を異なる真空度で運転する複圧式復水器において、前記3基以上の復水器の中で、器内圧力が最低圧の第1の復水器と、前記第1の復水器の次に器内圧力が高い第2の復水器と、前記第1の復水器からの凝縮水を前記第2の復水器の以外の復水器に導くように、前記第1の復水器と前記第2の復水器の以外の復水器とを接続する連絡管を備えたことを特徴とする。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems. For example, a multi-pressure type condenser provided in a large-capacity power plant and operating each of three or more condensers at different degrees of vacuum. Among the three or more condensers, the first condenser having the lowest internal pressure, and the second condenser having the second highest internal pressure after the first condenser. The first condenser and the second condenser so that the condensed water from the water condenser and the first condenser is guided to a condenser other than the second condenser. It is characterized by having a connecting pipe that connects to other condensers.

本発明によれば、異なる器内圧力の復水器の間を接続する連絡管の高さを低減できるので、復水器を3基以上設置する大規模な大容量発電プラントにおける復水器の高さを抑制した複圧式復水器を提供できる。   According to the present invention, the height of the connecting pipe connecting between the condensers having different internal pressures can be reduced, so that the condenser of the large-scale large-capacity power plant in which three or more condensers are installed. A double pressure condenser with a reduced height can be provided.

本発明の複圧式復水器の第1の実施の形態を示す概略図である。It is the schematic which shows 1st Embodiment of the double pressure type condenser of this invention. 本発明の複圧式復水器の第2の実施の形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the double pressure type condenser of this invention. 本発明の複圧式復水器の第3の実施の形態を示す概略図である。It is the schematic which shows 3rd Embodiment of the double pressure type condenser of this invention. 従来の複圧式復水器を示す概略図である。It is the schematic which shows the conventional double pressure type condenser.

以下、本発明の複圧式復水器の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the double pressure condenser of the present invention will be described with reference to the drawings.

図1は、本発明の複圧式復水器の第1の実施の形態を示す概略図である。本実施の形態においては、復水器は3基設置され、それぞれ器内圧力(真空度)の異なる低圧復水器1、中圧復水器2、高圧復水器3から構成されている。   FIG. 1 is a schematic view showing a first embodiment of the double pressure condenser of the present invention. In the present embodiment, three condensers are installed, and each of them is composed of a low-pressure condenser 1, an intermediate-pressure condenser 2, and a high-pressure condenser 3 each having a different internal pressure (degree of vacuum).

低圧復水器1はその上部に低圧蒸気タービン100とケーシング1Aが配置された低圧復水器胴10と、低圧復水器胴10の内部に配置され冷却水を流す冷却管が集合した2組の管巣4Lと、管巣4Lにより凝縮された凝縮水が貯められる低圧ホットウェル5と、低圧ホットウェル5に一端側が接続され、他端側が高圧復水器3に接続された連絡管6Aとを備えている。低圧ホットウェル5に溜まった凝縮水は連絡管6Aにより高圧復水器3に導かれる。2組の管巣4Lは、その長手方向が、低圧蒸気タービン100の軸方向に対して直交するように配置されていて、それぞれの管巣4Lの短手方向である低圧蒸気タービン100の軸方向に、間隙を設けて配置されている。   The low-pressure condenser 1 includes two sets of a low-pressure condenser body 10 in which a low-pressure steam turbine 100 and a casing 1A are disposed at an upper portion thereof, and cooling pipes that are disposed inside the low-pressure condenser body 10 and flow cooling water. 4L, a low pressure hot well 5 in which condensed water condensed by the tube nest 4L is stored, a connecting pipe 6A having one end connected to the low pressure hot well 5 and the other end connected to the high pressure condenser 3. It has. The condensed water accumulated in the low-pressure hot well 5 is guided to the high-pressure condenser 3 through the connecting pipe 6A. The two sets of tube nests 4L are arranged such that the longitudinal direction thereof is orthogonal to the axial direction of the low-pressure steam turbine 100, and the axial direction of the low-pressure steam turbine 100, which is the short direction of each tube nest 4L In addition, a gap is provided.

中圧復水器2はその上部に低圧蒸気タービン200とケーシング2Aが配置された中圧復水器胴20と、中圧復水器胴20の内部に配置され冷却水を流す冷却管が集合した2組の管巣4Iと、管巣4Iにより凝縮された凝縮水が貯められる中圧ホットウェル8と、中圧ホットウェル8に一端側が接続され、他端側が高圧復水器3に接続された連絡管6Bとを備えている。中圧ホットウェル8に溜まった凝縮水は連絡管6Bにより高圧復水器3に導かれる。2組の管巣4Iは、その長手方向が、低圧蒸気タービン200の軸方向に対して直交するように配置されていて、それぞれの管巣4Iの短手方向である低圧蒸気タービン200の軸方向に、間隙を設けて配置されている。なお、中圧復水器胴20は低圧復水器胴10の隣に配置されている。   The intermediate pressure condenser 2 includes an intermediate pressure condenser body 20 in which a low pressure steam turbine 200 and a casing 2A are disposed, and a cooling pipe that is disposed inside the intermediate pressure condenser body 20 and flows cooling water. Two sets of tube nests 4I, an intermediate pressure hot well 8 in which condensed water condensed by the tube nest 4I is stored, one end side is connected to the intermediate pressure hot well 8, and the other end side is connected to the high pressure condenser 3. Connecting pipe 6B. The condensed water accumulated in the intermediate pressure hot well 8 is guided to the high pressure condenser 3 through the connecting pipe 6B. The two sets of tube nests 4I are arranged so that the longitudinal direction thereof is orthogonal to the axial direction of the low-pressure steam turbine 200, and the axial direction of the low-pressure steam turbine 200 that is the short direction of each tube nest 4I In addition, a gap is provided. The intermediate pressure condenser cylinder 20 is arranged next to the low pressure condenser cylinder 10.

高圧復水器3はその上部に低圧蒸気タービン300とケーシング3Aが配置された高圧復水器胴30と、高圧復水器胴30の内部に配置され冷却水を流す冷却管が集合した2組の管巣4Hと、管巣4Hにより凝縮された凝縮水が貯められるホットウェル9とを備えている。2組の管巣4Hは、その長手方向が、低圧蒸気タービン300の軸方向に対して直交するように配置されていて、それぞれの管巣4Hの短手方向である低圧蒸気タービン300の軸方向に、間隙を設けて配置されている。なお、高圧復水器胴30は中圧復水器胴20の隣であって、中圧復水器胴20を中間にして低圧復水器胴10の反対側に配置されている。したがって、高圧復水器胴30と低圧復水器胴10は、復水器胴の並びにおいて端側に配置されていて、中圧復水器胴20は端側以外(本実施の形態においては中間)に配置されている。また、各復水器1,2,3の上部に配置された各低圧蒸気タービン100,200,300は、この順序で軸方向に図示しない同一回転軸で連結されている。   The high-pressure condenser 3 has two sets in which a high-pressure condenser body 30 having a low-pressure steam turbine 300 and a casing 3 </ b> A disposed thereon, and cooling pipes that are arranged inside the high-pressure condenser body 30 and flow cooling water. Tube nest 4H and a hot well 9 in which condensed water condensed by tube nest 4H is stored. The two sets of tube nests 4H are arranged so that the longitudinal direction thereof is orthogonal to the axial direction of the low-pressure steam turbine 300, and the axial direction of the low-pressure steam turbine 300 that is the short direction of each tube nest 4H In addition, a gap is provided. The high-pressure condenser cylinder 30 is arranged next to the intermediate-pressure condenser cylinder 20 and on the opposite side of the low-pressure condenser cylinder 10 with the intermediate-pressure condenser cylinder 20 in the middle. Therefore, the high-pressure condenser cylinder 30 and the low-pressure condenser cylinder 10 are arranged on the end side in the arrangement of the condenser cylinders, and the intermediate-pressure condenser cylinder 20 is other than the end side (in this embodiment). (Middle). In addition, the low-pressure steam turbines 100, 200, and 300 arranged on the tops of the condensers 1, 2, and 3 are connected in this order in the axial direction by the same rotating shaft (not shown).

高圧復水器3の器内圧力は、低圧復水器1及び中圧復水器2の器内圧力に比べて高いため、連絡管6A、6Bの他端側に設けた出口の高さは、低圧ホットウェル5または中圧ホットウェル8の水面よりそれぞれ水頭分低く設定している。具体的には、図1に示すように、低圧ホットウェル5の水面の高さと中圧ホットウェル8の水面の高さとの差をh1と定め、中圧ホットウェル8の水面の高さと連絡管6A、6Bの他端側に設けた出口の高さとの差をh2と定め、ホットウェル9の水面の高さと連絡管6A、6Bの他端側に設けた出口の高さとの差をh3と定めると、連絡管6Aの出口高さは、低圧ホットウェル5の水面高さより水頭分である(h1+h2)だけ低く設定している。同様に、連絡管6Bの出口高さは、中圧ホットウェル8の水面高さより水頭分である(h2)だけ低く設定している。   Since the internal pressure of the high pressure condenser 3 is higher than the internal pressures of the low pressure condenser 1 and the intermediate pressure condenser 2, the height of the outlet provided on the other end side of the connecting pipes 6A and 6B is The water pressure is set lower than the water surface of the low pressure hot well 5 or the medium pressure hot well 8. Specifically, as shown in FIG. 1, the difference between the height of the water surface of the low pressure hot well 5 and the height of the water surface of the intermediate pressure hot well 8 is defined as h1, and the height of the water surface of the intermediate pressure hot well 8 and the connecting pipe are determined. The difference between the height of the outlet provided on the other end side of 6A and 6B is defined as h2, and the difference between the height of the water surface of the hot well 9 and the height of the outlet provided on the other end side of the connecting pipes 6A and 6B is defined as h3. If determined, the outlet height of the connecting pipe 6A is set lower than the water surface height of the low-pressure hot well 5 by (h1 + h2), which is equivalent to the water head. Similarly, the outlet height of the connecting pipe 6B is set lower than the height of the water surface of the intermediate pressure hot well 8 by (h2) which is the head of water.

連絡管6A及び6Bの出口にはそれぞれ滴下部7A、7Bが設けられており、低圧ホットウェル5または中圧ホットウェル8より導かれた低温の凝縮水を高圧復水器3の比較的高温蒸気で加熱するようになっている。   Dropping portions 7A and 7B are provided at the outlets of the connecting pipes 6A and 6B, respectively, and the low-temperature condensed water introduced from the low-pressure hot well 5 or the intermediate-pressure hot well 8 is converted into relatively high-temperature steam of the high-pressure condenser 3. It is supposed to be heated with.

滴下部7A,7Bは、凝縮水を分配する分配トレイと凝縮水を加熱する加熱トレイで構成されることがある。滴下部7A,7Bで加熱された凝縮水は高圧復水器3で発生した凝縮水と共にホットウェル9に集められ、復水器出口11より排出される。滴下部での加熱を確実に行うため、滴下部7A,7Bとホットウェル9水面の間には適切な高さを確保する必要がある。本実施の形態においては、h3と定めている。   The dropping units 7A and 7B may be configured by a distribution tray that distributes condensed water and a heating tray that heats condensed water. The condensed water heated by the dropping portions 7A and 7B is collected in the hot well 9 together with the condensed water generated in the high pressure condenser 3 and is discharged from the condenser outlet 11. In order to surely heat the dropping section, it is necessary to secure an appropriate height between the dropping sections 7A and 7B and the hot well 9 water surface. In the present embodiment, it is defined as h3.

次に、本発明の実施の形態の効果の理解を容易にするために、従来の複圧式復水器について図4を用いて説明する。図4は従来の複圧式復水器を示す概略図である。図4において図1に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Next, in order to facilitate understanding of the effects of the embodiment of the present invention, a conventional double pressure condenser will be described with reference to FIG. FIG. 4 is a schematic view showing a conventional double pressure condenser. In FIG. 4, the same reference numerals as those shown in FIG.

図4に示す従来の複圧式復水器は、上述した本実施の形態の複圧式復水器と大略同様の機器で構成されるが、連絡管の接続と出口高さが異なる。
低圧復水器胴10’の低圧ホットウェル5には、一端側が接続され、他端側が中圧復水器2に接続された連絡管6Cを備えている。低圧ホットウェル5に溜まった凝縮水は連絡管6Cにより中圧復水器2に導かれる。中圧復水器2の器内圧力は、低圧復水器1の器内圧力に比べて高いため、連絡管6Cの出口高さは、低圧ホットウェル5の水面より水頭分である(h4)だけ低く設定している。連絡管6Cの出口には滴下部7Cが設けられており、低圧ホットウェル5より導かれた低温の凝縮水を中圧復水器2の比較的高温の蒸気で加熱するようになっている。滴下部7Cで加熱された凝縮水は中圧復水器2で発生した凝縮水と共に中圧ホットウェル8に集められる。滴下部7Cでの加熱を確実に行うため、滴下部7Cと中圧ホットウェル8の水面の間には適切な高さであるh5を確保している。
The conventional double-pressure condenser shown in FIG. 4 is composed of almost the same equipment as the above-described double-pressure condenser of the present embodiment, but the connection pipe connection and outlet height are different.
The low-pressure hot well 5 of the low-pressure condenser body 10 ′ is provided with a connecting pipe 6 </ b> C having one end connected and the other end connected to the intermediate-pressure condenser 2. The condensed water accumulated in the low pressure hot well 5 is guided to the intermediate pressure condenser 2 through the connecting pipe 6C. Since the internal pressure of the intermediate pressure condenser 2 is higher than the internal pressure of the low pressure condenser 1, the outlet height of the connecting pipe 6C is equivalent to the head of water than the water surface of the low pressure hot well 5 (h4). Only set low. A dropping portion 7C is provided at the outlet of the communication pipe 6C, and the low-temperature condensed water introduced from the low-pressure hot well 5 is heated by the relatively high-temperature steam of the intermediate-pressure condenser 2. The condensed water heated by the dropping unit 7C is collected in the intermediate pressure hot well 8 together with the condensed water generated by the intermediate pressure condenser 2. In order to surely heat the dropping part 7 </ b> C, h <b> 5 that is an appropriate height is secured between the dropping part 7 </ b> C and the water surface of the intermediate pressure hot well 8.

中圧復水器胴20’の中圧ホットウェル8には、一端側が接続され、他端側が高圧復水器3の高圧復水器胴30’に接続された連絡管6Dを備えている。中圧ホットウェル8に溜まった凝縮水は、同様に連絡管6Dを通って当該復水器内に設置された滴下部7Dを経由した後ホットウェル9へ集められ、復水器出口11より排出される。連絡管6Dの出口高さは、中圧ホットウェル8の水面より水頭分である(h6)だけ低く設定している。滴下部7Dとホットウェル9の水面の間には適切な高さであるh7を確保している。   The intermediate pressure hot well 8 of the intermediate pressure condenser body 20 ′ is provided with a connecting pipe 6 </ b> D having one end connected and the other end connected to the high pressure condenser body 30 ′ of the high pressure condenser 3. Similarly, the condensed water accumulated in the intermediate pressure hot well 8 passes through the connecting pipe 6D, passes through the dropping section 7D installed in the condenser, and is then collected in the hot well 9 and discharged from the condenser outlet 11. Is done. The outlet height of the connecting pipe 6D is set lower than the water surface of the intermediate pressure hot well 8 by (h6), which is the head of water. An appropriate height h7 is secured between the dripping portion 7D and the water surface of the hot well 9.

このように、従来の複圧式復水器では、中圧復水器2、高圧復水器3に水頭を確保した連絡管6C,6Dと滴下部7C、7Dがそれぞれ設けられているため、復水器の高さを、復水器2基のプラントと比較して増加させる必要が生じるという問題があった。   As described above, in the conventional double pressure condenser, the intermediate pressure condenser 2 and the high pressure condenser 3 are provided with connecting pipes 6C and 6D and dripping portions 7C and 7D, respectively, which have secured heads. There was a problem that it was necessary to increase the height of the water vessel as compared with the plant with two condensers.

本実施の形態によれば、復水器を3基以上設置する大規模な大容量発電プラントにおいて、復水器の器内圧力が最低圧の復水器の凝縮水を導く連絡管を、当該復水器の次に復水器の器内圧力が高い復水器以外の復水器へ接続するように配設した複圧式復水器を備えたので、復水器の高さを抑制することができる。   According to this embodiment, in a large-scale large-capacity power plant in which three or more condensers are installed, the connecting pipe that leads the condensed water of the condenser having the lowest pressure in the condenser is Since it is equipped with a double pressure condenser that is connected to a condenser other than the condenser with the highest internal pressure of the condenser next to the condenser, the height of the condenser is suppressed. be able to.

従来の複圧式復水器を示す図4と本実施の形態における複圧式復水器を示す図1とを比較すると、本実施の形態においては、低圧ホットウェル5に接続された連絡管6Aを高圧復水器3に導いているが、従来例では、低圧ホットウェル5に接続された連絡管6Cを中圧復水器2に導いている点が異なる。本実施の形態では、図4に示す従来の中圧復水器2に設けられていた滴下部7Cと中圧ホットウェル8の間の加熱に必要な高さ(h5)を確保する必要がなくなるため、復水器高さを低減することができる。   Comparing FIG. 4 showing the conventional double pressure condenser and FIG. 1 showing the double pressure condenser in the present embodiment, in this embodiment, the connecting pipe 6A connected to the low pressure hot well 5 is connected. Although it is led to the high pressure condenser 3, the conventional example is different in that the connecting pipe 6 </ b> C connected to the low pressure hot well 5 is led to the intermediate pressure condenser 2. In the present embodiment, it is not necessary to secure the height (h5) necessary for heating between the dropping portion 7C and the intermediate pressure hot well 8 provided in the conventional intermediate pressure condenser 2 shown in FIG. Therefore, the condenser height can be reduced.

上述した本発明の複圧式復水器の第1の実施の形態によれば、異なる器内圧力の復水器の間を接続する連絡管の高さを低減できるので、復水器を3基以上設置する大規模な大容量発電プラントにおける復水器の高さを抑制した複圧式復水器を提供できる。この結果、復水器及び建屋の製造コストの増加を抑制できるので、大規模(大容量)発電プラントの生産性が向上する。   According to the first embodiment of the multi-pressure condenser of the present invention described above, the height of the connecting pipe connecting the condensers having different internal pressures can be reduced. A multi-pressure condenser in which the height of the condenser in the large-scale large-capacity power plant installed as described above is suppressed can be provided. As a result, an increase in the manufacturing cost of the condenser and the building can be suppressed, so that the productivity of a large-scale (large capacity) power plant is improved.

以下、本発明の複圧式復水器の第2の実施の形態を、図面を用いて説明する。図2は本発明の複圧式復水器の第2の実施の形態を示す概略図である。図2において、図1及び図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a second embodiment of the double pressure condenser of the present invention will be described with reference to the drawings. FIG. 2 is a schematic view showing a second embodiment of the double pressure condenser of the present invention. In FIG. 2, the same reference numerals as those shown in FIGS. 1 and 4 are the same parts, and detailed description thereof is omitted.

図2に示す本発明の複圧式復水器の第2の実施の形態は、大略第1の実施の形態と同様の機器で構成されるが、以下の構成が異なる。本実施の形態においては、復水器胴の配列において、低圧復水器胴10の隣に高圧復水器胴30を配置し、高圧復水器胴30を中間にして低圧復水器胴10の反対側に中圧復水器胴20を配置した点が異なる。   The second embodiment of the multi-pressure condenser of the present invention shown in FIG. 2 is composed of almost the same equipment as the first embodiment, but differs in the following construction. In the present embodiment, in the arrangement of the condenser cylinders, the high-pressure condenser cylinder 30 is arranged next to the low-pressure condenser cylinder 10, and the low-pressure condenser cylinder 10 is placed with the high-pressure condenser cylinder 30 in the middle. The point which has arrange | positioned the intermediate pressure condenser trunk | drum 20 in the other side is different.

第1の実施の形態に比べて、中圧復水器2の位置と高圧復水器3の位置が逆転している。本実施の形態においては、復水器の器内圧力が最高圧の復水器である高圧復水器3を、端側以外(本実施の形態においては、中間)に配置したことを特徴としている。この構成により、低圧ホットウェル5に接続される連絡管6Aの水平方向の長さを第1の実施の形態より短縮することができる。   Compared with the first embodiment, the position of the intermediate pressure condenser 2 and the position of the high pressure condenser 3 are reversed. The present embodiment is characterized in that the high-pressure condenser 3, which is the condenser with the highest internal pressure of the condenser, is disposed on the side other than the end side (in the present embodiment, in the middle). Yes. With this configuration, the horizontal length of the connecting pipe 6A connected to the low-pressure hot well 5 can be shortened from that of the first embodiment.

上述した本発明の複圧式復水器の第2の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。   According to the second embodiment of the multi-pressure condenser of the present invention described above, the same effects as those of the first embodiment can be obtained.

また、上述した本発明の複圧式復水器の第2の実施の形態によれば、低圧復水器と高圧復水器とを接続する連絡管の長さを低減できるので、復水器の製造コストの増加を抑制できる。   In addition, according to the second embodiment of the double pressure condenser of the present invention described above, the length of the connecting pipe connecting the low pressure condenser and the high pressure condenser can be reduced. Increase in manufacturing cost can be suppressed.

以下、本発明の複圧式復水器の第3の実施の形態を、図面を用いて説明する。図3は本発明の複圧式復水器の第3の実施の形態を示す概略図である。図3において、図1乃至図2に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a third embodiment of the double pressure condenser of the present invention will be described with reference to the drawings. FIG. 3 is a schematic view showing a third embodiment of the double pressure condenser of the present invention. In FIG. 3, the same reference numerals as those shown in FIGS. 1 and 2 are the same parts, and detailed description thereof is omitted.

図3に示す本発明の複圧式復水器の第3の実施の形態は、大略第2の実施の形態と同様の機器で構成されるが、以下の構成が異なる。本実施の形態においては、低圧ホットウェル5、中圧ホットウェル8、ホットウェル9の中央に各々仕切り板12L,12I,12Hを設けた点と、仕切板で区切られた各ホットウェル5,8,9の部位に貯められた凝縮水の導電率を各部位ごとに計測できる導電率計測装置を設けた点が異なる。   The third embodiment of the multi-pressure condenser of the present invention shown in FIG. 3 is composed of devices similar to those of the second embodiment, except for the following configurations. In the present embodiment, the partition plates 12L, 12I, and 12H are provided at the centers of the low-pressure hot well 5, the intermediate-pressure hot well 8, and the hot well 9, respectively, and the hot wells 5 and 8 that are partitioned by the partition plate. , 9 is different in that a conductivity measuring device capable of measuring the conductivity of the condensed water stored in the region 9 is provided for each region.

低圧復水器1において、2組の管巣4Lは、その長手方向が、低圧蒸気タービン100の軸方向に対して直交するように配置されていて、それぞれの管巣4Lの短手方向である低圧蒸気タービン100の軸方向に、間隙を設けて並置されている。仕切板12Lは、低圧ホットウェル5を低圧蒸気タービン100の軸方向に区切るように配置されている。このことにより、それぞれの管巣4Lから滴下する凝縮水は、分離されるので、低圧ホットウェル5において混合しない。   In the low-pressure condenser 1, the two sets of tube nests 4 </ b> L are arranged so that their longitudinal directions are orthogonal to the axial direction of the low-pressure steam turbine 100, and are the short direction of each tube nest 4 </ b> L. The low-pressure steam turbine 100 is juxtaposed with a gap in the axial direction. The partition plate 12 </ b> L is arranged to divide the low pressure hot well 5 in the axial direction of the low pressure steam turbine 100. As a result, the condensed water dripped from each tube nest 4L is separated and is not mixed in the low-pressure hot well 5.

仕切板12Lで区切られた低圧ホットウェル5の一方側と他方側には、それぞれ別個の連絡管6A1,6A2の一端側が接続されている。連絡管6A1,6A2の他端側は、下方配置されて連結し1つの連絡管6Aとして混合した凝縮水を高圧復水器3に導く。連絡管6A1と連絡管6A2には、それぞれ別個の導電率計測装置50を設けている。   One end sides of separate connecting pipes 6A1 and 6A2 are connected to one side and the other side of the low-pressure hot well 5 partitioned by the partition plate 12L. The other end sides of the connecting pipes 6A1 and 6A2 are arranged below and connected to guide the condensed water mixed as one connecting pipe 6A to the high-pressure condenser 3. A separate conductivity measuring device 50 is provided for each of the connecting pipe 6A1 and the connecting pipe 6A2.

中圧復水器2において、2組の管巣4Iは、その長手方向が、低圧蒸気タービン200の軸方向に対して直交するように配置されていて、それぞれの管巣4Iの短手方向である低圧蒸気タービン200の軸方向に、間隙を設けて並置されている。仕切板12Iは、中圧ホットウェル8を低圧蒸気タービン200の軸方向に区切るように配置されている。このことにより、それぞれの管巣4Iから滴下する凝縮水は、分離されるので、中圧ホットウェル8において混合しない。   In the intermediate pressure condenser 2, the two sets of pipe nests 4 </ b> I are arranged so that the longitudinal direction thereof is orthogonal to the axial direction of the low-pressure steam turbine 200. The low pressure steam turbine 200 is juxtaposed with a gap in the axial direction. The partition plate 12 </ b> I is disposed so as to divide the intermediate pressure hot well 8 in the axial direction of the low pressure steam turbine 200. As a result, the condensed water dripping from each tube nest 4I is separated and is not mixed in the intermediate pressure hot well 8.

仕切板12Iで区切られた中圧ホットウェル8の一方側と他方側には、それぞれ別個の連絡管6B1,6B2の一端側が接続されている。連絡管6B1,6B2の他端側は、下方配置されて連結し1つの連絡管6Bとして混合した凝縮水を高圧復水器3に導く。連絡管6B1と連絡管6B2には、それぞれ別個の導電率計測装置50を設けている。   One end side of separate connecting pipes 6B1 and 6B2 is connected to one side and the other side of the intermediate pressure hot well 8 partitioned by the partition plate 12I. The other end sides of the connecting pipes 6B1 and 6B2 are arranged below and connected to guide the condensed water mixed as one connecting pipe 6B to the high-pressure condenser 3. A separate conductivity measuring device 50 is provided for each of the communication pipe 6B1 and the communication pipe 6B2.

高圧復水器3において、2組の管巣4Hは、その長手方向が、低圧蒸気タービン300の軸方向に対して直交するように配置されていて、それぞれの管巣4Hの短手方向である低圧蒸気タービン300の軸方向に、間隙を設けて並置されている。仕切板12Hは、ホットウェル9を低圧蒸気タービン300の軸方向に区切るように配置されている。このことにより、それぞれの管巣4Hから滴下する凝縮水は、分離されるので、ホットウェル9において混合しない。仕切板12Hで区切られたホットウェル9の一方側と他方側には、それぞれ別個の導電率計測装置50を設けている。   In the high-pressure condenser 3, the two sets of tube nests 4 </ b> H are arranged so that their longitudinal directions are orthogonal to the axial direction of the low-pressure steam turbine 300, and are the short direction of each tube nest 4 </ b> H. The low-pressure steam turbine 300 is juxtaposed with a gap in the axial direction. The partition plate 12 </ b> H is disposed so as to divide the hot well 9 in the axial direction of the low-pressure steam turbine 300. As a result, the condensed water dripping from each tube nest 4H is separated and is not mixed in the hot well 9. Separate conductivity measuring devices 50 are provided on one side and the other side of the hot well 9 partitioned by the partition plate 12H.

本実施の形態においては、複圧式復水器が有する合計6個の管巣4L,4I,4Hから滴下する凝縮水を、各ホットウェルでそれぞれ個別に貯水可能として、かつそれぞれ別個に導電率を計測できるように構成している。このことにより、例えば、管巣を形成する冷却管の漏えい箇所が容易に特定できるという効果がある。   In the present embodiment, the condensate dripped from a total of six tube nests 4L, 4I, 4H of the multi-pressure condenser can be stored individually in each hot well, and the conductivity can be individually increased. It is configured so that it can be measured. As a result, for example, there is an effect that the leaking portion of the cooling pipe forming the tube nest can be easily specified.

具体的には、例えば管巣を形成する冷却管が破損して、冷却水である海水が漏えいすると、ホットウェルに溜まった凝縮水中の塩分が上昇し、電気が流れやすくなるので導電率が上昇する。したがって、導電率を監視することにより、冷却水の漏えいとその漏えい箇所を早期に検知することができる。   Specifically, for example, if the cooling pipe forming the tube nest breaks and seawater, which is cooling water, leaks, the salinity in the condensed water accumulated in the hot well rises, making it easier for electricity to flow, increasing the conductivity. To do. Therefore, by monitoring the conductivity, it is possible to detect the leakage of the cooling water and the leakage location at an early stage.

上述した本発明の複圧式復水器の第3の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。   According to the third embodiment of the multi-pressure condenser of the present invention described above, the same effects as those of the first embodiment can be obtained.

また、上述した本発明の複圧式復水器の第3の実施の形態によれば、管巣を形成する冷却管の漏えい箇所が容易に特定できる。   In addition, according to the above-described third embodiment of the multi-pressure condenser of the present invention, the leak location of the cooling pipe forming the tube nest can be easily identified.

なお、本発明は複圧式復水器として、低圧復水器1と中圧復水器2と高圧復水器3とからなる3基の復水器を備えた場合を例に説明したが、これに限るものではない。復水器は3基以上であってもよい。   The present invention has been described by taking as an example a case where three condensers comprising a low pressure condenser 1, an intermediate pressure condenser 2, and a high pressure condenser 3 are provided as a double pressure condenser. This is not a limitation. There may be three or more condensers.

なお、本発明は上述した第1乃至第3の実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。   Note that the present invention is not limited to the first to third embodiments described above, and includes various modifications. The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. For example, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace another configuration for a part of the configuration of each embodiment.

1:低圧復水器、2:中圧復水器、3:高圧復水器、4L,4I,4H:管巣、5:低圧ホットウェル、6A,6B,6C,6D:連絡管、7A,7B,7C,7D:滴下部、8:中圧ホットウェル、9:ホットウェル、10:低圧復水器胴、11:復水器出口、20:中圧復水器胴、30:高圧復水器胴、12L,12I,12H:仕切り板、50:導電率計測装置、100:低圧蒸気タービン、200:低圧蒸気タービン、300:低圧蒸気タービン   1: Low pressure condenser, 2: Medium pressure condenser, 3: High pressure condenser, 4L, 4I, 4H: Nest, 5: Low pressure hot well, 6A, 6B, 6C, 6D: Connecting pipe, 7A, 7B, 7C, 7D: dropping section, 8: medium pressure hot well, 9: hot well, 10: low pressure condenser cylinder, 11: condenser outlet, 20: medium pressure condenser cylinder, 30: high pressure condenser Body, 12L, 12I, 12H: partition plate, 50: conductivity measuring device, 100: low pressure steam turbine, 200: low pressure steam turbine, 300: low pressure steam turbine

Claims (4)

大容量発電プラントに設けられ、3基以上の復水器の各々を異なる真空度で運転する複圧式復水器において、
前記3基以上の復水器の中で、器内圧力が最低圧の第1の復水器と、
前記第1の復水器の次に器内圧力が高い第2の復水器と、
前記第1の復水器からの凝縮水を前記第2の復水器の以外の復水器に導くように、前記第1の復水器と前記第2の復水器の以外の復水器とを接続する連絡管を備えた
ことを特徴とする複圧式復水器。
In a multi-pressure condenser that is installed in a large-capacity power plant and operates each of three or more condensers with different degrees of vacuum,
Among the three or more condensers, a first condenser having a lowest internal pressure,
A second condenser having a high internal pressure next to the first condenser;
Condensate other than the first condenser and the second condenser so that the condensed water from the first condenser is guided to a condenser other than the second condenser. A double-pressure condenser with a connecting pipe that connects to the vessel.
請求項1に記載の複圧式復水器において、
前記3基以上の復水器の上部には、それぞれ別個の低圧蒸気タービンが同一回転軸で連結されて配置され、
前記3基以上の復水器の中で、器内圧力が最高圧の第3の復水器を、前記低圧蒸気タービンの軸方向の端部以外の場所に配置した
ことを特徴とする複圧式復水器。
The double pressure condenser according to claim 1,
In the upper part of the three or more condensers, separate low-pressure steam turbines are respectively connected by the same rotating shaft,
Among the three or more condensers, the third condenser having the highest internal pressure is disposed at a place other than the axial end of the low-pressure steam turbine. Condenser.
請求項1または2に記載の複圧式復水器において、
前記第2の復水器からの凝縮水を前記第1の復水器の以外の復水器に導くように、前記第2の復水器と前記第1の復水器の以外の復水器とを接続する他の連絡管を備えた
ことを特徴とする複圧式復水器。
The double pressure condenser according to claim 1 or 2,
Condensate other than the second condenser and the first condenser so that the condensed water from the second condenser is guided to a condenser other than the first condenser. This is a double-pressure condenser that has other connecting pipes that connect it to the vessel.
請求項3に記載の複圧式復水器において、
前記連絡管及び前記他の連絡管に前記凝縮水の導電率を計測する導電率計測装置を設けた
ことを特徴とする複圧式復水器。
The double pressure condenser according to claim 3,
A multi-pressure condenser having a conductivity measuring device for measuring the conductivity of the condensed water in the connecting pipe and the other connecting pipe.
JP2016116947A 2016-06-13 2016-06-13 Double pressure condenser Active JP6578247B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016116947A JP6578247B2 (en) 2016-06-13 2016-06-13 Double pressure condenser
GB1709083.8A GB2553882B (en) 2016-06-13 2017-06-07 Multi-pressure type condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016116947A JP6578247B2 (en) 2016-06-13 2016-06-13 Double pressure condenser

Publications (2)

Publication Number Publication Date
JP2017223380A true JP2017223380A (en) 2017-12-21
JP6578247B2 JP6578247B2 (en) 2019-09-18

Family

ID=59349938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016116947A Active JP6578247B2 (en) 2016-06-13 2016-06-13 Double pressure condenser

Country Status (2)

Country Link
JP (1) JP6578247B2 (en)
GB (1) GB2553882B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634911A (en) * 1979-08-30 1981-04-07 Kraftwerk Union Ag Condensed steam cleaning controller
JPS6014096A (en) * 1983-06-09 1985-01-24 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Multi-stage pressure type condenser for steam turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335304A (en) * 1976-09-13 1978-04-01 Nippon Telegr & Teleph Corp <Ntt> Information system of facsimile communication result

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634911A (en) * 1979-08-30 1981-04-07 Kraftwerk Union Ag Condensed steam cleaning controller
JPS6014096A (en) * 1983-06-09 1985-01-24 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Multi-stage pressure type condenser for steam turbine

Also Published As

Publication number Publication date
GB2553882A (en) 2018-03-21
GB201709083D0 (en) 2017-07-19
JP6578247B2 (en) 2019-09-18
GB2553882B (en) 2020-01-29

Similar Documents

Publication Publication Date Title
US8708035B2 (en) Heat exchanger in a modular construction
US9285172B2 (en) Modular plate and shell heat exchanger
RU2515579C2 (en) Steam generator
EP2199720B1 (en) Double-pressure type condenser, and condensate reheating method
US8359824B2 (en) Heat recovery steam generator for a combined cycle power plant
KR101565436B1 (en) Heat exchanger and nuclear power plant having the same
RU2690308C1 (en) Heat exchanging device
RU2014148909A (en) PASSIVE HEAT REMOVAL SYSTEM FROM A WATER POWER REACTOR THROUGH A STEAM GENERATOR
JP5611019B2 (en) Shell plate heat exchanger and power plant equipped with the same
US20100115949A1 (en) Condensing equipment
JP6578247B2 (en) Double pressure condenser
CN206818029U (en) A kind of pure Ti-heat exchanger device of combined type
JP6581841B2 (en) Moisture separation unit and steam turbine plant
JP5716233B2 (en) Multi-stage pressure condenser
JP2010266100A (en) Moisture separation element and moisture separator
JP6081544B1 (en) Steam turbine plant
Shamarokov et al. The new generation of moisture separators-reheaters for steam-turbine units of nuclear power plants (NPP) with VVER-reactors
KR101551822B1 (en) Steam generator and nuclear power plant having the same
Milić et al. Analysis of operation of the condenser in a 120 MW thermal power plant
RU2521699C1 (en) Separator-superheater
Silin et al. The thermal circuit of a nuclear power station’s unit built around a supercritical-pressure water-cooled reactor
Zorin et al. The new generation of high-pressure heaters for steam turbine units at nuclear power plants
US9951284B2 (en) Gasifier cooling structure, gasifier, and gasifier annulus portion enlargement method
RU168692U1 (en) Superheater Separator
JP2014052161A (en) Condenser and complex condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190826

R150 Certificate of patent or registration of utility model

Ref document number: 6578247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150