JP2017223277A - Pipe joint structure - Google Patents

Pipe joint structure Download PDF

Info

Publication number
JP2017223277A
JP2017223277A JP2016118539A JP2016118539A JP2017223277A JP 2017223277 A JP2017223277 A JP 2017223277A JP 2016118539 A JP2016118539 A JP 2016118539A JP 2016118539 A JP2016118539 A JP 2016118539A JP 2017223277 A JP2017223277 A JP 2017223277A
Authority
JP
Japan
Prior art keywords
sleeve
peripheral surface
pipe joint
compression deformation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2016118539A
Other languages
Japanese (ja)
Inventor
井上 智史
Tomohito Inoue
智史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Sudare Co Ltd
Original Assignee
Inoue Sudare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Sudare Co Ltd filed Critical Inoue Sudare Co Ltd
Priority to JP2016118539A priority Critical patent/JP2017223277A/en
Publication of JP2017223277A publication Critical patent/JP2017223277A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pipe joint structure capable of making a pipe joint in an axial dimension compact, enhancing reliability of a pipe joint structure, and especially suitable even for refrigerant.SOLUTION: A pipe joint structure includes a cylindrical sleeve 5 for compression deformation on the outer peripheral surface of which a plurality of recess peripheral grooves 8 is provided, and which plastically deforms so that when a bag nut 3 is screwed to a joint body 1, a groove bottom thin wall part of the recess peripheral groove projects radially inward with axial compressive force, and thereby is bitten from an outer peripheral surface side of an inserted pipe P to prevent looseness. An inner peripheral surface 10 for sleeve holding, which corresponds to the outer peripheral surface of the sleeve for compression deformation, is provided in the joint body.SELECTED DRAWING: Figure 2

Description

本発明は、管継手構造に関する。   The present invention relates to a pipe joint structure.

管継手の一種として、フレア継手が古くから用いられていたが、配管作業に於て、フレア加工をパイプ端部に、現場にて行う必要があり、配管作業能率アップが阻害されていた。
そこで、本発明者は、上記フレア継手の上記欠点を解消し、部品点数も少ない管継手構造として、かつて、図9(B)と図10(B)に示したように、円筒型圧縮変形用スリーブ38を有する管継手構造について、多数の発明を提案している(例えば、特許文献1,2参照)。
即ち、図9(B)と図10(B)に示したように、先端方向にしだいに縮径する雄テーパ面39と雄ネジ41を有する継手本体40と、この雄ネジ41に螺着される袋ナット42と、この袋ナット42の内部に収納された上記圧縮変形用スリーブ38と、を具備している。さらに、圧縮変形用スリーブ38は、外周に凹周溝43を有し、かつ、内端に上記雄テーパ面39に対応する雌テーパ面44を有する。
袋ナット42を継手本体40に螺進させると、図9(B)と図10(B)に示す如く、アキシャル方向の力を受けて、上記凹周溝43の幅寸法が減少しつつ凹周溝底薄壁部43Aがラジアル内方向に塑性変形して、挿入されているパイプPの外周面から(図10(B)に示す如く)食い込んで抜止めすると共に、雄テーパ面39に対して雌テーパ面44が圧接して密封作用をなす構造である。
Flare joints have been used as a kind of pipe joints for a long time, but in piping work, it was necessary to perform flare processing at the pipe end in the field, which hindered the improvement of piping work efficiency.
Therefore, the present inventor has solved the above-mentioned drawbacks of the flare joint and has a pipe joint structure with a small number of parts. As shown in FIGS. Numerous inventions have been proposed for pipe joint structures having a sleeve 38 (see, for example, Patent Documents 1 and 2).
That is, as shown in FIGS. 9 (B) and 10 (B), a joint body 40 having a male tapered surface 39 and a male screw 41, which are gradually reduced in diameter in the distal direction, and the male screw 41 are screwed. A cap nut 42, and the compression deformation sleeve 38 housed in the cap nut 42. Further, the compression deformation sleeve 38 has a concave circumferential groove 43 on the outer periphery and a female tapered surface 44 corresponding to the male tapered surface 39 on the inner end.
When the cap nut 42 is screwed into the joint body 40, as shown in FIGS. 9 (B) and 10 (B), an axial force is received, and the width of the concave circumferential groove 43 is reduced while the concave circumference is reduced. The groove bottom thin wall portion 43A is plastically deformed radially inward and bites in from the outer peripheral surface of the inserted pipe P (as shown in FIG. The female taper surface 44 is in pressure contact with each other to form a sealing action.

特許第5276215号公報Japanese Patent No. 5276215 特許第5523612号公報Japanese Patent No. 5523612

上記特許文献1、及び、特許文献2(図9(B),図10(B))に示した管継手構造は、従来のフレア継手に代わり得る優れた発明である。
しかしながら、図9(B)と図10(B)に示した管継手には次のような欠点があることが判ってきた。即ち、 (i) 継手本体40のナット部40Aのアキシャル方向中央線を仮に継手本体40のアキシャル方向中央線L0 とすると、この中央線L0 から袋ナット42の外端面42Aまでのアキシャル方向寸法X0 が大きいという欠点、 (ii) 同寸法X0 が大きいことによって、パイプPがアール状曲げ部が多い配管用としては大きなスペースを必要とする欠点、(iii) 袋ナット42は材料節減と製造容易性等から真鍮の鍛造品が原則的に用いられているが、上記寸法X0 が大きいことによって、亀裂(ひび割れ)等の不良発生率が高まる等の欠点がある。
なお、図9(B)と図10(B)の実施品が多種多様な環境下にて使用されると、ある環境下及び条件下で、図15に示すような(軸心に沿った)アキシャル方向の亀裂(割れ目)45がスリーブ38の雌テーパ面44の近傍領域Z(図16参照)に発生する場合があることが判ってきた。
「ある環境下」とは、トイレや浄化槽やゴミ集積場や化学工場等であって、アンモニア(ガス・水)が存在する環境であり、また、「ある条件」とは、圧縮変形用スリーブ38が真鍮製であって、かつ、(後述の如く)その製造方法も関係することが、本発明者の調査と実験と研究の結果、しだいに究明されてきた。
The pipe joint structures shown in Patent Document 1 and Patent Document 2 (FIGS. 9B and 10B) are excellent inventions that can replace conventional flare joints.
However, it has been found that the pipe joints shown in FIGS. 9B and 10B have the following drawbacks. That is, (i) If the axial center line of the nut portion 40A of the joint body 40 is assumed to be the axial center line L 0 of the joint body 40, the axial dimension from the center line L 0 to the outer end face 42A of the cap nut 42 Disadvantages that X 0 is large, (ii) Disadvantage that pipe P has a large space for piping with many rounded bends due to large X 0 , and (iii) Cap nut 42 is a material saving Although brass forgings from manufacturability or the like is used in principle, by the size X 0 is large, there is a disadvantage of such defect rate such as cracks (crazing) is increased.
9B and FIG. 10B are used in a variety of environments, as shown in FIG. 15 (along the axis) under certain circumstances and conditions. It has been found that an axial crack (break) 45 may occur in a region Z (see FIG. 16) in the vicinity of the female taper surface 44 of the sleeve 38.
“A certain environment” refers to an environment where ammonia (gas / water) exists, such as toilets, septic tanks, garbage dumps, chemical factories, etc. “A certain condition” refers to a compression deformation sleeve 38. As a result of the inventor's investigation, experiment, and research, it has been gradually investigated that is made of brass and its manufacturing method is related (as will be described later).

そこで、本発明は、管継手のアキシャル方向寸法のコンパクト化を図り、管継手構造の信頼性を高め、特に、冷媒用にも好適な管継手構造の提供を、目的とする。   Accordingly, an object of the present invention is to reduce the axial dimension of the pipe joint, improve the reliability of the pipe joint structure, and provide a pipe joint structure that is particularly suitable for refrigerants.

本発明は、外周面に複数本の凹周溝が設けられ、継手本体に対して袋ナットが螺進される際にアキシャル方向の圧縮力を受けて上記凹周溝の溝底薄壁部がラジアル内方向へ突出するように塑性変形して、挿入されているパイプの外周面側から食い込んで抜止めする円筒形状の圧縮変形用スリーブを、備えた管継手構造に於て、上記圧縮変形用スリーブの上記外周面に対応するスリーブ保持用内周面を、上記継手本体に設けたものである。   In the present invention, a plurality of concave circumferential grooves are provided on the outer peripheral surface, and the groove bottom thin wall portion of the concave circumferential grooves receives a compressive force in the axial direction when the cap nut is screwed into the joint body. In a pipe joint structure provided with a cylindrical compression deformation sleeve that is plastically deformed so as to protrude radially inward and that bites in from the outer peripheral surface side of the inserted pipe and prevents it from being removed. An inner peripheral surface for holding a sleeve corresponding to the outer peripheral surface of the sleeve is provided on the joint body.

また、上記圧縮変形用スリーブの圧縮完了状態の全長の80%以上が、上記継手本体の上記スリーブ保持用内周面に内挿され、しかも、複数本の上記凹周溝の全てが、圧縮完了状態下で、上記スリーブ保持用内周面にて包囲されている。
また、上記継手本体は、外周に雄ネジを有すると共に、内周に上記スリーブ保持用内周面を有する規制円筒壁部を備え、上記雄ネジに上記袋ナットの雌ネジを螺進させた上記圧縮完了状態で、上記圧縮変形用スリーブは、上記規制円筒壁部及び袋ナットから成る二重包囲構造によって、包囲されている。
また、上記袋ナットは、上記圧縮変形用スリーブのアキシャル方向外端面に対してのみ圧接し、上記圧縮変形用スリーブの上記外周面に対して常に非接触状態である。
In addition, 80% or more of the total length of the compression deformation sleeve in the compression completion state is inserted into the sleeve holding inner peripheral surface of the joint body, and all of the plurality of concave circumferential grooves are completely compressed. Under the condition, the sleeve is surrounded by the inner peripheral surface for holding the sleeve.
Further, the joint body has a male cylinder on the outer periphery and a regulating cylindrical wall portion having the inner peripheral surface for holding the sleeve on the inner periphery, and the female screw of the cap nut is screwed into the male screw. In the compressed state, the compression deformation sleeve is surrounded by a double surrounding structure including the restriction cylindrical wall portion and the cap nut.
The cap nut is in pressure contact with only the outer end surface in the axial direction of the compression deformation sleeve, and is always in a non-contact state with the outer peripheral surface of the compression deformation sleeve.

本発明によれば、継手本体の内部まで深く圧縮変形用スリーブが突入状の構造となって、管継手としてのアキシャル方向寸法が著しく減少し、コンパクト化を図り得る。   According to the present invention, the compression deformation sleeve has a rush-like structure deep into the inside of the joint body, and the axial dimension as a pipe joint is remarkably reduced, so that the compactness can be achieved.

本発明の実施の一形態を示し、袋ナット未締付状態を示す断面図である。It is sectional drawing which shows one Embodiment of this invention and shows a cap nut untightened state. 袋ナット締付完了状態(スリーブの圧縮完了状態)を示す断面図である。It is sectional drawing which shows a cap nut fastening completion state (compression completion state of a sleeve). 圧縮変形用スリーブの一例を示す断面図である。It is sectional drawing which shows an example of the sleeve for compression deformation. 図3の要部拡大説明図である。FIG. 4 is an enlarged explanatory view of a main part of FIG. 継手本体の一例を示す断面図である。It is sectional drawing which shows an example of a coupling main body. パイプを挿入して、袋ナット未締付の状態を示す要部断面図である。It is principal part sectional drawing which shows a state which inserts a pipe and a cap nut is not fastened. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 袋ナット締付完了状態における作用説明図である。It is operation | movement explanatory drawing in a cap nut fastening completion state. 袋ナット未締付状態において、本発明の実施例と従来例とを比較するための要部断面図である。It is principal part sectional drawing for comparing the Example of this invention, and a prior art example in a cap nut untightened state. 袋ナット締付完了状態において、本発明の実施例と従来例とを比較するための要部断面図である。It is principal part sectional drawing for comparing the Example of this invention, and a prior art example in a cap nut fastening completion state. 凹周溝の種々の実施例を示す断面図である。It is sectional drawing which shows the various Example of a concave groove. 圧縮変形用スリーブの内端部位の種々の実施例を示す要部断面図である。It is principal part sectional drawing which shows the various Example of the inner-end site | part of the sleeve for compression deformation. 本発明の他の実施形態を示す、袋ナット未締付状態の断面図である。It is sectional drawing of the cap nut untightened state which shows other embodiment of this invention. 従来例の問題点を説明するための要部拡大図である。It is a principal part enlarged view for demonstrating the trouble of a prior art example. 従来例の問題点を説明するための圧縮変形用スリーブの斜視説明図である。It is an isometric view explanatory drawing of the sleeve for compression deformation for demonstrating the problem of a prior art example. 従来例における亀裂の発生と進行を示す要部断面説明図である。It is principal part sectional explanatory drawing which shows generation | occurrence | production and progress of the crack in a prior art example.

以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図7、及び、図9(A),図10(A)は、本発明の実施の一形態を示す。本発明に係る管継手構造は、雄ネジ付き継手本体1と、雌ネジ付き袋ナット3と、圧縮変形用スリーブ5とを、具備している。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1-7, FIG. 9 (A), and FIG. 10 (A) show one embodiment of the present invention. The pipe joint structure according to the present invention includes a joint body 1 with a male thread, a cap nut 3 with a female thread, and a compression deformation sleeve 5.

図1,図2,図5に示した実施の一形態では、本発明の管継手構造は、アキシャル方向中央線L0 に関して、左右対称形状であって、1個の継手本体1に2個の袋ナット3,3が螺着されるように、継手本体1の外面には中央に多角形等の作業工具掴持部26を有し、アキシャル方向両側に雄ネジ1A,1Aを有する。また、継手本体1は、軸心L1 に沿った貫孔11が形成されている。
圧縮変形用スリーブ5は、外周面7に複数本(図例では2本)の凹周溝8,8が設けられ、継手本体1に対して袋ナット3が螺進される際にアキシャル方向の圧縮力F(図6,図7参照)を受けて、凹周溝8,8の溝底薄壁部9がラジアル内方向へ突出するように塑性変形して、図2と図7に示す如く、挿入されているパイプPの外周面12側から食い込んで抜止めする円筒形状である。
In the embodiment shown in FIGS. 1, 2, and 5, the pipe joint structure of the present invention has a bilaterally symmetric shape with respect to the axial center line L 0 . The outer surface of the joint body 1 has a work tool gripping portion 26 such as a polygon at the center, and male screws 1A and 1A on both sides in the axial direction so that the cap nuts 3 and 3 are screwed. Further, the joint body 1 is formed with a through hole 11 along the axis L 1 .
The compression deformation sleeve 5 is provided with a plurality of (two in the illustrated example) concave circumferential grooves 8 and 8 on the outer peripheral surface 7, and the axial direction of the cap nut 3 is screwed into the joint body 1. In response to the compressive force F (see FIGS. 6 and 7), the groove bottom thin wall portion 9 of the concave circumferential grooves 8 and 8 is plastically deformed so as to protrude radially inward, as shown in FIGS. A cylindrical shape that bites in from the outer peripheral surface 12 side of the inserted pipe P and prevents it from being removed.

そして、継手本体1は、この圧縮変形用スリーブ5の外周面7に対応するスリーブ保持用内周面10を有している。即ち、従来例では、図9(B)と図10(B)に示した如く、スリーブ38は、継手本体40よりも(アキシャル方向の)外側に存在していたが、本発明に係る管継手構造においては、スリーブ5がアキシャル方向に深く侵入する構造・形状であって、スリーブ保持用内周面10にスリーブ5が深く挿入され、スリーブ5の外周面7が継手本体1の(前記貫孔11の一部位を成す)スリーブ保持用内周面10に対応しつつ、嵌合している。   The joint body 1 has a sleeve holding inner peripheral surface 10 corresponding to the outer peripheral surface 7 of the compression deformation sleeve 5. That is, in the conventional example, as shown in FIGS. 9 (B) and 10 (B), the sleeve 38 exists outside (in the axial direction) the joint body 40, but the pipe joint according to the present invention. In the structure, the sleeve 5 has a structure and shape that penetrates deeply in the axial direction, and the sleeve 5 is inserted deeply into the inner peripheral surface 10 for holding the sleeve. 11), and is fitted while corresponding to the inner peripheral surface 10 for holding the sleeve.

図5に示すように、貫孔11は、軸心L1 に沿ったアキシャル方向の中央位置に、内突条部2を有し、その内突条部2の左右両側方の各々に、スリーブ保持用内周面10,10が形成されている。この内突条部2の断面形状は、軸心L1 に対して直交する直交壁部2Aと台型部2Bとから成り、内突条部2の全体断面はフラスコ型である。
この内突条部2の内端面2Cは、図1,図2等に示すように、流路孔の一部を形成している。また、図2と図7に示すように、内端面2Cによって形成される(流路の)直径は、スリーブ5の内径、及び、パイプPの内径と、略等しい。
さらに、内突条部2について述べると、台型部2Bの斜辺(勾配面)2Eと、台型部2Bの底辺に相当する前記内端面2Cによって、断面三角形状の先端エッジ部13が形成されている。
As shown in FIG. 5, the through-hole 11 has an inner ridge portion 2 at a central position in the axial direction along the axis L 1 , and a sleeve is provided on each of the left and right sides of the inner ridge portion 2. Holding inner peripheral surfaces 10, 10 are formed. Sectional shape of the inner ridge 2 is composed of a quadrature wall portion 2A and the Taigata portion 2B orthogonal to the axis L 1, the entire cross section of the inner ridges 2 is a flask type.
The inner end face 2C of the inner protrusion 2 forms part of a flow path hole as shown in FIGS. 2 and FIG. 7, the diameter (of the flow path) formed by the inner end face 2C is substantially equal to the inner diameter of the sleeve 5 and the inner diameter of the pipe P.
Further, the inner ridge portion 2 will be described. A tip edge portion 13 having a triangular cross section is formed by the oblique side (gradient surface) 2E of the trapezoidal portion 2B and the inner end surface 2C corresponding to the bottom side of the trapezoidal portion 2B. ing.

次に、スリーブ5は、継手本体1の内部突条2の一側面(斜辺2E等)と、スリーブ保持用内周面10によって形成された内部収納空間Sに収納される(図1,図2,図6,図7参照)。さらに、スリーブ5は、その一端部23に圧接シール用雌テーパ面14を有し、この雌テーパ面14は、継手本体1の内突条部2の勾配面(斜辺)2Eに対応する。
スリーブ5の圧縮完了状態の全長をL5 とすると、図2と図7に示すように、この全長L5 の80%〜 100%、好ましくは、85%〜99%、さらに望ましくは、88%〜96%の範囲が、継手本体1の前記スリーブ保持用内周面10に対応する(内挿される)。
言い換えると、図5と図7に示したスリーブ保持用内周面10のアキシャル方向長さ寸法(深さ寸法)を、L10とすれば、
0.80・L5 ≦L10≦1.00・L5
好ましくは、
0.85・L5 ≦L10≦0.99・L5
さらに望ましくは、
0.88・L5 ≦L10≦0.96・L5
のように、設定する。
Next, the sleeve 5 is housed in an internal housing space S formed by one side surface (the oblique side 2E, etc.) of the inner protrusion 2 of the joint body 1 and the inner peripheral surface 10 for holding the sleeve (FIGS. 1 and 2). FIG. 6 and FIG. 7). Further, the sleeve 5 has a female taper surface 14 for pressure contact sealing at one end 23 thereof, and the female taper surface 14 corresponds to the inclined surface (slope side) 2E of the inner protrusion 2 of the joint body 1.
Assuming that the total length of the sleeve 5 in the compressed state is L 5 , as shown in FIGS. 2 and 7, 80% to 100%, preferably 85% to 99%, more desirably 88% of the total length L 5. The range of ˜96% corresponds to the sleeve holding inner peripheral surface 10 of the joint body 1 (inserted).
In other words, if the axial length (depth) of the sleeve holding inner peripheral surface 10 shown in FIGS. 5 and 7 is L 10 ,
0.80 ・ L 5 ≦ L 10 ≦ 1.00 ・ L 5
Preferably,
0.85 ・ L 5 ≦ L 10 ≦ 0.99 ・ L 5
More preferably,
0.88 ・ L 5 ≦ L 10 ≦ 0.96 ・ L 5
Set as follows.

さらに、複数本の凹周溝8,8の全てが、スリーブ圧縮完了状態下で、スリーブ保持用内周面10にて包囲されている。即ち、スリーブ圧縮完了状態では、全ての凹周溝8,8は継手本体1の内部に在って、最もラジアル外方向に塑性変形を生じ易い凹周溝8近傍の外周面部位が、スリーブ保持用内周面10にて図7中にベクトルF8 で示す如く、規制されて、その凹周溝8近傍が過大にラジアル外方向へ変形しない。これによって、溝底薄壁部9がU字状乃至V字状に変形しつつ確実にパイプPに食い込むこととなる。 Further, all of the plurality of concave circumferential grooves 8 and 8 are surrounded by the sleeve holding inner peripheral surface 10 under the sleeve compression completion state. That is, when the sleeve compression is completed, all the concave grooves 8 and 8 are inside the joint body 1, and the outer peripheral surface portion in the vicinity of the concave groove 8 that is most likely to undergo plastic deformation in the radially outward direction is the sleeve holding. as shown in use the inner peripheral surface 10 a vector F 8 in FIG. 7, it is restricted, the concave peripheral groove 8 near does not deform excessively in the radial outward direction. As a result, the groove bottom thin wall portion 9 is surely bitten into the pipe P while being deformed into a U shape or a V shape.

追加説明すると、継手本体1は、外周に雄ネジ1Aを有し、内周にスリーブ保持用内周面10を有する規制円筒壁部25を備えている、と言うことができる。そして、規制円筒壁部25は、内部に挿入されたスリーブ5が過大にラジアル外方向に変形することを規制する作用をなすのである。
しかも、図2と図7に示すように、雄ネジ1Aに袋ナット3の雌ネジ3Aを螺進させた圧縮完了状態で、スリーブ5は、上記規制円筒壁部25及び袋ナット3から成る二重包囲構造Wにより、包囲される。
If it demonstrates additionally, it can be said that the coupling main body 1 is provided with the control cylindrical wall part 25 which has the external thread 1A in an outer periphery, and has the inner peripheral surface 10 for sleeve holding in an inner periphery. And the regulation cylindrical wall part 25 makes the effect | action which regulates that the sleeve 5 inserted in the inside deform | transforms into a radial outward direction excessively.
In addition, as shown in FIGS. 2 and 7, the sleeve 5 is composed of the restriction cylindrical wall portion 25 and the cap nut 3 in a compression completed state in which the female screw 3 </ b> A of the cap nut 3 is screwed into the male screw 1 </ b> A. Surrounded by the heavy surrounding structure W.

また、図1〜図7でも明らかなように、袋ナット3は、スリーブ5のアキシャル方向外端面27に対してのみ(矢印Fのように)圧接し、スリーブ5の外周面7に対しては、常に非接触状態である。従って、袋ナット3を螺進してスリーブ5を圧縮塑性変形させてゆく際の回転トルクは小さくて済み、作業工具による回転操作が楽に行い得る。かつ、その際に、袋ナット3の回転に対してスリーブ5が共廻り(連廻り)を生じない。これに伴って、パイプPが共廻り(連廻り)することが無くなるという作用効果も期待できる。
このように、袋ナット3に作業工具にて加える回転トルクは、有効に、スリーブ5のアキシャル方向の圧縮塑性変形に集中的に生かされる。図9(B)と図10(B)に示した従来の管継手構造における摩擦低減用介装スリーブ材46を省略できる。
1 to 7, the cap nut 3 is in pressure contact only with the outer end surface 27 in the axial direction of the sleeve 5 (as indicated by the arrow F), and is not in contact with the outer peripheral surface 7 of the sleeve 5. Always in a non-contact state. Therefore, the rotational torque when the cap nut 3 is screwed and the sleeve 5 is compressed and plastically deformed can be small, and the rotation operation with the work tool can be easily performed. In addition, at that time, the sleeve 5 does not rotate together with the rotation of the cap nut 3. In connection with this, the effect that the pipe P does not rotate together (continuous rotation) can also be expected.
In this way, the rotational torque applied to the cap nut 3 by the work tool is effectively utilized intensively for the compressive plastic deformation of the sleeve 5 in the axial direction. The friction reducing intervention sleeve material 46 in the conventional pipe joint structure shown in FIGS. 9B and 10B can be omitted.

スリーブ5は、パイプPの先端が差込まれる円筒形状の差込凹所28が、内挿筒部21によって形成されている。この内挿筒部21は、挿入状態のパイプPの先端内周面に対応する。スリーブ5の前記凹周溝8,8を有する肉厚円筒型のスリーブ本体部6と、肉薄の内挿筒部21によって、先端開口状に円筒形状差込凹所28が形成される。   In the sleeve 5, a cylindrical insertion recess 28 into which the tip of the pipe P is inserted is formed by the insertion tube portion 21. This insertion cylinder part 21 corresponds to the tip inner peripheral surface of the pipe P in the inserted state. A cylindrical insertion recess 28 is formed in a distal end opening shape by the thick cylindrical sleeve body portion 6 having the concave circumferential grooves 8 and 8 of the sleeve 5 and the thin insertion tube portion 21.

図1から図6のようにパイプPを凹所28に差込み、次に、袋ナット3を継手本体1の雄ネジ1Aに螺進させる際に、アキシャル方向の力Fを受けて、図6から図7(図2)に示すように、凹周溝8の幅寸法W8 (図3参照)が減少しつつ凹周溝底薄壁部9がラジアル内方向へ塑性変形し、挿入されているパイプPの外周側から食い込み、そのとき内挿筒部21はパイプPが縮径方向に逃げること(過大変形すること)を阻止する。このように、図2と図7の状態では、パイプPの抜止めが完了し、かつ、雌テーパ面14が、強く、雄テーパとしての前記勾配面(斜辺)2Eに圧接して、密封作用をなす。 As shown in FIGS. 1 to 6, when the pipe P is inserted into the recess 28 and then the cap nut 3 is screwed into the male screw 1A of the joint body 1, the axial force F is received from FIG. As shown in FIG. 7 (FIG. 2), the concave circumferential groove bottom thin wall portion 9 is plastically deformed and inserted in the radial inward direction while the width dimension W 8 (see FIG. 3) of the concave circumferential groove 8 is reduced. At this time, the inner cylindrical portion 21 prevents the pipe P from escaping in the diameter-reducing direction (excessive deformation). Thus, in the state of FIGS. 2 and 7, the pipe P is completely prevented from being removed, and the female taper surface 14 is strongly pressed against the inclined surface (slanted side) 2 </ b> E as a male taper so as to have a sealing action. Make.

そして、図3と図4に示すように、スリーブ5は、その一端部23において、雌テーパ面14の内周端縁部14Aから、小U字凹部15を介して、(前記雌テーパ面14とは逆テーパ状とした)逆テーパ面16が形成されている。逆テーパ状とは、雌テーパ面14が、アキシャル一方向L20に向かって、しだいに拡径状であるのに対して、アキシャル一方向にしだいに縮径状となっていることを言う。
この逆テーパ面16と、スリーブ孔部17の内周面17Aの端部18によって、引掛小爪部20が、形成されている(図4参照)。
As shown in FIGS. 3 and 4, the sleeve 5 has an end 23 thereof, from the inner peripheral edge 14 </ b> A of the female tapered surface 14, via a small U-shaped recess 15 (the female tapered surface 14. A reverse taper surface 16 is formed. The reverse taper shape means that the female taper surface 14 gradually increases in diameter toward one axial direction L 20 while gradually decreasing in diameter in one axial direction.
A hooking claw portion 20 is formed by the reverse tapered surface 16 and the end portion 18 of the inner peripheral surface 17A of the sleeve hole portion 17 (see FIG. 4).

継手本体1の内突条部2の先端エッジ部13に、スリーブ5の小爪部20が、係止する(引掛る)。即ち、図2,図7に示した袋ナット締付完了状態(接続完了状態)では、引掛小爪部20が、継手本体1の内突条部2の先端エッジ部13に対して、ラジアル方向の内側から引掛っている。未締付状態下では、上記先端エッジ部13は、図6に例示するように、軸心直交平面部を円環状に有するが、図7,図8の袋ナット締付状態では、スリーブ5の小U字凹部15(図6参照)とその近傍に強く圧接して、相互に間隙が無くなる程度に、圧潰状となって、図8に示す如く、ベクトルF13が、小U字凹部15とその近傍に、作用する。 The small claw portion 20 of the sleeve 5 is locked (hooked) to the tip edge portion 13 of the inner protrusion 2 of the joint body 1. That is, in the cap nut tightening completion state (connection completion state) shown in FIGS. 2 and 7, the hooking claw portion 20 is in the radial direction with respect to the tip edge portion 13 of the inner protrusion 2 of the joint body 1. It is caught from the inside. In the untightened state, the tip edge portion 13 has an axially orthogonal plane portion in an annular shape as illustrated in FIG. 6, but in the state in which the cap nut is tightened in FIGS. strongly pressed against the vicinity of the small U-shaped recess 15 (see FIG. 6), to the extent that another gap is eliminated, becomes crushing shaped, as shown in FIG. 8, the vector F 13 is, the small U-shaped recess 15 Acts in the vicinity.

他方、雌テーパ面14は、図4の図例では大きな曲率半径Rのアール状であるが、図7と図8の袋ナット締付状態では、直線テーパ状の勾配面(斜辺)2Eに対して、強く圧接して、直線テーパ状に近づくように変形しつつ曲率半径Rも増加するような変形を受け、スリーブ5の一端部23側のスリーブ最端部5Aがラジアル外方向へ変形しようとする。しかし、図8に矢印(ベクトル)F10がスリーブ保持用内周面10にて加えられ、最端部5Aのラジアル外方向への変形を阻止することができる。図8に示すように、勾配面2Eから雌テーパ面14に向かって、ベクトルF2 が作用する。 On the other hand, the female taper surface 14 is rounded with a large radius of curvature R in the example of FIG. 4, but in the state where the cap nut is tightened in FIGS. The sleeve outermost end portion 5A on the one end portion 23 side of the sleeve 5 tends to be deformed outward in the radial direction by being strongly pressed and deformed so as to be deformed so as to approach a linear taper shape. To do. However, the arrows (vectors) F 10 in FIG. 8 is added at the peripheral surface 10 for holding the sleeve, it is possible to prevent a deformation in the radial outside direction of the endmost 5A. As shown in FIG. 8, the vector F 2 acts from the inclined surface 2E toward the female tapered surface.

図8に於て、2つの上記ベクトルF13,F2 を、軸心L1 と平行なX方向と、軸心L1 と直交する方向Yに、各々分解して、F13x ,F13y ,F2x,F2yとする。
(F2x+F13x )は、袋ナット3によってX方向に付与される締付力に対する反力である。F13y は先端エッジ部13から引掛小爪部20(と凹部15)に付与されるY方向(ラジアル内方向)の力であり、F2yは勾配面2Eと雌テーパ面14との圧接状態で勾配面2Eから雌テーパ面14に付与されるY方向(ラジアル外方向)の力である。
8 Te at two of the vector F 13, F 2, and X direction parallel to the axis L 1, the direction Y perpendicular to the axis L 1, and each decomposition, F 13x, F 13y, Let F 2x and F 2y .
(F 2x + F 13x ) is a reaction force against the tightening force applied in the X direction by the cap nut 3. F 13y is a force in the Y direction (radial inward direction) applied from the tip edge portion 13 to the hooking claw portion 20 (and the concave portion 15), and F 2y is a pressure contact state between the gradient surface 2E and the female taper surface 14 This is a force in the Y direction (radial outward direction) applied from the inclined surface 2E to the female tapered surface 14.

図14に示した従来例にあっては、F39,F39x ,F39y は、各々、次のようなベクトルを示す。
即ち、F39:雄テーパ面39から雌テーパ面44に付与される力(ベクトル)
39x :軸心L38と平行なX方向についてのF39の分力(ベクトル)
39y :軸心L38に直交するY方向についてのF39の分力(ベクトル)
図14(従来例)と本発明に係る管継手構造を示した図8とを比較すれば、次の数式1,2,3が成立する。
2x+F13x =F39x [数式1]
2 <F39 [数式2]
2y<F39y [数式3]
In the conventional example shown in FIG. 14, F 39 , F 39x , and F 39y indicate the following vectors, respectively.
That is, F 39 : force (vector) applied from the male tapered surface 39 to the female tapered surface 44
F 39x : F 39 component force (vector) in the X direction parallel to the axis L 38
F 39y : F 39 component force (vector) in the Y direction perpendicular to the axis L 38
Comparing FIG. 14 (conventional example) with FIG. 8 showing the pipe joint structure according to the present invention, the following formulas 1, 2, and 3 are established.
F 2x + F 13x = F 39x [Formula 1]
F 2 <F 39 [Formula 2]
F 2y <F 39y [Formula 3]

従来の圧縮変形用スリーブ38にあっては、図14に示したベクトルF39y が極めて大きい値であったが故に、図15に於て、大きな周方向張力T45が、雌テーパ面44の近傍領域Zに、袋ナット締付完了後、ずーっと作用し続けて、亀裂(割れ目)45が発生したと推測される。
特に、トイレや浄化槽やゴミ集積場や化学工場等のアンモニアが存在する「ある環境下」では、図14に示す矢印Azの如く、スリーブ38の外部側からアンモニアが侵入し、かつ、圧縮変形用スリーブ38が真鍮製であって、しかも、引抜き加工された円管(パイプ)を、(熱処理することなくそのままで)機械加工して、作製した場合―――既述の「ある条件」―――、例えば数ヶ月の使用期間後には、図15のような亀裂45が発生することを、本発明者は、現地調査及び実験によって、明らかとした。
In the conventional compression deformation sleeve 38, the vector F 39y shown in FIG. 14 has a very large value. Therefore, in FIG. 15, a large circumferential tension T 45 is present in the vicinity of the female taper surface 44. It is presumed that a crack (break) 45 has occurred in the region Z after the completion of the cap nut tightening and continued to act.
In particular, in a certain environment where ammonia exists in toilets, septic tanks, garbage collection sites, chemical factories, etc., as shown by arrow Az shown in FIG. When the sleeve 38 is made of brass, and the drawn circular pipe (pipe) is machined (as it is, without heat treatment). -For example, the present inventor has made it clear through field surveys and experiments that a crack 45 as shown in Fig. 15 occurs after a period of use of several months.

さらに、研究と実験を行ったところ、亀裂45は、スリーブ38の外部からではなく、雌テーパ面44の中間位置から図16(A)(B)(C)に点々をもって示す如く、亀裂45が、いわば内部寄りから外部―――ラジアル外方向―――に向かって発達することを発見した。
その理由は、次のような点にある。 (i) 真鍮製の引抜き管(パイプ)には、アキシャル方向に大きく伸長加工された際の残留応力が大きく残っている点、 (ii) その後、機械加工が行われても、熱処理しないで用いるために残留応力がスリーブ内にそのまま残っている点、(iii) 図15に模式説明図Uとして示すように、CuとZnから成る真鍮の結晶(組織)は、上記引抜き加工にて、アキシャル方向に平行に配置しており、そのために、図16(A)から(B)(C)と順次、スリーブの縦断面方向に亀裂45が発達していって、最終的に図15と図16(C)のように、スリーブ外周面にまで達して、被密封気体が外部漏洩する点、 (iv) そのうえに、図14に示したラジアル外方向(Y方向)のベクトルF39y が雌テーパ面44に作用し続けることで、前記 (i)(ii)(iii)と合わされて、亀裂45が図16(A)(B)の順に発達していって、図16(C)と図15に示した状態となる点。
Further, as a result of research and experiment, the crack 45 is not from the outside of the sleeve 38, but from the middle position of the female tapered surface 44, as shown by dots in FIGS. In other words, it has been found that it develops from the inside toward the outside – the radial outward direction.
The reason is as follows. (i) A large amount of residual stress remains in the drawn pipe (pipe) made of brass when it is greatly stretched in the axial direction. (ii) It is used without heat treatment even if machine processing is performed thereafter. For this reason, the residual stress remains in the sleeve as it is. (Iii) As shown in FIG. 15 as a schematic explanatory diagram U, the brass crystal (structure) made of Cu and Zn is formed in the axial direction by the above drawing process. Therefore, cracks 45 develop in the longitudinal cross-sectional direction of the sleeve sequentially from FIGS. 16 (A) to 16 (C), and finally FIG. 15 and FIG. 16 ( As shown in FIG. 14C, the sealed gas reaches the outer peripheral surface of the sleeve and leaks to the outside. (Iv) In addition, the radially outward (Y direction) vector F 39y shown in FIG. By continuing to act, the crack 45 is combined with the above (i) (ii) (iii) and the crack 45 is shown in FIG. A) The point is developed in the order of (B) and becomes the state shown in FIG. 16 (C) and FIG.

本発明は、図14の従来例におけるラジアル外方向(Y方向)へのベクトルF39y を著しく低減させるために、図8に示したように、ラジアル内方向への大きなベクトルF10及びF13y を、継手本体1のスリーブ保持用内周面10と、(小さな)引掛小爪部20にて、発生させたものといえる。
図8に示したアキシャル外方向(Y方向)のベクトルF2yが著しく小さくできることによって、(図15の従来例にて示したところの)周方向張力T45が十分に低減し、これによって、図16に示した亀裂発生を確実に、阻止可能となる。
In the present invention, in order to significantly reduce the vector F 39y in the radial outward direction (Y direction) in the conventional example of FIG. 14, large vectors F 10 and F 13y in the radial inward direction are used as shown in FIG. It can be said that it was generated by the sleeve holding inner peripheral surface 10 of the joint body 1 and the (small) hooking claw portion 20.
The axial outward direction (Y direction) vector F 2y shown in FIG. 8 can be remarkably reduced, so that the circumferential tension T 45 (as shown in the conventional example of FIG. 15) is sufficiently reduced. The cracks shown in Fig. 16 can be reliably prevented.

ところで、図11(A)及び図3と図6に示した凹周溝8は、その断面形状をホームベース型としたので、図6から図7のようにアキシャル方向に圧縮するための力Fが小さくて済み、故に、図8に示したベクトル合計(F2x+F13x )が小さくなり、これに伴って、ベクトルF2yが減少する。従って、一層、亀裂の発生を防止できるという利点がある。
但し、本発明では、凹周溝8の断面形状は、図11(B)のようなペン先形状としたり、図11(C)の半円形,図11(D)のU字状、あるいは、V字状や角形等自由である。
By the way, the concave circumferential groove 8 shown in FIGS. 11A, 3 and 6 has a cross-sectional shape of a home base type. Therefore, a force F for compressing in the axial direction as shown in FIGS. Therefore, the vector sum (F 2x + F 13x ) shown in FIG. 8 becomes small, and the vector F 2y decreases accordingly. Therefore, there is an advantage that the occurrence of cracks can be further prevented.
However, in the present invention, the cross-sectional shape of the concave circumferential groove 8 is a pen tip shape as shown in FIG. 11 (B), a semicircular shape as shown in FIG. 11 (C), a U shape as shown in FIG. V-shape and square shape are free.

以上説明したように、圧縮変形用スリーブ5は、雌テーパ面14の内周端縁部14Aから小U字凹部15を介して逆テーパ面16が形成され、スリーブ孔部内周面17Aの端部18と、逆テーパ面16によって、継手本体1の内部の先端エッジ部13に係止する引掛小爪部20が形成された、簡易な構成をもって、残留応力が内部に残存していても、アンモニア等の存在する「ある環境下」での亀裂45を有効に防止できる。例えば、冷媒用配管の接続に好適で、信頼性が高く、冷媒の外部漏洩を長期にわたり確実に防ぎ得る。   As described above, the compression deformation sleeve 5 has the reverse tapered surface 16 formed from the inner peripheral end edge portion 14A of the female tapered surface 14 through the small U-shaped concave portion 15, and the end portion of the sleeve hole inner peripheral surface 17A. 18 and a reverse taper surface 16 form a hooking claw portion 20 that is engaged with the tip end edge portion 13 inside the joint body 1, and has a simple structure. Even if residual stress remains inside, ammonia It is possible to effectively prevent the crack 45 in the “certain environment” in which there is, etc. For example, it is suitable for connection of refrigerant pipes, has high reliability, and can reliably prevent external leakage of the refrigerant over a long period of time.

次に、図14は(従来例を示す)図10(B)の要部拡大説明図であるが、この図10(B),図14では、図15,図16に示した亀裂45の発生する箇所―――スリーブ38の雌テーパ面44―――が、管継手外部(大気側)に極めて近く、かつ、袋ナット42のネジ螺合部から容易に、矢印Az(図14参照)のように、大気が侵入してくるため、亀裂45の問題が発生し易い。   Next, FIG. 14 is an enlarged explanatory view of the main part of FIG. 10B (showing a conventional example). In FIG. 10B and FIG. 14, the occurrence of the crack 45 shown in FIGS. Where the female taper surface 44 of the sleeve 38 is very close to the outside of the fitting (atmosphere side) and easily from the threaded portion of the cap nut 42, as indicated by the arrow Az (see FIG. 14). As described above, since the air enters, the problem of the crack 45 is likely to occur.

これに対し、本発明では、図2,図7,図10(A)に示したように、亀裂の発生する可能性が最も高い箇所―――スリーブ5の雌テーパ面14は、継手本体1の奥深くに在り、管継手外部(大気側)から極めて遠く離れ、図14にて示した矢印Azのような、アンモニア等の腐食性気体は、到達し難い構造である。このような構造からも、従来の亀裂45の発生を確実に防止できる。
さらに、図例では、2本のシール材29,30が付設されており、一層、アンモニア等の腐食性気体の侵入を阻止して、上記の従来の亀裂45の発生を防止しているといえる。但し、管継手が設置される環境によっては、このシール材29,30を省略した構成とすることも可能である。
On the other hand, in the present invention, as shown in FIGS. 2, 7, and 10A, the place where the possibility of occurrence of cracking is highest—the female tapered surface 14 of the sleeve 5 is the joint body 1. The corrosive gas such as ammonia as shown by an arrow Az shown in FIG. 14 is difficult to reach. Also from such a structure, the occurrence of the conventional crack 45 can be reliably prevented.
Furthermore, in the example shown in the figure, two sealing materials 29 and 30 are attached, which further prevents the invasion of corrosive gas such as ammonia and prevents the conventional crack 45 from occurring. . However, depending on the environment in which the pipe joint is installed, the sealing materials 29 and 30 may be omitted.

図1〜図8等に示したスリーブ5の奥側の一端部23の形状を、図12(A)に示すが、本発明にあっては、図12(B)(C)のように設計変更するも自由である。つまり、図12(B)は、図9(B),図10(B)の従来例のスリーブ38と同様であり、また、図12(C)は単純な軸心直交面状の端部23としているが、このような端部23の形状とすることも、自由である。   The shape of the one end portion 23 on the back side of the sleeve 5 shown in FIGS. 1 to 8 is shown in FIG. 12 (A). In the present invention, it is designed as shown in FIGS. 12 (B) and (C). You are free to change. That is, FIG. 12 (B) is the same as the conventional sleeve 38 of FIGS. 9 (B) and 10 (B), and FIG. 12 (C) is a simple axial center orthogonal end 23. However, the shape of the end 23 is also free.

図13に示す他の実施形態では、テーパ状雄ネジ31を中央線L0 の左側に有し、中央線L0 の右側は、既述した図1〜図12と同様の構成である。同一符号は、図1〜図12と同様の構成であり、重複説明を省略する。但し、図13に於て、図1,図2等に示した内突条部2が存在せずに、内端面2Cの内径寸法のままにて、流路孔部32が図13の左方にまで貫通状に形成されている。
なお、以上の図示の実施形態以外に、エルボ型,チューブ型とするも、自由であって、要するに、図9(A)と図10(A)に示したような構成の部位が、少なくとも、1個備えておれば良い。
In another embodiment shown in FIG. 13, has a tapered male thread 31 on the left side of the center line L 0, the right side of the center line L 0 is the same configuration as FIGS. 1-12 already described. The same reference numerals are the same as those in FIGS. 1 to 12, and a duplicate description is omitted. However, in FIG. 13, the inner ridge portion 2 shown in FIGS. 1 and 2, etc. does not exist, and the channel hole portion 32 is located on the left side of FIG. It is formed in a penetrating shape.
In addition to the illustrated embodiments described above, an elbow type and a tube type can be used freely. In short, at least a portion having a configuration as shown in FIGS. 9A and 10A is provided. It is enough to have one.

次に、図9と図10に於て、改めて本発明と従来例とを対比しつつ、構成上の相違点、及び、作用・効果の相違等について追加の説明を行うこととする。
本発明に係る管継手構造によれば、スリーブ5の外周面7には、継手本体1のスリーブ保持用内周面10が、対応し、継手本体1の内部へ深くスリーブ5が侵入する構造であるため、アキシャル方向中央線L0 から袋ナット3の外端面3Eまでのアキシャル方向寸法(長さ寸法)X1 は、スリーブ未圧縮状態(図9参照)、及び、圧縮完了状態(図10参照)のいずれにあっても、スリーブ38が継手本体40の外部に在って、袋ナット42の内部に保持される構成の従来の管継手のアキシャル方向寸法(長さ寸法)X0 よりも、著しく減少できて、アキシャル方向に大きくコンパクト化を図り得る(図9(A),図10(A)と図9(B),図10(B)を比較参照)。
Next, in FIG. 9 and FIG. 10, the present invention and the conventional example will be compared again, and the difference in configuration, the difference in operation and effect, and the like will be additionally described.
According to the pipe joint structure according to the present invention, the sleeve holding inner peripheral surface 10 of the joint main body 1 corresponds to the outer peripheral surface 7 of the sleeve 5, and the sleeve 5 penetrates deeply into the joint main body 1. Therefore, the axial dimension (length dimension) X 1 from the axial center line L 0 to the outer end surface 3E of the cap nut 3 is the sleeve uncompressed state (see FIG. 9) and the compression completed state (see FIG. 10). In any case, the axial direction dimension (length dimension) X 0 of the conventional pipe joint in which the sleeve 38 is outside the joint body 40 and is held inside the cap nut 42, It can be remarkably reduced and can be greatly downsized in the axial direction (see FIG. 9A, FIG. 10A, FIG. 9B, and FIG. 10B).

また、図10(A)に示すように、スリーブ5の圧縮完了状態の全長L5 の80%以上が、継手本体1のスリーブ保持用内周面10に内挿され、十分に深く、継手本体1の内部にスリーブ5が侵入することで、前記アキシャル方向寸法X1 が十分短縮され、コンパクト化を図り得る。
しかも、圧縮完了状態下で継手本体1のスリーブ保持用内周面10にて、複数本の凹周溝8,8の全てが、包囲されるように構成され(図10(A)参照)、図7に示すように、各凹周溝8近傍はベクトルF8 のように、ラジアル内方向に押圧力を受け、ラジアル内方向にU字状乃至V字状に溝底薄壁部9が確実に変形しつつパイプPの外周面に食い込む。なお、凹周溝8は3本以上とするも自由である(図示省略)。
Further, as shown in FIG. 10 (A), more than 80% of the total length L 5 of the compression completion state of the sleeve 5, is inserted into the sleeve holding inner peripheral surface 10 of the joint main body 1, deep enough, the joint body by first sleeve 5 inside invading the axial dimension X 1 is sufficiently reduced, it may work to compact.
In addition, all of the plurality of concave circumferential grooves 8 and 8 are surrounded by the sleeve holding inner peripheral surface 10 of the joint body 1 under the compression completion state (see FIG. 10A). As shown in FIG. 7, the vicinity of each concave circumferential groove 8 receives a pressing force in the radial inward direction as in the vector F 8 , and the groove bottom thin wall portion 9 is surely formed in a U shape or a V shape in the radial inward direction. It bites into the outer peripheral surface of the pipe P while being deformed. The number of the concave circumferential grooves 8 may be three or more (not shown).

また、上記継手本体1は、外周に雄ネジ1Aを有すると共に、内周に上記スリーブ保持用内周面10を有する規制円筒壁部25を備え、上記雄ネジ1Aに上記袋ナット3の雌ネジ3Aを螺進させた上記圧縮完了状態で、上記圧縮変形用スリーブ5は、上記規制円筒壁部25及び袋ナット3から成る二重包囲構造Wによって、包囲されているので、スリーブ5の外周面は強力にラジアル内方向に保持され、図7中の矢印F8 にて示したラジアル内方向のベクトルを受け、ラジアル内方向に溝底薄壁部9が、確実に、変形しつつ、パイプPの引抜きを阻止できる。 Further, the joint body 1 includes a male cylinder 1A on the outer periphery and a regulation cylindrical wall portion 25 having the inner peripheral surface 10 for holding the sleeve on the inner periphery. Since the compression deformation sleeve 5 is surrounded by the double surrounding structure W composed of the restriction cylindrical wall portion 25 and the cap nut 3 in the compression completed state in which 3A is screwed, the outer peripheral surface of the sleeve 5 is Is held in the radial inward direction, receives the radial inward vector indicated by the arrow F 8 in FIG. 7, and the groove bottom thin wall portion 9 is reliably deformed in the radial inward direction while the pipe P Can be pulled out.

また、従来例の管継手構造では、図9(B)から図10(B)のように、袋ナット42を螺進してゆく際、スリーブ38はその外端面のみならず外周面が、袋ナット42の内周面に対して圧接し、図9(B),図10(B)のように介装スリーブ材46にて摩擦抵抗の低減を図ったとしても、袋ナット42の回転につれて、スリーブ38及びパイプPが、共廻り(連廻り)を発生し、配管接続されたパイプPに不具合を生じ、かつ、雄テーパ面39と雌テーパ面44の間にも回転滑りを発生して、その圧接部位の密封性が悪化する場合があった。
しかしながら、本発明では、上記袋ナット3は、上記圧縮変形用スリーブ5のアキシャル方向外端面27に対してのみ圧接し、上記圧縮変形用スリーブ5の上記外周面7に対して常に非接触状態であるため、そのような従来例の問題が発生せず、スリーブ5の共廻り(連廻り)を防止でき、パイプPの共廻り(連廻り)による捩れも防止できる。しかも、従来例の摩擦低減用の介装スリーブ材46を省略しても、作業工具によって袋ナット3を回転させるトルクは小さくて済み、螺進作業が容易かつ迅速に行い得る。
Further, in the conventional pipe joint structure, as shown in FIGS. 9B to 10B, when the cap nut 42 is screwed, the sleeve 38 has not only the outer end surface but also the outer peripheral surface. Even if it is pressed against the inner peripheral surface of the nut 42 and the frictional resistance is reduced by the interposed sleeve material 46 as shown in FIGS. 9B and 10B, as the cap nut 42 rotates, The sleeve 38 and the pipe P are co-rotated (continuous), causing a problem in the pipe P connected to the pipe, and also rotating slippage between the male taper surface 39 and the female taper surface 44. In some cases, the sealing property of the pressure contact part deteriorates.
However, in the present invention, the cap nut 3 is in pressure contact with only the outer end surface 27 in the axial direction of the compression deformation sleeve 5 and is always in non-contact with the outer peripheral surface 7 of the compression deformation sleeve 5. Therefore, such a problem of the conventional example does not occur, the co-rotation (continuous rotation) of the sleeve 5 can be prevented, and the twist due to the co-rotation (continuous rotation) of the pipe P can also be prevented. Moreover, even if the conventional sleeve member 46 for reducing friction is omitted, the torque for rotating the cap nut 3 with the work tool is small, and the screwing operation can be performed easily and quickly.

また、図9(A)と図9(B)とを比較すれば明らかなように、袋ナット3は従来の袋ナット42よりも、アキシャル方向寸法が著しく短くなり(コンパクト化され)、袋ナットを真鍮の鍛造品にて作製する場合に、鍛造の際に亀裂(ひび割れ)が発生せず、不良発生率が著しく低下して、容易に鍛造を行い得ることとなる。
さらに、従来例では、袋ナット42の内部にスリーブ38が保持されつつ、図9(B)から図10(B)のように、塑性変形してゆくが、継手本体40の雄ネジ41と袋ナット42の雌ネジの螺合の場合、がたつきを生じ易く、継手本体40の軸心に対し袋ナット42の軸心が偏在し易く、これによって、スリーブ38の軸心も継手本体40の軸心に対して偏心を生じ、雄テーパ面39に対して雌テーパ面44が 360°均一に圧接せずに、密封不良を生ずることもあった。しかも、同じ理由で、 360°均一に、溝底薄壁部43Aが均一にU字状乃至V字状に変形しないで密封性低下と引抜力低下という問題も生ずる虞があった。
9A and 9B, the cap nut 3 has a significantly shorter axial dimension (compact) than the conventional cap nut 42, and the cap nut When forging is made of a brass forged product, cracks (cracks) do not occur during forging, the rate of occurrence of defects is significantly reduced, and forging can be performed easily.
Further, in the conventional example, the sleeve 38 is held inside the cap nut 42 and is plastically deformed as shown in FIGS. 9 (B) to 10 (B). In the case of screwing of the female thread of the nut 42, rattling is likely to occur, and the axis of the cap nut 42 is likely to be unevenly distributed with respect to the axis of the joint body 40. In some cases, the shaft is eccentric and the female taper surface 44 is not uniformly pressed 360 ° against the male taper surface 39, resulting in poor sealing. Moreover, for the same reason, there is a possibility that problems such as a decrease in sealing performance and a decrease in pulling force may occur without the groove bottom thin wall portion 43A being uniformly deformed into a U-shape or a V-shape in a uniform manner of 360 °.

これに対し、本願発明では、継手本体1に形成されたストレート状の内周面10に、スリーブ5が嵌合して、圧縮変形してゆくので、そのような従来の問題点を全て解決し、スリーブ5と継手本体1の両軸心は高精度に一致し、勾配面2Eに対して 360°均一に雌テーパ面14が密に圧接し、密封性能は安定して良好である。かつ、U字状乃至V字状に溝底薄壁部9が、 360°均等に、かつ、正確な変形形状となって、密封性がさらに安定し、優れることとなる。また、パイプPの引抜力も安定して大きい。   On the other hand, in the present invention, the sleeve 5 is fitted to the straight inner peripheral surface 10 formed on the joint body 1 and is compressed and deformed, so that all such conventional problems are solved. Both shaft centers of the sleeve 5 and the joint body 1 coincide with each other with high accuracy, and the female taper surface 14 is in close pressure contact with the inclined surface 2E uniformly at 360 °, and the sealing performance is stable and good. In addition, the groove bottom thin wall portion 9 in a U-shape or V-shape becomes a 360 ° uniform and accurate deformed shape, and the sealing performance is further stabilized and excellent. Also, the pulling force of the pipe P is stable and large.

1 継手本体
1A 雄ネジ
3 袋ナット
3A 雌ネジ
5 (圧縮変形用)スリーブ
7 外周面
8 凹周溝
9 溝底薄壁部
10 スリーブ保持用内周面
12 外周面
25 規制円筒壁部
F 圧縮力
5 全長
P パイプ
W 二重包囲構造
DESCRIPTION OF SYMBOLS 1 Joint body 1A Male screw 3 Cap nut 3A Female screw 5 (For compression deformation) Sleeve 7 Outer peripheral surface 8 Concave groove 9 Groove bottom thin wall
10 Inner peripheral surface for holding sleeve
12 Outer surface
25 Restricted cylindrical wall part F Compressive force L 5 Overall length P Pipe W Double enclosed structure

Claims (4)

外周面(7)に複数本の凹周溝(8)(8)が設けられ、継手本体(1)に対して袋ナット(3)が螺進される際にアキシャル方向の圧縮力(F)を受けて上記凹周溝(8)の溝底薄壁部(9)がラジアル内方向へ突出するように塑性変形して、挿入されているパイプ(P)の外周面(12)側から食い込んで抜止めする円筒形状の圧縮変形用スリーブ(5)を、備えた管継手構造に於て、
上記圧縮変形用スリーブ(5)の上記外周面(7)に対応するスリーブ保持用内周面(10)を、上記継手本体(1)に設けたことを特徴とする管継手構造。
A plurality of concave circumferential grooves (8) (8) are provided on the outer peripheral surface (7), and when the cap nut (3) is screwed into the joint body (1), the axial compression force (F) In response, the groove bottom thin wall portion (9) of the concave circumferential groove (8) is plastically deformed so as to protrude radially inward, and bites in from the outer peripheral surface (12) side of the inserted pipe (P). In the pipe joint structure provided with the cylindrical compression deformation sleeve (5) to be secured with
A pipe joint structure characterized in that a sleeve holding inner peripheral surface (10) corresponding to the outer peripheral surface (7) of the compression deformation sleeve (5) is provided in the joint main body (1).
上記圧縮変形用スリーブ(5)の圧縮完了状態の全長(L5 )の80%以上が、上記継手本体(1)の上記スリーブ保持用内周面(10)に内挿され、しかも、複数本の上記凹周溝(8)(8)の全てが、圧縮完了状態下で、上記スリーブ保持用内周面(10)にて包囲されている請求項1記載の管継手構造。 80% or more of the total length (L 5 ) of the compression deformation sleeve (5) in the compressed state is inserted into the sleeve holding inner peripheral surface (10) of the joint body (1), and more than one 2. The pipe joint structure according to claim 1, wherein all of the concave circumferential grooves (8) and (8) are surrounded by the sleeve holding inner circumferential surface (10) in a compressed state. 上記継手本体(1)は、外周に雄ネジ(1A)を有すると共に、内周に上記スリーブ保持用内周面(10)を有する規制円筒壁部(25)を備え、
上記雄ネジ(1A)に上記袋ナット(3)の雌ネジ(3A)を螺進させた上記圧縮完了状態で、上記圧縮変形用スリーブ(5)は、上記規制円筒壁部(25)及び袋ナット(3)から成る二重包囲構造(W)によって、包囲されている請求項1又は2記載の管継手構造。
The joint main body (1) includes a regulation cylindrical wall (25) having a male screw (1A) on the outer periphery and the inner peripheral surface (10) for holding the sleeve on the inner periphery,
In the compression completion state in which the female screw (3A) of the cap nut (3) is screwed into the male screw (1A), the compression deformation sleeve (5) includes the restriction cylindrical wall (25) and the bag. 3. A pipe joint structure according to claim 1, wherein the pipe joint structure is surrounded by a double surrounding structure (W) comprising a nut (3).
上記袋ナット(3)は、上記圧縮変形用スリーブ(5)のアキシャル方向外端面(27)に対してのみ圧接し、上記圧縮変形用スリーブ(5)の上記外周面(7)に対して常に非接触状態である請求項1,2又は3記載の管継手構造。   The cap nut (3) is in pressure contact with only the outer end surface (27) in the axial direction of the compression deformation sleeve (5), and is always against the outer peripheral surface (7) of the compression deformation sleeve (5). The pipe joint structure according to claim 1, 2 or 3, which is in a non-contact state.
JP2016118539A 2016-06-15 2016-06-15 Pipe joint structure Abandoned JP2017223277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118539A JP2017223277A (en) 2016-06-15 2016-06-15 Pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118539A JP2017223277A (en) 2016-06-15 2016-06-15 Pipe joint structure

Publications (1)

Publication Number Publication Date
JP2017223277A true JP2017223277A (en) 2017-12-21

Family

ID=60687899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118539A Abandoned JP2017223277A (en) 2016-06-15 2016-06-15 Pipe joint structure

Country Status (1)

Country Link
JP (1) JP2017223277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262318A1 (en) * 2019-06-28 2020-12-30 東尾メック株式会社 Pipe joint
JP2021008888A (en) * 2019-06-28 2021-01-28 東尾メック株式会社 Pipe joint
JP2021513035A (en) * 2018-01-29 2021-05-20 キム,ブライアン,ビー. Devices for making piping connections and how to use them

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287889A (en) * 1940-12-03 1942-06-30 Mueller Co Lock joint coupling
JPS481115U (en) * 1971-05-31 1973-01-09
US4556242A (en) * 1983-11-25 1985-12-03 Imperial Clevite Inc. Vibration resistant high pressure tube fitting
JPH0262497A (en) * 1988-08-24 1990-03-02 Sekisui Chem Co Ltd Tube fitting
EP1533556A1 (en) * 2000-03-22 2005-05-25 Claude Benit Method of connecting a conduit on a rigid, tubular connecting piece with a swivel nut, and connector according to this method
JP5276215B1 (en) * 2012-09-19 2013-08-28 井上スダレ株式会社 Pipe joint structure for refrigerant
JP5592573B1 (en) * 2014-01-06 2014-09-17 井上スダレ株式会社 Pipe joint structure for refrigerant
JP2016089873A (en) * 2014-10-30 2016-05-23 井上スダレ株式会社 Pipe joint structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287889A (en) * 1940-12-03 1942-06-30 Mueller Co Lock joint coupling
JPS481115U (en) * 1971-05-31 1973-01-09
US4556242A (en) * 1983-11-25 1985-12-03 Imperial Clevite Inc. Vibration resistant high pressure tube fitting
JPH0262497A (en) * 1988-08-24 1990-03-02 Sekisui Chem Co Ltd Tube fitting
EP1533556A1 (en) * 2000-03-22 2005-05-25 Claude Benit Method of connecting a conduit on a rigid, tubular connecting piece with a swivel nut, and connector according to this method
JP5276215B1 (en) * 2012-09-19 2013-08-28 井上スダレ株式会社 Pipe joint structure for refrigerant
JP5592573B1 (en) * 2014-01-06 2014-09-17 井上スダレ株式会社 Pipe joint structure for refrigerant
JP2016089873A (en) * 2014-10-30 2016-05-23 井上スダレ株式会社 Pipe joint structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021513035A (en) * 2018-01-29 2021-05-20 キム,ブライアン,ビー. Devices for making piping connections and how to use them
WO2020262318A1 (en) * 2019-06-28 2020-12-30 東尾メック株式会社 Pipe joint
JP2021008888A (en) * 2019-06-28 2021-01-28 東尾メック株式会社 Pipe joint
CN114008364A (en) * 2019-06-28 2022-02-01 东尾机械株式会社 Pipe joint
JP7126209B2 (en) 2019-06-28 2022-08-26 東尾メック株式会社 pipe joint

Similar Documents

Publication Publication Date Title
TWI534381B (en) Method and structure for preventing pull-off of a fluor-resin tube fitting
EP2995840B1 (en) Pipe connecting device
JP6276321B2 (en) Pipe joint structure
JP2017223277A (en) Pipe joint structure
KR20090091735A (en) Pull-up by torque fitting
US20100272383A1 (en) Split locking sleeve
TW201502407A (en) Pipe connecting device
US20070284878A1 (en) Sealing fitting for stainless steel tubing
JP6925407B2 (en) Vessel fittings with stroke resistance features
US20070013189A1 (en) Sealing fitting for stainless steel tubing
JP2009168075A (en) Pipe joint structure, and pipe connection method
JP5736499B1 (en) Pipe joint structure
JP5723470B1 (en) Pipe joint structure for refrigerant
WO2018011906A1 (en) Pipe joint
US3453009A (en) Tube coupling
JP2001124253A (en) Screw joint for steel pipe
US20040061333A1 (en) Conduit coupling
KR20040024476A (en) Pipe nipple
JP7126209B2 (en) pipe joint
RU2762926C1 (en) Threaded connection for steel pipes
JP6901178B1 (en) Pipe fitting structure
JP7344766B2 (en) pipe fittings
JP5525897B2 (en) Pipe fitting
JP4298497B2 (en) Stainless steel fittings for resin tubes
JP2016205540A (en) Pipe joint structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20180530