JP2016205540A - Pipe joint structure - Google Patents

Pipe joint structure Download PDF

Info

Publication number
JP2016205540A
JP2016205540A JP2015089011A JP2015089011A JP2016205540A JP 2016205540 A JP2016205540 A JP 2016205540A JP 2015089011 A JP2015089011 A JP 2015089011A JP 2015089011 A JP2015089011 A JP 2015089011A JP 2016205540 A JP2016205540 A JP 2016205540A
Authority
JP
Japan
Prior art keywords
pipe
joint body
inner end
sleeve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015089011A
Other languages
Japanese (ja)
Inventor
井上 智史
Tomohito Inoue
智史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Sudare Co Ltd
Original Assignee
Inoue Sudare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Sudare Co Ltd filed Critical Inoue Sudare Co Ltd
Priority to JP2015089011A priority Critical patent/JP2016205540A/en
Publication of JP2016205540A publication Critical patent/JP2016205540A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joints With Pressure Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pipe joint structure in which a cap nut to be screwed is easily and smoothly rotated to compress an internal compression deformable sleeve.SOLUTION: An inner end surface 71 of a compression deformable sleeve 7 is formed into such a tapered shape that the surface is made finer toward its tip, a pressure receiving surface 65 formed into such a tapered shape that its diameter is gradually enlarged is formed in a joint body 1, and the compression deformable sleeve 7 is prevented from deforming radially outward.SELECTED DRAWING: Figure 1

Description

本発明は、管継手構造に関する。   The present invention relates to a pipe joint structure.

管継手の一種として、フレア継手が古くから用いられている(例えば、特許文献1参照)。
一般に、図11に示すように、雄ネジ付き継手本体30のテーパ面31と、継手本体30の雄ネジ32に螺着される袋ナット33のテーパ面34の間に、銅製パイプ35の端部を拡径テーパ状に塑性加工して成るフレア端部37を、挟持させて圧接力により密封する構成である。
しかし、フレア加工を現場で行う必要があったため、配管作業能率アップが阻害されていた。
As one type of pipe joint, a flare joint has been used for a long time (for example, see Patent Document 1).
In general, as shown in FIG. 11, the end portion of the copper pipe 35 is between the tapered surface 31 of the male threaded joint body 30 and the tapered surface 34 of the cap nut 33 screwed onto the male thread 32 of the joint body 30. The flare end portion 37 formed by plastic working is expanded and tapered so as to be sandwiched and sealed with a pressing force.
However, since it was necessary to perform flare processing in the field, the improvement of piping work efficiency was hindered.

そこで、本発明者は、従来の(図11に示すような)フレア継手の上記欠点を解決し、さらに、部品点数も少なくて、シンプルな部品形状の管継手構造として、かつて図12及び図8に示すような発明を提案している(特許文献2参照)。
即ち、図12に於て、袋ナット38の内部収納空間39に圧縮変形スリーブ40を内有させて、袋ナット38を継手本体41の雄ネジ42に螺進させ、この螺進させる際に、継手本体41のテーパ状先端面43と、袋ナット38の内鍔38Aによって、アキシャル方向の強い圧縮力を付与させることで、上記スリーブ40の2個のU字状の外周凹溝44,44(図8(A)参照)のアキシャル方向幅寸法を減少させつつ、この外周凹溝44の溝底薄壁部45をラジアル内方向へ塑性変形(図8(C)(D)参照)させて、挿入されているパイプ46の外周面に、塑性変形した溝底薄壁部45を食い込ませて、(図12のように)パイプ46の引抜けを阻止する構造である。なお、図12及び図8では、未圧縮状態下で上記U字状であった外周凹溝44は、アキシャル方向幅寸法が零となるまで圧縮変形している場合を例示するが、このアキシャル方向幅寸法が小さく残っている場合もある。47は、PTFE等を塗装したシール層であり、溝底薄壁部45のパイプ46の外周面への食い込み変形に伴って、強く圧縮されて密封作用(シール性能)を増加させている。また、36はスペーサであって、薄肉金属板から成り、袋ナット38とスリーブ40の間に介装して、袋ナット38のスリーブ40に対する回転を円滑化し、かつ、スリーブ40のラジアル方向外方への変形を抑制している。
Therefore, the present inventor has solved the above-mentioned drawbacks of the conventional flare joint (as shown in FIG. 11), and further reduced the number of parts, and as a simple part-shaped pipe joint structure, FIG. 12 and FIG. (See Patent Document 2).
That is, in FIG. 12, a compression deformation sleeve 40 is included in the internal storage space 39 of the cap nut 38, and the cap nut 38 is screwed into the male screw 42 of the joint body 41. By applying a strong compressive force in the axial direction by the tapered distal end surface 43 of the joint body 41 and the inner flange 38A of the cap nut 38, the two U-shaped outer circumferential grooves 44, 44 ( While reducing the axial width dimension of FIG. 8 (A)), the groove bottom thin wall portion 45 of the outer circumferential groove 44 is plastically deformed radially inward (see FIGS. 8 (C) and (D)). In this structure, the plastically deformed groove bottom thin wall portion 45 is bitten into the outer peripheral surface of the inserted pipe 46 to prevent the pipe 46 from being pulled out (as shown in FIG. 12). FIGS. 12 and 8 illustrate the case where the outer circumferential concave groove 44 that is U-shaped in an uncompressed state is compressed and deformed until the axial width dimension becomes zero. The width dimension may remain small. 47 is a seal layer coated with PTFE or the like, and is strongly compressed to increase the sealing action (seal performance) as the groove bottom thin wall portion 45 bites into the outer peripheral surface of the pipe 46. Reference numeral 36 denotes a spacer made of a thin metal plate, interposed between the cap nut 38 and the sleeve 40 to facilitate the rotation of the cap nut 38 with respect to the sleeve 40, and radially outward of the sleeve 40. Suppression to deformation is suppressed.

特開2005−42858号公報Japanese Patent Laid-Open No. 2005-42858 特許第5276215号公報Japanese Patent No. 5276215

図12に示した管継手は、(図11に示した)フレア継手に代わり得る優れた発明であるが、次のような改良すべき点が残っている点に本発明者は気付いた。即ち、(a)圧縮変形スリーブ40の内端面40Aは(内方に拡径する)拡径テーパ状であるため、袋ナット38の螺進に伴ってアキシャル方向の強い圧縮力を受けると内端縁部40Bが矢印G4 方向に拡径塑性変形を生じ、袋ナット38の内周面38Cとの強力な圧接によって袋ナット38を回転させる作業が困難な場合がある点、(b)従って、外周凹溝44をアキシャル方向に十分に変形させることができず、溝底薄壁部45をパイプ46に食い込ませることが不十分となって流体の外部漏洩を発生する虞がある点、さらに、(c)継手本体41のテーパ状先端面43のテーパ角度θ43が45°以下と小さいために(いわばクサビの如く)内端縁部40Bを矢印G4 方向に大きな力で拡径させてしまう点、(d)スリーブ40の内端縁部40Bの矢印G4 方向への変形を抑制するためにスペーサ36を必要とし、部品点数の増加及び組立作業の能率低下を招く点。
以上説明したような改良すべき点(a)(b)(c)(d)が残っていることが本発明の課題である。そこで、本発明は、簡易な構成をもって、かつ、少ない部品点数にて、上記課題を解決し、実用上優秀な、安価に製造も容易な、特に、ガス用にも好適な管継手を提供することを、目的とする。
The pipe joint shown in FIG. 12 is an excellent invention that can replace the flare joint (shown in FIG. 11), but the present inventor has noticed that the following points to be improved remain. That is, (a) since the inner end face 40A of the compression deformation sleeve 40 is a diameter-expanding taper (expanding inward), the inner end face is subjected to a strong compressive force in the axial direction as the cap nut 38 is screwed. edge 40B occurs the expanded plastic deformation in the arrow G 4 direction, that there is a case work to rotate the cap nut 38 by a strong pressure contact with the inner circumferential surface 38C of the cap nut 38 is difficult, thus (b), The outer circumferential concave groove 44 cannot be sufficiently deformed in the axial direction, and the groove bottom thin wall portion 45 is insufficient to bite into the pipe 46 and may cause external leakage of the fluid. (c) for the taper angle theta 43 of tapered tip surface 43 of the joint body 41 is small and less than 45 ° results in (so to speak wedge as) the inner edge portion 40B is expanded with a large force in the arrow G 4 direction point, in order to suppress deformation of the arrow G 4 direction of the inner edge 40B of the (d) the sleeve 40 Requires pacer 36, that leads to an increase and efficiency reduction of the assembly work of the parts.
It is an object of the present invention that the points (a), (b), (c), and (d) to be improved as described above remain. Therefore, the present invention provides a pipe joint that has a simple configuration and solves the above-mentioned problems with a small number of parts, is excellent in practical use, is easy to manufacture at low cost, and is particularly suitable for gas. That is the purpose.

本発明は、雄ネジを有する継手本体と、該雄ネジに螺合する雌ネジを有すると共に被接続パイプ用の挿通孔を有する螺着部材と、を備え、上記螺着部材の内部収納空間に収納されると共に、外周凹溝を有し、上記螺着部材の雌ネジと継手本体の雄ネジを螺着させる際に上記継手本体と上記螺着部材からアキシャル方向の圧縮力を受けて、上記外周凹溝の底壁部がラジアル内方向へ塑性変形して、挿入されている上記パイプの外周面側から食い込んで抜止めする圧縮変形スリーブを有する管継手構造に於て;上記圧縮変形スリーブの内端面は先細テーパ状に形成され、上記継手本体には先細テーパ状の該内端面に圧接する拡径テーパ状の受圧面を有し、上記内端面と上記受圧面が相互に圧接して密封作用を発揮するように構成したものである。   The present invention comprises a joint body having a male screw, and a screw member having a female screw threadedly engaged with the male screw and having an insertion hole for a pipe to be connected, in the internal storage space of the screw member. The housing has an outer circumferential groove, and receives a compressive force in the axial direction from the joint body and the screw member when the female screw of the screw member and the male screw of the joint body are screwed. In a pipe joint structure having a compression deformation sleeve in which a bottom wall portion of an outer circumferential concave groove is plastically deformed radially inward and bites in from an outer peripheral surface side of the inserted pipe to prevent it from being removed; The inner end surface is formed in a tapered shape, and the joint body has a diameter-increasing tapered pressure-receiving surface pressed against the tapered inner end surface, and the inner end surface and the pressure-receiving surface are pressed against each other and sealed. It is configured to exert its action.

また、雌ネジを有する継手本体と、該雌ネジに螺合する雄ネジを有すると共に被接続パイプ用の挿通孔を有する螺着部材と、を備え、上記螺着部材の内部収納空間に収納されると共に、外周凹溝を有し、上記螺着部材の雄ネジと継手本体の雌ネジを螺着させる際に上記継手本体と上記螺着部材からアキシャル方向の圧縮力を受けて、上記外周凹溝の底壁部がラジアル内方向へ塑性変形して、挿入されている上記パイプの外周面側から食い込んで抜止めする圧縮変形スリーブを有し;上記圧縮変形スリーブの内端面は先細テーパ状に形成され、上記継手本体には先細テーパ状の該内端面に圧接する拡径テーパ状の受圧面を有し、上記内端面と上記受圧面が相互に圧接して密封作用を発揮するように構成したものである。   A joint body having a female screw; and a screw member having a male screw threadedly engaged with the female screw and having an insertion hole for a connected pipe, and is housed in an internal storage space of the screw member. And having an outer circumferential concave groove, when the male screw of the screw member and the female screw of the joint body are screwed together, the outer circumferential concave portion receives a compressive force in the axial direction from the joint body and the screw member. A compression deformation sleeve that plastically deforms the bottom wall portion of the groove radially inward and bites in from the outer peripheral surface side of the inserted pipe; and the inner end surface of the compression deformation sleeve is tapered. The joint body has a tapered tapered pressure-receiving surface that presses against the tapered inner surface, and the inner end surface and the pressure-receiving surface are in pressure contact with each other to provide a sealing action. It is a thing.

また、上記先細テーパ状の上記内端面のテーパ角度をθ2 とすると、48°≦θ2 ≦60°に設定した。
また、上記先細テーパ状の上記内端面は弯曲凸面に形成され、上記拡径テーパ状の受圧面に対して円環線接触状乃至円環細帯接触状に圧接するように構成した。
また、上記外周凹溝の断面形状をホームベース型に形成した。
そして、上記圧縮変形スリーブは、上記アキシャル方向の圧縮力を受けて上記ホームベース型の外周凹溝は、軸心直交方向の縦1文字型に閉じると共に、スリーブ外周面は小凸隆部の無い平滑円周面状を保ってスリーブ内周面がラジアル内方向へ塑性変形するように構成されている。
Further, assuming that the taper angle of the inner end face of the tapered shape is θ 2 , 48 ° ≦ θ 2 ≦ 60 ° was set.
Further, the inner end surface of the taper taper is formed as a curved convex surface, and is configured to come into pressure contact with the pressure receiving surface of the diameter-enlarged taper in an annular line contact shape or an annular band contact shape.
Moreover, the cross-sectional shape of the said outer periphery ditch | groove was formed in the home base type | mold.
The compression deformation sleeve receives the compressive force in the axial direction, and the outer circumferential groove of the home base type is closed to a single letter shape in the direction perpendicular to the axis, and the outer circumferential surface of the sleeve has no small convex ridge. The inner circumferential surface of the sleeve is configured to be plastically deformed radially inward while maintaining a smooth circumferential surface shape.

圧縮変形スリーブの内端側はほとんど変形せず、螺着部材はスムーズに回転させつつ接続作業を迅速に行い得る。螺着部材をスムーズに回転させ得ることに伴って、外周凹溝の底壁部は確実にパイプに食い込むので流体の外部漏洩を十分防止できる。さらに、部品点数が最少で済み、簡素で高い密封性能を発揮できる。   The inner end side of the compression deformation sleeve is hardly deformed, and the connecting member can be quickly performed while the screwing member is smoothly rotated. Along with the fact that the screwing member can be smoothly rotated, the bottom wall portion of the outer circumferential groove surely bites into the pipe, so that external leakage of fluid can be sufficiently prevented. Furthermore, the number of parts is minimized, and simple and high sealing performance can be exhibited.

本発明の実施の一形態を示しパイプを挿して、かつ、螺着部材の螺進前の未締付状態を示す断面図である。It is sectional drawing which shows one Embodiment of this invention and shows the unfastened state before inserting a pipe and screwing a screwing member. 螺着部材の締付完了状態(接続完了状態)の断面図である。It is sectional drawing of the fastening completion state (connection completion state) of a screwing member. 主要な部品の断面図である。It is sectional drawing of main components. 図3の要部拡大説明図である。FIG. 4 is an enlarged explanatory view of a main part of FIG. 3. 他の実施形態を示す未締付状態の断面図である。It is sectional drawing of the untightened state which shows other embodiment. 外周凹溝の説明図である。It is explanatory drawing of an outer periphery ditch | groove. 作用説明のための要部拡大断面図である。It is a principal part expanded sectional view for an effect | action description. U字状の凹周溝を例示し、かつ、その変形状態の一例を説明するための要部拡大断面図である。It is a principal part expanded sectional view for illustrating a U-shaped concave circumference groove and explaining an example of the deformation state. 圧縮状態に於ける圧縮変形スリーブの要部のみを取出して示した拡大説明図である。FIG. 4 is an enlarged explanatory view showing only a main part of a compression deformation sleeve in a compressed state. パイプに回転トルクが作用した状態を説明する斜視説明図である。It is a perspective view explaining the state where the rotational torque acted on the pipe. 従来例を示す断面図である。It is sectional drawing which shows a prior art example. 他の従来例を示した配管接続完了状態の断面図であって、(A)は要部断面図、(B)は(A)の拡大断面図である。It is sectional drawing of the pipe connection completion state which showed the other conventional example, Comprising: (A) is principal part sectional drawing, (B) is an expanded sectional view of (A).

以下、図示の実施の形態に基づき本発明を詳説する。
図1と図2と図3と図4は本発明の実施の一形態を示し、図1はパイプPを挿入した未締付状態の断面図、図2は締付(接続)完了状態を示す断面図である。また、図3は図1の主要部品を示した断面図である。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1, 2, 3, and 4 show an embodiment of the present invention, FIG. 1 is a cross-sectional view of an untightened state in which a pipe P is inserted, and FIG. 2 shows a tightened (connected) completed state. It is sectional drawing. FIG. 3 is a cross-sectional view showing the main components of FIG.

本発明は、管継手構造に関し、雄ネジ2付きの継手本体1と、この雄ネジ2に螺合する雌ネジ5を有する螺着部材60とを、備え、具体的には、この螺着部材60が袋ナット3である。この螺着部材60(袋ナット3)の内部収納空間10には、金属製圧縮変形スリーブ7を有する。また、螺着部材60(袋ナット3)は、パイプPを挿入するための挿通孔61を有し、この挿通孔61と上記内部収納空間10とは連通し、かつ、一軸心上に配設される。
螺着部材60の内部収納空間10に収納される圧縮変形スリーブ7は、(図例では2個の)外周凹溝9,9を有する。なお、外周凹溝9を凹周溝と呼ぶ場合もある。
The present invention relates to a pipe joint structure, and includes a joint body 1 with a male screw 2 and a screwing member 60 having a female screw 5 screwed to the male screw 2. Specifically, the screwing member 60 is a cap nut 3. A metal compression deformation sleeve 7 is provided in the internal storage space 10 of the screw member 60 (cap nut 3). The screw member 60 (cap nut 3) has an insertion hole 61 for inserting the pipe P. The insertion hole 61 and the internal storage space 10 communicate with each other and are arranged on one axis. Established.
The compression deformation sleeve 7 accommodated in the internal accommodation space 10 of the screwing member 60 has outer circumferential concave grooves 9 and 9 (two in the illustrated example). In addition, the outer peripheral groove 9 may be called a concave groove.

螺着部材60の雌ネジ5と、継手本体1の雄ネジ2を螺着させる際に、図1から図2のように継手本体1と螺着部材60からアキシャル方向の圧縮力Fを受けて、圧縮変形スリーブ7は、外周凹溝(凹周溝)9の底壁部(薄壁部)13が、図2に示す如く、ラジアル内方向へ塑性変形して、挿入されているパイプPの外周面15側から食い込んで抜止め力、及び、密封性を発揮する。図2に示すように、ラジアル内方向へ塑性変形する底壁部13によって、パイプPには、閉円環状縮径変形部12が形成されることとなる。   When the female screw 5 of the screwing member 60 and the male screw 2 of the joint body 1 are screwed, the axial compression force F is received from the joint body 1 and the screwing member 60 as shown in FIGS. In the compression deformation sleeve 7, the bottom wall portion (thin wall portion) 13 of the outer circumferential groove (concave groove) 9 is plastically deformed radially inward as shown in FIG. It bites in from the outer peripheral surface 15 side and exhibits a retaining force and a sealing performance. As shown in FIG. 2, a closed annular reduced diameter deforming portion 12 is formed in the pipe P by the bottom wall portion 13 that is plastically deformed radially inward.

ところで、本発明に係る管継手構造は、各種のガス等の気体、あるいは、水や油等の液体、若しくは冷媒等の流体に使用される。
また、継手本体1は、(図1〜図3の図例では、)アキシャル方向中間位置に六角膨出部62を有すると共に、基端側にテーパ雄ネジ部63を有し、先端側に(平行ネジから成る)雄ネジ2を有し、軸心に沿って貫通孔64が形成される。
By the way, the pipe joint structure according to the present invention is used for gases such as various gases, liquids such as water and oil, or fluids such as a refrigerant.
The joint body 1 has a hexagonal bulging portion 62 at an axial intermediate position (in the example shown in FIGS. 1 to 3), a tapered male screw portion 63 on the proximal end side, and a distal end side ( A male screw 2 (consisting of parallel screws) is provided, and a through hole 64 is formed along the axis.

そして、本発明に係る圧縮変形スリーブ7の内端面71は、先細テーパ状に形成されている。言い換えれば、内端面71が先端縮径テーパ面72となっている。
しかも、図4に示したように、上記先端縮径テーパ面72は、大きい曲率半径R2 の弯曲凸面Yに形成され、この弯曲凸面Yの内周端73と外周端74とを結んだ勾配線L2 を、テーパ角度θ2 と定義すれば、従来例の図12に示した継手本体41側のテーパ角度θ43よりも十分に大きく設定されている。即ち、従来は40°≦θ43≦45°であったのに対し、本発明では、圧縮変形スリーブ7に於て、48°≦θ2 ≦60°に設定する。
本発明に於て、先端縮径テーパ面72を、図4に示す勾配線L2 に一致した傾斜状直線に形成することも、自由ではある。その場合も、48°≦θ2 ≦60°に設定する。
The inner end surface 71 of the compression deformation sleeve 7 according to the present invention is formed in a tapered shape. In other words, the inner end surface 71 is the tip diameter-reduced tapered surface 72.
Moreover, as shown in FIG. 4, the tip diameter-reduced tapered surface 72 is formed on a curved convex surface Y having a large curvature radius R 2 , and a gradient connecting the inner peripheral end 73 and the outer peripheral end 74 of the curved convex surface Y. If the line L 2 is defined as the taper angle θ 2 , it is set sufficiently larger than the taper angle θ 43 on the joint body 41 side shown in FIG. 12 of the conventional example. In other words, in contrast to the conventional 40 ° ≦ θ 43 ≦ 45 °, in the present invention, the compression deformation sleeve 7 is set to 48 ° ≦ θ 2 ≦ 60 °.
At a present invention, the tip diameter tapered surface 72, also formed in an inclined shape line coincides with the slope line L 2 shown in FIG. 4, there is free. In this case, 48 ° ≦ θ 2 ≦ 60 ° is set.

他方、図1〜図3に示すように、継手本体1には、雄ネジ2の先端面側に、拡径テーパ状の受圧面65が形成される。具体的には、六角膨出部62から突出状に連設された雄ネジ2付き小径突出筒部66の先端面に、拡径テーパ状受圧面65を凹状に形成し、図3(A)に示すように、この拡径テーパ状受圧面65のテーパ角度θ1 は、48°≦θ1 ≦60°に設定し、かつ、前記テーパ角度θ2 と相等しい。
図2に示すように、螺着部材60の締付完了状態(接続完了状態)に於て、圧縮変形スリーブ7の先細テーパ状の内端面71と、継手本体1の拡径テーパ状の受圧面65が、相互に強く圧接して密封作用を発揮するように構成されている。
On the other hand, as shown in FIGS. 1 to 3, the joint main body 1 is formed with a pressure-receiving surface 65 having a diameter-expanded taper on the tip surface side of the male screw 2. Specifically, a diameter-enlarged taper pressure receiving surface 65 is formed in a concave shape on the distal end surface of a small-diameter protruding cylindrical portion 66 with a male screw 2 provided in a protruding manner from the hexagonal bulging portion 62, and FIG. As shown in FIG. 5, the taper angle θ 1 of the diameter-enlarged tapered pressure receiving surface 65 is set to 48 ° ≦ θ 1 ≦ 60 ° and is equal to the taper angle θ 2 .
As shown in FIG. 2, in the tightening completion state (connection completion state) of the screw member 60, the tapered inner end surface 71 of the compression deformation sleeve 7 and the diameter-enlarged taper pressure receiving surface of the joint body 1. 65 is configured to exert a sealing action by pressing strongly against each other.

そして、圧縮変形スリーブ7の内端面71(先端縮径テーパ面72)を、図4に示したように、弯曲凸面Yに形成して、継手本体1の拡径テーパ状の受圧面65に対して、円環線接触状に圧接させることによって、受圧面65のテーパ角度θ1 に誤差(公差)が存在していても、確実に安定した密封性を発揮し、しかも、圧接面圧力も高くなって、一層、高い密封性を奏することができる。
ところで、このように圧接面圧力が高くなるので、前述した円環「線」接触状が円環「細帯」接触状にまで、(相互圧接部位の弾性変形によって、)変形させるも、望ましい。
Then, as shown in FIG. 4, the inner end surface 71 (the tip diameter-reduced taper surface 72) of the compression deformation sleeve 7 is formed on the curved convex surface Y so that the pressure-receiving surface 65 of the joint body 1 with the diameter-expanded taper is formed. In addition, by pressing in a ring-shaped contact state, even if there is an error (tolerance) in the taper angle θ 1 of the pressure receiving surface 65, a stable sealing performance is reliably exhibited, and the pressure on the pressure contact surface also increases. As a result, it is possible to achieve higher sealing performance.
By the way, since the pressure on the pressure contact surface is increased in this way, it is also desirable to deform the above-described annular “line” contact state to an annular “strip” contact state (by elastic deformation of the mutual pressure contact part).

次に、図5に示した他の実施の形態について、以下、説明する。継手本体1側に、雌ネジ75を形成し、この雌ネジ75に螺合する雄ネジ76を螺着部材60側に一体形成する。
継手本体1は軸心に沿って貫通孔64を有し、かつ、テーパ雄ネジ部63を、図5の左方端に有する。螺着部材60はパイプPを挿入するための挿通孔61を有し、さらに、圧縮変形スリーブ7を収納する内部収納空間10を、上記挿通孔61と同一軸心上に連続的に有する。図5に示した未締付状態では、圧縮変形スリーブ7の先端部位は、内部収納空間10から突出状である。
Next, another embodiment shown in FIG. 5 will be described below. A female screw 75 is formed on the joint body 1 side, and a male screw 76 screwed to the female screw 75 is integrally formed on the screw member 60 side.
The joint body 1 has a through hole 64 along the axis, and has a tapered male screw portion 63 at the left end of FIG. The screw member 60 has an insertion hole 61 for inserting the pipe P, and further has an internal storage space 10 for storing the compression deformation sleeve 7 continuously on the same axis as the insertion hole 61. In the untightened state shown in FIG. 5, the tip portion of the compression deformation sleeve 7 protrudes from the internal storage space 10.

圧縮変形スリーブ7の形状は、既述の実施の形態(図1〜図4)と同一で良い。このスリーブ7について説明すれば、パイプPの先端部が挿入される基本の孔部7Aと、この孔部7Aの内端側に段付部7Bを介して小孔部7Cが連設され、挿入されるパイプPの先端面77に当接する。
また、雄ネジ76と雌ネジ75を螺着させる際に、継手本体1と螺着部材60からアキシャル方向の圧縮力Fを受けて、外周凹溝9の薄肉底壁部13がラジアル内方向へ塑性変形して、パイプPの外周面15側から食い込んで抜止めすることは、図1〜図4に於て説明した場合と同様である。そして、継手本体1は、小孔79を中心に有する壁部78を、内部に有していると共に、(パイプPが挿入される側に拡径する)拡径テーパ状の受圧面65を有し、このテーパ状受圧面65のテーパ角度θ1 は、図3(A)と同様とする。
圧縮変形スリーブ7の先細テーパ状の内端面71は、継手本体1の内部の上記受圧面65に圧接して、密封作用を発揮する。
The shape of the compression deformation sleeve 7 may be the same as that of the above-described embodiment (FIGS. 1 to 4). The sleeve 7 will be described. A basic hole 7A into which the tip of the pipe P is inserted, and a small hole 7C connected to the inner end of the hole 7A via a stepped portion 7B are inserted. It abuts on the tip surface 77 of the pipe P to be made.
Further, when the male screw 76 and the female screw 75 are screwed together, the thin bottom wall portion 13 of the outer circumferential recessed groove 9 receives the axially compressive force F from the joint body 1 and the screwing member 60 in the radial inward direction. It is the same as that described with reference to FIGS. 1 to 4 that the plastic deformation causes the pipe P to bite in from the outer peripheral surface 15 side and prevent it from being removed. The joint body 1 has a wall portion 78 having a small hole 79 as a center, and has a pressure receiving surface 65 having a diameter-expanding tapered shape (expanding to the side where the pipe P is inserted). The taper angle θ 1 of the tapered pressure receiving surface 65 is the same as that shown in FIG.
A tapered tapered inner end surface 71 of the compression deformation sleeve 7 is brought into pressure contact with the pressure receiving surface 65 inside the joint body 1 and exhibits a sealing action.

図5でも明らかなように、スリーブ7の内端面71と、継手本体1の受圧面65が相互に圧接すると、小孔部7Cと小孔79とが連続状となるので、両小孔7C,79の径は、同一に設定するのが望ましい。そして、図3の(A)(B)にて説明したと同様に、この図5の場合も、テーパ角度θ1 とテーパ角度θ2 は、同一に設定する。
図5に示す継手本体1について、さらに説明すると、この継手本体1に於ける前記雌ネジ75は、いわば、袋ナット部80の(外周六角形状の)周囲壁部67の内面に形成されている。図5から明らかなように、継手本体1は、袋ナット部80と、テーパ雄ネジ部63付のテーパ筒部68とから構成され、前記壁部78は、袋ナット部80の底壁部80Aに該当する。このように、袋ナット部80の底壁部80Aに拡径テーパ状の受圧面65が形成されている。
そして、図1〜図3、及び、図5に示したいずれの実施の形態にあっても、圧縮変形スリーブ7の外周凹溝9の断面形状は野球のホームベース型(又は、ホームプレート型とも呼ぶ)に形成される。
As is apparent from FIG. 5, when the inner end surface 71 of the sleeve 7 and the pressure receiving surface 65 of the joint body 1 are in pressure contact with each other, the small hole portion 7C and the small hole 79 become continuous. It is desirable to set the diameters of 79 to be the same. As in the case of FIGS. 3A and 3B, the taper angle θ 1 and the taper angle θ 2 are set to be the same in the case of FIG.
The joint main body 1 shown in FIG. 5 will be further described. The female screw 75 in the joint main body 1 is formed on the inner surface of the peripheral wall portion 67 (having a hexagonal shape on the outer periphery) of the cap nut portion 80. . As apparent from FIG. 5, the joint body 1 includes a cap nut portion 80 and a tapered tube portion 68 with a taper male screw portion 63, and the wall portion 78 is a bottom wall portion 80 </ b> A of the cap nut portion 80. It corresponds to. As described above, the pressure receiving surface 65 having an enlarged diameter taper is formed on the bottom wall portion 80 </ b> A of the cap nut portion 80.
In any of the embodiments shown in FIGS. 1 to 3 and FIG. 5, the cross-sectional shape of the outer circumferential groove 9 of the compression deformation sleeve 7 is the same as that of a baseball home base type (or home plate type). Formed).

圧縮変形スリーブ7の(大径側の)孔部7Aの内周面58は平滑円周面状に形成されている。但し、段付部7Bを介して、先端側には小孔部7Cを有し、パイプPの先端面77はこの段付部7Bまで挿入されて、当接する点は、既述した通りである。
そして、図2に示す如く、圧縮力Fを受けてアキシャル方向に圧縮変形したスリーブ7の薄壁部13がパイプPの外周面15に食い込んだ閉円環状食い込み部16にて、流体外部漏洩を防止させている。即ち、抜止めリング体としての圧縮変形スリーブ7の内周面58と、パイプ外周面15との間には、ゴム製Oリング等の弾性シール部材を省略している。
The inner circumferential surface 58 of the hole portion 7A (on the large diameter side) of the compression deformation sleeve 7 is formed in a smooth circumferential surface shape. However, through the stepped portion 7B, there is a small hole portion 7C on the tip side, and the tip surface 77 of the pipe P is inserted up to the stepped portion 7B and is in contact with it as described above. .
Then, as shown in FIG. 2, external leakage of the fluid is caused by the closed annular biting portion 16 in which the thin wall portion 13 of the sleeve 7 that has been compressed and deformed in the axial direction by receiving the compressive force F bites into the outer peripheral surface 15 of the pipe P. It is preventing. That is, an elastic seal member such as a rubber O-ring is omitted between the inner peripheral surface 58 of the compression deformation sleeve 7 as a retaining ring body and the pipe outer peripheral surface 15.

ホームベース(ホームプレート)型とした外周凹溝(凹周溝)9の深さ寸法をHOとし、幅寸法をNOとすると、HO=NOであり、また、溝奥の二等辺三角形19と横長状長方形20とから成り、三角形19は、頂点19Aの角度(頂角)θが90°の直角三角形であって、長方形20は深さ方向寸法をH2 とすると、No=2×H2 の関係にある。
しかも、(二等辺直角)三角形19の高さ(深さ)寸法をH1とすると、H1=H2=(1/2)・HOなる関係式が成立している。従って、一点Oを中心点とする、頂点19A及び左右角部の先端点21,22を連結する(点線をもって示す)円23を描くことができると共に、開口端角部24,24を結ぶ直線25に、上記円23が接する。
Home-based (home plate) type and the depth of the outer peripheral groove (concave peripheral groove) 9 and H O, and the width dimension and N O, is H O = N O, also isosceles Mizooku consists triangles 19 and horizontally long rectangle 20., triangle 19 is a right-angled triangle the angle (apex angle) theta of the vertices 19A is 90 °, the rectangular 20 the depth dimension and H 2, No = 2 XH 2 relationship.
Moreover, if the height (depth) dimension of the triangle 19 (isosceles right angle) is H 1 , the relational expression H 1 = H 2 = (1/2) · H 2 O holds. Accordingly, it is possible to draw a circle 23 (shown by a dotted line) that connects the vertex 19A and the tip points 21 and 22 at the left and right corners with a single point O as the center point, and a straight line 25 that connects the opening corners 24 and 24. The circle 23 touches the above.

ホームベース(ホームプレート)型の一例としては、上述したような寸法関係である。しかしながら、以下のような不等式の範囲で形状・寸法を変更することも可能である。
即ち、0.8・NO≦HO≦1.3・NO
0.9・H1≦H2≦1.5・H1
これに伴って、頂角θも90°よりも大きく又は小さく、僅かに変化することとなる。
As an example of a home base (home plate) type, there is a dimensional relationship as described above. However, it is possible to change the shape and dimensions within the following inequality range.
That is, 0.8 · N O ≦ H O ≦ 1.3 · N O
0.9 ・ H 1 ≦ H 2 ≦ 1.5 ・ H 1
Along with this, the apex angle θ is also larger or smaller than 90 ° and slightly changes.

図7(A)及び図6の未圧縮状態から、螺着部材60の螺進によって(図2参照)、スリーブ7がアキシャル方向の圧縮力Fを受けた際、図7(B)に示す如く、溝底側の薄壁部(底壁部)13は、 360°全周に渡って均等に、直ちにラジアル内方向へ塑性変形していく。図8(C)に示した従来例に比べると、三角形に近い山形に塑性変形しつつ、図2のようにパイプPの外周面15に食い込み、三角形に近い山形の閉円環状食い込み部16を形成する。図5の場合も図2と同様にスリーブ7は変形する。本発明では、凹周溝9の断面形状は、ホームベース型以外に、U字型やV字型等自由に設定できる。   When the sleeve 7 receives the compressive force F in the axial direction from the uncompressed state of FIGS. 7A and 6 (see FIG. 2) by the screwing of the screwing member 60, as shown in FIG. 7B. The thin wall portion (bottom wall portion) 13 on the groove bottom side is immediately plastically deformed radially inward evenly over the entire 360 ° circumference. Compared to the conventional example shown in FIG. 8 (C), while being plastically deformed into a triangular shape close to a triangle, the outer peripheral surface 15 of the pipe P is bitten as shown in FIG. Form. In the case of FIG. 5 as well, the sleeve 7 is deformed similarly to FIG. In the present invention, the cross-sectional shape of the concave circumferential groove 9 can be freely set such as a U-shape or a V-shape in addition to the home base type.

なお、図8のU字型外周凹溝9では、図6,図7に示す本発明に比較して、点々をもって示した領域Kが削除されているために、溝底薄壁部13が、 360°全周に、又は、周方向の一部位に於て、図8(B)の如く、逆方向───凹周溝9の内部側───へ一旦塑性変形を生ずるという欠点があり、さらに、溝底薄壁部13の塑性変形がラジアル外方と内方に揺れ動くことによって、全周均等に閉円環状食い込み部が形成され難い場合もありえる。さらに、上述のようにラジアル外方と内方に揺れ動いて、いわばダラダラと閉円環状食い込み部が形成されるために、その形状は比較的なだらかな山型となりパイプ外周面への食い込み深さが浅くなることも考えられる。上述のいわば、ダラダラとしつつ閉円環状食い込み部が形成される途中工程で、図8(B)(C)(D)に示したように、開口端部44A,44Aに小凸隆部50,50が形成されてしまって、図12に示した従来例の問題の解決が十分でないことも考えられる。つまり、矢印G1,G2のラジアル外方向の押圧力が袋ナット38の内周面38Cに強く作用し、袋ナット38の締め付け作業が困難となったり、再利用のために袋ナット38を取外して分離させることが難しいこともありえる。 In addition, in the U-shaped outer peripheral recessed groove 9 of FIG. 8, since the region K indicated by dots is deleted as compared with the present invention shown in FIGS. As shown in Fig. 8 (B), there is a drawback that plastic deformation once occurs in the reverse direction --- inside of the concave circumferential groove 9-at 360 ° all-round or at one part in the circumferential direction. Furthermore, the plastic deformation of the groove bottom thin wall portion 13 may swing radially outward and inward, so that it may be difficult to form a closed annular biting portion evenly around the entire circumference. Furthermore, as described above, it swings radially outward and inward to form a so-called ladle and a closed annular bite portion, so that the shape becomes a relatively gentle mountain shape and the bite depth to the pipe outer peripheral surface is small. It may be shallow. In the middle of the process of forming the closed annular bite portion while forming a dullness as described above, as shown in FIGS. 8 (B), (C), and (D), as shown in FIGS. It is also conceivable that the problem of the conventional example shown in FIG. In other words, the radial outward pressing force of the arrows G 1 and G 2 acts strongly on the inner peripheral surface 38C of the cap nut 38, making it difficult to tighten the cap nut 38, or for fixing the cap nut 38 for reuse. It can be difficult to remove and separate.

これに対して、ホームベース型とした凹周溝9では、図6と図7(A)に示すように、点々をもって示す領域Kが、U字型に比較して、付加(肉付け)され、かつ、凹周溝9の断面形状が頂点19Aを有するために応力集中によって圧縮変形しやすく、確実に、直ちにラジアル内方向へのみ、 360°全周に渡って、塑性変形しつつ、シャープな山型の閉円環状食い込み部16をもって、図2に示した締付完了状態が得られる。   On the other hand, as shown in FIG. 6 and FIG. 7 (A), in the concave circumferential groove 9 of the home base type, a region K indicated by dots is added (filled) compared to the U-shaped, In addition, since the cross-sectional shape of the concave groove 9 has the apex 19A, it is easy to compressively deform due to stress concentration, and is surely sharply mountain-shaped while being plastically deformed over the entire 360 ° circumference only in the radial direction. With the closed annular biting portion 16 of the mold, the tightening completion state shown in FIG. 2 is obtained.

凹周溝9のホームベース型の断面形状が頂点19Aを有するため、底壁部(薄壁部)13の中央は上記の応力集中によって圧縮(折曲り)変形しやすく、さらには、点々をもって示した領域Kが補強肉付けの機能を発揮して、確実に、直ちにラジアル内方向へのみ( 360°全周に渡って)塑性変形し、シャープな山型で深くパイプ外周面15へ食い込むことが可能である。   Since the cross-sectional shape of the home base type of the concave circumferential groove 9 has a vertex 19A, the center of the bottom wall portion (thin wall portion) 13 is easily compressed (bent) and deformed by the stress concentration described above, and further shown with dots. The region K exerts the function of reinforced fleshing, so that it can be surely plastically deformed only in the radial inward direction (over the entire 360 ° circumference) and deeply bite into the pipe outer peripheral surface 15 with a sharp chevron. It is.

上述したように、閉円環状食い込み部16が確実に、直ちにラジアル内方向へのみの塑性変形を生ずることで、図7(B)から(C)に示す如く、軸心直交方向の縦1文字型に外周凹溝9が閉じると共に、スリーブ外周面8は、平滑円周面状を保つ。
言い換えると、スリーブ内周面7Eがラジアル内方向へ塑性変形して、食い込み部16を形成するときに、スリーブ外周面8は小凸隆部の無い平滑円周面を保持する。
As described above, the closed annular biting portion 16 surely immediately undergoes plastic deformation only in the radial inward direction, so that one vertical character in the direction perpendicular to the axial center is obtained, as shown in FIGS. The outer circumferential groove 9 is closed in the mold, and the sleeve outer circumferential surface 8 maintains a smooth circumferential surface shape.
In other words, when the sleeve inner circumferential surface 7E is plastically deformed radially inward to form the biting portion 16, the sleeve outer circumferential surface 8 holds a smooth circumferential surface without a small convex ridge.

図12に於て、既述した如く、圧縮変形スリーブ40の内端面40Aは拡径テーパ状であるために、袋ナット38の螺進に伴って、スリーブ40がアキシャル方向の強い圧縮力を受け、内端縁部40Bが矢印G4 方向へ拡径塑性変形を生じて、袋ナット38の内周面38Cと強く圧接し、過大な圧接摩擦抵抗によって袋ナット38を回転させる作業が困難であった等の種々の問題があった。 In FIG. 12, since the inner end surface 40A of the compression deformation sleeve 40 has a diameter-expanding taper as described above, the sleeve 40 receives a strong compressive force in the axial direction as the cap nut 38 is screwed. , caused a diameter plastic deformation inner edge portion 40B is the arrow G 4 direction, strongly pressed with the inner peripheral surface 38C of the cap nut 38, a difficult work to rotate the cap nut 38 by excessive pressure friction There were various problems.

これに対し、本発明では、圧縮変形スリーブ7には先細テーパ状の内端面71を有し、継手本体1側の拡径テーパ状の受圧面65に圧接する構成であるので、圧縮変形スリーブ7の内端部位は、縮径方向に僅かに変形するのみで、継手本体1側の(剛性の高い)突出筒部66(図1,図2参照)又は、底壁部80Aにて受持され、ラジアル外方向への変形量が少なくなって、螺着部材60を作業工具にて回転させる際に、軽くスムーズに回転可能となる。従って、本発明では、圧縮変形スリーブ7の凹周溝9の断面形状が、U字型であったとしても、実用上問題なく、螺着部材60をスムーズに回転でき、また、一旦締付けた螺進部材60を緩めようとした場合、パイプPまでもが共廻りする問題がなくなって、部品の再利用が可能となる利点もある。さらに、従来例の図12に示した摩擦抵抗用及び塑性過大変形防止用のスペーサ36を省略できる。   On the other hand, in the present invention, the compression deformation sleeve 7 has a tapered inner end surface 71 and is in pressure contact with the diameter-enlarged taper pressure receiving surface 65 on the joint body 1 side. The inner end portion is slightly deformed in the direction of diameter reduction and is received by the protruding cylindrical portion 66 (see FIGS. 1 and 2) on the joint body 1 side (see FIGS. 1 and 2) or the bottom wall portion 80A. When the screw member 60 is rotated by the work tool, the amount of deformation in the radial outward direction is reduced, and the light member can be rotated lightly and smoothly. Therefore, in the present invention, even if the cross-sectional shape of the concave circumferential groove 9 of the compression deformation sleeve 7 is U-shaped, the screwing member 60 can be smoothly rotated without any practical problem, and the screw once tightened When the advance member 60 is to be loosened, there is an advantage that even the pipe P can be recirculated, and the parts can be reused. Furthermore, the spacer 36 for friction resistance and prevention of excessive plastic deformation shown in FIG. 12 of the conventional example can be omitted.

図1〜図7に示したように、上記圧縮変形スリーブ7は、上記アキシャル方向の圧縮力Fを受けて上記ホームベース型の外周凹溝9は、軸心直交方向の縦1文字型に閉じると共に、スリーブ外周面8は小凸隆部の無い平滑円周面状を保ってスリーブ内周面7Eがラジアル内方向へ塑性変形するように構成されているので、前述の効果は一層顕著となって、螺着部材60の螺進作業、及び、螺退作業をスムーズかつ迅速に行い得る。   As shown in FIGS. 1 to 7, the compression deformation sleeve 7 receives the compressive force F in the axial direction, and the outer circumferential groove 9 of the home base type closes to a vertical single character type in the direction orthogonal to the axis. At the same time, the sleeve outer peripheral surface 8 is configured such that the sleeve inner peripheral surface 7E is plastically deformed radially inward while maintaining a smooth circumferential surface shape without small convex ridges. Thus, the screwing operation and screwing operation of the screwing member 60 can be performed smoothly and quickly.

ところで、圧縮変形スリーブ7の内周面7Eは、凹凸の無い平滑円周面であるにもかかわらず、ホームベース型の凹周溝9としたときには、図7と図6と図2にて説明したところの独特の応力集中によって、ラジアル内方向のみへの閉円環状食い込み部16を確実に形成、及び、比較的角張った山型(図7(C)参照)によって、パイプPの外周面15に深く食い込み、パイプPの軸心廻りの回転を防止し、かつ、パイプ引抜力も極めて大きくなり、密封性能は安定して優れる。さらに、図9と図10にて別に説明するところの、パイプPの矢印M方向への回転に伴うところの流体洩れをも、有効防止できる。
図12に示した従来例におけるスペーサ36を省略することによって、次の利点が挙げ得る。(i)部品点数を低減できる。(ii)流体の漏洩界面が減る。
By the way, although the inner peripheral surface 7E of the compression deformation sleeve 7 is a smooth peripheral surface having no irregularities, it will be described with reference to FIGS. Due to the unique stress concentration, the closed annular biting portion 16 only in the radial inward direction is surely formed, and the outer peripheral surface 15 of the pipe P is formed by a relatively angular mountain shape (see FIG. 7C). The pipe P is prevented from rotating around the axis of the pipe P, and the pipe pulling force becomes extremely large, so that the sealing performance is stable and excellent. Furthermore, the fluid leakage caused by the rotation of the pipe P in the direction of the arrow M, which will be described separately with reference to FIGS. 9 and 10, can be effectively prevented.
By omitting the spacer 36 in the conventional example shown in FIG. 12, the following advantages can be obtained. (I) The number of parts can be reduced. (Ii) The fluid leakage interface is reduced.

図9は、図3に示した圧縮接続完了状態下で、仮にパイプPを除去した場合の圧縮変形スリーブ7の要部拡大説明図であり、この図9からも明らかなように、凹周溝9に於ける各溝底薄壁部13の内周面には、山型に塑性変形する際に多数の皺Nが発生する場合がある。その理由は、全体に縮径変形であるがために、圧縮変形に伴って、皺Nが発生すると推定される。
当然に、パイプP側の(対応する)圧接部には、凹と凸が逆の皺が発生し、相互に密に凹凸が入り込んでいる。しかし、パイプPとスリーブ7の相互の回転阻止力(グリップ機能)は、銅やアルミニウム等の軟らかい金属であれば、弱いことがある。
FIG. 9 is an enlarged explanatory view of a main part of the compression deformation sleeve 7 when the pipe P is removed under the compression connection completed state shown in FIG. 3, and as is apparent from FIG. On the inner peripheral surface of each groove bottom thin wall portion 13 in FIG. 9, a large number of ridges N may be generated when plastically deforming into a mountain shape. The reason is estimated to be that 皺 N is generated along with the compression deformation because the entire diameter is reduced.
Naturally, in the (corresponding) pressure contact portion on the pipe P side, wrinkles having a concave portion and a convex portion are generated, and the concave and convex portions are densely inserted into each other. However, the mutual rotation stopping force (grip function) between the pipe P and the sleeve 7 may be weak if it is a soft metal such as copper or aluminum.

パイプPの回転が、上述の構造によって阻止されていないと仮定すると、凹周溝9では、パイプPと、スリーブ7とが(図9に示したような)皺Nによって凹凸が入り込んでいるといえども、簡単にパイプPは回転してしまう(即ち、皺Nは小さく、かつ、材質が軟らかいため)。
このような回転に伴って、凹凸の入り込みが、逆に、極微小間隙を発生させ、流体が外部漏洩する。実験の結果、微小な皺Nによる凹凸の入り込み状態から、金属管Pが1°〜2°の微小角度の回転が生ずると、(冷媒等の)流体は外部漏洩することが判明した。
Assuming that the rotation of the pipe P is not prevented by the above-described structure, in the concave groove 9, the pipe P and the sleeve 7 are indented by the ridge N (as shown in FIG. 9). However, the pipe P easily rotates (that is, 皺 N is small and the material is soft).
Along with such rotation, the intrusion of unevenness, on the contrary, generates a very small gap, and the fluid leaks to the outside. As a result of the experiment, it has been found that when the metal tube P is rotated by a minute angle of 1 ° to 2 ° due to the intrusion state of the unevenness due to the minute ridge N, the fluid (such as a refrigerant) leaks to the outside.

本発明では、継手本体1に対してパイプPが回転(図10の矢印M参照)することを、強力に阻止できる構成としたので、流体に対しても十分に長期間にわたって、かつ、過酷な使用状況にあっても、密封性能(シール性)を発揮して、外部漏洩を防止できる。特に、圧縮変形スリーブ7には、段付部7Bを設けて、パイプPの先端面77を当接させる構成であるので、(図1から図2のように)スリーブ7が圧縮変形する際に、底壁部13がパイプ外周面15に食い込みつつ連れ込み、パイプPを介してスリーブ7を内方へ強く押圧して、先端縮径テーパ面72を受圧面65に対して極めて高い面圧力をもって、圧接できる。従って、このテーパ面72と受圧面65の相互圧接部位の密封(シール)性は安定して良好に維持できる。
追加説明すると、図12の従来例では、パイプ46の先端面が継手本体41に当接していることによって、圧縮変形スリーブ40の内端面40Aが、継手本体41のテーパ状先端面43に圧接する動きに「制動力」を作用させている。本発明では、このような従来の図12の問題を、解決して、テーパ面相互の密封(シール)性を向上させている。
In the present invention, the pipe P rotates with respect to the joint body 1 (see the arrow M in FIG. 10) so that it can be strongly prevented. Even under usage conditions, it exhibits sealing performance (sealability) and can prevent external leakage. In particular, the compression deformation sleeve 7 is provided with a stepped portion 7B so that the tip surface 77 of the pipe P is brought into contact with the sleeve 7 (as shown in FIGS. 1 and 2). The bottom wall portion 13 bites into the pipe outer peripheral surface 15 and presses the sleeve 7 inward strongly through the pipe P, so that the tip diameter-reduced tapered surface 72 has a very high surface pressure with respect to the pressure receiving surface 65. Can be pressed. Accordingly, the sealing (sealing) property of the mutual pressure contact portion between the tapered surface 72 and the pressure receiving surface 65 can be stably and satisfactorily maintained.
In addition, in the conventional example of FIG. 12, the inner end surface 40A of the compression deformation sleeve 40 is in pressure contact with the tapered distal end surface 43 of the joint body 41 because the distal end surface of the pipe 46 is in contact with the joint body 41. A “braking force” is applied to the movement. In the present invention, the conventional problem of FIG. 12 is solved, and the sealing performance between the tapered surfaces is improved.

図5に示す他の実施の形態の管継手構造では、図1,図2に示す実施の一形態のものよりも、アキシャル方向寸法が短縮される利点がある。また、図5の管継手構造では、袋ナット部80、及び、螺着部材60の六角部60Aの各アキシャル方向寸法が大きく、スパナ等の作業工具にて掴持しやすい利点がある。   The pipe joint structure of another embodiment shown in FIG. 5 has an advantage that the axial dimension is shortened as compared with the embodiment of the embodiment shown in FIGS. Further, the pipe joint structure of FIG. 5 has an advantage that the cap nut portion 80 and the hexagonal portion 60A of the screwing member 60 have large axial dimensions and can be easily held by a work tool such as a spanner.

ところで、本発明に係る管継手構造は、パイプPの外径が、4mm〜19mmに使用され、特に、外径が4mm〜8mmの細径に好適である。なお、圧縮変形スリーブ7としては、銅、真ちゅう、アルミニウム等の軟らかい金属、あるいは、プラスチックが好ましい。また、上述の実施の形態では、圧縮変形スリーブ7は挿入されるパイプPの先端面77と外周面15に接触しているが、内挿筒部(図示省略)をスリーブ7の内部に形成して、挿入されるパイプPの先端の内面にも接触して、密封性を向上させるも自由である。   By the way, the pipe joint structure according to the present invention is suitable for a pipe P having an outer diameter of 4 mm to 19 mm, and particularly suitable for a thin diameter of 4 mm to 8 mm. The compression deformation sleeve 7 is preferably a soft metal such as copper, brass, aluminum, or plastic. Further, in the above-described embodiment, the compression deformation sleeve 7 is in contact with the distal end surface 77 and the outer peripheral surface 15 of the pipe P to be inserted, but an insertion tube portion (not shown) is formed inside the sleeve 7. Thus, it is free to contact the inner surface of the tip of the inserted pipe P to improve the sealing performance.

図12に示した従来例からも判るように、(螺着部材としての)袋ナット38の螺進及び螺退の回転トルクが過大となるという問題の原因は、図12(B)と図8にて説明したように、矢印G2 にて示したラジアル外方向の変形(「第1原因」と呼ぶ)、及び、図12(A)にて説明したように、矢印G4 にて示したラジアル方向の拡径変形(「第2原因」と呼ぶ)の2つがあった。
これに対し、本願発明では、圧縮変形スリーブ7の内端面71が先細テーパ状であり、継手本体1の拡径テーパ状の受圧面65に圧接する構成であるので、スリーブ7の内端面71は、ラジアル内方向(縮径方向)の力―――圧縮力―――を受ける。従って、上記第2原因が解消して、図12(A)に示す矢印G4 への変形に伴う(螺着部材に対する)大きな摩擦抵抗力が発生することを防ぐことができる。即ち、本発明では、螺着部材60の回転トルクが小さくて済み、作業の能率が図られ、さらに、配管接続作業を容易とすることができ、流体洩れ事故も防止できる。
As can be seen from the prior art shown in FIG. 12, the cause of the problem that the rotational torque of the screw nut 38 (as a screwing member) is excessively screwed and unscrewed is the cause of the problem shown in FIGS. as described in the deformation of the radial outside direction indicated by the arrow G 2 (referred to as "first cause"), and, as described with reference to FIG. 12 (a), the indicated by arrows G 4 There were two types of radial expansion deformation (referred to as “second cause”).
On the other hand, in the present invention, the inner end surface 71 of the compression deformation sleeve 7 has a tapered shape, and is configured to press-contact with the pressure-receiving surface 65 having an enlarged tapered shape of the joint body 1. , Receives the radial inward force (reducing diameter direction)-compressive force--. Therefore, to eliminate the above second cause, it is possible to prevent the 12 (for screwed member) accompanying the deformation of the arrow G 4 shown in (A) a large frictional resistance is generated. That is, according to the present invention, the rotational torque of the screwing member 60 can be reduced, the work efficiency can be improved, the pipe connection work can be facilitated, and the fluid leakage accident can be prevented.

そして、本発明では、上述の如く、第2原因が解消した構成であるので、第1原因が残っていても、実用上問題が生じない場合もある。つまり、外周凹溝9が図8に示したU字型断面形状であっても、実用上、作業工具にて回転トルクを付加してスムーズに螺進、及び、螺退を行い得る場合もある。各構成部品の材質及び寸法公差を適切に選定することで、本発明に於ける外周凹溝9の断面形状は、ホームベース型以外であっても、自由に選定可能である。   In the present invention, since the second cause is eliminated as described above, there may be no practical problem even if the first cause remains. In other words, even if the outer circumferential concave groove 9 has the U-shaped cross-sectional shape shown in FIG. 8, in some cases, it can be practically screwed and unscrewed smoothly by applying rotational torque with a work tool. . By appropriately selecting the material and dimensional tolerance of each component, the cross-sectional shape of the outer circumferential groove 9 in the present invention can be freely selected even if it is other than the home base type.

以上詳述したように、本発明は、雄ネジ2を有する継手本体1と、該雄ネジ2に螺合する雌ネジ5を有すると共に被接続パイプP用の挿通孔61を有する螺着部材60と、を備え、上記螺着部材60の内部収納空間10に収納されると共に、外周凹溝9を有し、上記螺着部材60の雌ネジ5と継手本体1の雄ネジ2を螺着させる際に上記継手本体1と上記螺着部材60からアキシャル方向の圧縮力Fを受けて、上記外周凹溝9の底壁部13がラジアル内方向へ塑性変形して、挿入されている上記パイプPの外周面15側から食い込んで抜止めする圧縮変形スリーブ7を有する管継手構造に於て;上記圧縮変形スリーブ7の内端面71は先細テーパ状に形成され、上記継手本体1には先細テーパ状の該内端面71に圧接する拡径テーパ状の受圧面65を有し、上記内端面71と上記受圧面65が相互に圧接して密封作用を発揮するように構成したので、螺着部材60の螺進(回転)作業がスムーズに能率良く、かつ、確実に行うことが可能となる。従って、流体の外部漏洩を防止できる。従来の図12に示したスペーサ36等の部品を省略できる。また、螺着部材60を取外す必要が生じた際には、螺着部材60の螺退(回転)作業がスムーズに軽く行い得る利点もある。   As described above in detail, the present invention has a joint body 1 having a male screw 2 and a screw member 60 having a female screw 5 screwed to the male screw 2 and having an insertion hole 61 for a pipe P to be connected. And having an outer circumferential recessed groove 9 for screwing the female screw 5 of the screwing member 60 and the male screw 2 of the joint body 1 into the inner housing space 10 of the screwing member 60. At the same time, the pipe P is inserted by receiving a compressive force F in the axial direction from the joint body 1 and the screwing member 60 and plastically deforming the bottom wall portion 13 of the outer circumferential groove 9 radially inward. In the pipe joint structure having the compression deformation sleeve 7 which bites in from the outer peripheral surface 15 side and prevents it from being removed; the inner end surface 71 of the compression deformation sleeve 7 is formed in a tapered shape, and the joint body 1 is tapered in the tapered shape. A pressure-receiving surface 65 having an enlarged diameter that is in pressure contact with the inner end surface 71 of Since the pressure receiving surface 65 is configured to exert a sealing action in pressure contact with each other, screwed (rotation) Working threaded member 60 is smoothly be efficiently and it is possible to reliably. Therefore, external leakage of fluid can be prevented. The conventional parts such as the spacer 36 shown in FIG. 12 can be omitted. Further, when the screwing member 60 needs to be removed, there is an advantage that the screwing (rotating) work of the screwing member 60 can be smoothly and lightly performed.

また、本発明は、雌ネジ75を有する継手本体1と、該雌ネジ75に螺合する雄ネジ76を有すると共に被接続パイプP用の挿通孔61を有する螺着部材60と、を備え、上記螺着部材60の内部収納空間10に収納されると共に、外周凹溝9を有し、上記螺着部材60の雄ネジ76と継手本体1の雌ネジ75を螺着させる際に上記継手本体1と上記螺着部材60からアキシャル方向の圧縮力Fを受けて、上記外周凹溝9の底壁部13がラジアル内方向へ塑性変形して、挿入されている上記パイプPの外周面15側から食い込んで抜止めする圧縮変形スリーブ7を有し;上記圧縮変形スリーブ7の内端面71は先細テーパ状に形成され、上記継手本体1には先細テーパ状の該内端面71に圧接する拡径テーパ状の受圧面65を有し、上記内端面71と上記受圧面65が相互に圧接して密封作用を発揮するように構成したので、管継手のアキシャル方向全長寸法を短くコンパクト化できる。しかも、螺着部材60の螺進(回転)作業がスムーズに能率良く、かつ、確実に行うことが可能となる。従って、流体の外部漏洩を防止できる。従来の図12に示したスペーサ36等の部品を省略できる。また、螺着部材60を取外す必要が生じた際には、螺着部材60の螺退(回転)作業がスムーズに軽く行い得る利点もある。   The present invention also includes a joint body 1 having a female screw 75, and a screwing member 60 having a male screw 76 screwed to the female screw 75 and having an insertion hole 61 for the connected pipe P. The joint body is accommodated in the internal storage space 10 of the screw member 60 and has an outer circumferential groove 9. When the male screw 76 of the screw member 60 and the female screw 75 of the joint body 1 are screwed together, the joint body 1 and the axially compressive force F from the screw member 60, the bottom wall portion 13 of the outer circumferential groove 9 is plastically deformed radially inward, and the outer circumferential surface 15 side of the inserted pipe P A compression deformation sleeve 7 that bites into and prevents the compression deformation sleeve 7; an inner end surface 71 of the compression deformation sleeve 7 is formed in a tapered shape, and the joint body 1 has an enlarged diameter that presses against the inner end surface 71 in the tapered shape. It has a tapered pressure receiving surface 65, and the inner end surface 71 and the pressure receiving surface 65 are in pressure contact with each other to achieve a sealing action. And then, it is volatilized, can be shortened compact axial overall length of the pipe joint. In addition, the screwing (rotating) work of the screwing member 60 can be performed smoothly, efficiently and reliably. Therefore, external leakage of fluid can be prevented. The conventional parts such as the spacer 36 shown in FIG. 12 can be omitted. Further, when the screwing member 60 needs to be removed, there is an advantage that the screwing (rotating) work of the screwing member 60 can be smoothly and lightly performed.

また、上記先細テーパ状の上記内端面71のテーパ角度をθ2 とすると、48°≦θ2 ≦60°に設定したので、アキシャル方向の圧縮力Fを受けた際に、受圧面65を備えた小径突出筒部66・壁部78がラジアル外方へ変形することが防止される。これに伴って、螺着部材60を作業工具にて螺進・螺退させる回転トルクは小さくて済み、スムーズに能率良く配管接続作業を行い得る。 Further, assuming that the taper angle of the inner end surface 71 of the tapered shape is θ 2 , the pressure receiving surface 65 is provided when receiving the compressive force F in the axial direction because it is set to 48 ° ≦ θ 2 ≦ 60 °. It is possible to prevent the small-diameter protruding cylindrical portion 66 and the wall portion 78 from deforming radially outward. Accordingly, the rotational torque for screwing and unscrewing the screwing member 60 with the work tool is small, and the pipe connection work can be performed smoothly and efficiently.

また、上記先細テーパ状の上記内端面71は弯曲凸面Yに形成され、上記拡径テーパ状の受圧面65に対して円環線接触状乃至円環細帯接触状に圧接するように構成したので、受圧面65のテーパ角度θ1 が加工公差によって大小変化しても、確実に圧縮変形スリーブ7の先細テーパ状内端面71を密に圧接でき、安定した優れた密封性能を発揮する。特に、円環線接触状乃至円環細帯接触状の圧接面圧分布は、シャープなピークを示す面圧力となるため、一層、上記密封性能が優れて良好なものとなる。 Further, the inner end surface 71 having the tapered shape is formed on the curved convex surface Y, and is configured to be in pressure contact with the pressure-receiving surface 65 having the increased diameter taper shape in an annular line contact shape or an annular narrow band contact shape. Even if the taper angle θ 1 of the pressure receiving surface 65 changes in size due to processing tolerances, the tapered tapered inner end surface 71 of the compression deformation sleeve 7 can be reliably pressed tightly, and stable and excellent sealing performance is exhibited. In particular, the pressure contact surface pressure distribution in the form of ring line contact or ring narrow band contact is a surface pressure exhibiting a sharp peak, and thus the sealing performance is further improved and improved.

また、上記外周凹溝9の断面形状をホームベース型に形成したので、圧縮変形スリーブ7の圧縮変形状態で、その閉円環状食い込み部16が、パイプPの外周面15に対して、深く食い込み、パイプPの耐引抜力が大きく、かつ、回転阻止力も大きく、しかも、密封性(シール性)も安定して良好である。さらに、螺着部材60の回転トルクも小さくなって、作業工具による螺進・螺退(回転)作業も楽になり、作業能率も向上できる。   Further, since the cross-sectional shape of the outer circumferential concave groove 9 is formed into a home base type, the closed annular biting portion 16 bites deeply into the outer circumferential surface 15 of the pipe P in the compression deformation state of the compression deformation sleeve 7. The pull-out force of the pipe P is large, the rotation blocking force is large, and the sealing performance (sealability) is stable and good. Further, the rotational torque of the screwing member 60 is reduced, and the screwing / retracting (rotating) work by the work tool is facilitated, and the work efficiency can be improved.

また、上記圧縮変形スリーブ7は、上記アキシャル方向の圧縮力Fを受けて上記ホームベース型の外周凹溝9は、軸心直交方向の縦1文字型に閉じると共に、スリーブ外周面8は小凸隆部の無い平滑円周面状を保ってスリーブ内周面7Eがラジアル内方向へ塑性変形するように構成されているので、螺着部材60の回転トルクも小さくなって、作業工具による螺進・螺退(回転)作業も楽になり、作業能率も向上できる。
さらに、螺着部材60が回転しても、スリーブ7は回転せず、パイプPに捩りが発生しない。かつ、螺着部材60(袋ナット3)の再利用も可能となる。
Further, the compression deformation sleeve 7 receives the compressive force F in the axial direction, and the home base type outer peripheral concave groove 9 is closed to a single character type in the direction perpendicular to the axial center, and the sleeve outer peripheral surface 8 has a small convexity. Since the sleeve inner circumferential surface 7E is configured to be plastically deformed radially inward while maintaining a smooth circumferential surface without a ridge, the rotational torque of the screwing member 60 is also reduced, and the screw is advanced by the work tool. -The screwing (rotating) work becomes easier and the work efficiency can be improved.
Furthermore, even if the screwing member 60 rotates, the sleeve 7 does not rotate and the pipe P does not twist. In addition, the screw member 60 (cap nut 3) can be reused.

1 継手本体
2 雄ネジ
3 袋ナット
5 雌ネジ
7 圧縮変形スリーブ
7E 内周面
8 外周面
9 外周凹溝(凹周溝)
10 内部収納空間
13 底壁部(薄壁部)
15 外周面
60 螺着部材
61 挿通孔
65 受圧面
67 周囲壁部
71 内端面
72 先端縮径テーパ面
75 雌ネジ
76 雄ネジ
80 袋ナット部
80A 底壁部
F 圧縮力
P パイプ
Y 弯曲凸面
θ1 ,θ2 テーパ角度
DESCRIPTION OF SYMBOLS 1 Joint body 2 Male screw 3 Cap nut 5 Female screw 7 Compression deformation sleeve 7E Inner peripheral surface 8 Outer peripheral surface 9 Outer peripheral concave groove (concave peripheral groove)
10 Internal storage space
13 Bottom wall (thin wall)
15 Outer surface
60 Threaded member
61 Insertion hole
65 Pressure sensing surface
67 Surrounding wall
71 Inner end face
72 Reduced tip tapered surface
75 Female thread
76 Male thread
80 Cap nut part
80A Bottom wall F Compression force P Pipe Y Curved convex surface θ 1 , θ 2 Taper angle

Claims (7)

雄ネジ(2)を有する継手本体(1)と、該雄ネジ(2)に螺合する雌ネジ(5)を有すると共に被接続パイプ(P)用の挿通孔(61)を有する螺着部材(60)と、を備え、上記螺着部材(60)の内部収納空間(10)に収納されると共に、外周凹溝(9)を有し、上記螺着部材(60)の雌ネジ(5)と継手本体(1)の雄ネジ(2)を螺着させる際に上記継手本体(1)と上記螺着部材(60)からアキシャル方向の圧縮力(F)を受けて、上記外周凹溝(9)の底壁部(13)がラジアル内方向へ塑性変形して、挿入されている上記パイプ(P)の外周面(15)側から食い込んで抜止めする圧縮変形スリーブ(7)を有する管継手構造に於て、
上記圧縮変形スリーブ(7)の内端面(71)は先細テーパ状に形成され、上記継手本体(1)には先細テーパ状の該内端面(71)に圧接する拡径テーパ状の受圧面(65)を有し、上記内端面(71)と上記受圧面(65)が相互に圧接して密封作用を発揮するように構成したことを特徴とする管継手構造。
A joint body (1) having a male screw (2), a screw member having a female screw (5) screwed to the male screw (2) and an insertion hole (61) for a connected pipe (P) (60), and is housed in the internal storage space (10) of the screw member (60) and has an outer peripheral groove (9), and has a female screw (5) of the screw member (60). ) And the male thread (2) of the joint body (1), when receiving the axial compressive force (F) from the joint body (1) and the threaded member (60), the outer circumferential groove The bottom wall (13) of (9) has a compression deformation sleeve (7) that is plastically deformed radially inward and that bites in from the outer peripheral surface (15) side of the inserted pipe (P) to prevent it from being removed. In the pipe joint structure,
An inner end surface (71) of the compression deformation sleeve (7) is formed in a tapered shape, and the joint body (1) is provided with a pressure-receiving surface (in the form of an enlarged taper in pressure contact with the tapered inner end surface (71)). 65), and the inner end surface (71) and the pressure-receiving surface (65) are pressed against each other to exhibit a sealing action.
雌ネジ(75)を有する継手本体(1)と、該雌ネジ(75)に螺合する雄ネジ(76)を有すると共に被接続パイプ(P)用の挿通孔(61)を有する螺着部材(60)と、を備え、上記螺着部材(60)の内部収納空間(10)に収納されると共に、外周凹溝(9)を有し、上記螺着部材(60)の雄ネジ(76)と継手本体(1)の雌ネジ(75)を螺着させる際に上記継手本体(1)と上記螺着部材(60)からアキシャル方向の圧縮力(F)を受けて、上記外周凹溝(9)の底壁部(13)がラジアル内方向へ塑性変形して、挿入されている上記パイプ(P)の外周面(15)側から食い込んで抜止めする圧縮変形スリーブ(7)を有し、
上記圧縮変形スリーブ(7)の内端面(71)は先細テーパ状に形成され、上記継手本体(1)には先細テーパ状の該内端面(71)に圧接する拡径テーパ状の受圧面(65)を有し、上記内端面(71)と上記受圧面(65)が相互に圧接して密封作用を発揮するように構成したことを特徴とする管継手構造。
A joint body (1) having a female screw (75), a screw member having a male screw (76) screwed to the female screw (75) and having an insertion hole (61) for a connected pipe (P) (60), and is housed in the internal storage space (10) of the screw member (60) and has an outer peripheral groove (9), and has a male screw (76) of the screw member (60). ) And the female thread (75) of the joint body (1), the outer circumferential concave groove receives a compressive force (F) in the axial direction from the joint body (1) and the threaded member (60). The bottom wall (13) of (9) is plastically deformed radially inward, and has a compression deformation sleeve (7) that bites in from the outer peripheral surface (15) side of the inserted pipe (P) and prevents it from being pulled out. And
An inner end surface (71) of the compression deformation sleeve (7) is formed in a tapered shape, and the joint body (1) is provided with a pressure-receiving surface (in the form of an enlarged taper in pressure contact with the tapered inner end surface (71)). 65), and the inner end surface (71) and the pressure-receiving surface (65) are pressed against each other to exhibit a sealing action.
上記先細テーパ状の上記内端面(71)のテーパ角度を(θ2 )とすると、48°≦θ2 ≦60°に設定した請求項1又は2記載の管継手構造。 3. The pipe joint structure according to claim 1, wherein the taper angle of the tapered inner end surface (71) is set to 48 ° ≦ θ 2 ≦ 60 °, where (θ 2 ). 上記先細テーパ状の上記内端面(71)は弯曲凸面(Y)に形成され、上記拡径テーパ状の受圧面(65)に対して円環線接触状乃至円環細帯接触状に圧接するように構成した請求項3記載の管継手構造。   The taper-shaped inner end surface (71) is formed as a curved convex surface (Y) so as to come into pressure contact with the diameter-enlarged taper pressure-receiving surface (65) in an annular line contact shape or an annular band contact shape. The pipe joint structure according to claim 3 configured as described above. 上記外周凹溝(9)の断面形状をホームベース型に形成した請求項1,2,3又は4記載の管継手構造。   The pipe joint structure according to claim 1, 2, 3 or 4, wherein the outer circumferential groove (9) has a cross-sectional shape formed in a home base type. 上記圧縮変形スリーブ(7)は、上記アキシャル方向の圧縮力(F)を受けて上記ホームベース型の外周凹溝(9)は、軸心直交方向の縦1文字型に閉じると共に、スリーブ外周面(8)は小凸隆部の無い平滑円周面状を保ってスリーブ内周面(7E)がラジアル内方向へ塑性変形するように構成された請求項5記載の管継手構造。   The compressive deformation sleeve (7) receives the compressive force (F) in the axial direction, and the home base type outer peripheral concave groove (9) is closed to a vertical single character type in the direction perpendicular to the axial center, and the outer peripheral surface of the sleeve 6. The pipe joint structure according to claim 5, wherein the sleeve inner peripheral surface (7E) is plastically deformed radially inward while maintaining a smooth circumferential surface shape without a small convex ridge. 上記継手本体(1)の上記雌ネジ(75)は、袋ナット部(80)の周囲壁部(67)の内面に形成され、しかも、上記袋ナット部(80)の底壁部(80A)に、上記拡径テーパ状の受圧面(65)を形成した請求項2記載の管継手構造。   The female thread (75) of the joint body (1) is formed on the inner surface of the peripheral wall portion (67) of the cap nut portion (80), and the bottom wall portion (80A) of the cap nut portion (80). The pipe joint structure according to claim 2, wherein the pressure-receiving surface (65) having an enlarged diameter taper is formed.
JP2015089011A 2015-04-24 2015-04-24 Pipe joint structure Pending JP2016205540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089011A JP2016205540A (en) 2015-04-24 2015-04-24 Pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089011A JP2016205540A (en) 2015-04-24 2015-04-24 Pipe joint structure

Publications (1)

Publication Number Publication Date
JP2016205540A true JP2016205540A (en) 2016-12-08

Family

ID=57487006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089011A Pending JP2016205540A (en) 2015-04-24 2015-04-24 Pipe joint structure

Country Status (1)

Country Link
JP (1) JP2016205540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976017B1 (en) * 2021-07-05 2021-12-01 井上スダレ株式会社 Pipe fitting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976017B1 (en) * 2021-07-05 2021-12-01 井上スダレ株式会社 Pipe fitting structure

Similar Documents

Publication Publication Date Title
TWI616609B (en) Pipe connection
JP4906973B1 (en) Pipe fitting
JP5592573B1 (en) Pipe joint structure for refrigerant
TW201447155A (en) Pipe connecting device
US20110221190A1 (en) Tube joint consisting of resin
KR20160024847A (en) Pipe connecting device
JP5736499B1 (en) Pipe joint structure
JP2007198523A (en) Pipe joint
JP6112842B2 (en) Pipe joint structure
JP5723470B1 (en) Pipe joint structure for refrigerant
WO2018011906A1 (en) Pipe joint
JP2016205540A (en) Pipe joint structure
JP2007032632A (en) Pipe joint
JP2008190580A (en) Flare fastening structure for tube
JP2014109295A (en) Pipe joint structure
JP4263665B2 (en) Pipe fitting
JP5503797B1 (en) Pipe joint structure for refrigerant
JP7126209B2 (en) pipe joint
JP7344766B2 (en) pipe fittings
JP5142878B2 (en) Resin pipe fitting
JP6901178B1 (en) Pipe fitting structure
JP7486786B2 (en) Pipe Fittings
JP7185877B2 (en) pipe joint
JP2011256945A (en) Pipe expansion type pipe joint
JP2008267536A (en) Joint device for corrugated pipe