JP2017222533A - Silica shape control method - Google Patents

Silica shape control method Download PDF

Info

Publication number
JP2017222533A
JP2017222533A JP2016117877A JP2016117877A JP2017222533A JP 2017222533 A JP2017222533 A JP 2017222533A JP 2016117877 A JP2016117877 A JP 2016117877A JP 2016117877 A JP2016117877 A JP 2016117877A JP 2017222533 A JP2017222533 A JP 2017222533A
Authority
JP
Japan
Prior art keywords
silica
particle size
primary
less
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016117877A
Other languages
Japanese (ja)
Other versions
JP6870219B2 (en
Inventor
佳彦 小森
Yoshihiko Komori
佳彦 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016117877A priority Critical patent/JP6870219B2/en
Publication of JP2017222533A publication Critical patent/JP2017222533A/en
Application granted granted Critical
Publication of JP6870219B2 publication Critical patent/JP6870219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particulate silica shape control method that can control the cluster size and particle size width.SOLUTION: A silica shape control method includes aggregating silica with an average primary particle size of 100 nm or less and forming a primary aggregate with an average particle size D50 of 1 μm or less.SELECTED DRAWING: None

Description

本発明は、シリカの形態制御方法に関する。   The present invention relates to a silica morphology control method.

微粒子シリカの用途は紙、繊維、鉄鋼、耐火物、タイヤ、電池、触媒バインダー、コーティング剤、電子基板材料、研磨剤など多岐にわたる。シリカの主成分はSiO2で、数十nmサイズの微粒子で構成される。製造方法として、アルコキシランをアルコール水溶液中で加水分解、重縮合させ、微粒子シリカを合成する手法などが知られている。また、水ガラスを酸で中和させることで微粒子シリカを生成させる手法が湿式シリカとして知られている。 The use of fine-particle silica is diverse, such as paper, fiber, steel, refractory, tire, battery, catalyst binder, coating agent, electronic substrate material, and abrasive. The main component of silica is SiO 2 and is composed of fine particles having a size of several tens of nanometers. As a production method, a method of synthesizing fine particle silica by hydrolyzing and polycondensing alkoxylane in an aqueous alcohol solution is known. Moreover, the method of producing | generating a fine particle silica by neutralizing water glass with an acid is known as wet silica.

一般に一次粒子径が15〜30nm程度のシリカ(微粒子シリカ)が補強剤として用いられる。一次粒子径が小さい方が補強性は良好となる傾向があるが、一方、分散性が悪化し、加工性が悪化する傾向がある。   Generally, silica having a primary particle diameter of about 15 to 30 nm (fine particle silica) is used as a reinforcing agent. The smaller the primary particle size, the better the reinforcing property, whereas the dispersibility tends to deteriorate and the workability tends to deteriorate.

すなわち、補強性に優れた微粒子シリカを用いる場合、凝集特性などによる形態を制御して複合材料中での分散性を確保できなければ、加工性および物性の悪化を招いてしまい、そもそも微粒子を用いる意義がなくなってしまう。しかし、微粒子の凝集構造を制御する手法はよく知られていない。   That is, in the case of using fine particle silica having excellent reinforcing properties, if the dispersibility in the composite material cannot be ensured by controlling the form due to the aggregation characteristics, the workability and physical properties are deteriorated, and the fine particles are originally used. The meaning is lost. However, a method for controlling the aggregation structure of fine particles is not well known.

特許文献1には、ケイ酸ナトリウム水溶液を用いたシリカの製造方法が記載されているが、微粒子シリカの形態を制御することは考慮されていない。   Patent Document 1 describes a method for producing silica using an aqueous sodium silicate solution, but does not consider controlling the form of fine-particle silica.

特開2012−106912号公報JP 2012-106912 A

本発明は、クラスターサイズおよび粒度幅を制御することができる微粒子シリカの形態制御方法を提供することを目的とする。   An object of the present invention is to provide a method for controlling the form of fine-particle silica capable of controlling the cluster size and the particle size width.

本発明者は、シリカの製造工程について検討し、微粒子シリカを形成させた後、意図的に小さなシリカの一次凝集体(クラスター)を形成させることで、シリカの形態を制御することができ、この一次凝集体を用いてシリカを製造することにより複合材料中での分散性に優れ、加工性および物性の悪化を招かないシリカが得られることを見出し本発明を完成させるに至った。   The present inventor examined the silica production process, and after forming fine-particle silica, the silica form can be controlled by intentionally forming a primary aggregate (cluster) of small silica. By producing silica using primary aggregates, it was found that silica having excellent dispersibility in a composite material and causing no deterioration in workability and physical properties was obtained, and the present invention was completed.

すなわち、本発明は、平均一次粒子径が100nm以下のシリカを凝集させて平均粒度D50が1μm以下の一次凝集体を形成させることによるシリカの形態制御方法に関する。   That is, the present invention relates to a silica form control method by aggregating silica having an average primary particle diameter of 100 nm or less to form primary aggregates having an average particle size D50 of 1 μm or less.

塩を添加して熟成させることが好ましい。   It is preferable to age by adding a salt.

シリカの原料としてアルコキシシランを用いることが好ましい。   It is preferable to use alkoxysilane as a silica raw material.

本発明の平均一次粒子径が100nm以下のシリカを凝集させて平均粒度D50が1μm以下の一次凝集体を形成させることによるシリカの形態制御方法によれば、クラスターサイズおよび粒度幅を制御することができる。   According to the silica morphology control method of the present invention by agglomerating silica having an average primary particle size of 100 nm or less to form primary aggregates having an average particle size D50 of 1 μm or less, the cluster size and the particle size width can be controlled. it can.

本発明は、平均一次粒子径が100nm以下のシリカを凝集させて平均粒度D50が1μm以下の一次凝集体を形成させることによるシリカの形態制御方法である。   The present invention is a silica form control method by agglomerating silica having an average primary particle size of 100 nm or less to form primary aggregates having an average particle size D50 of 1 μm or less.

微粒子シリカ
一次凝集体を形成させる微粒子シリカは、平均一次粒子径が100nm以下であれば特に限定されず、ケイ酸ナトリウムを原料として調製されたシリカ(湿式シリカ)や、アルコキシシランなどのシラン化合物を原料として調製されたシリカなどが挙げられる。特に、シリカの原料としてアルコキシシランを用いる場合、溶媒の除去により巨大な凝集塊が生成してしまう傾向があるが、本発明により巨大な凝集塊の生成を防ぐことができるという理由から、シリカの原料としてアルコキシシランを用いることが好ましい。
Fine particle silica The fine particle silica for forming the primary aggregate is not particularly limited as long as the average primary particle diameter is 100 nm or less. Examples thereof include silica prepared as a raw material. In particular, when alkoxysilane is used as a raw material for silica, removal of the solvent tends to generate huge agglomerates, but because the present invention can prevent the formation of huge agglomerates, It is preferable to use alkoxysilane as a raw material.

ケイ酸ナトリウムを原料としてシリカを調製する方法としては、特に限定されず、従来のケイ酸ナトリウム水溶液のpHを硫酸などにより調整するなどして調製する方法が挙げられる。また、アルコキシシランなどのシラン化合物を原料としてシリカを調製する方法としては、特に限定されず、従来の水中で球状粒子を成長させ、pH調整などによりコロイド状に微粒子シリカの分散状態を安定化させる方法などが挙げられる。   The method of preparing silica using sodium silicate as a raw material is not particularly limited, and examples thereof include a method of adjusting the pH of a conventional aqueous sodium silicate solution with sulfuric acid or the like. In addition, the method for preparing silica using a silane compound such as alkoxysilane as a raw material is not particularly limited, and spherical particles are grown in conventional water, and the dispersion state of the fine particle silica is colloidally stabilized by pH adjustment or the like. The method etc. are mentioned.

前記シリカの平均一次粒子径は、100nmを超える場合は、凝集力が弱く、一次凝集体を形成させても、その後の処理で分解しやすく、複合材料の物性に大きな影響を与えない傾向があることから、100nm以下である。また、前記シリカの平均一次粒子径は、分散性に優れたシリカが得られるという理由から、5nm以上が好ましく、10nm以上がより好ましい。なお、シリカの平均一次粒子径は光散乱光度計により測定される値である。   When the average primary particle diameter of the silica exceeds 100 nm, the cohesive force is weak, and even if a primary aggregate is formed, it tends to be decomposed by the subsequent treatment and does not have a great influence on the physical properties of the composite material. Therefore, it is 100 nm or less. Moreover, the average primary particle diameter of the silica is preferably 5 nm or more, and more preferably 10 nm or more, because silica having excellent dispersibility can be obtained. The average primary particle diameter of silica is a value measured with a light scattering photometer.

一次凝集体
本発明における一次凝集体とは、微粒子シリカの粒子が数十〜数百個凝集することで形成された凝集体であり、シリカクラスターとも称される。この一次凝集体を形成させる方法としては、塩化ナトリウムなどの塩を、微粒子シリカ分散水溶液に所定量添加し、所定のpHおよび温度環境下で熟成させる方法が好ましい。
Primary agglomerate The primary agglomerate in the present invention is an agglomerate formed by agglomerating tens to hundreds of fine particle silica particles, and is also referred to as a silica cluster. As a method for forming this primary aggregate, a method in which a predetermined amount of a salt such as sodium chloride is added to a fine particle silica-dispersed aqueous solution and aged at a predetermined pH and temperature environment is preferable.

前記微粒子シリカを凝集させて得られた一次凝集体の平均粒度D50は、1μm以下であり、0.5μm以下が好ましく、0.3μm以下がより好ましい。一次凝集体の平均粒度D50が1μmを超える場合は、分散性が悪化する傾向がある。また、一次凝集体の平均粒度D50の下限は特に限定されないが、0.05μm以上が好ましい。なお、一次凝集体の平均粒度D50は、レーザー回折式粒度分布計により測定された粒度分布の中央値に対応する粒子径(メジアン径)である。   The average particle size D50 of the primary aggregate obtained by agglomerating the fine particle silica is 1 μm or less, preferably 0.5 μm or less, and more preferably 0.3 μm or less. When the average particle size D50 of the primary aggregates exceeds 1 μm, the dispersibility tends to deteriorate. Moreover, the minimum of the average particle diameter D50 of a primary aggregate is although it does not specifically limit, 0.05 micrometer or more is preferable. The average particle size D50 of the primary aggregate is a particle size (median diameter) corresponding to the median value of the particle size distribution measured by a laser diffraction particle size distribution meter.

前記塩は水溶性でカチオン、アニオンに分離すれば、無機物、有機物に限定されず使用できる。なかでも、安全性、ハンドリングの容易性からは塩化ナトリウムが好ましい。   If the said salt is water-soluble and isolate | separates into a cation and an anion, it will not be limited to an inorganic substance and an organic substance, but can be used. Of these, sodium chloride is preferable from the viewpoint of safety and ease of handling.

塩濃度は、0.1〜10質量%が好ましく、0.5〜5質量%がより好ましく、1〜3質量%がさらに好ましい。塩濃度が0.1質量%未満の場合は、凝集作用が弱く、熟成時間が長くなる傾向がある。塩濃度が10質量%を超える場合は、凝集速度が速くなり、凝集構造の制御が難しくなる傾向がある。   The salt concentration is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, and still more preferably 1 to 3% by mass. When the salt concentration is less than 0.1% by mass, the coagulation action is weak and the aging time tends to be long. When the salt concentration exceeds 10% by mass, the aggregation rate tends to be high, and the control of the aggregate structure tends to be difficult.

熟成時のpHは、適度な弱い凝集を促進するという理由から、pH3〜9が好ましく、pH5〜8がより好ましい。pHが3未満の場合は、酸が強くなり、粒子同士の反応が起こりやすくなり、シリカの再分散が難しくなる傾向がある。またpHが9を超える場合は、アルカリが強くなり、粒子同士の反応が起こりやすくなり、シリカの再分散が難しくなる。   The pH at the time of aging is preferably pH 3 to 9, more preferably pH 5 to 8 because it promotes moderately weak aggregation. When the pH is less than 3, the acid becomes strong, the reaction between particles tends to occur, and the redispersion of silica tends to be difficult. On the other hand, when the pH exceeds 9, alkali becomes strong, reaction between particles is likely to occur, and redispersion of silica becomes difficult.

熟成温度は0〜80℃以下が好ましく、50〜80℃がより好ましい。80℃を超える場合は、溶媒(水)が蒸発し、濃度の制御が困難になるおそれがある。0℃未満の場合は、反応が進行しなくなる傾向がある。   The aging temperature is preferably 0 to 80 ° C. or less, and more preferably 50 to 80 ° C. When it exceeds 80 ° C., the solvent (water) evaporates, and it may be difficult to control the concentration. When it is less than 0 ° C., the reaction tends not to proceed.

熟成時間は塩濃度、熟成時pH、熟成温度に依存するが、0.5時間以上が好ましい。0.5時間未満の場合は、反応速度が速く、制御が困難となる傾向がある。   The aging time depends on the salt concentration, aging pH, and aging temperature, but 0.5 hour or more is preferable. If it is less than 0.5 hour, the reaction rate tends to be high and control tends to be difficult.

前記の塩濃度、熟成時pH、熟成温度、熟成時間を適宜調整することで、様々なクラスターサイズ、粒度分布の一次凝集体を製造することができる。クラスターサイズや粒度分布は、製造されるシリカの分散性、当該シリカを用いた複合材料の物性に大きな影響を与える。すなわち、用いるシリカおよび複合材料に応じて塩濃度、熟成時pH、熟成温度、熟成時間を適宜調整することで、目的に適したシリカの一次凝集体を製造することができる。   By appropriately adjusting the salt concentration, ripening pH, ripening temperature, and ripening time, primary aggregates of various cluster sizes and particle size distributions can be produced. The cluster size and particle size distribution have a great influence on the dispersibility of the produced silica and the physical properties of the composite material using the silica. That is, by appropriately adjusting the salt concentration, the aging pH, the aging temperature, and the aging time depending on the silica and the composite material to be used, a primary aggregate of silica suitable for the purpose can be produced.

乾燥
前記一次凝集体が分散したシリカ分散液を、オーブンなどで乾燥させることで粉末状シリカを製造することができる。乾燥条件としては特に限定されず、従来の方法に従って乾燥させればよい。例えば、乾燥温度は80〜120℃、乾燥時間は3〜24時間で行えばよい。
Drying Powdered silica can be produced by drying the silica dispersion in which the primary aggregates are dispersed in an oven or the like. It does not specifically limit as drying conditions, What is necessary is just to dry according to the conventional method. For example, the drying temperature may be 80 to 120 ° C. and the drying time may be 3 to 24 hours.

シリカ
本発明の微粒子シリカの形態制御方法を経て製造されたシリカは分散性に優れることから、補強剤としてゴム組成物などに好適に使用できる。なお、当該ゴム組成物は、カーボンブラック、シランカップリング剤、亜鉛華、ステアリン酸、老化防止剤、硫黄、加硫促進剤などの、タイヤ工業において一般的に用いられている配合剤を含有していてもよく、これらの配合剤の含有量も適宜設定できる。
Silica Silica produced through the method for controlling the form of fine-particle silica of the present invention is excellent in dispersibility, and therefore can be suitably used as a reinforcing agent in rubber compositions and the like. The rubber composition contains compounding agents generally used in the tire industry, such as carbon black, silane coupling agent, zinc white, stearic acid, anti-aging agent, sulfur, and vulcanization accelerator. The content of these compounding agents can also be set as appropriate.

前記ゴム組成物は、前記各成分をオープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。得られるゴム組成物は、低燃費性、耐摩耗性、破断強度、破断時伸びなど、タイヤの要求性能を備えており、タイヤの各部材(トレッド、サイドウォールなど)に好適に使用できる。   The rubber composition can be produced by a method in which the components are kneaded using a rubber kneader such as an open roll, a Banbury mixer, a closed kneader, and then vulcanized. The resulting rubber composition has the required performance of the tire such as low fuel consumption, wear resistance, breaking strength, elongation at break, and can be suitably used for each member (tread, sidewall, etc.) of the tire.

前記ゴム組成物を用いた空気入りタイヤは通常の方法によって製造できる。すなわち、ゴム組成物を未加硫の段階でトレッド、サイドウォールなどの各タイヤ部材の形状に合わせて押し出し加工し、タイヤ成形機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧して空気入りタイヤを製造できる。   A pneumatic tire using the rubber composition can be produced by an ordinary method. That is, the rubber composition is extruded in accordance with the shape of each tire member such as tread and sidewall at an unvulcanized stage, molded by a normal method on a tire molding machine, and pasted together with other tire members. Together, an unvulcanized tire is formed. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce a pneumatic tire.

実施例に基づいて本発明を具体的に説明するが、本発明は、これらのみに限定して解釈されるものではない。   The present invention will be specifically described based on examples, but the present invention is not construed as being limited to these examples.

実施例および比較例で使用した各種薬品について説明する。
テトラエトキシシラン:Sigma−Aldrich社製
L−リシン:東京化成(株)製
塩化ナトリウム:和光純薬工業(株)製
ジエチレングリコール:和光純薬工業(株)製特級
濃硫酸:和光純薬工業(株)製
Various chemicals used in Examples and Comparative Examples will be described.
Tetraethoxysilane: Sigma-Aldrich L-lysine: Tokyo Kasei Co., Ltd. sodium chloride: Wako Pure Chemical Industries, Ltd. Diethylene glycol: Wako Pure Chemical Industries, Ltd. Special grade concentrated sulfuric acid: Wako Pure Chemical Industries, Ltd. ) Made

微粒子シリカの調製
ビーカーにテトラエトキシシラン142.4gおよび純水357.6gを加え、リシン0.1gを添加してpH10に調整した。得られた水溶液を60℃で72時間撹拌し、液相が均一になったことを確認した後、硫酸を添加してpH7.5に調整し、80℃で24時間熟成させた。その後、さらに10%の硫酸を添加し、pHを3に下げて反応を止めた。結果、平均一次粒子径が18nmの微粒子シリカ分散液を得た。平均一次粒子径は光散乱光度計(大塚電子(株)製 ELSZ−2)により確認した。
Preparation of particulate silica 142.4 g of tetraethoxysilane and 357.6 g of pure water were added to a beaker, and 0.1 g of lysine was added to adjust the pH to 10. The obtained aqueous solution was stirred at 60 ° C. for 72 hours, and after confirming that the liquid phase became uniform, sulfuric acid was added to adjust to pH 7.5, and the mixture was aged at 80 ° C. for 24 hours. Thereafter, 10% sulfuric acid was further added, and the reaction was stopped by lowering the pH to 3. As a result, a fine particle silica dispersion having an average primary particle size of 18 nm was obtained. The average primary particle diameter was confirmed with a light scattering photometer (ELSZ-2 manufactured by Otsuka Electronics Co., Ltd.).

一次凝集体の形成(実施例1)
微粒子シリカ分散液について、全体の濃度が1質量%になるように塩化ナトリウムを添加し、10分間撹拌した後、80℃で24時間熟成させてシリカの一次凝集体を形成させた。得られた一次凝集体の粒度分布をレーザー回折式粒度分布計((株)堀場製作所製 LA−950V2)にて測定し、平均粒度D50、D90およびD10を算出した。表1に平均粒度D50および粒度幅として(式)D90−D10により算出された値を示す。
Formation of primary aggregates (Example 1)
Sodium chloride was added to the fine particle silica dispersion so that the total concentration became 1% by mass, stirred for 10 minutes, and then aged at 80 ° C. for 24 hours to form a primary aggregate of silica. The particle size distribution of the obtained primary aggregate was measured with a laser diffraction particle size distribution meter (LA-950V2 manufactured by Horiba, Ltd.), and average particle sizes D50, D90 and D10 were calculated. Table 1 shows the average particle size D50 and the value calculated by (formula) D90-D10 as the particle size width.

一次凝集体の形成(実施例2〜11)
塩化ナトリウム濃度、熟成条件を表1に示す条件に変更したこと以外は実施例1と同様にシリカの一次凝集体を形成させ、平均粒度D50、D90およびD10を算出した。表1に平均粒度D50および粒度幅として(式)D90−D10により算出された値を示す。
Formation of primary aggregates (Examples 2 to 11)
A primary aggregate of silica was formed in the same manner as in Example 1 except that the sodium chloride concentration and aging conditions were changed to the conditions shown in Table 1, and average particle sizes D50, D90 and D10 were calculated. Table 1 shows the average particle size D50 and the value calculated by (formula) D90-D10 as the particle size width.

Figure 2017222533
Figure 2017222533

表1の結果より、本発明のシリカの形態制御方法によれば、クラスターサイズおよび粒度幅を制御することができることがわかる。   From the results shown in Table 1, it is understood that the cluster size and the particle size width can be controlled according to the silica form control method of the present invention.

Claims (3)

平均一次粒子径が100nm以下のシリカを凝集させて平均粒度D50が1μm以下の一次凝集体を形成させることによるシリカの形態制御方法。 A method for controlling the morphology of silica by agglomerating silica having an average primary particle size of 100 nm or less to form primary aggregates having an average particle size D50 of 1 μm or less. 塩を添加して熟成させる請求項1記載の方法。 The method according to claim 1, wherein the mixture is aged by adding a salt. シリカの原料としてアルコキシシランを用いる請求項1または2記載の方法。 The method according to claim 1 or 2, wherein alkoxysilane is used as a raw material of silica.
JP2016117877A 2016-06-14 2016-06-14 Silica morphology control method Active JP6870219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117877A JP6870219B2 (en) 2016-06-14 2016-06-14 Silica morphology control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117877A JP6870219B2 (en) 2016-06-14 2016-06-14 Silica morphology control method

Publications (2)

Publication Number Publication Date
JP2017222533A true JP2017222533A (en) 2017-12-21
JP6870219B2 JP6870219B2 (en) 2021-05-12

Family

ID=60687565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117877A Active JP6870219B2 (en) 2016-06-14 2016-06-14 Silica morphology control method

Country Status (1)

Country Link
JP (1) JP6870219B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160232A (en) * 1997-08-11 1999-03-02 Mamoru Iso Production of cocoon-shaped colloidal silica
WO2000015552A1 (en) * 1998-09-10 2000-03-23 Nissan Chemical Industries, Ltd. Moniliform silica sol, process for producing the same, and ink-jet recording medium
JP2001180926A (en) * 1999-12-27 2001-07-03 Asahi Glass Co Ltd Silica alumina compound sol, its producing methods, and recording medium
WO2015200660A1 (en) * 2014-06-25 2015-12-30 Cabot Microelectronics Corporation Colloidal silica chemical-mechanical polishing composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160232A (en) * 1997-08-11 1999-03-02 Mamoru Iso Production of cocoon-shaped colloidal silica
WO2000015552A1 (en) * 1998-09-10 2000-03-23 Nissan Chemical Industries, Ltd. Moniliform silica sol, process for producing the same, and ink-jet recording medium
JP2001180926A (en) * 1999-12-27 2001-07-03 Asahi Glass Co Ltd Silica alumina compound sol, its producing methods, and recording medium
WO2015200660A1 (en) * 2014-06-25 2015-12-30 Cabot Microelectronics Corporation Colloidal silica chemical-mechanical polishing composition

Also Published As

Publication number Publication date
JP6870219B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6091549B2 (en) Composite and production method thereof
JP2004523645A (en) Anionic stabilized aqueous dispersion of nanoparticulate zinc oxide, process for preparing the aqueous dispersion and use of the aqueous dispersion
JP6866002B2 (en) A method for producing aluminosilicate nanoparticles having excellent dispersibility, a rubber reinforcing material containing the aluminosilicate nanoparticles, and a rubber composition for a tire containing the aluminosilicate nanoparticles.
JP2013067557A (en) Treated alumina hydrate particulate material and use thereof
JP5670768B2 (en) Composite, production method thereof, rubber composition and pneumatic tire
JP2012107099A (en) Composite, method for producing the same, rubber composition and pneumatic tire
JP2006225600A (en) Pneumatic tire using rubber composition
JP5860661B2 (en) Method for producing silica and rubber composition for tire
JP2007291205A (en) Wet natural rubber masterbatch and rubber composition using the same
JP6862016B2 (en) A rubber reinforcing material containing aluminosilicate particles and a rubber composition for a tire containing the same.
JP6647052B2 (en) Rubber composition and tire
JP6869592B2 (en) Inorganic composite for rubber reinforcement, manufacturing method thereof, and rubber composition for tires containing the same.
JP6870219B2 (en) Silica morphology control method
EP3394161A1 (en) Precipitated silica
JP5519306B2 (en) Method for producing rubber / silica composite and rubber / silica composite
JP5829473B2 (en) Method for producing silica and rubber composition
KR102150645B1 (en) Method for preparing aluminosilicate nanoparticles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate nanoparticles, and rubber composition for tires comprising the reinforcing materials
KR102150646B1 (en) Method for preparing aluminosilicate nanoparticles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate nanoparticles, and rubber composition for tires comprising the reinforcing materials
JP6068910B2 (en) Silica / styrene butadiene rubber composite, method for producing the same, rubber composition and pneumatic tire
JP5480585B2 (en) Composite, rubber composition and pneumatic tire
JP6950151B2 (en) Silica manufacturing method and silica
US11242260B2 (en) Process for preparing precipitated silica
JP2010229329A (en) Method for producing wet master batch, and vulcanized rubber obtained by using the wet master batch
KR20160026399A (en) rubber composition of tire tread for high speed racing car
KR102696402B1 (en) A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250