JP2017221972A - Lap bonded joint and manufacturing method therefor - Google Patents

Lap bonded joint and manufacturing method therefor Download PDF

Info

Publication number
JP2017221972A
JP2017221972A JP2017038211A JP2017038211A JP2017221972A JP 2017221972 A JP2017221972 A JP 2017221972A JP 2017038211 A JP2017038211 A JP 2017038211A JP 2017038211 A JP2017038211 A JP 2017038211A JP 2017221972 A JP2017221972 A JP 2017221972A
Authority
JP
Japan
Prior art keywords
joint
solidified
point
light beam
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017038211A
Other languages
Japanese (ja)
Other versions
JP6866691B2 (en
Inventor
仁寿 ▲徳▼永
仁寿 ▲徳▼永
Masatoshi Tokunaga
富士本 博紀
Hironori Fujimoto
博紀 富士本
晃樹 阪本
Koki Sakamoto
晃樹 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2017221972A publication Critical patent/JP2017221972A/en
Application granted granted Critical
Publication of JP6866691B2 publication Critical patent/JP6866691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonded joint which has an excellent joint strength and an improved reliability.SOLUTION: In this bonded joint, a point-like junction has a melt solidified part 30 bridging over plural metal plates 20a, 20b, the melt solidified part has a re-melt solidified part 30a and a solidification re-heating part 30b, the re-melt solidified part has a point-like form which includes a circle equivalent central axis of the melt solidified part and bridges over the plural metal plates in a plan view of the melt solidified part, and the re-melt solidified part has a cylindrical shape and is positioned inside a melting boundary between the melt solidified part and a steel plate so as not to be overlapped on the melting boundary. The solidification re-heating part is positioned around the re-melt solidified part, and includes the melting boundary. Further, in the solidification re-heating part, a segregation of P is alleviated in a rectangular planar area of 100 μm×100 μm with a point on an extension line of a steel plate mating surface, which is separated from an intersection point between the mating surface and the melting boundary by 100 μm, as a center point.SELECTED DRAWING: Figure 3

Description

本発明は、重ね接合継手とその製造方法に関し、特に、自動車車体に用いられる高強度鋼板の重ね接合継手とその製造方法に関するものである。   The present invention relates to a lap joint and a method for manufacturing the same, and more particularly to a lap joint for a high-strength steel sheet used for an automobile body and a method for manufacturing the same.

近年、自動車分野では、低燃費化やCO2排出量の削減のため、車体を軽量化することや、衝突安全性の向上のため、車体部材を高強度化することが求められている。これらの要求を満たすためには、車体部材や各種部品などに高強度鋼板を使用することが有効である。 In recent years, in the automobile field, it is required to reduce the weight of a vehicle body in order to reduce fuel consumption and reduce CO 2 emissions, and to increase the strength of vehicle body members in order to improve collision safety. In order to satisfy these requirements, it is effective to use high-strength steel sheets for vehicle body members and various parts.

このような高強度鋼板よりなる車体の組立や部品の取付けなどの工程では、主として、抵抗発熱を利用したスポット溶接が広く普及しているが、近年、スポット溶接に替えて、一部で高パワー密度を有する光線(以下、光線とする。)による接合を用い、スポット状(点状)に接合を行う技術が自動車の製造に適用されつつある。   Spot welding using resistance heating is widely used in the process of assembling the body and attaching parts made of high-strength steel sheets. However, in recent years, instead of spot welding, high power is used in some areas. A technique of joining in the form of spots (dots) using joining with light beams having a density (hereinafter referred to as light beams) is being applied to the manufacture of automobiles.

光線による点状の接合は、スポット溶接より高速の施工が可能で、スポット溶接のように分流の影響を受けないため、接合点のピッチを短くできるというメリットがあり、多点接合による車体剛性の向上も可能である。   Spot joints using light beams can be applied at higher speeds than spot welding, and are not affected by shunting unlike spot welding. Therefore, there is an advantage that the pitch of the joints can be shortened. Improvements are also possible.

一方、光線による点状の接合継手の強度は、従来の抵抗スポット溶接と同程度、もしくは低下する傾向があり、炭素量の高い980MPa以上の高強度鋼板の場合は、継手強度のうち、十字引張強度が低下する問題があった。
このため、高強度鋼板に光線による接合を行った場合に、CTS等の継手強度を向上させる技術が望まれていた。
On the other hand, the strength of a spot-like joint joint by light tends to be the same as or lower than that of conventional resistance spot welding. In the case of a high-strength steel plate having a high carbon content of 980 MPa or more, the cross tension of the joint strength. There was a problem that the strength decreased.
For this reason, when joining to a high strength steel plate with a light beam, the technique which improves joint strength, such as CTS, was desired.

このような状況のもと、光線による接合において、継手強度を向上させる技術として、接合部の近傍に、他の接合部を形成する技術(特許文献1参照)、閉ループ状の本ビードの内側に、本ビードを焼き戻すことを目的とした他のビードを形成する技術(特許文献2、3参照)が知られている。   Under such circumstances, as a technique for improving the joint strength in the joining by light rays, a technique for forming another joining part in the vicinity of the joining part (see Patent Document 1), inside the closed-loop bead. A technique for forming another bead for the purpose of tempering the present bead (see Patent Documents 2 and 3) is known.

このようなループ状に光線による接合部を形成する技術では、接合部の接合面積が小さくなり、引張せん断強さ(TSS)が低くなることが懸念される。これに対して、ループ状の接合部より接合面積が広い、鋼板表面側から平面視したとき、外側輪郭が略円形状で、その中心まで溶融凝固している光線による接合部を鋼板に形成して、継手強度を向上させる技術が報告されている(特許文献4参照)。   In such a technique of forming a joint portion by light rays in a loop shape, there is a concern that the joint area of the joint portion becomes small and the tensile shear strength (TSS) becomes low. On the other hand, when the planar surface is viewed from the steel sheet surface side, which has a larger bonding area than the loop-shaped joint, the outer contour is substantially circular, and a joint is formed on the steel sheet by the light beam that has melted and solidified to the center. Thus, a technique for improving the joint strength has been reported (see Patent Document 4).

特開2010−012504号公報JP 2010-012504 A 特開2012−240086号公報JP2012-240086A 国際公開第2012/050097号International Publication No. 2012/050097 特開昭60−68185号公報JP 60-68185 A

特許文献4に開示の技術は、光線による接合部を点状としているので、引張せん断強さ(TSS)の向上に有効であるが、十字引張強さ(CTS)を更に向上させることが望まれていた。
そこで、本発明は、このような実情に鑑み、継手強度に優れ信頼性の向上した重ね接合継手を提供することを課題とする。
The technique disclosed in Patent Document 4 is effective in improving the tensile shear strength (TSS) because the joint portion by light rays is dotted, but it is desired to further improve the cross tensile strength (CTS). It was.
Then, this invention makes it a subject to provide the lap joint joint which was excellent in joint strength and improved the reliability in view of such a situation.

本発明者らは、鋼板に光線による接合を実施し、光線により形成される点状の接合部を形成した接合継手のCTSを更に向上させるための手段について鋭意検討した。
重ね接合継手は、剥離方向に接合部に荷重が負荷されると、鋼板と溶融凝固部との溶融境界の近傍に応力が集中し破断に至り易いため、十分なCTS値を確保できないと考えられる。
そこで、溶融境界近傍を熱処理することにより、その部分の靭性を向上させることを着想し、そのための熱処理箇所及び熱処理方法について種々調査した。
The inventors of the present invention conducted diligent studies on means for further improving the CTS of a joint joint in which a steel sheet was joined with light rays to form a dotted joint formed by light rays.
When a load is applied to the joint in the peeling direction in the lap joint, stress is likely to concentrate near the melting boundary between the steel sheet and the melt-solidified part, leading to breakage. Therefore, it is considered that a sufficient CTS value cannot be secured. .
Accordingly, the inventors have conceived that the toughness of the portion is improved by heat-treating the vicinity of the melting boundary, and various investigations have been made on the heat-treatment location and heat-treatment method therefor.

その結果、点状の接合部の溶融凝固部の内側に光線を環状に照射して、照射部を再溶融凝固させるとともに、その際の熱によって鋼板と溶融凝固部との溶融境界付近におけるPのような脆化元素の偏析を緩和するように再加熱することで、CTSが向上することを見出した。
本発明は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
As a result, the inside of the melt-solidified portion of the spot-like joint is irradiated in a ring shape to re-melt and solidify the irradiated portion, and P in the vicinity of the melting boundary between the steel plate and the melt-solidified portion is caused by heat at that time It was found that CTS is improved by reheating so as to alleviate such segregation of embrittlement elements.
The present invention has been made based on the above findings, and the gist thereof is as follows.

(1) 重ね合わされた複数の鋼板で構成され、光線により形成される点状の接合部を有する重ね接合継手において、
前記光線により形成される点状の接合部は、前記重ね合わされた全ての鋼板に跨る点状の溶融凝固部を有し、
該溶融凝固部は、再溶融凝固部と、凝固再加熱部とを有し、
前記再溶融凝固部は、シリンダー状の形状を有し、前記溶融凝固部と鋼板との溶融境界の内側に該溶融境界とは重ならないように位置しており、
前記凝固再加熱部は、前記再溶融凝固部の周囲に位置し、前記溶融境界を含んでおり、
更に、前記凝固再加熱部において、前記鋼板合わせ面と前記溶融境界の交点から合わせ面の延長線上に100μm隔てた点を中心点とし、
前記中心点から前記中心軸へ向かう方向に平行で、前記鋼板面に垂直な、前記中心点を中心とした、100μm×100μmの矩形平面領域にて、P濃度を質量%で、当該鋼板面に平行な方向及び当該鋼板面に垂直な方向それぞれに沿って1μmピッチで測定し、これにより100点×100点の測定点それぞれにおける当該P濃度の測定値を求め、
前記100点×100点の測定点のうち、前記鋼板面に平行な方向に一列に並んだ隣り合う20点の各前記測定点における前記P濃度の測定値の部分平均値を、当該鋼板面に平行な方向及び当該鋼板面に垂直な方向それぞれに沿って1点ずつずらしながら算出することを繰り返し、これにより81個×100個の部分平均値を求めた場合に、
前記部分平均値のうち、前記100点×100点の測定点それぞれにおける前記P濃度の測定値の全平均値の2倍を超える前記部分平均値の個数が0個以上100個以下であることを特徴とする重ね接合継手。
(1) In a lap joint having a dotted joint formed of a plurality of superposed steel plates and formed by light rays,
The point-like joint formed by the light beam has a point-like melted and solidified portion straddling all the steel plates stacked,
The melt solidification part has a remelt solidification part and a solidification reheating part,
The remelted solidified part has a cylindrical shape and is positioned so as not to overlap the melted boundary inside the melted boundary between the melted solidified part and the steel plate,
The solidification reheating part is located around the remelting solidification part and includes the melting boundary,
Furthermore, in the solidification reheating part, a point separated by 100 μm on the extension line of the mating surface from the intersection of the steel sheet mating surface and the melting boundary is a center point,
In a rectangular plane region of 100 μm × 100 μm centered on the central point, parallel to the direction from the central point toward the central axis and perpendicular to the steel plate surface, the P concentration in mass% and on the steel plate surface Measured at a pitch of 1 μm along each of the parallel direction and the direction perpendicular to the steel sheet surface, thereby obtaining the measurement value of the P concentration at each of 100 × 100 measurement points,
Among the 100 measurement points × 100 measurement points, a partial average value of the measurement values of the P concentration at each of the 20 measurement points adjacent in a line in a direction parallel to the steel plate surface is applied to the steel plate surface. When repeatedly calculating by shifting one point along each of the parallel direction and the direction perpendicular to the steel sheet surface, thereby obtaining 81 × 100 partial average values,
Among the partial average values, the number of the partial average values that exceeds twice the total average value of the measured values of the P concentration at each of the 100 points × 100 measurement points is 0 or more and 100 or less. A characteristic lap joint.

(2) 前記複数の鋼板の板厚方向断面において、前記鋼板合わせ面と前記溶融境界の交点から前記再溶融凝固部までの最短距離が0.5〜1.0mmであることを特徴とする上
記(1)に記載の重ね接合継手。
(3) 前記複数の鋼板が、表面処理皮膜を有する鋼板を1枚以上含むことを特徴とする上記(1)又は(2)に記載の重ね接合継手。
(2) In the cross section in the plate thickness direction of the plurality of steel plates, the shortest distance from the intersection of the steel plate mating surface and the melting boundary to the remelted solidified portion is 0.5 to 1.0 mm. The lap joint according to (1).
(3) The lap joint according to (1) or (2) above, wherein the plurality of steel plates include one or more steel plates having a surface treatment film.

(4) 複数の鋼板を重ね合わせ、高パワー密度を有する光線を照射して前記複数の鋼板を接合する重ね接合継手の製造方法において、
重ね合わされた鋼板の一方の外表面の限られた領域内に高パワー密度を有する光線を照射し、前記重ね合わされた全ての鋼板に跨って溶融凝固させて点状の溶融凝固部を有する高パワー密度を有する光線による点状の接合部を形成し、
次いで、該溶融凝固部と鋼板との溶融境界の内側に、該溶融境界とは重ならないようにかつ、重ね合わされた鋼板を貫通しないように、高パワー密度を有する光線を環状に再照射し、該照射部分を再溶融凝固させてシリンダー状の再溶融凝固部を形成するとともに、該再溶融凝固部の周囲を再加熱して前記溶融境界を含む凝固再加熱部を形成し、
さらに、前記再溶融凝固部を形成する際の接合条件を調整して、
前記金属板の重ね合わせ面の前記溶融境界から前記中心軸側に100μmの点を中心点とし、
前記中心点から前記中心軸へ向かう方向に平行で、前記金属板面に垂直な、前記中心点を中心とした、100μm×100μmの矩形平面領域にて、P濃度を質量%で、当該金属板面に平行な方向及び当該金属板面に垂直な方向それぞれに沿って1μmピッチで測定し、これにより100点×100点の測定点それぞれにおける当該P濃度の測定値を求め、
前記100点×100点の測定点のうち、前記金属板面に平行な方向に一列に並んだ隣り合う20点の各前記測定点における前記P濃度の測定値の平均値を、当該金属板面に平行な方向及び当該金属板面に垂直な方向それぞれに沿って1点ずつずらしながら算出することを繰り返し、これにより81個×100個の部分平均値を求めた場合に、
前記部分平均値のうち、前記100点×100点の測定点それぞれにおける前記P濃度の測定値の全平均値の2倍を超える前記部分平均値の個数が0個以上100個以下となるようにする
ことを特徴とする重ね接合継手の製造方法。
(4) In a method for manufacturing a lap joint, wherein a plurality of steel plates are superposed, and the plurality of steel plates are joined by irradiating a light beam having a high power density,
High power having a point-like melt-solidified part by irradiating a light beam having a high power density in a limited region of one outer surface of the superposed steel plates, and melting and solidifying across all the superposed steel plates Forming a spot-like joint with light rays having a density,
Next, inside the melting boundary between the melt-solidified part and the steel sheet, reirradiate the light beam having a high power density in a ring shape so as not to overlap the melting boundary and not to penetrate the stacked steel sheets, The irradiated portion is remelted and solidified to form a cylindrical remelted solidified portion, and the periphery of the remelted solidified portion is reheated to form a solidified reheated portion including the melting boundary,
Furthermore, by adjusting the joining conditions when forming the remelted solidified portion,
A center point is a point of 100 μm from the melting boundary of the overlapping surface of the metal plate to the central axis side,
In the rectangular plane region of 100 μm × 100 μm centered on the center point, which is parallel to the direction from the center point toward the center axis and perpendicular to the metal plate surface, the P concentration is mass%, and the metal plate Measured at a pitch of 1 μm along each direction parallel to the surface and perpendicular to the metal plate surface, thereby obtaining a measurement value of the P concentration at each of 100 × 100 measurement points,
Of the 100 measurement points × 100 measurement points, the average value of the measurement values of the P concentration at each of the 20 measurement points adjacent to each other in a row in a direction parallel to the metal plate surface is calculated as the metal plate surface. When calculating a partial average value of 81 × 100 pieces by repeating the calculation while shifting one point along each of the direction parallel to the direction and the direction perpendicular to the metal plate surface,
Among the partial average values, the number of the partial average values that exceeds twice the total average value of the measured values of the P concentration at each of the 100 points × 100 measurement points is 0 or more and 100 or less. A method for manufacturing a lap joint.

(5) 前記光線の再照射は、前記複数の鋼板の板厚方向断面において、鋼板合わせ面と前記溶融境界の交点から前記再溶融凝固部までの最短距離が0.5〜1.0mm
となるように行われることを特徴とする上記(4)に記載の重ね接合継手の製造方法。
(6) 前記複数の鋼板に、表面処理皮膜を形成した鋼板を1枚以上用いることを特徴とする上記(4)又は(5)に記載の重ね接合継手の製造方法。
(5) In the re-irradiation of the light beam, the shortest distance from the intersection of the steel plate mating surface and the melting boundary to the remelted solidified portion is 0.5 to 1.0 mm in the cross section in the plate thickness direction of the plurality of steel plates.
The method for producing a lap joint according to (4) above, wherein
(6) The method for producing a lap joint according to (4) or (5) above, wherein at least one steel plate having a surface treatment film formed thereon is used for the plurality of steel plates.

ここで、光線により形成される点状の接合部とは、重ね合わされた鋼板表面の一部の限られた領域内に光線を照射して点状に形成された溶融凝固部によって鋼板が相互に接合された部分をいう。   Here, the point-like joint formed by the light beam means that the steel plates are mutually connected by the melt-solidified portion formed in a point shape by irradiating the light within a limited area of a part of the superposed steel plate surface. The joined part.

本発明によれば、溶融凝固部の溶融境界近傍に、靱性に優れる凝固再加熱部を設けたので、重ね接合継手の継手強度、特に、十字引張強さ(CTS)を向上させることができ、接合継手の信頼性を向上させることができる。そして、本発明の接合継手を自動車部品に適用することで、自動車部品の信頼性を向上させることができる。   According to the present invention, since the solidification reheating part having excellent toughness is provided in the vicinity of the melting boundary of the melt solidification part, the joint strength of the lap joint, particularly the cross tensile strength (CTS) can be improved, The reliability of the joint joint can be improved. And the reliability of a motor vehicle component can be improved by applying the joint joint of this invention to a motor vehicle component.

光線により形成される点状の接合部を有する接合継手の断面図を示す。(a)は光線の再照射前の接合継手の断面図を示し、(b)は光線の再照射後の接合継手の断面図を示す。Sectional drawing of the joint joint which has a dotted | punctate junction part formed of a light beam is shown. (A) shows sectional drawing of the joint joint before re-irradiation of a light beam, (b) shows sectional drawing of the joint joint after re-irradiation of a light beam. 溶融凝固部の断面拡大図である。It is a cross-sectional enlarged view of a melt-solidified part. 本発明の接合継手の断面を示す図である。It is a figure which shows the cross section of the joint joint of this invention. 光線により形成される点状の接合部を有する接合継手を模式的に示す図であり、(a)は接合継手の断面の構造を示し、(b)は接合継手のビッカース硬さ分布を示す。It is a figure which shows typically the joint joint which has the dotted | punctate junction part formed of a light beam, (a) shows the structure of the cross section of a joint joint, (b) shows the Vickers hardness distribution of a joint joint. 光線により形成された点状の接合部の内側に、環状に光線を照射した接合継手について、図4と同様に模式的に示す図である。It is a figure which shows typically similarly to FIG. 4 about the joint joint which irradiated the light ray cyclically | annularly inside the dotted | punctate junction part formed of the light ray. 接合継手のビッカース硬さ分布の概略図を示す図であり、(a)は光線により形成された点状の接合部を有する接合継手のビッカース硬さ分布の概略を示し、(b)は光線により形成された点状の接合部の内側に環状に光線を照射した接合継手のビッカース硬さ分布の概略を示す。It is a figure which shows the schematic of the Vickers hardness distribution of a joint joint, (a) shows the outline of the Vickers hardness distribution of the joint joint which has the dotted | punctate junction formed with the light ray, (b) is the light ray The outline of the Vickers hardness distribution of the joint joint which irradiated the light beam cyclically | annularly to the inner side of the formed dotted joint part is shown. 光線により形成される点状の接合部の形成の概要を示す斜視図であり、(a)は異なる照射直径で光線を照射する概要を示し、(b)は集光面積を広くして光線を照射する概要を示し、(c)は光線により形成された点状の接合部を示す。It is a perspective view which shows the outline | summary of formation of the dotted | punctate junction part formed with a light ray, (a) shows the outline | summary which irradiates a light beam with a different irradiation diameter, (b) widens a condensing area, and shows a light ray. The outline | summary which irradiates is shown, (c) shows the dotted | punctate junction part formed of the light ray. 光線により形成された点状の接合部の熱処理の概要を示す斜視図であり、(a)は光線を照射する概要図を示し、(b)は再溶融凝固部と凝固再加熱部とを有する光線により形成された点状の接合部の斜視図を示す。It is a perspective view which shows the outline | summary of the heat processing of the dotted | punctate joining part formed of the light ray, (a) shows the schematic diagram which irradiates a light beam, (b) has a remelting solidification part and a solidification reheating part. The perspective view of the dotted | punctate junction part formed of the light ray is shown.

まず、本発明に至った検討の経緯及び本発明の基本的構成について説明する。
光線により形成される点状の接合部を有する重ね接合継手において、更に、継手強度を向上させることが望まれていた。重ね接合継手は、剥離方向に接合部に荷重が負荷されると、鋼板と溶融凝固部との境界(溶融境界)の近傍、特に、鋼板合わせ面と溶融境界との交点近傍に応力が集中し、破断に至り易い。また、高強度鋼板ではPのような脆化元素が含有されている場合が多く、Pの偏析があるとそこが破壊の起点になりやすいと考えられる。
そこで、前記交点近傍の応力が集中する部分に熱処理することにより、Pの偏析を緩和することを検討した。
First, the background of the study that led to the present invention and the basic configuration of the present invention will be described.
In a lap joint having a dotted joint formed by light rays, it has been desired to further improve the joint strength. In lap joints, when a load is applied to the joint in the peeling direction, stress concentrates near the boundary between the steel sheet and the melt-solidified part (melting boundary), particularly near the intersection of the steel sheet mating surface and the melting boundary. , Easy to break. Further, high strength steel sheets often contain an embrittlement element such as P, and if there is segregation of P, it is considered that this tends to be the starting point of fracture.
Therefore, it was studied to reduce the segregation of P by heat-treating the stress concentration portion near the intersection.

まず、重ね合わされた2枚の鋼板2a、2bの一方の外表面に光線を照射して、照射部分を溶融凝固させて、直径が約6mmで、2枚の鋼板を重ね方向に柱状に貫通する溶融凝固部3を有する光線による点状の接合部を含む接合継手1aを形成した(図1(a)参照)。
次に、この溶融凝固部3の鋼板との溶融境界4の内側に、ビーム径0.4mmの光線を、直径4.0mmの円周に沿って一周再照射して、照射部分を再溶融凝固させて、溶融凝固部の内側にシリンダー状の再溶融凝固部3aを有するとともに、その周囲に、再溶融凝固部3aの熱により再加熱された凝固再加熱部3bを有する光線による点状の接合部を含む接合継手1bを形成した(図1(b)参照)。
なお、再照射の際には、再溶融凝固部3aの重ね合わせ方向の先端部5が、鋼板合わせ面2cの延長線より鋼板2a側であって、鋼板合わせ面と溶融境界との交点6がAc3点以上の温度範囲に加熱される位置になるように光線の照射条件を調整した。
First, light is irradiated to one outer surface of two superposed steel plates 2a and 2b, the irradiated portion is melted and solidified, and the diameter is about 6 mm, and the two steel plates are penetrated in a column shape in the stacking direction. A joint joint 1a including a spot-like joint portion by a light beam having the melt-solidified portion 3 was formed (see FIG. 1 (a)).
Next, a beam with a beam diameter of 0.4 mm is re-irradiated along the circumference of the diameter of 4.0 mm inside the melting boundary 4 with the steel plate of the melt-solidified part 3 to re-melt and solidify the irradiated part. And having a cylindrical remelted and solidified part 3a inside the melted and solidified part and a solid-state reheated part 3b reheated by the heat of the remelted and solidified part 3a around it. A joint joint 1b including a portion was formed (see FIG. 1B).
At the time of re-irradiation, the front end portion 5 in the overlapping direction of the remelted solidified portion 3a is on the steel plate 2a side from the extension line of the steel plate mating surface 2c, and the intersection point 6 between the steel plate mating surface and the melting boundary is The irradiation condition of the light beam was adjusted so as to be a position heated to a temperature range of Ac3 point or higher.

この光線による接合部を有する接合継手1a、1bに対して、十字引張強さ(CTS)を調査したところ、溶融凝固部3の内側に光線を再照射して得られた接合継手1bの十字引張強さの方が、接合継手1aの十字引張強さより高くなることが判明した。   When the cross tensile strength (CTS) of the joint joints 1a and 1b having the joint portion by the light beam was investigated, the cross tension of the joint joint 1b obtained by re-irradiating the inner side of the melt-solidified portion 3 with the light beam. It was found that the strength was higher than the cross tensile strength of the joint joint 1a.

次に、本発明者らは、接合継手1a、1bに対して、溶融境界近傍における脆化元素であるPの偏析の解析を実施した。Pの偏析の解析では、国際公開第2013/161937号に開示の方法を採用した。Pの偏析の解析方法は、この文献で詳細に説明されているので、ここでは簡潔に説明する。   Next, the present inventors conducted an analysis of segregation of P, which is an embrittlement element in the vicinity of the melting boundary, for the joint joints 1a and 1b. In the analysis of P segregation, the method disclosed in International Publication No. 2013/161937 was adopted. Since the method for analyzing the segregation of P is described in detail in this document, it will be briefly described here.

図2に、溶融凝固部の断面拡大図を示す。図2は、図1(b)の溶融凝固部3の中心軸Cから片側を拡大した図である。
まず、Pの偏析の解析では、鋼板2a、2bの合わせ面2cと溶融境界4との交点6から、合わせ面の延長線上に沿って中心軸C側に100μm隔てた点を中心点とする。この中心点から中心軸Cへ向かう方向に平行で、鋼板2a、2bの表面に垂直な、中心点を中心とした100μm×100μmの矩形平面領域Aを設定する。
In FIG. 2, the cross-sectional enlarged view of a melt-solidification part is shown. FIG. 2 is an enlarged view of one side from the central axis C of the melt-solidified portion 3 in FIG.
First, in the analysis of segregation of P, the center point is a point that is separated from the intersection 6 between the mating surface 2c of the steel plates 2a and 2b and the melting boundary 4 by 100 μm on the center axis C side along the extension line of the mating surface. A rectangular planar region A of 100 μm × 100 μm centered on the central point, which is parallel to the direction from the central point toward the central axis C and perpendicular to the surfaces of the steel plates 2a and 2b, is set.

この矩形平面領域Aにおいて、合わせ面2cに平行な方向及び垂直な方向にそれぞれ1μmピッチでP濃度(質量%)を測定し、100点×100点の測定点それぞれにおけるP濃度(質量%)の測定値を求める。P濃度(質量%)は、電界放出型電子線マイクロアナライザ(FE−EPMA)で測定する。   In this rectangular plane region A, P concentration (mass%) is measured at a pitch of 1 μm in each of a direction parallel to and perpendicular to the mating surface 2c, and the P concentration (mass%) at each of 100 × 100 measurement points is measured. Obtain the measured value. The P concentration (% by mass) is measured with a field emission electron beam microanalyzer (FE-EPMA).

次に、100点×100点の測定点のうち、合わせ面2cに平行な方向に一列に並んだ隣り合う20点の各測定点におけるP濃度の測定値の部分平均値を、合わせ面2cに平行な方向及び垂直な方向それぞれに沿って1点ずつずらしながら算出する。これを繰り返し、81個×100個の部分平均値を求める。   Next, of the 100 measurement points × 100 measurement points, the partial average value of the measured values of P concentration at each of the 20 adjacent measurement points arranged in a line in a direction parallel to the mating surface 2c is applied to the mating surface 2c. Calculation is performed while shifting one point along each of the parallel direction and the vertical direction. This is repeated to obtain 81 × 100 partial average values.

この部分平均値のうち、100点×100点の測定点それぞれにおけるP濃度の測定値の全平均値の2倍を超える部分平均値の個数を比較する。この個数が0個以上100個以下である場合をPの偏析が緩和されており、101個以上をPが偏析していると判断する。   Among the partial average values, the number of partial average values exceeding twice the total average value of the measured values of P concentration at each of 100 × 100 measurement points is compared. When this number is 0 or more and 100 or less, the segregation of P is relaxed, and when it is 101 or more, it is judged that P is segregated.

このPの偏析の解析法を用いて、図1(a)に示す接合継手1aと、図1(b)に示す接合継手1bにおいて、領域AにおけるPの偏析の解析を実施したところ、接合継手1aでは、Pが偏析していたが、接合継手1bでは、Pの偏析が緩和されていた。   Using the analysis method for segregation of P, the segregation of P in the region A was performed in the joint joint 1a shown in FIG. 1A and the joint joint 1b shown in FIG. In 1a, P was segregated, but in the joint 1b, P segregation was relaxed.

これより、光線により形成された点状の接合部を有する重ね接合継手において、点状の接合部の合わせ面と溶融境界の交点6近傍のPの偏析を緩和することで、十字引張強さが向上することを知見した。また、鋼板の組合せを変えても、Pの偏析が緩和されているものでは、十字引張強さが向上することが確認された。   As a result, in the lap joint having a dotted joint formed by light rays, the cross tensile strength is reduced by relaxing the segregation of P in the vicinity of the intersection 6 of the joining surface of the dotted joint and the melting boundary. It was found that it improved. Further, it was confirmed that even if the combination of the steel plates was changed, the cross tensile strength was improved if the segregation of P was alleviated.

本発明は、以上のような検討過程を経て上記(1)に記載の発明に至ったものであり、そのような本発明について、さらに、必要な要件や好ましい要件について順次説明する。   The present invention has reached the invention described in the above (1) through the examination process as described above, and the necessary and preferred requirements will be further described in order.

[接合継手]
本発明の接合継手10は、図3の断面図に示すように、複数の鋼板20a、20bを重ね合わせ、鋼板20a側から鋼板20aの限られた領域内に光線を照射し、光線により形成される点状の接合部を形成して複数の鋼板20a、20bを光線による重ね接合をしたものである。
[Joint joint]
As shown in the cross-sectional view of FIG. 3, the joint joint 10 of the present invention is formed by overlapping a plurality of steel plates 20 a and 20 b, irradiating a light beam in a limited region of the steel plate 20 a from the steel plate 20 a side. A plurality of steel plates 20a and 20b are joined together by light rays.

<光線により形成される点状の接合部>
光線により形成される点状の接合部は、複数の鋼板20a、20bを重ね合わせ、光線の照射により溶融凝固した点状の溶融凝固部30を有しており、さらに、溶融凝固部30は、内部に該溶融凝固部が再溶融した再溶融凝固部30aと、再溶融凝固部によって溶融凝固部が凝固後に再加熱された凝固再加熱部30bとを有している。なお、図3では、鋼板側の熱影響部は示していない。
ここで、光線により形成される点状の接合部とは、重ね合わされた鋼板表面の一部の限られた領域内に光線を照射して点状に形成された溶融凝固部によって鋼板が相互に接合された部分をいう。
<Dotted joint formed by light rays>
The dotted joint formed by the light beam has a plurality of steel plates 20a and 20b, and has a dotted melt-solidified part 30 melted and solidified by irradiation of the light beam. It has a remelted and solidified part 30a in which the melted and solidified part is remelted and a solidified and reheated part 30b in which the melted and solidified part is reheated after solidification by the remelted and solidified part. In FIG. 3, the heat affected zone on the steel plate side is not shown.
Here, the point-like joint formed by the light beam means that the steel plates are mutually connected by the melt-solidified portion formed in a point shape by irradiating the light within a limited area of a part of the superposed steel plate surface. The joined part.

(点状の溶融凝固部)
光線による点状の接合部に形成される溶融凝固部30は、重ね合わされた鋼板表面の一部の限られた領域内に光線を照射して形成された溶融凝固部である。
溶融凝固部30の幅W(光線の照射側から溶融凝固部を平面視したときの溶融凝固部の円相当径)は、継手強度等に応じて調整すればよく、特に限定されるものでないが、5〜12mmが例示される。好ましくは、6〜10mmである。
溶融凝固部30は、接合部を形成する複数の鋼板20a、20bに跨って形成されていれば、光線照射側と反対側の鋼板の外表面まで貫通していても、貫通していなくてもよい。
(Dot-shaped melt-solidified part)
The melted and solidified portion 30 formed at the spot-like joint by the light beam is a melted and solidified portion formed by irradiating a light within a limited region of a part of the surface of the stacked steel plates.
The width W of the melt-solidified portion 30 (equivalent circle diameter of the melt-solidified portion when the melt-solidified portion is viewed in plan from the light irradiation side) may be adjusted according to the joint strength and the like, and is not particularly limited. 5 to 12 mm. Preferably, it is 6-10 mm.
As long as the melt-solidified portion 30 is formed across the plurality of steel plates 20a and 20b forming the joint portion, it may or may not penetrate through to the outer surface of the steel plate on the side opposite to the light irradiation side. Good.

ここで、点状とは、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部の外周輪郭が円形状又多角形状などの限られた領域に限定されており、かつ、その領域の中心まで溶融凝固していることを意味する。円形状とは、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部が円形や楕円形の場合以外に、直径の異なる半円や半楕円を組み合わせたものも含むものである。また、鋼板に光線を渦巻状に、外周側から中心側又は中心側から外周側に向かって照射して形成した溶融凝固部の形状も点状に含まれる。   Here, the dot shape means that when the molten solidified portion is viewed in plan from the irradiation side of the light beam, the outer peripheral contour of the molten solidified portion is limited to a limited region such as a circular shape or a polygonal shape, and the region. It means that it is melted and solidified to the center of. The circular shape includes a combination of semi-circles and semi-ellipses having different diameters in addition to the case where the melt-solidified portion is circular or elliptical when the melt-solidified portion is viewed in plan from the light irradiation side. Moreover, the shape of the melt-solidified part formed by irradiating the steel sheet with a light beam in a spiral shape from the outer peripheral side toward the central side or from the central side toward the outer peripheral side is also included in a dot shape.

(再溶融凝固部)
再溶融凝固部30aは、溶融凝固部30と鋼板の溶融境界40の内側の溶融凝固部30に光線を環状の軌跡に沿って再照射し、照射部分を再溶融凝固させて得られるシリンダー状の形状を有する部分であり、溶融凝固したままの組織となっている。なお、環状とは、輪郭が円形状又多角形状を意味する。円形状とは、再溶融凝固部が円形や楕円形の場合以外に、直径の異なる半円や半楕円を組み合わせたものも含むものである。
(Remelt solidification part)
The remelted and solidified part 30a is a cylindrical shape obtained by reirradiating the melted and solidified part 30 and the melted and solidified part 30 inside the melting boundary 40 of the steel sheet along an annular trajectory and remelting and solidifying the irradiated part. It is a part having a shape, and has a structure that has been melted and solidified. The term “annular” means that the contour is circular or polygonal. The circular shape includes a combination of semi-circles and semi-ellipses having different diameters in addition to the case where the remelted solidified portion is circular or elliptical.

再溶融凝固部30aは、溶融境界40とは重ならないように形成されており、その際、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部の円相当の中心と、再溶融凝固部30aの円相当の中心とは、一致する必要はない。
再溶融凝固部30aは、接合継手10の板厚方向において、その重ね合わせ方向の先端部50は、図3などのように、重ね合わされた鋼板の合わせ面20cと溶融境界40との交点60近傍位置まで形成されていれば十分であるが、合わせ面20cの延長線を超えた位置や重ね合わされた鋼板を貫通した位置とすることもできる。
The remelted and solidified portion 30a is formed so as not to overlap the melting boundary 40. At this time, when the molten and solidified portion is viewed in plan from the light irradiation side, the center corresponding to the circle of the molten and solidified portion is re-melted. It is not necessary to coincide with the center of the solidified portion 30a corresponding to the circle.
In the thickness direction of the joint 10, the remelted solidified portion 30 a is in the vicinity of the intersection 60 between the mating surface 20 c of the superposed steel plates and the melting boundary 40 as shown in FIG. 3. It is sufficient if it is formed up to the position, but it can also be a position that exceeds the extension line of the mating surface 20c or a position that penetrates the stacked steel plates.

再溶融凝固部30aの重ね合わせ方向の先端部50の位置や再溶融凝固部30aの溶融境界40側の外側輪郭の位置は、鋼板合わせ面20a近傍の溶融凝固部を再加熱して、Pの偏析を緩和するために重要であり、後述するように、鋼板合わせ面と前記溶融境界の交点60近傍の溶融凝固部が、母材の融点以下Ac3点温度以上の再加熱温度になるように設定される。   The position of the tip 50 in the overlapping direction of the remelting and solidifying part 30a and the position of the outer contour on the melting boundary 40 side of the remelting and solidifying part 30a are obtained by reheating the molten and solidifying part in the vicinity of the steel sheet mating surface 20a. It is important for alleviating segregation and, as will be described later, the molten solidified portion in the vicinity of the intersection 60 between the steel sheet mating surface and the melting boundary is set to have a reheating temperature not higher than the melting point of the base material and not lower than the Ac3 point temperature. Is done.

シリンダー状に形成される再溶融凝固部30aの径方向の幅Wb(光線の照射側から溶融凝固部を平面視したときの環状の再溶融凝固部の径方向の厚み)は、前記交点60近傍の溶融凝固部が、Ac3点温度以上の再加熱温度になるために必要な熱量を与えるために、前記先端部の位置との関係で決められるが、0.3mm以上とすることが好ましい。幅Wbの上限は特に限定されないが、好ましくは、0.3W程度である。   The radial width Wb of the remelted and solidified portion 30a formed in a cylindrical shape (the radial thickness of the annular remelted and solidified portion when the melted and solidified portion is viewed in plan from the light irradiation side) is in the vicinity of the intersection 60. In order to give the amount of heat necessary for the melted and solidified portion to reach a reheating temperature equal to or higher than the Ac3 point temperature, it is determined in relation to the position of the tip portion, but is preferably 0.3 mm or more. The upper limit of the width Wb is not particularly limited, but is preferably about 0.3 W.

(凝固再加熱部)
凝固再加熱部30bは、光線により形成された点状の接合部の溶融凝固部30に光線を環状に再照射し、再溶融凝固部30aの周囲に溶融境界を含むように形成される部分であり、Pの偏析が低減されている部分を含むものである。なお、図1〜3においては、Ac3点温度以上に加熱される領域を凝固再加熱部3bとして示している。
(Coagulation reheating part)
The solidification reheating part 30b is a part formed so as to include a melting boundary around the remelting and solidifying part 30a by reirradiating the melting and solidifying part 30 of the spot-like joint formed by the light beam in a ring shape. Yes, including a portion where segregation of P is reduced. 1 to 3, the region heated to the Ac3 point temperature or higher is shown as the solidification reheating unit 3b.

重ね継手では、鋼板の剥離方向に荷重が負荷されると、鋼板の合わせ面近傍の溶融境界に応力が集中し、破断に至るため、少なくとも鋼板合わせ面20cと溶融境界40との交点60の周囲に位置する溶融凝固部が、Ac3点温度以上の再加熱温度となるように凝固再加熱部30bを形成して、その部分のP偏析を緩和させる。   In a lap joint, when a load is applied in the peeling direction of the steel sheet, stress concentrates on the melting boundary in the vicinity of the mating surface of the steel sheet, leading to fracture. Therefore, at least around the intersection 60 between the steel sheet mating surface 20c and the melting boundary 40 The solidification reheating part 30b is formed so that the melt solidification part located in the region has a reheating temperature equal to or higher than the Ac3 point temperature, and P segregation in the part is alleviated.

具体的には、鋼板合わせ面20c近傍の溶融凝固部は、応力が集中し易いため、前述のように、P濃度の測定値の全平均値の2倍を超える部分平均値の個数が0個以上100個以下とする。特に、CTSの向上のためには、鋼板合わせ面20cと前記溶融境界の交点60から内側に少なくとも0.5mmの範囲がAc3点温度以上の温度に加熱されることが望ましく、そのためには、鋼板の板厚方向断面において、鋼板合わせ面と前記溶融境界の交点60から前記再溶融凝固部までの最短距離Wcを、0.5〜1.0mmとすることが好ましい。
なお、再溶融凝固部はミクロ組織の観察により判別することができるので、Wcは光線による接合後の接合部の断面から測定することができる。
Specifically, since the stress is likely to concentrate in the melt-solidified portion in the vicinity of the steel sheet mating surface 20c, as described above, the number of partial average values exceeding twice the total average value of P concentration is zero. The number is 100 or less. In particular, in order to improve CTS, it is desirable that a range of at least 0.5 mm is heated inward from the intersection 60 of the steel sheet mating surface 20c and the melting boundary to a temperature equal to or higher than the Ac3 point temperature. In the cross section in the plate thickness direction, the shortest distance Wc from the intersection 60 between the steel plate mating surface and the melting boundary to the remelted solidified portion is preferably 0.5 to 1.0 mm.
In addition, since the remelted solidified part can be discriminated by observing the microstructure, Wc can be measured from the cross section of the bonded part after bonding with light.

凝固再加熱部のPの偏析の解析は、上述したように行う。ただし、P濃度(質量%)は、電界放出型電子線マイクロアナライザ(FE−EPMA)で測定することができ、測定条件として、以下が例示される。   The analysis of the segregation of P in the solidification reheating part is performed as described above. However, the P concentration (mass%) can be measured by a field emission electron beam microanalyzer (FE-EPMA), and the following are exemplified as measurement conditions.

加速電圧:15kV
ビーム電流:0.5μA
1ピクセル当たりのビーム滞在時間:60ms
ピクセル数:250×250
視野:100μm×100μm
Acceleration voltage: 15 kV
Beam current: 0.5 μA
Beam dwell time per pixel: 60ms
Number of pixels: 250 × 250
Field of view: 100 μm × 100 μm

また、凝固再加熱部30bのうち、母材の融点以下Ac3点温度以上に再加熱された部分は、加熱過程及び冷却過程でそれぞれ変態を受けて結晶が微細化する。そのような部分においては、特に、結晶粒のアスペクト比が1.5以下のポリゴナルフェライトとなっていることが好ましい。   Further, in the solidification reheating portion 30b, the portion reheated to the Ac3 point temperature or less below the melting point of the base material undergoes transformation in the heating process and the cooling process, respectively, and the crystal becomes finer. In such a portion, it is particularly preferable that the aspect ratio of crystal grains is polygonal ferrite of 1.5 or less.

(再溶融凝固部及び凝固再加熱部のビッカース硬さ)
次に、光線により形成された点状の接合部の溶融凝固部に光線を再照射する前と再照射した後の接合継手の板厚方向断面において、鋼板合わせ面及びその延長線近傍位置のビッカース硬さの変化を調査した。
図4、5に、引張強さ980MPaの鋼板を用いた接合継手において、溶融凝固部に環状のレーサビームを再照射する前後のビッカース硬さ分布の概略図を示す。それぞれの図において、(a)は、接合継手の断面図であり、(b)は、接合継手のビッカース硬さ分布の概略図である。
(Vickers hardness of remelted solidified part and solidified reheated part)
Next, in the cross section in the plate thickness direction of the joint joint before and after re-irradiating the melt-solidified portion of the spot-like joint formed by the light beam, Vickers at the position near the steel plate mating surface and its extension line Changes in hardness were investigated.
4 and 5 show schematic views of the Vickers hardness distribution before and after re-irradiating an annular laser beam to the melt-solidified portion in a joint joint using a steel sheet having a tensile strength of 980 MPa. In each figure, (a) is a cross-sectional view of a joint joint, and (b) is a schematic diagram of the Vickers hardness distribution of the joint joint.

ビッカース硬さは、図4(a)及び図5(a)に示す、点線Xの位置(板厚方向断面のビッカース硬さの測定位置)を鋼板表面と平行方向のビッカース硬さの測定範囲L1にわたって求めた。
点線Xは、板厚方向において、鋼板20a、20bの合わせ面20cから鋼板20a側に0.5mmの位置である。また、L2は、溶融凝固部のビッカース硬さの測定範囲である。
The Vickers hardness is the measurement range L1 of the Vickers hardness in the direction parallel to the surface of the steel plate, as indicated by the dotted line X (measurement position of the Vickers hardness in the cross section in the thickness direction) shown in FIGS. 4 (a) and 5 (a). Sought over.
A dotted line X is a position of 0.5 mm from the mating surface 20c of the steel plates 20a and 20b to the steel plate 20a side in the plate thickness direction. L2 is the measurement range of the Vickers hardness of the melt-solidified part.

図4(b)に示すように、溶融凝固部30に光線を再照射する前の接合継手10aのビッカース硬さは、溶融凝固部30の内側(L2)において、HV410程度と硬く、ほぼ一定となっている。L2のすぐ外側は、溶融凝固部ではないが、高温域まで加熱され焼入れられるので硬さが大きい。なお、さらに外側に硬さの低い部位があるが、これは母材である鋼板のHAZ軟化部である。   As shown in FIG. 4 (b), the Vickers hardness of the joint joint 10a before re-irradiating the melt-solidified portion 30 with light is as hard as about HV410 inside the melt-solidified portion 30 (L2) and is almost constant. It has become. The outer side of L2 is not a melt-solidified part, but is hard because it is heated to a high temperature region and quenched. In addition, although there exists a site | part with low hardness on the outer side, this is a HAZ softening part of the steel plate which is a base material.

これに対し、環状に光線を再照射した後は、図5(b)に示すように、再溶融凝固部の熱を受けて、溶融境界の外側及び再溶融凝固部の内側の溶融凝固部に焼き戻されたビッカース硬さが低い部位が形成された。また、再溶融凝固部近傍に位置する溶融凝固部は、再溶融凝固部により再度高温域まで加熱され、焼入れられて硬化しており、溶融境界から溶融凝固部内に向かって1mm以上の幅でHV410程度と硬くなっている。なお、溶融凝固部30の外側の母材のHAZ軟化部はそのままの硬さとして残っている。   On the other hand, after re-irradiating the light beam in an annular shape, as shown in FIG. 5 (b), it receives the heat of the remelted solidified portion, and enters the melted solidified portion outside the melting boundary and inside the remelted solidified portion. A tempered portion with low Vickers hardness was formed. Further, the melt-solidified portion located in the vicinity of the re-melt solidified portion is heated again to a high temperature region by the re-melt solidified portion, hardened by being hardened, and has a width of 1 mm or more from the melting boundary toward the inside of the melt-solidified portion. It is getting harder. Note that the HAZ softened portion of the base material outside the melt-solidified portion 30 remains as it is.

次に、被接合部材の鋼板を1500MPaホットスタンプ鋼板に変えて、上記と同様の調査を行った。
図6に、ホットスタンプ鋼板を用いた接合継手におけるレーサビームを再照射する前後のビッカース硬さ分布の概略図を示す。
Next, the steel plate of the member to be joined was changed to a 1500 MPa hot stamped steel plate, and the same investigation as described above was performed.
FIG. 6 shows a schematic diagram of the Vickers hardness distribution before and after re-irradiation with a laser beam in a joint joint using a hot stamped steel plate.

ホットスタンプ鋼板では、溶融凝固部30に光線を再照射する前の接合継手10aのビッカース硬さは、図6(a)に示すように、溶融凝固部30の内側(L2)において、HV450程度と硬く、ほぼ一定となっている。L2のすぐ外側は、溶融凝固部ではないが、高温域まで加熱され、焼入れられるので、硬さが大きい。なお、さらに外側に硬さの低い部位があるが、これは母材である鋼板のHAZ軟化部である。   In the hot stamped steel plate, the Vickers hardness of the joint 10a before re-irradiating the melted and solidified portion 30 with light is about HV450 on the inner side (L2) of the melted and solidified portion 30 as shown in FIG. Hard and almost constant. Although the outer side of L2 is not a melt-solidified part, it is heated to a high temperature region and quenched, so that the hardness is large. In addition, although there exists a site | part with low hardness on the outer side, this is a HAZ softening part of the steel plate which is a base material.

また、光線を再照射した後の接合継手10bのビッカース硬さは、図6(b)に示すように、溶融境界から溶融凝固部内に向かって1mm以上の幅でHV420程度と硬くなっている。さらに溶融境界の外側にビッカース硬さが低い部位が形成された。なお、溶融凝固部30の外側の母材のHAZ軟化部はそのままの硬さとして残っている。   Further, as shown in FIG. 6B, the Vickers hardness of the joint joint 10b after the re-irradiation with the light beam is as hard as about HV420 with a width of 1 mm or more from the melt boundary toward the melt-solidified portion. Further, a portion having a low Vickers hardness was formed outside the melting boundary. Note that the HAZ softened portion of the base material outside the melt-solidified portion 30 remains as it is.

このように、本発明の接合継手では、鋼板の鋼種が異なる場合であっても、溶融境界から溶融凝固部内に向かって1mm以上の幅に渡ってビッカース硬さの高い範囲が維持され、鋼板合わせ面近傍の溶融凝固部における接合金属の部分的な軟化がないため、引張せん断強度の低下が抑制される。
引張せん断強度の低下を抑制するためには、凝固再加熱部30bのうち、鋼板20a、20bの合わせ面の延長線上から重ね合わせ方向に0.5mm離れた位置(上記Xの位置)における溶融境界から内部に向かって0.5mmの範囲のビッカース硬さの平均値と、0.5〜1mmの範囲のビッカース硬さの平均値を、±Hv70未満とすることが好ましい。
なお、上記の範囲のビッカース硬さの平均値の測定では、それぞれの範囲の中央と両端近傍を含む3点以上等間隔でビッカース硬さを測定し、平均値を求める。
Thus, in the joint joint of the present invention, even if the steel types of the steel plates are different, a high range of Vickers hardness is maintained over a width of 1 mm or more from the melting boundary toward the inside of the melt-solidified portion. Since there is no partial softening of the joining metal in the melt-solidified portion in the vicinity of the surface, a decrease in tensile shear strength is suppressed.
In order to suppress the decrease in the tensile shear strength, the melt boundary at the position (X position) 0.5 mm away from the extension line of the mating surface of the steel plates 20a and 20b in the overlapping direction in the solidification reheating part 30b. It is preferable that the average value of Vickers hardness in the range of 0.5 mm from the inside to the inside and the average value of Vickers hardness in the range of 0.5 to 1 mm are less than ± Hv70.
In the measurement of the average value of the Vickers hardness in the above range, the average value is obtained by measuring the Vickers hardness at equal intervals of 3 points or more including the center of each range and the vicinity of both ends.

また、鋼板の重ね合わせ面が複数あるときは、それぞれの鋼板の重ね合わせ面と接する溶融凝固部30の溶融境界同士を結んだ線上で測定する。なお、再溶融凝固部と凝固再加熱部とは、ミクロ組織の観察により、判別することができる。   Further, when there are a plurality of overlapping surfaces of the steel plates, the measurement is performed on a line connecting the melting boundaries of the melt-solidified portion 30 in contact with the overlapping surfaces of the respective steel plates. The remelted solidified part and the solidified reheated part can be distinguished from each other by observing the microstructure.

<複数の鋼板>
本発明の接合継手に用いる鋼板は特に限定されるものでなく、種々の鋼板とすることができる。鋼板の成分組成は、特に限定されるものでなく、用途に応じた機械特性等が得られる成分組成の鋼板とすればよい。また、本発明の接合継手に炭素含有量を0.10〜0.25質量%の高強度鋼板を適用すると、十字引張強さの向上が顕著であり、このような鋼板を対象とすることが好ましい。また、P含有量は、特に限定されるものでないが、Pの偏析改善の効果が見込まれる0.001%以上0.03質量%以下が例示される。
<Multiple steel plates>
The steel plate used for the joint joint of the present invention is not particularly limited, and various steel plates can be used. The component composition of the steel sheet is not particularly limited, and may be a steel sheet having a component composition that can provide mechanical properties and the like according to the application. Moreover, when a high-strength steel sheet having a carbon content of 0.10 to 0.25% by mass is applied to the joint joint of the present invention, the improvement of the cross tensile strength is remarkable, and such a steel sheet may be targeted. preferable. Moreover, although P content is not specifically limited, 0.001% or more and 0.03 mass% or less in which the effect of P segregation improvement is anticipated is illustrated.

鋼板の板厚は、特に限定されるものでなく、0.5〜3.2mmの範囲とすることができる。板厚が0.5mm未満であっても、接合部の継手強度の向上の効果は得られるが、継手強度は板厚に影響されるので、接合継手全体の強度向上の効果が小さくなり、接合継手の適用範囲が限定される。また、板厚が3.2mm超であっても、接合部の継手強度の向上の効果は得られるが、部材の軽量化の観点から、接合継手の適用範囲が限定される。   The plate | board thickness of a steel plate is not specifically limited, It can be set as the range of 0.5-3.2 mm. Even if the plate thickness is less than 0.5 mm, the effect of improving the joint strength of the joint can be obtained, but since the joint strength is affected by the plate thickness, the effect of improving the strength of the entire joint joint becomes small, The application range of the joint is limited. Moreover, even if the plate thickness is over 3.2 mm, an effect of improving the joint strength of the joint portion can be obtained, but the application range of the joint joint is limited from the viewpoint of reducing the weight of the member.

(鋼板の表面処理皮膜)
鋼板には、少なくとも接合箇所の両面又は片面に表面処理皮膜を形成した鋼板を1枚以上含んでいてもよい。表面処理皮膜は、めっき皮膜を含むものであり、更に、塗装皮膜等を含むものとすることができる。めっき皮膜としては、例えば、亜鉛めっき、アルミニウムめっき、亜鉛・ニッケルめっき、亜鉛・鉄めっき、亜鉛・アルミニウム・マグネシウム系めっき等であり、めっきの製造方法としては、溶融めっき、電気めっき等である。
(Surface treatment film of steel sheet)
The steel plate may include at least one steel plate having a surface treatment film formed on both sides or one side of the joining portion. The surface treatment film includes a plating film, and may further include a coating film or the like. Examples of the plating film include zinc plating, aluminum plating, zinc / nickel plating, zinc / iron plating, zinc / aluminum / magnesium plating, and plating production methods include hot dipping and electroplating.

鋼板は、少なくとも接合継手を形成する部分が板状であればよく、全体が板でなくてもよい。例えば、断面ハット形の特定の形状にプレス成型された部材のフランジ部などを含むものである。重ね合わせる鋼板の枚数は、2枚に限らず、3枚以上としてもよい。また、各鋼板の、種類、成分組成及び板厚は、全て同じとしても、相互に異なっていてもよい。また、別々の鋼板から構成されるものに限定されず、1枚の鋼板を管状などの所定の形状に成形して、端部を重ね合わせたものの重ね接合継手であってもよい。   The steel plate should just be a plate-shaped at least part which forms a joint, and the whole may not be a plate. For example, it includes a flange portion of a member press-molded into a specific shape having a cross-sectional hat shape. The number of steel plates to be stacked is not limited to two, and may be three or more. In addition, the types, component compositions, and plate thicknesses of the respective steel plates may be the same or different from each other. Moreover, it is not limited to what is comprised from a separate steel plate, The lap joint joint of what formed the shape of one steel plate in predetermined shapes, such as a tubular shape, and overlap | superposed the edge part may be sufficient.

以下、これに限定されるものではないが、自動車での重ね接合継手の例を示す。
Aピラーの場合、270〜340MPa級の合金化溶融亜鉛めっき鋼板と、590〜1800MPa級非めっき鋼板もしくはホットスタンプ鋼板と、590〜1800MPa級非めっき鋼板もしくはホットスタンプ鋼板の3枚重ねの組み合わせでの重ね接合継手が例示される。
Hereinafter, although not limited thereto, an example of a lap joint in an automobile will be shown.
In the case of A-pillar, a combination of 270 to 340 MPa class galvannealed steel sheet, 590 to 1800 MPa class non-plated steel sheet or hot stamped steel sheet, and 590 to 1800 MPa class non-plated steel sheet or hot stamped steel sheet A lap joint is illustrated.

Bピラーの場合、引張強さが270〜340MPa級の合金化溶融亜鉛めっき鋼板と、590〜1800MPa級非めっき鋼板もしくはホットスタンプ鋼板と、440〜980MPa級非めっき鋼板の3枚重ねの組み合わせでの重ね接合継手が例示される。   In the case of the B pillar, a combination of three layers of an alloyed hot-dip galvanized steel sheet having a tensile strength of 270 to 340 MPa, a 590 to 1800 MPa class non-plated steel sheet or a hot stamped steel sheet, and a 440 to 980 MPa class non-plated steel sheet A lap joint is illustrated.

サイドシルの場合、270〜340MPa級の合金化溶融亜鉛めっき鋼板と、590〜1800MPa級合金化溶融亜鉛めっき鋼板と、590〜1800MPa級合金化溶融亜鉛めっき鋼板の3枚重ねの組み合わせでの重ね接合継手が例示される。   In the case of a side sill, a lap-jointed joint in a combination of three layers of a 270 to 340 MPa class galvannealed steel sheet, a 590 to 1800 MPa class galvannealed steel sheet, and a 590 to 1800 MPa class galvannealed steel sheet Is exemplified.

フロアメンバーの場合、270〜590MPa級の合金化溶融亜鉛めっき鋼板のフロアパネルと、440〜1800MPa級非めっき鋼板もしくは合金化溶融亜鉛めっき鋼板のフロアメンバーとの2枚重ねでの組み合わせでの重ね接合継手が例示される。   In the case of a floor member, lap joining in a combination of two layers of a 270-590 MPa class alloyed hot dip galvanized steel floor panel and a 440-1800 MPa class non-plated steel sheet or an alloyed hot dip galvanized steel floor member A joint is illustrated.

[重ね接合継手の製造方法]
次に、本発明の重ね接合継手の製造方法について説明する。
まず、(a)複数の鋼板を重ね合わせ、重ね合わされた鋼板の一方の外表面の限られた領域内に光線を照射し、前記重ね合わされた全ての鋼板に跨って前記領域の中心まで溶融凝固させて、点状の溶融凝固部を有する光線による点状の接合部を形成することについて、図7を用いて説明する。
[Manufacturing method of lap joint]
Next, the manufacturing method of the lap joint of this invention is demonstrated.
First, (a) superposing a plurality of steel plates, irradiating light within a limited region on one outer surface of the superposed steel plates, and melting and solidifying to the center of the region across all the superposed steel plates The formation of the point-like joint portion by the light beam having the point-like melted and solidified portion will be described with reference to FIG.

図7は、限られた領域内(照射予定箇所)に光線を照射して光線による点状の接合部の形成の概要を示す斜視図である。図7(a)は、異なる照射直径で光線を照射する概要を示し、図7(b)は、集光面積を広くして光線を照射する概要を示し、図7(c)は、光線により形成された点状の接合部を示す。   FIG. 7 is a perspective view showing an outline of formation of a dot-shaped joint portion by irradiating a light within a limited region (a planned irradiation position). FIG. 7 (a) shows an outline of irradiating light rays with different irradiation diameters, FIG. 7 (b) shows an outline of irradiating light rays with a wide condensing area, and FIG. The formed point-like junction is shown.

図7(a)には、光線70を照射する方法の一例を示しており、異なる照射直径で光線70を照射するものである。この図には、光線70の照射予定箇所80aを点線で示しており、照射直径の異なる3つの照射予定箇所80aが示されている。   FIG. 7A shows an example of a method of irradiating the light beam 70. The light beam 70 is irradiated with different irradiation diameters. In this figure, the irradiation planned portion 80a of the light beam 70 is indicated by a dotted line, and three irradiation planned portions 80a having different irradiation diameters are shown.

光線による点状の接合部の形成では、まず、複数の鋼板20a、20bを重ね合わせ、一方の鋼板20a側から光線70を照射して光線による接合を行う。光線70の照射では、光線70の照射側から照射予定箇所80aを平面視したとき、白抜き矢印で示すように、略円状に光線を走査する。その際に、光線70の照射を、外側の照射予定箇所80aに行い、その後、内側の照射予定箇所80aに行っても、内側の照射予定箇所80aに行い、その後、外側の照射予定箇所80aに行ってもよい。光線の走査方向は、特に限定されるものでなく、時計回り、反時計回りのいずれでもよい。   In the formation of the point-like joining portion by the light beam, first, the plurality of steel plates 20a and 20b are overlapped, and the light beam 70 is irradiated from one steel plate 20a side to perform the joining by the light beam. In the irradiation of the light beam 70, when the irradiation scheduled portion 80a is viewed in plan from the irradiation side of the light beam 70, the light beam is scanned in a substantially circular shape as indicated by a white arrow. At that time, the irradiation of the light beam 70 is performed on the outer irradiation scheduled spot 80a, and then on the inner irradiation scheduled spot 80a, the inner irradiation scheduled spot 80a is performed, and then on the outer irradiation scheduled spot 80a. You may go. The scanning direction of the light beam is not particularly limited, and may be either clockwise or counterclockwise.

また、光線70の照射側からの照射予定箇所80aを平面視した場合、光線70の照射予定箇所80aの外周形状を円としているが、楕円状、多角形状、直径の異なる半円や半楕円を組み合わせた形状、渦巻状の形状としてもよい。光線70の照射予定箇所80aを渦巻状の形状とした場合、光線70の照射は、渦巻状の照射予定箇所の外側の端部から、内側の端部に向かって、又は、渦巻状の照射予定箇所の内側の端部から、外側の端部に向かって、渦巻状に光線を走査して行う。渦巻の方向は、特に限定されるものでなく、時計回り、反時計回りのいずれでもよい。   In addition, when the irradiation target portion 80a from the irradiation side of the light beam 70 is viewed in plan, the outer peripheral shape of the irradiation target portion 80a of the light beam 70 is a circle, but an elliptical shape, a polygonal shape, a semicircle or a half ellipse having different diameters are used. A combined shape or a spiral shape may be used. When the irradiation target portion 80a of the light beam 70 is formed in a spiral shape, the irradiation of the light beam 70 is performed from the outer end portion of the spiral irradiation target portion toward the inner end portion or in a spiral irradiation schedule. The light beam is scanned in a spiral shape from the inner end portion to the outer end portion. The direction of the spiral is not particularly limited, and may be either clockwise or counterclockwise.

図7(a)では、直径の異なる3つの照射予定箇所を例示したが、光線の焦点面積や、光線により形成される点状の接合部の接合面積に応じて、直径の異なる照射予定箇所の数を増減させることができる。   In FIG. 7A, three irradiation planned places having different diameters are illustrated. However, depending on the focal area of the light beam and the joint area of the dotted joint formed by the light beam, The number can be increased or decreased.

図7(b)には、光線70を照射する方法の他の例を示しており、集光面積を広くして光線70を照射するものである。この図には、光線70の照射予定箇所80bを点線で示している。そして、光線70の照射は、光線の集光面積を広くして、1回で行われる。   FIG. 7B shows another example of the method of irradiating the light beam 70, which irradiates the light beam 70 with a wide condensing area. In this figure, the irradiation planned portion 80b of the light beam 70 is indicated by a dotted line. The irradiation of the light beam 70 is performed once with the light collection area widened.

図7(a)、図7(b)に示すように光線70を照射することで、図7(c)に示すように、光線による点状の接合部の溶融凝固部30を形成できる。   By irradiating the light beam 70 as shown in FIG. 7A and FIG. 7B, as shown in FIG.

また、複数の鋼板に、表面処理皮膜を形成した鋼板を1枚以上用いる場合、光線70の照射を、外側の照射予定箇所80aに行い、その後、内側の照射予定箇所80aに行うことが好ましい。これにより、接合部内に欠陥を生じさせる気体となった皮膜を、溶融部の中心付近に集め、攪拌除去することが容易となる。なお、光線70の照射を、内側の照射予定箇所80aに行い、その後、外側の照射予定箇所80aに行っても、光線70の集光面積を広くして行っても、気体となった皮膜を溶融部から除去することができるため、これらの光線の照射方法を採用することを排除するものでない。   Moreover, when using one or more steel plates in which a surface treatment film is formed on a plurality of steel plates, it is preferable to irradiate the light beam 70 to the outer irradiation target portion 80a and then to the inner irradiation target portion 80a. Thereby, it becomes easy to collect and stir and remove the film that has become a gas causing a defect in the joint in the vicinity of the center of the melted part. Irradiation of the light beam 70 is performed on the inner irradiation planned portion 80a, and then the coating film that becomes a gas is formed regardless of whether the irradiation is performed on the outer irradiation planned portion 80a or the light collection area of the light beam 70 is increased. Since it can remove from a fusion | melting part, it does not exclude employ | adopting the irradiation method of these light rays.

次に、(b)点状の溶融凝固部と鋼板との溶融境界の内側に、該溶融境界とは重ならないように光線を環状に再照射し、該照射部分を再溶融凝固させてシリンダー状の再溶融凝固部を形成するとともに、該再溶融凝固部の周囲を再加熱(熱処理)して前記溶融境界を含む凝固再加熱部を形成し、さらに、前記再溶融凝固部を形成する際の接合条件を調整してPの偏析を緩和することについて説明する。   Next, (b) inside the melting boundary between the point-like melt-solidified portion and the steel plate, the light beam is re-irradiated in an annular shape so as not to overlap the melt boundary, and the irradiated portion is re-melted and solidified to form a cylinder. A remelted and solidified part of the solidified part, and re-heated (heat treated) around the remelted and solidified part to form a solidified and reheated part including the melting boundary. The adjustment of the bonding conditions to alleviate P segregation will be described.

光線により形成された点状の接合部の熱処理では、図7で示す方法等により得られた点状の接合部の溶融凝固部が凝固するまで待機し、その後に、鋼板20a側から溶融凝固部30の内側に光線70を照射して行う。本発明は、高温での固体中の拡散を活用したものであるため、融凝固部30が凝固した後に光線を照射しないと効果が得られないためである。
なお、溶融凝固部30の内側とは、溶融凝固部30の溶融境界を除く溶融凝固部30内をいう。
In the heat treatment of the spot-like joint formed by the light beam, the process waits until the melt-solidified part of the spot-like joint obtained by the method shown in FIG. 7 is solidified, and then the melt-solidified part from the steel plate 20a side. This is performed by irradiating the inside 30 with the light beam 70. This is because the present invention utilizes diffusion in a solid at a high temperature, so that the effect cannot be obtained unless the melt-solidified portion 30 is solidified and irradiated with light.
The inner side of the melt-solidified part 30 refers to the inside of the melt-solidified part 30 excluding the melt boundary of the melt-solidified part 30.

次に、光線により形成された点状の接合部の熱処理における光線70の照射について、図8を用いて説明する。
図8(a)には、再溶融予定箇所に光線70を照射する方法の一例を示しており、光線70の照射予定箇所90を点線で示している。
光線70の照射では、白抜き矢印で示すように略円状に光線を走査する。その際に、光線の走査方向は、特に限定されるものでなく、時計回り、反時計回りのいずれでもよい。
Next, irradiation of the light beam 70 in the heat treatment of the spot-like joint formed by the light beam will be described with reference to FIG.
FIG. 8A shows an example of a method of irradiating the light beam 70 to the remelting planned portion, and the irradiation planned portion 90 of the light beam 70 is indicated by a dotted line.
In the irradiation of the light beam 70, the light beam is scanned in a substantially circular shape as indicated by an outline arrow. At that time, the scanning direction of the light beam is not particularly limited, and may be either clockwise or counterclockwise.

略円状の光線70の照射予定箇所90は、光線70の照射により形成されたシリンダー形状の再溶融凝固部30aにより、溶融境界40と鋼板合わせ面20cの交点60周囲のPの偏析が緩和される位置に設定される。   In the portion 90 to be irradiated with the substantially circular light beam 70, the segregation of P around the intersection 60 between the melting boundary 40 and the steel sheet mating surface 20 c is mitigated by the cylinder-shaped remelted solidified portion 30 a formed by the irradiation of the light beam 70. The position is set.

また、光線70の照射側から光線による接合部を平面視した場合、光線70の照射予定箇所90の外周形状を円としているが、溶融凝固部の外側輪郭に合わせて楕円状、多角形状、直径の異なる半円や半楕円を組み合わせた形状としてもよい。また、光線70の照射回数は、再溶融凝固部の幅Wbに応じて、1回または複数回としてもよい。   In addition, when the joint portion by the light beam is viewed in plan from the irradiation side of the light beam 70, the outer peripheral shape of the planned irradiation portion 90 of the light beam 70 is a circle, but is elliptical, polygonal, or diameter according to the outer contour of the melt-solidified portion. It is good also as a shape which combined the semicircle and semi-ellipse which differ. Further, the number of times of irradiation with the light beam 70 may be one or more times depending on the width Wb of the remelted solidified portion.

図8(a)に示すように光線70を照射することで、図8(b)に示すように、光線70の照射側から溶融凝固部30を平面視したとき、環状に再溶融凝固部30aが形成され、その周囲に凝固再加熱部30bが形成される。そして、その際に溶融境界を含む前記交点近傍のPの偏析が緩和され、靱性が向上する。   By irradiating the light beam 70 as shown in FIG. 8 (a), as shown in FIG. 8 (b), when the molten and solidified portion 30 is viewed in plan from the irradiation side of the light beam 70, the remelted and solidified portion 30a is annularly formed. Is formed, and the solidification reheating part 30b is formed around it. At that time, the segregation of P in the vicinity of the intersection including the melting boundary is alleviated and the toughness is improved.

また、光線による点状の接合部の形成、及び、光線により形成された点状の接合部の溶融境界の熱処理において、光線の照射方法は、同じ照射方法でも、異なる照射方法でもよい。例えば、異なる照射直径で光線を照射して、点状の接合部を形成し、異なる照射直径で光線を照射して、光線により形成された点状の接合部の溶融境界を熱処理してもよいし、集光面積を広くして光線を照射して、光線による点状の接合部の形成し、異なる照射直径で光線を照射して、光線により形成された点状の接合部の溶融境界を熱処理してもよい。   In addition, in the formation of the spot-like joint portion by the light beam and the heat treatment of the melting boundary of the spot-like joint portion formed by the light beam, the light beam irradiation method may be the same irradiation method or a different irradiation method. For example, light beams may be irradiated with different irradiation diameters to form point-like joints, and light rays may be irradiated with different irradiation diameters to heat-treat the melting boundaries of the dot-like joints formed by the light beams. Then, widen the condensing area and irradiate with light rays to form spot-like joints by the light rays, irradiate light rays with different irradiation diameters, and melt the boundary of the spot-like joints formed by the light rays. You may heat-process.

次に、光線70の照射のうち、凝固再加熱部30bの加熱温度について説明する。
光線により形成された点状の接合部の溶融凝固部30のうち鋼板合わせ面20cと溶融境界40との交点60から、少なくとも0.5mmの範囲の領域のPの偏析が緩和されるように再加熱するとよい。
Next, the heating temperature of the coagulation reheating unit 30b in the irradiation of the light beam 70 will be described.
The segregation of P in the region in the range of at least 0.5 mm from the intersection 60 between the steel plate mating surface 20c and the melting boundary 40 in the melt-solidified portion 30 of the spot-like joint formed by the light beam is relieved. It is good to heat.

交点60から少なくとも0.5mmの範囲の領域のPの偏析を緩和するには、この範囲の最高到達温度が母材の融点以下Ac3点温度以上(例えば、900℃以上)となる条件で、光線70を溶融凝固部30の内側に照射する。交点60近傍の温度は、鋼板表面で測定した温度を代表値として用いることができる。温度は、放射温度計や熱電対を用いて測定することができる。   In order to alleviate the segregation of P in the region in the range of at least 0.5 mm from the intersection point 60, the light beam is used under the condition that the highest temperature in this range is not higher than the melting point of the base material and is not lower than the Ac3 point temperature (for example, not lower than 900 ° C.). 70 is irradiated to the inside of the melt-solidified part 30. As the temperature near the intersection 60, the temperature measured on the steel plate surface can be used as a representative value. The temperature can be measured using a radiation thermometer or a thermocouple.

このような温度とするには、予め、再溶融凝固部の外側の円相当直径Wa又は形成される再溶融凝固部の幅Wbと、光線の再照射中の前記範囲の温度との関係や、光線の再照射時間と前記範囲の温度との関係等を調査しておき、再溶融凝固部の外側の円相当直径Wa、再溶融凝固部の幅Wb、光線の再照射時間等を調整することで行うことができる。また、交点60から0.5mmの範囲の領域を母材の融点以下Ac3点温度以上とするには、交点60から前記再溶融凝固部までの最短距離Wcが0.5〜1.0mmとなるように光線の照射を調整することが例示される。好ましくは、0.6〜0.9mmである。   In order to achieve such a temperature, the relationship between the circle equivalent diameter Wa outside the remelted solidified portion or the width Wb of the remelted solidified portion to be formed, and the temperature in the above-described range during re-irradiation of light rays, Investigate the relationship between the re-irradiation time of the light beam and the temperature within the above range, and adjust the equivalent circle diameter Wa outside the re-melting and solidifying part, the width Wb of the re-melting and solidifying part, the re-irradiation time of the light beam, etc. Can be done. In order to set the region in the range of 0.5 mm from the intersection point 60 to the Ac3 point temperature or less below the melting point of the base material, the shortest distance Wc from the intersection point 60 to the remelted solidified portion is 0.5 to 1.0 mm. Thus, adjusting the irradiation of light rays is exemplified. Preferably, it is 0.6-0.9 mm.

次に、光線による点状の接合部の形成、及び、光線により形成された点状の接合部の熱処理で使用する光線について説明する。
光線による接合は、特に限定されるものでないが、リモートレーザ接合とすることが好ましい。リモートレーザ接合は、ロボットアームの先端に取り付けたガルバノミラーにより、光線を接合打点の間を高速で移動させて接合するものであり、接合の作業時間の大幅な短縮が可能になる。また、接合に用いる光線としては、例えば、CO2光線、YAG光線、ファイバー光線、DISK光線、半導体光線などの光線を用いることができる。
Next, a description will be given of the light beam used in the formation of the dotted joint portion by the light beam and the heat treatment of the dotted joint portion formed by the light beam.
The bonding by light beam is not particularly limited, but remote laser bonding is preferable. In remote laser bonding, a galvano mirror attached to the tip of a robot arm is used for bonding by moving a light beam between bonding points at a high speed, and the bonding work time can be greatly reduced. As the light beam to be used for joining, for example, CO 2 beam, YAG light, fiber light, DISK rays, can be used a light beam such as a semiconductor light.

また、光線による接合の条件は、従来の条件を採用することができる。例えば、光線出力2〜30kW、集光面のビーム径0.1〜8.0mm、接合速度0.1〜60m/minの接合条件で行うことができる。   Moreover, the conventional conditions can be employ | adopted for the conditions of joining by a light ray. For example, it can be performed under the joining conditions of a light output of 2 to 30 kW, a beam diameter of the condensing surface of 0.1 to 8.0 mm, and a joining speed of 0.1 to 60 m / min.

また、自動車の組み立ては、複数の接合工程からなるが、1つの工程内で本発明の製法を実施する場合、1つ1つの接合点に対して、光線照射による接合と再溶融を実施してもよいが、温度変化のばらつきを低減するために、より好適には、光線照射により複数の溶融接合を実施し、その後、光線照射により複数の再溶融を実施するとことが好ましい。また複数の接合工程で本発明の製法を実施する場合、光線照射による溶融接合工程と、光線照射による再溶融工程を別々の工程とすることで、冷却の待ち時間を無くすことができる。   In addition, the assembly of automobiles consists of a plurality of joining processes, but when the manufacturing method of the present invention is carried out within one process, the joining and remelting by light irradiation is carried out for each joining point. However, in order to reduce the variation in temperature change, it is more preferable to perform a plurality of melt bonding by light irradiation, and then perform a plurality of remelting by light irradiation. Moreover, when implementing the manufacturing method of this invention in a some joining process, the waiting time of cooling can be eliminated by making the fusion | melting joining process by light irradiation, and the remelting process by light irradiation into a separate process.

次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。   Next, examples of the present invention will be described. The conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this one condition example.

表1に示す鋼板を2枚重ね合わせて、ガルバノミラーを有するリモート光線による接合装置を用い、ファイバーレーザ光線により接合を行い、光線により形成された点状の接合部を有する試験片を作成した。表2に、光線による点状の接合部を形成する際の接合条件を示す。ビーム径は、集光面での光線の直径である。   Two steel plates shown in Table 1 were superposed and joined by a fiber laser beam using a remote beam joining device having a galvanometer mirror, to prepare a test piece having a dotted joint formed by the light beam. Table 2 shows the joining conditions when forming a spot-like joint with light rays. The beam diameter is the diameter of the light beam on the condensing surface.

Figure 2017221972
Figure 2017221972

Figure 2017221972
Figure 2017221972

次に、各試験片に対して、鋼板合わせ面20c近傍の溶融凝固部の熱処理を行った。この熱処理では、溶融凝固部とシリンダー形状の再溶融凝固部の中心が一致するようにし、鋼板合わせ面の下側位置(0.1mm)に下端が位置するように再溶融凝固部を形成して行った。
表3に、再溶融凝固部の形成条件(熱処理条件)を示す。ビーム径は、集光面での光線の直径である。なお、熱処理では、点状の溶融凝固部の形成と同じリモート光線による接合装置を用いた。
Next, each test piece was heat-treated at the melt-solidified portion in the vicinity of the steel sheet mating surface 20c. In this heat treatment, the melt-solidified part and the cylinder-shaped remelt-solidified part are made to coincide with each other, and the remelt-solidified part is formed so that the lower end is located at the lower position (0.1 mm) of the steel sheet mating surface. went.
Table 3 shows the formation conditions (heat treatment conditions) of the remelted solidified portion. The beam diameter is the diameter of the light beam on the condensing surface. In the heat treatment, the same joining apparatus using a remote beam as that for forming the spot-like melted and solidified portion was used.

Figure 2017221972
Figure 2017221972

表4に、熱処理後の試験片について、鋼板合わせ面と溶融境界の交点から前記再溶融凝固部までの最短距離Wc、再溶融凝固部の平均ビッカース硬さA、鋼板合わせ面の延長上、溶融境界から内部に0.5mm入った位置までの凝固再加熱部における平均ビッカース硬さB、平均ビッカース硬さAとBの差、P偏析、十字引張強さ(CTS)について示す。 CTSは、JIS Z3137にスポット接合の強度試験方法として記載されている方法を援用した。   Table 4 shows the shortest distance Wc from the intersection of the steel plate mating surface and the melting boundary to the remelted solidified portion, the average Vickers hardness A of the remelted solidified portion, and the extension of the steel plate mating surface. The average Vickers hardness B, the difference between the average Vickers hardness A and B, the P segregation, and the cross tensile strength (CTS) in the solidification reheated part from the boundary to the position 0.5 mm inside is shown. CTS used the method described in JIS Z3137 as a strength test method for spot bonding.

P偏析は、上述のPの偏析の解析法に従い、P濃度(質量%)の部分平均が全平均値の2倍を超える個数が0個以上100個以下である場合を「○」と表記し、個数が101個以上である場合を「×」と表記した。また、CTSは、JIS Z3137にスポット接合の強度試験方法として記載されている方法を援用した。   P segregation is expressed as “◯” when the partial average of P concentration (mass%) is more than 0 and less than 100 in accordance with the analysis method of P segregation described above. The case where the number is 101 or more is represented as “×”. CTS used the method described in JIS Z3137 as a strength test method for spot bonding.

Figure 2017221972
Figure 2017221972

No.2〜4、6〜8、10〜13は、光線により形成される点状の接合部に熱処理を行い、本発明の接合継手で規定する構成をすべて満足するため、溶融凝固部の交点から0.5mmの範囲の靱性が向上し、十字引張強さ(CTS)が高くなっている。   No. 2 to 4, 6 to 8, and 10 to 13 are heat-treated on the spot-like joints formed by light rays, and satisfy all the configurations defined by the joints of the present invention. The toughness in the range of 0.5 mm is improved and the cross tensile strength (CTS) is high.

これに対して、No.1、No.5、及び、No.14は、光線により形成される点状の接合部に熱処理を行っていないため、溶融凝固部の溶融境界の靱性が向上せず、十字引張強さ(CTS)が低くなっていた。また、No.9は、溶融凝固部の全部に熱処理を行ったため、溶融凝固部の溶融境界の靱性が向上せず、十字引張強さ(CTS)が低くなっていた。   In contrast, no. 1, no. 5 and No. In No. 14, since the heat treatment was not performed on the dotted joint formed by the light beam, the toughness of the melt boundary of the melt-solidified portion was not improved, and the cross tensile strength (CTS) was low. No. In No. 9, since the entire melt-solidified portion was heat-treated, the toughness of the melt boundary of the melt-solidified portion was not improved, and the cross tensile strength (CTS) was low.

本発明によれば、光線により形成される点状の接合部の溶融境界近傍に、靱性に優れる凝固再加熱部を設けたので、重ね接合継手の継手強度、特に、十字引張強さ(CTS)を向上させることができ、接合継手の信頼性を向上させることができる。そして、本発明の接合継手を自動車部品に適用することで、自動車部品の信頼性を向上させることができる。よって、本発明は、産業上の利用可能性が高いものである。   According to the present invention, since the solidification reheating part having excellent toughness is provided in the vicinity of the melting boundary of the dotted joint formed by the light beam, the joint strength of the lap joint, in particular, the cross tensile strength (CTS). The reliability of the joint joint can be improved. And the reliability of a motor vehicle component can be improved by applying the joint joint of this invention to a motor vehicle component. Therefore, the present invention has high industrial applicability.

1、10 接合継手
2a、20a 鋼板
2b、20b 鋼板
2c、20c 鋼板合わせ面
3、30 光線により形成される点状の接合部の溶融凝固部
3a、30a 溶融凝固部内に形成された再溶融凝固部
3b、30b 溶融凝固部内に形成された凝固再加熱部
4、40 鋼板と溶融凝固部の間の溶融境界
5、50 再溶融凝固部の重ね合わせ方向の先端部
6、60 鋼板合わせ面と溶融境界の交点
70 光線
80a、80b 照射予定箇所
90 照射予定箇所
A 矩形平面領域
X 板厚方向のビッカース硬さの測定位置
L1 鋼板表面と平行方向のビッカース硬さの測定範囲
L2 L1中の溶融凝固部の範囲
C 中心軸
W 溶融凝固部の円相当直径
Wa 再溶融凝固部の外側の円相当直径
Wb 再溶融凝固部の径方向の幅
Wc 鋼板合わせ面と溶融境界の交点から再溶融凝固部までの最短距離
DESCRIPTION OF SYMBOLS 1, 10 Joint joint 2a, 20a Steel plate 2b, 20b Steel plate 2c, 20c Steel plate mating surface 3, 30 Melt-solidified part 3a, 30a of the point-like junction formed by light rays Remelt-solidified part formed in the melt-solidified part 3b, 30b Solidification reheating part formed in the melt solidification part 4, 40 Melting boundary between the steel sheet and the melt solidification part 5, 50 Tip part 6 in the overlapping direction of the remelt solidification part 6, 60 Steel sheet mating surface and melting boundary 70 Light beam 80a, 80b Planned irradiation point 90 Planned irradiation point A Rectangular plane region X Measurement position of Vickers hardness in the plate thickness direction L1 Measurement range of Vickers hardness in the direction parallel to the steel plate surface L2 Range C Central axis W Equivalent circle diameter of melt-solidified portion Wa Equivalent circle diameter outside re-melt-solidified portion Wb Radial width of re-melt-solidified portion Wc Intersection of steel sheet mating surface and melting boundary The shortest distance from the point to the remelted solidified part

Claims (6)

重ね合わされた複数の鋼板で構成され、光線により形成される点状の接合部を有する重ね接合継手において、
前記光線により形成される点状の接合部は、前記重ね合わされた全ての鋼板に跨る点状の溶融凝固部を有し、
該溶融凝固部は、再溶融凝固部と、凝固再加熱部とを有し、
前記再溶融凝固部は、シリンダー状の形状を有し、前記溶融凝固部と鋼板との溶融境界の内側に該溶融境界とは重ならないように位置しており、
前記凝固再加熱部は、前記再溶融凝固部の周囲に位置し、前記溶融境界を含んでおり、
更に、前記凝固再加熱部において、前記鋼板合わせ面と前記溶融境界の交点から合わせ面の延長線上に100μm隔てた点を中心点とし、
前記中心点から前記中心軸へ向かう方向に平行で、前記鋼板面に垂直な、前記中心点を中心とした、100μm×100μmの矩形平面領域にて、P濃度を質量%で、当該鋼板面に平行な方向及び当該鋼板面に垂直な方向それぞれに沿って1μmピッチで測定し、これにより100点×100点の測定点それぞれにおける当該P濃度の測定値を求め、
前記100点×100点の測定点のうち、前記鋼板面に平行な方向に一列に並んだ隣り合う20点の各前記測定点における前記P濃度の測定値の部分平均値を、当該鋼板面に平行な方向及び当該鋼板面に垂直な方向それぞれに沿って1点ずつずらしながら算出することを繰り返し、これにより81個×100個の部分平均値を求めた場合に、
前記部分平均値のうち、前記100点×100点の測定点それぞれにおける前記P濃度の測定値の全平均値の2倍を超える前記部分平均値の個数が0個以上100個以下であることを特徴とする重ね接合継手。
In a lap joint having a dotted joint formed by a plurality of steel plates stacked and formed by light rays,
The point-like joint formed by the light beam has a point-like melted and solidified portion straddling all the steel plates stacked,
The melt solidification part has a remelt solidification part and a solidification reheating part,
The remelted solidified part has a cylindrical shape and is positioned so as not to overlap the melted boundary inside the melted boundary between the melted solidified part and the steel plate,
The solidification reheating part is located around the remelting solidification part and includes the melting boundary;
Furthermore, in the solidification reheating part, a point separated by 100 μm on the extension line of the mating surface from the intersection of the steel sheet mating surface and the melting boundary is a center point,
In a rectangular plane region of 100 μm × 100 μm centered on the central point, parallel to the direction from the central point toward the central axis and perpendicular to the steel plate surface, the P concentration in mass% and on the steel plate surface Measured at a pitch of 1 μm along each of the parallel direction and the direction perpendicular to the steel sheet surface, thereby obtaining the measurement value of the P concentration at each of 100 × 100 measurement points,
Among the 100 measurement points × 100 measurement points, a partial average value of the measurement values of the P concentration at each of the 20 measurement points adjacent in a line in a direction parallel to the steel plate surface is applied to the steel plate surface. When repeatedly calculating by shifting one point along each of the parallel direction and the direction perpendicular to the steel sheet surface, thereby obtaining 81 × 100 partial average values,
Among the partial average values, the number of the partial average values that exceeds twice the total average value of the measured values of the P concentration at each of the 100 points × 100 measurement points is 0 or more and 100 or less. A characteristic lap joint.
前記複数の鋼板の板厚方向断面において、前記鋼板合わせ面と前記溶融境界の交点から前記再溶融凝固部までの最短距離が0.5〜1.0mmであることを特徴とする請求項1
に記載の重ね接合継手。
The shortest distance from the intersection of the steel sheet mating surface and the melting boundary to the remelted solidified portion in a cross section in the plate thickness direction of the plurality of steel plates is 0.5 to 1.0 mm.
The lap joint joint described in 1.
前記複数の鋼板が、表面処理皮膜を有する鋼板を1枚以上含むことを特徴とする請求項1又は2に記載の重ね接合継手。   The lap joint according to claim 1 or 2, wherein the plurality of steel plates include at least one steel plate having a surface treatment film. 複数の鋼板を重ね合わせ、高パワー密度を有する光線を照射して前記複数の鋼板を接合する重ね接合継手の製造方法において、
重ね合わされた鋼板の一方の外表面の限られた領域内に高パワー密度を有する光線を照射し、前記重ね合わされた全ての鋼板に跨って溶融凝固させて点状の溶融凝固部を有する高パワー密度を有する光線による点状の接合部を形成し、
次いで、該溶融凝固部と鋼板との溶融境界の内側に、該溶融境界とは重ならないようにかつ、重ね合わされた鋼板を貫通しないように、高パワー密度を有する光線を環状に再照射し、該照射部分を再溶融凝固させてシリンダー状の再溶融凝固部を形成するとともに、該再溶融凝固部の周囲を再加熱して前記溶融境界を含む凝固再加熱部を形成し、
さらに、前記再溶融凝固部を形成する際の接合条件を調整して、
前記金属板の重ね合わせ面の前記溶融境界から前記中心軸側に100μmの点を中心点とし、
前記中心点から前記中心軸へ向かう方向に平行で、前記金属板面に垂直な、前記中心点を中心とした、100μm×100μmの矩形平面領域にて、P濃度を質量%で、当該金属板面に平行な方向及び当該金属板面に垂直な方向それぞれに沿って1μmピッチで測定し、これにより100点×100点の測定点それぞれにおける当該P濃度の測定値を求め、
前記100点×100点の測定点のうち、前記金属板面に平行な方向に一列に並んだ隣り合う20点の各前記測定点における前記P濃度の測定値の平均値を、当該金属板面に平行な方向及び当該金属板面に垂直な方向それぞれに沿って1点ずつずらしながら算出することを繰り返し、これにより81個×100個の部分平均値を求めた場合に、
前記部分平均値のうち、前記100点×100点の測定点それぞれにおける前記P濃度の測定値の全平均値の2倍を超える前記部分平均値の個数が0個以上100個以下となるようにする
ことを特徴とする重ね接合継手の製造方法。
In the method of manufacturing a lap joint, which superimposes a plurality of steel plates and irradiates a light beam having a high power density to join the plurality of steel plates,
High power having a point-like melt-solidified part by irradiating a light beam having a high power density in a limited region of one outer surface of the superposed steel plates, and melting and solidifying across all the superposed steel plates Forming a spot-like joint with light rays having a density,
Next, inside the melting boundary between the melt-solidified part and the steel sheet, reirradiate the light beam having a high power density in a ring shape so as not to overlap the melting boundary and not to penetrate the stacked steel sheets, The irradiated portion is remelted and solidified to form a cylindrical remelted solidified portion, and the periphery of the remelted solidified portion is reheated to form a solidified reheated portion including the melting boundary,
Furthermore, by adjusting the joining conditions when forming the remelted solidified portion,
A center point is a point of 100 μm from the melting boundary of the overlapping surface of the metal plate to the central axis side,
In the rectangular plane region of 100 μm × 100 μm centered on the center point, which is parallel to the direction from the center point toward the center axis and perpendicular to the metal plate surface, the P concentration is mass%, and the metal plate Measured at a pitch of 1 μm along each direction parallel to the surface and perpendicular to the metal plate surface, thereby obtaining a measurement value of the P concentration at each of 100 × 100 measurement points,
Of the 100 measurement points × 100 measurement points, the average value of the measurement values of the P concentration at each of the 20 measurement points adjacent to each other in a row in a direction parallel to the metal plate surface is calculated as the metal plate surface. When calculating a partial average value of 81 × 100 pieces by repeating the calculation while shifting one point along each of the direction parallel to the direction and the direction perpendicular to the metal plate surface,
Among the partial average values, the number of the partial average values that exceeds twice the total average value of the measured values of the P concentration at each of the 100 points × 100 measurement points is 0 or more and 100 or less. A method for manufacturing a lap joint.
前記光線の再照射は、前記複数の鋼板の板厚方向断面において、鋼板合わせ面と前記溶融境界の交点から前記再溶融凝固部までの最短距離が0.5〜1.0mmとなる
ように行われることを特徴とする請求項4に記載の重ね接合継手の製造方法。
The re-irradiation of the light beam is performed so that the shortest distance from the intersection of the steel sheet mating surface and the melting boundary to the remelted solidified portion is 0.5 to 1.0 mm in the cross section in the plate thickness direction of the plurality of steel plates. The method for producing a lap joint according to claim 4.
前記複数の鋼板に、表面処理皮膜を形成した鋼板を1枚以上用いることを特徴とする請求項4又は5に記載の重ね接合継手の製造方法。   The method for producing a lap joint according to claim 4 or 5, wherein at least one steel plate having a surface treatment film formed thereon is used for the plurality of steel plates.
JP2017038211A 2016-06-09 2017-03-01 Laminated joint and its manufacturing method Active JP6866691B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016115566 2016-06-09
JP2016115566 2016-06-09

Publications (2)

Publication Number Publication Date
JP2017221972A true JP2017221972A (en) 2017-12-21
JP6866691B2 JP6866691B2 (en) 2021-04-28

Family

ID=60686213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038211A Active JP6866691B2 (en) 2016-06-09 2017-03-01 Laminated joint and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6866691B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160083A (en) * 2000-11-29 2002-06-04 Nippon Steel Corp Method of laser welding for overlapped zinc steel plates
WO2013161937A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 Spot-welding joint
JP2016078060A (en) * 2014-10-14 2016-05-16 新日鐵住金ステンレス株式会社 Weld joint of duplex stainless steel and method for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160083A (en) * 2000-11-29 2002-06-04 Nippon Steel Corp Method of laser welding for overlapped zinc steel plates
WO2013161937A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 Spot-welding joint
JP2016078060A (en) * 2014-10-14 2016-05-16 新日鐵住金ステンレス株式会社 Weld joint of duplex stainless steel and method for production thereof

Also Published As

Publication number Publication date
JP6866691B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP6430070B2 (en) Laser welding method for producing semi-finished sheet metal products made of hardenable steel and having an aluminum or aluminum-silicon coating
CN108367386B (en) Method for joining two blanks, blank and product obtained
KR101463702B1 (en) Laser welding method
CN106488824B (en) Method for engaging two blanks
KR101943173B1 (en) Lap-welding method, lap joint, production method for lap joint, and automotive part
US10786873B2 (en) Fillet arc welded joint and method for producing same
WO2016043278A1 (en) Laser welded joint and laser welding method
JP5505369B2 (en) Laser welded joint with excellent joint strength and manufacturing method thereof
JP5999253B2 (en) Manufacturing method of arc spot welded joint
JP5630373B2 (en) Manufacturing method of steel plate welded portion excellent in delayed fracture resistance and steel structure having the welded portion
UA127702C2 (en) Method of producing a welded steel blank with the provision of a filler wire having a defined carbon content, associated welded blank, method of producing a welded part with hot press-formed and cooled steel part and associated part
JP2017113781A (en) Lap laser spot welding joint and manufacturing method of the welding joint
JP6379819B2 (en) Lap welding member, lap resistance seam welding method of lap welding member, and lap welding member for automobile having lap welding part
JP6786977B2 (en) Laminated joint and its manufacturing method
US11174883B2 (en) Laser welded joint and method of production of same
JP6798359B2 (en) Laminated joint and its manufacturing method
JP2017052005A (en) Lap joint coupler and method for manufacturing same
JP6866691B2 (en) Laminated joint and its manufacturing method
JP6859105B2 (en) Laminated laser spot welded joint and manufacturing method of the welded joint
JP7151762B2 (en) SPOT WELD JOINTS, MOTOR VEHICLE STRUCTURE COMPONENTS WITH SPOT WELD JOINTS, AND METHOD FOR MANUFACTURING THE SPOT WELD JOINTS
KR20210116648A (en) Overlap laser welding seam, manufacturing method thereof, and structural member for automobile body
JP2021154344A (en) Method of manufacturing hard metal member, and hard metal member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R151 Written notification of patent or utility model registration

Ref document number: 6866691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151