JP2017218690A - Fabric electrode - Google Patents

Fabric electrode Download PDF

Info

Publication number
JP2017218690A
JP2017218690A JP2016113565A JP2016113565A JP2017218690A JP 2017218690 A JP2017218690 A JP 2017218690A JP 2016113565 A JP2016113565 A JP 2016113565A JP 2016113565 A JP2016113565 A JP 2016113565A JP 2017218690 A JP2017218690 A JP 2017218690A
Authority
JP
Japan
Prior art keywords
fabric
conductive
layer
electrode
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016113565A
Other languages
Japanese (ja)
Other versions
JP6829524B2 (en
Inventor
修一 源中
Shuichi Motonaka
修一 源中
佳成 宮村
Yoshinari Miyamura
佳成 宮村
岸 達也
Tatsuya Kishi
達也 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2016113565A priority Critical patent/JP6829524B2/en
Publication of JP2017218690A publication Critical patent/JP2017218690A/en
Application granted granted Critical
Publication of JP6829524B2 publication Critical patent/JP6829524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fabric electrode having gas permeability and capable of suppressing a sense of discomfort when brought into contact with the skin, excellent in adhesion properties with the skin when the fabric electrode is worn, and less likely to cause peeling off or falling out of the fabric electrode when following the living body.SOLUTION: The first inventive fabric electrode is formed of a non-conductive fiber layer comprising a fiber produced by spinning a spinning solution containing at least a hydrophilic polymer laminated on a conductive fabric layer. The second inventive fabric electrode is formed by laminating a conductive fabric layer at least a part of which a resin containing at least a hydrophilic polymer adheres to and a non-conductive fiber layer.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、生体用センサーの電極として使用するものであって、非導電性布帛と導電性布帛との接着性に優れた布帛電極に関する。   The present invention relates to a fabric electrode that is used as, for example, an electrode of a biosensor and has excellent adhesion between a non-conductive fabric and a conductive fabric.

生体センサーの例として、心電図用電極を手首、足首に金属スナップ付き電極を固定し、胸には粘着剤を介して皮膚に密着させている。このようなものとして電気的に独立した複数の電極が、非導電性シート状物を介して一体化された生体医学用電極が知られている。より具体的には、例えば食塩などの電解質を溶解した含水ゲルを導電性接着剤とすることや、シート状の導電性接着剤でよいこと、電子電導層としては金属箔や導電性金属を蒸着したりすることや、導電性インクをコーティングすることで形成すること、また、非導電性シート状物としてはポリエチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレンなどのフィルムが使用できることが開示されている(特許文献1)。このような生体医学用電極によれば、複数の電極が非導電性シート状物を介して一体化していることにより皮膚への密着面積が大きく、皮膚への追従性もよい。   As an example of a biosensor, an electrode for electrocardiogram is fixed to the wrist and ankle with an electrode with a metal snap, and the chest is brought into close contact with the skin via an adhesive. As such, a biomedical electrode is known in which a plurality of electrically independent electrodes are integrated through a non-conductive sheet-like material. More specifically, for example, a water-containing gel in which an electrolyte such as salt is dissolved may be used as a conductive adhesive, or a sheet-like conductive adhesive may be used. A metal foil or a conductive metal is deposited as an electronic conductive layer. It is disclosed that a film such as polyethylene terephthalate, polyvinyl chloride, polyethylene, and polypropylene can be used as the non-conductive sheet-like material. Patent Document 1). According to such a biomedical electrode, since the plurality of electrodes are integrated through the non-conductive sheet-like material, the contact area with the skin is large and the followability to the skin is good.

実開平5−70552号公報Japanese Utility Model Publication No. 5-70552

しかしながら、従来の心電図用電極はゲル状やシート状の導電性接着剤で、フィルムである非導電性シート状物を積層していることから、肌に触れた際に肌との馴染が劣ることから違和感を覚え、通気性もないことから汗や痒みが生じるおそれがあった。さらに、心電図用電極の装着時には、肌からの脱落のおそれがあった。   However, the conventional electrocardiogram electrode is a gel-like or sheet-like conductive adhesive, and since it is laminated with a non-conductive sheet-like material that is a film, the familiarity with the skin is poor when touching the skin There was a risk of sweating and itching because of the lack of breathability. Furthermore, when the electrocardiogram electrode was worn, there was a risk of falling off the skin.

本発明は、かかる技術的背景に鑑みてなされたものであって、通気性があって肌に触れた際の違和感を抑制でき、布帛電極の装着時には肌との密着性にも優れ、生体への追従時の布帛電極の剥離や脱落が生じ難い布帛電極を提供することを目的とする。   The present invention has been made in view of such a technical background, has air permeability, can suppress a sense of incongruity when touching the skin, has excellent adhesion to the skin when the fabric electrode is worn, and is applied to a living body. It is an object of the present invention to provide a fabric electrode in which the fabric electrode is unlikely to peel off or drop off during follow-up.

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]少なくとも親水性高分子を含む紡糸溶液を紡糸してなる繊維を含む非導電性繊維層が、導電性布帛層に積層されてなることを特徴とする布帛電極。   [1] A fabric electrode, wherein a non-conductive fiber layer containing fibers obtained by spinning a spinning solution containing at least a hydrophilic polymer is laminated on a conductive fabric layer.

[2]少なくとも親水性高分子を含む樹脂が少なくとも一部に付着してなる導電性布帛層と、非導電性繊維層とが積層されてなることを特徴とする布帛電極。   [2] A fabric electrode comprising a conductive fabric layer formed by adhering at least a part of a resin containing a hydrophilic polymer and a non-conductive fiber layer.

[3]前記非導電性繊維層は、少なくとも親水性高分子を含む紡糸溶液を紡糸してなる繊維を含む層である前項2に記載の布帛電極。   [3] The fabric electrode according to item 2 above, wherein the non-conductive fiber layer is a layer containing fibers obtained by spinning a spinning solution containing at least a hydrophilic polymer.

[4]前記非導電性繊維層は、エレクトロスピニング法により積層された層である前項1〜3のいずれか1項に記載の布帛電極。   [4] The fabric electrode according to any one of items 1 to 3, wherein the non-conductive fiber layer is a layer laminated by an electrospinning method.

[5]前記非導電性繊維層を構成する繊維の太さが、10nm〜10000nmの繊維で形成された不織布層である前項1〜4のいずれか1項に記載の布帛電極。   [5] The fabric electrode according to any one of [1] to [4], wherein the fiber constituting the nonconductive fiber layer is a nonwoven fabric layer formed of fibers having a thickness of 10 nm to 10000 nm.

[6]前記導電性布帛層は、体積固有抵抗値が10Ω・cm以下である前項1〜5のいずれか1項に記載の布帛電極。 [6] The fabric electrode according to any one of [1] to [5], wherein the conductive fabric layer has a volume resistivity value of 10 4 Ω · cm or less.

[1]の発明では、布帛電極の非導電性繊維層を肌に当てて用いることから、通気性があって肌に触れた際の違和感を抑制できる。しかも、布帛電極の装着時には肌との密着性にも優れ、生体への追従時の布帛電極の剥離や脱落が生じ難い布帛電極とすることができる。   In the invention of [1], since the non-conductive fiber layer of the fabric electrode is used while being applied to the skin, it is breathable and can suppress a sense of incongruity when touching the skin. In addition, when the fabric electrode is attached, the fabric electrode is excellent in adhesion to the skin, and the fabric electrode can be hardly peeled off or dropped off when following the living body.

[2]の発明では、[1]の効果に加え、導電性布帛層には、少なくとも親水性高分子を含む樹脂が少なくとも一部に付着してなるので少なくとも親水性高分子を含む樹脂が非導電性繊維層の足場になるので、非導電性繊維層と導電性布帛層を、さらに強固に一体化することができる。   In the invention of [2], in addition to the effect of [1], a resin containing at least a hydrophilic polymer is attached to at least a part of the conductive fabric layer. Since it becomes a scaffold for the conductive fiber layer, the non-conductive fiber layer and the conductive fabric layer can be more firmly integrated.

[3]の発明では、前記非導電性繊維層は、少なくとも親水性高分子を含む紡糸溶液を紡糸してなる繊維を含む層なので、肌に触れた際の違和感をさらに抑制できるとともに肌との密着性を向上させることができる。   In the invention of [3], since the non-conductive fiber layer is a layer containing a fiber formed by spinning a spinning solution containing at least a hydrophilic polymer, it is possible to further suppress discomfort when touching the skin and Adhesion can be improved.

[4]の発明では、前記非導電性繊維層は、エレクトロスピニング法により積層された層なので、導電性布帛層との一体化を十分に向上させることができるとともに通気性に優れる。   In the invention of [4], since the non-conductive fiber layer is a layer laminated by an electrospinning method, integration with the conductive fabric layer can be sufficiently improved and air permeability is excellent.

[5]の発明では、前記非導電性繊維層を構成する繊維の太さが、10nm〜10000nmの繊維で形成された不織布層であるから、肌への密着性を一層向上させることができて、生体への追従時の布帛電極の剥離や脱落が格段に生じ難いとともに、優れた通気性を有する。   In the invention of [5], since the thickness of the fibers constituting the nonconductive fiber layer is a nonwoven fabric layer formed of fibers of 10 nm to 10000 nm, the adhesion to the skin can be further improved. In addition, the fabric electrode is hardly peeled off or dropped off when following the living body, and has excellent air permeability.

[6]の発明では、前記導電性布帛層は、体積固有抵抗値が10Ω・cm以下なので、すなわち低い抵抗値を有しているので、心電図用等の電極において、感度の高い計測が可能となる。 In the invention of [6], the conductive fabric layer has a volume resistivity value of 10 4 Ω · cm or less, that is, has a low resistance value. Therefore, highly sensitive measurement can be performed on an electrode for an electrocardiogram or the like. It becomes possible.

本発明に係る布帛電極の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the fabric electrode which concerns on this invention. 本発明に係る布帛電極の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the fabric electrode which concerns on this invention.

次に、本発明に係る布帛電極の一実施形態について図にもとづいて説明する。図1において、第1の発明の布帛電極は、少なくとも親水性高分子を含む紡糸溶液を紡糸してなる繊維を含む非導電性繊維層2が導電性布帛層3に積層されてなる。すなわち、紡糸溶液に溶かす樹脂は、溶媒に溶解できる樹脂であれば特に限定されず、親水性高分子を含む。   Next, an embodiment of a fabric electrode according to the present invention will be described with reference to the drawings. In FIG. 1, the fabric electrode of the first invention is formed by laminating a non-conductive fiber layer 2 containing fibers obtained by spinning a spinning solution containing at least a hydrophilic polymer on a conductive fabric layer 3. That is, the resin dissolved in the spinning solution is not particularly limited as long as it is a resin that can be dissolved in a solvent, and includes a hydrophilic polymer.

第2の発明の布帛電極1は、少なくとも親水性高分子を含む樹脂(図示せず)が少なくとも一部に付着してなる導電性布帛層3と、非導電性繊維層2とが積層されてなることを特徴とする。少なくとも親水性高分子を含む樹脂を導電性布帛層3に付着させるには、例えば少なくとも親水性高分子を含む樹脂液中に導電性布帛層3を浸す浸漬法、導電性布帛層3にロールコーターやナイフコーターを用いて塗布するコーティング法、版を用いて印捺するプリント法等の方法を挙げることができる。   The fabric electrode 1 of the second invention is formed by laminating a conductive fabric layer 3 in which a resin (not shown) containing at least a hydrophilic polymer is attached to at least a part and a non-conductive fiber layer 2. It is characterized by becoming. In order to attach a resin containing at least a hydrophilic polymer to the conductive fabric layer 3, for example, an immersion method in which the conductive fabric layer 3 is immersed in a resin liquid containing at least a hydrophilic polymer, a roll coater is applied to the conductive fabric layer 3. And a coating method in which coating is performed using a knife coater and a printing method in which printing is performed using a plate.

前記樹脂の付着量(乾燥状態)は、0.5g/m〜20.0g/mに設定されるのが好ましい。0.5g/m以上とすることで、非導電性繊維層2の足場となるともに、20.0g/m以下とすることで、通気性を保持することができる。 Adhered amount of the resin (dry) is preferably set to 0.5g / m 2 ~20.0g / m 2 . By setting it as 0.5 g / m < 2 > or more, it becomes a scaffold of the nonelectroconductive fiber layer 2, and it can maintain air permeability by setting it as 20.0 g / m < 2 > or less.

また、非導電性繊維層2は、少なくとも親水性高分子を含む紡糸溶液を紡糸してなる繊維を含む層であるのが好ましい。   The non-conductive fiber layer 2 is preferably a layer containing fibers formed by spinning a spinning solution containing at least a hydrophilic polymer.

非導電性繊維層2は、エレクトロスピニング法(図2参照)により積層された層であるのが好ましい。アース9された導電性布帛層3と、紡糸溶液5のシリンジ(またはタンク)4との間に高電圧電源8によって高電圧を印加することで、紡糸溶液5が紡糸口6から導電性布帛層3の表面に向かって噴出する。そして、紡糸溶液5は、導電性布帛層3の表面に到達するまでの間に、紡糸溶液5中の溶媒が揮発しながら樹脂噴出7となり、紡糸溶液5中の樹脂の繊維が形成されて導電性布帛層3の表面に積層される。   The nonconductive fiber layer 2 is preferably a layer laminated by an electrospinning method (see FIG. 2). A high voltage is applied between the grounded 9 conductive fabric layer 3 and the syringe (or tank) 4 of the spinning solution 5 by a high voltage power source 8, so that the spinning solution 5 is fed from the spinning port 6 to the conductive fabric layer. 3 spouts toward the surface. Then, until the spinning solution 5 reaches the surface of the conductive fabric layer 3, the solvent in the spinning solution 5 volatilizes and becomes a resin jet 7 so that resin fibers in the spinning solution 5 are formed and conductive. Is laminated on the surface of the conductive fabric layer 3.

なお、印加する高電圧8は、特に限定されないが、0kV〜40kVに設定するのが好ましい。また、前記紡糸口6の内径は0.4mm〜1.20mmに設定するのが好ましい。紡糸溶液5の噴出速度は、0.01ml/分〜1.2ml/分に設定するのが好ましい。   The applied high voltage 8 is not particularly limited, but is preferably set to 0 kV to 40 kV. The inner diameter of the spinning port 6 is preferably set to 0.4 mm to 1.20 mm. The ejection speed of the spinning solution 5 is preferably set to 0.01 ml / min to 1.2 ml / min.

また、エレクトロスピニング法による繊維の太さは、紡糸溶液5中の樹脂濃度、印加する高電圧8、紡糸口6の内径や紡糸溶液5の噴出量、さらに紡糸口6と導電性布帛層3との距離などの条件を調整することで制御することができる。   The thickness of the fiber by the electrospinning method is the resin concentration in the spinning solution 5, the high voltage 8 to be applied, the inner diameter of the spinning port 6, the ejection amount of the spinning solution 5, and the spinning port 6 and the conductive fabric layer 3. It can be controlled by adjusting conditions such as the distance.

前記紡糸溶液に溶かす樹脂としては、ポリアミド、ポリウレタン、ポリ乳酸、ナイロン、ポリアクリルニトリル、ポリカーボネート、ポリエチレンテレフタレート、酢酸セルロース、コラーゲン等を例示できる。   Examples of the resin dissolved in the spinning solution include polyamide, polyurethane, polylactic acid, nylon, polyacrylonitrile, polycarbonate, polyethylene terephthalate, cellulose acetate, and collagen.

なお、前記親水性高分子としては、ポリビニルアルコール、ポリアクリル酸塩、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン等の水溶性ポリマー、リン脂質ポリマー等を挙げることができる。これらからなる群から選ばれる1つまたは複数であるのが好ましい。   Examples of the hydrophilic polymer include water-soluble polymers such as polyvinyl alcohol, polyacrylate, polyethylene glycol, polyethylene oxide, and polyvinylpyrrolidone, phospholipid polymers, and the like. It is preferably one or more selected from the group consisting of these.

前記溶媒としては、クロロホルム、ジメチルホルムアミド、ジクロロメタン、テトラヒドロフラン等の有機溶媒、アルコール、緩衝液、水等を挙げることができる。前記溶媒は、前記樹脂を溶かすことができれば特に限定されず、前記樹脂に応じて定まるものである。なかでも取扱い易い水に溶ける樹脂を用いるのが好ましい。   Examples of the solvent include organic solvents such as chloroform, dimethylformamide, dichloromethane, and tetrahydrofuran, alcohols, buffers, water, and the like. The solvent is not particularly limited as long as it can dissolve the resin, and is determined according to the resin. Among them, it is preferable to use a resin that is easy to handle and is soluble in water.

前記非導電性繊維層2を構成する繊維の太さ(直径)は、10nm〜10000nm(10μm)の繊維で形成された層であるのが好ましい。10nm以上であることで安定した連続繊維となるし、10000nm(10μm)以下であることで、繊維の表面積効果が顕著になり、非導電性繊維層2の面を肌に当てた際の違和感をさらに抑制できるうえに通気性に優れる。なかでも、非導電性繊維層2を構成する繊維の太さは200nm〜5,000nmであるのがより好ましい。さらに200nm〜1000nmであるのが最も好ましい。   The thickness (diameter) of the fibers constituting the non-conductive fiber layer 2 is preferably a layer formed of fibers of 10 nm to 10000 nm (10 μm). When it is 10 nm or more, it becomes a stable continuous fiber, and when it is 10000 nm (10 μm) or less, the surface area effect of the fiber becomes remarkable, and there is a sense of incongruity when the surface of the non-conductive fiber layer 2 is applied to the skin. In addition to being able to suppress, it has excellent breathability. Especially, it is more preferable that the thickness of the fiber which comprises the nonelectroconductive fiber layer 2 is 200 nm-5,000 nm. Furthermore, it is most preferable that it is 200 nm-1000 nm.

また、前記非導電性繊維層2の積層量(乾燥状態)は、0.1g/m〜3.0g/mに設定されるのが好ましい。0.5g/m以上とすることで肌への密着性を確保することができるとともに、3.0g/m以下とすることで通気性を保有した構造とすることができる。 Moreover, it is preferable that the lamination amount (dry state) of the said nonelectroconductive fiber layer 2 is set to 0.1 g / m < 2 > -3.0 g / m < 2 >. Adhesiveness to the skin can be secured by setting it to 0.5 g / m 2 or more, and a structure having air permeability can be obtained by setting it to 3.0 g / m 2 or less.

前記非導電性繊維層2を構成する繊維の太さ(直径)は、走査型電子顕微鏡、透過型電子顕微鏡、原子間力顕微鏡、走査型トンネル顕微鏡にいずれかの顕微鏡を用いて繊維をナノスケールで撮影した画像(写真を含む)を形態観察することによって測定されるものである。   The thickness (diameter) of the fibers constituting the non-conductive fiber layer 2 is nanoscaled using any one of a scanning electron microscope, a transmission electron microscope, an atomic force microscope, and a scanning tunnel microscope. It is measured by morphologically observing images (including photographs) taken with the above.

前記導電性布帛層3としては、特に限定されないが、例えば、金属メッキ繊維で構成された布帛、導電性繊維が含侵された又は表面に付着された布帛、金属糸で構成された布帛、炭素繊維で構成された布帛などが挙げられる。布帛の形態としては、編地、織布、布帛等を挙げることができる。なかでも、前記導電性布帛層3は、金属メッキ繊維で編成された編地で構成されるのが好ましい。   The conductive fabric layer 3 is not particularly limited. For example, a fabric composed of metal-plated fibers, a fabric impregnated with or adhered to the conductive fibers, a fabric composed of metal yarns, carbon Examples thereof include fabrics composed of fibers. Examples of the form of the fabric include knitted fabric, woven fabric, and fabric. Especially, it is preferable that the said conductive fabric layer 3 is comprised with the knitted fabric knitted by the metal plating fiber.

前記金属メッキ繊維を構成する金属(メッキ材)としては、特に限定されないが、例えば銀、金、銅、ニッケル、アルミニウム等を挙げることができる。また、前記金属メッキ繊維を構成する繊維(メッキされる芯繊維)としては、特に限定されないが、例えば、ナイロン繊維、ポリエステル繊維、アクリル繊維、炭素繊維等を挙げることができる。   Although it does not specifically limit as a metal (plating material) which comprises the said metal plating fiber, For example, silver, gold | metal | money, copper, nickel, aluminum etc. can be mentioned. Further, the fiber constituting the metal-plated fiber (core fiber to be plated) is not particularly limited, and examples thereof include nylon fiber, polyester fiber, acrylic fiber, and carbon fiber.

前記金属メッキ繊維としては、特に限定されないが、例えば、表面が銀メッキされたナイロン繊維、表面が銀メッキされたポリエステル繊維、表面が銅メッキされたナイロン繊維等を挙げることできる。   The metal-plated fiber is not particularly limited, and examples thereof include nylon fiber whose surface is silver-plated, polyester fiber whose surface is silver-plated, and nylon fiber whose surface is copper-plated.

前記金属メッキ繊維の太さは、特に限定されないが、5dtex〜300dtexに設定されるのが好ましい。   Although the thickness of the said metal plating fiber is not specifically limited, It is preferable to set to 5 dtex-300 dtex.

前記導電性布帛層は、体積固有抵抗値が10Ω・cm以下なので、すなわち低い抵抗値を有しているので、心電図用等の電極において、感度の高い計測が可能となる。 The conductive fabric layer has a volume specific resistance value of 10 4 Ω · cm or less, that is, has a low resistance value, so that measurement with high sensitivity can be performed in an electrode for an electrocardiogram or the like.

次に、本発明の具体的な実施例について説明するが、本発明はこれらの実施例のものに特に限定されるものではない。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<使用材料>
導電性布帛・・・編地(表面が銀メッキされたナイロン繊維からなる編地)、大きさたて5cm×よこ5cm、厚さ0.1mm
親水性高分子・・・ポリエチレンオキサイド(PEO)(重量平均分子量500,000)、ポリビニルアルコール(PVA)(重合度1,700、重量平均分子量75,000)
高分子溶液A・・・ポリエチレンオキサイド(PEO) 2質量%水溶液
高分子溶液B・・・ポリビニルアルコール(PVA) 2質量%水溶液
紡糸溶液A・・・ポリエチレンオキサイド(PEO) 2質量%水溶液
紡糸溶液B・・・ポリエチレンオキサイド(PEO) 3質量%水溶液
紡糸溶液C・・・ポリビニルアルコール(PVA) 10質量%水溶液
<Materials used>
Conductive fabric: knitted fabric (knitted fabric made of nylon fibers whose surface is silver-plated), size 5 cm x width 5 cm, thickness 0.1 mm
Hydrophilic polymer: polyethylene oxide (PEO) (weight average molecular weight 500,000), polyvinyl alcohol (PVA) (polymerization degree 1,700, weight average molecular weight 75,000)
Polymer solution A: Polyethylene oxide (PEO) 2 mass% aqueous solution Polymer solution B: Polyvinyl alcohol (PVA) 2 mass% aqueous solution Spin solution A: Polyethylene oxide (PEO) 2 mass% aqueous solution Spin solution B ... Polyethylene oxide (PEO) 3% by weight aqueous solution Spinning solution C ... Polyvinyl alcohol (PVA) 10% by weight aqueous solution

<実施例1>
室内(温度20℃、湿度40%)において、図2に示すように紡糸溶液Aをシリンジ(またはタンク)4の中に投入して、アースされた編地(導電性布帛3)とシリンジ(またはタンク)4との間に高電圧電源8によって20kVの電圧を印加することで、紡糸溶液Aを紡糸口6(内径:0.40mm)から噴出(噴出速度:0.08ml/分)させて、噴出した紡糸溶液Aが樹脂噴出7を経てポリエチレンオキサイド繊維となって、編地(導電性布帛3)の表面に積層された。
こうして得られた布帛電極1の非導電性繊維層を構成する繊維、すなわちポリエチレンオキサイド繊維の太さ(直径)は、500nm〜900nmの範囲であり、ポリエチレンオキサイド繊維の積層量(乾燥状態)は1.1g/mであった。
繊維の太さ(直径)は布帛電極の非導電性繊維層2の側表面を走査型電子顕微鏡を用いてナノスケールで撮影した写真を観察することによって求めた。密着性評価は、「4」で合格であった。
<Example 1>
In a room (temperature 20 ° C., humidity 40%), as shown in FIG. 2, the spinning solution A is put into a syringe (or tank) 4, and a grounded knitted fabric (conductive fabric 3) and syringe (or By applying a voltage of 20 kV with the high voltage power supply 8 between the tank 4) and the spinning solution A is ejected from the spinning port 6 (inner diameter: 0.40 mm) (ejection speed: 0.08 ml / min), The spun spinning solution A became a polyethylene oxide fiber through the resin jet 7 and was laminated on the surface of the knitted fabric (conductive fabric 3).
The fibers constituting the non-conductive fiber layer of the fabric electrode 1 thus obtained, that is, the thickness (diameter) of the polyethylene oxide fiber is in the range of 500 nm to 900 nm, and the lamination amount (dry state) of the polyethylene oxide fiber is 1. 0.1 g / m 2 .
The thickness (diameter) of the fiber was determined by observing a photograph taken on a nanoscale of the side surface of the non-conductive fiber layer 2 of the fabric electrode using a scanning electron microscope. The adhesion evaluation was “4” and passed.

<実施例2>
編地(導電性布帛3)を高分子溶液Aに浸漬し、温度45℃の温風乾燥機内に1時間静置し乾燥させた。なお、ポリエチレンオキサイド(PEO)の付着量(乾燥状態)は14g/mであった。その後、実施例1において、エレクトロスピニング用紡糸溶液として、紡糸溶液Aに替えて紡糸溶液Cを用いた以外は実施例1同様にして、ポリエチレンオキサイド(PEO)が付着した編地(導電性布帛3)の表面に紡糸溶液Cが樹脂噴出7を経てポリビニルアルコール繊維となって積層された。
こうして得られた布帛電極1の非導電性繊維層を構成する繊維、すなわちポリビニルアルコール繊維の太さ(直径)は、300nm〜700nmの範囲であり、ポリビニルアルコール繊維の積層量(乾燥状態)は1.3g/mであった。密着性評価は、「5」で合格であった。
<Example 2>
The knitted fabric (conductive fabric 3) was immersed in the polymer solution A, and left to stand in a hot air dryer having a temperature of 45 ° C. for 1 hour to be dried. In addition, the adhesion amount (dry state) of polyethylene oxide (PEO) was 14 g / m 2 . Thereafter, in Example 1, except that the spinning solution C was used in place of the spinning solution A as the spinning solution for electrospinning, the knitted fabric (conductive fabric 3) to which polyethylene oxide (PEO) was adhered was used in the same manner as in Example 1. The spinning solution C was laminated on the surface as a polyvinyl alcohol fiber through the resin jet 7.
The thickness (diameter) of the fibers constituting the non-conductive fiber layer of the fabric electrode 1 thus obtained, that is, the polyvinyl alcohol fiber is in the range of 300 nm to 700 nm, and the lamination amount (dry state) of the polyvinyl alcohol fiber is 1. It was 3 g / m 2 . The adhesion evaluation was “5” and passed.

<実施例3>
実施例2において、エレクトロスピニング用紡糸溶液として、紡糸溶液Cに替えて紡糸溶液Bを用いた以外は実施例2同様にして、ポリエチレンオキサイド(PEO)が付着した編地(導電性布帛3)の表面に紡糸溶液Bが樹脂噴出7を経てポリエチレンオキサイド繊維となって積層された。
こうして得られた布帛電極1の非導電性繊維層を構成する繊維、すなわちポリエチレンオキサイド繊維の太さ(直径)は、600nm〜900nmの範囲であり、ポリエチレンオキサイド繊維の積層量(乾燥状態)は1.1g/mであった。密着性評価は、「3」で合格であった。
<Example 3>
In Example 2, a knitted fabric (conductive fabric 3) to which polyethylene oxide (PEO) was adhered was obtained in the same manner as in Example 2 except that the spinning solution B was used instead of the spinning solution C as the spinning solution for electrospinning. The spinning solution B was laminated on the surface as polyethylene oxide fibers through the resin jet 7.
The thickness (diameter) of the fibers constituting the non-conductive fiber layer of the fabric electrode 1 thus obtained, that is, the polyethylene oxide fibers is in the range of 600 nm to 900 nm, and the amount of polyethylene oxide fibers laminated (dry state) is 1. 0.1 g / m 2 . The adhesion evaluation was “3” and passed.

<実施例4>
実施例2において、編地(導電性布帛3)を浸漬する溶液として、高分子溶液Aに替えて高分子溶液Bを用いた以外は実施例2と同様にして、ポリビニルアルコール(PVA)が付着した編地(導電性布帛3)の表面に紡糸溶液Bが樹脂噴出7を経てポリビニルアルコール繊維となって積層された。
こうして得られた布帛電極1の非導電性繊維層を構成する繊維、すなわちポリビニルアルコール繊維の太さ(直径)は、300nm〜700nmの範囲であり、ポリビニルアルコール繊維の積層量(乾燥状態)は1.5g/mであった。
密着性評価は、「5」で合格であった。
<Example 4>
In Example 2, polyvinyl alcohol (PVA) was adhered in the same manner as in Example 2 except that the polymer solution B was used instead of the polymer solution A as the solution in which the knitted fabric (conductive fabric 3) was immersed. The spinning solution B was laminated on the surface of the knitted fabric (conductive fabric 3) as a polyvinyl alcohol fiber through the resin jet 7.
The thickness (diameter) of the fibers constituting the non-conductive fiber layer of the fabric electrode 1 thus obtained, that is, the polyvinyl alcohol fiber is in the range of 300 nm to 700 nm, and the lamination amount (dry state) of the polyvinyl alcohol fiber is 1. 0.5 g / m 2 .
The adhesion evaluation was “5” and passed.

<実施例5>
実施例4において、エレクトロスピニング用紡糸溶液として、紡糸溶液Cに替えて紡糸溶液Bを用いた以外は実施例4同様にして、ポリビニルアルコール(PVA)が付着した編地(導電性布帛3)の表面に紡糸溶液Bが樹脂噴出7を経てポリエチレンオキサイド繊維となって積層された。
こうして得られた布帛電極1の非導電性繊維層を構成する繊維、すなわちポリエチレンオキサイド繊維の太さ(直径)は、300nm〜700nmの範囲であり、ポリエチレンオキサイド繊維の積層量(乾燥状態)は1.3g/mであった。密着性評価は、「5」で合格であった。
<Example 5>
In Example 4, a knitted fabric (conductive fabric 3) adhered with polyvinyl alcohol (PVA) was used in the same manner as in Example 4 except that the spinning solution B was used instead of the spinning solution C as the spinning solution for electrospinning. The spinning solution B was laminated on the surface as polyethylene oxide fibers through the resin jet 7.
The thickness (diameter) of the fibers constituting the non-conductive fiber layer of the fabric electrode 1 thus obtained, that is, the polyethylene oxide fibers is in the range of 300 nm to 700 nm, and the amount of the polyethylene oxide fibers laminated (dry state) is 1. It was 3 g / m 2 . The adhesion evaluation was “5” and passed.

<比較例1>
実施例1において、導電性布帛として用いたのと同じ編地を布帛電極とした。密着性評価は、「1」で不合格であった。
<Comparative Example 1>
In Example 1, the same knitted fabric used as the conductive fabric was used as the fabric electrode. The adhesion evaluation was “1”, which was unacceptable.

<密着性評価試験>
布帛電極の非導電性繊維層の面を手の甲に載せた後、もう一方の手で布帛電極を5秒間押し当てたのち、手の甲を下側にして、布帛電極が手の甲から剥がれ落ちるまでの時間をストップウオッチで計測した。この落下するまでの時間を、下記の5段階で評価し、「3」の評価以上を合格とした。
「5」・・・45秒以上保持したもの。
「4」・・・30秒以上45秒未満保持したもの。
「3」・・・15秒以上30秒未満保持したもの。
「2」・・・15秒未満で落下したもの。
「1」・・・肌に密着せずに落下したもの。
<Adhesion evaluation test>
After placing the surface of the non-conductive fiber layer of the fabric electrode on the back of the hand, press the fabric electrode with the other hand for 5 seconds, and then set the back of the hand to the lower side until the fabric electrode peels off the back of the hand. Measured with a stopwatch. The time until this drop was evaluated in the following five stages, and an evaluation of “3” or higher was regarded as acceptable.
“5”: held for 45 seconds or more.
“4”: held for 30 seconds or more and less than 45 seconds.
“3”: held for 15 seconds or more and less than 30 seconds.
“2”: Dropped in less than 15 seconds.
“1”: Dropped without touching the skin.

実施例1〜5の布帛電極は、いずれも布帛電極の装着時には肌との密着性にも優れるとともに通気性のあるものであった。一方、比較例の電極は、肌に密着できずに落下してしまった。しかも、銀メッキされた糸が直接肌に触れ、著しい違和感を感じるものであった。   The fabric electrodes of Examples 1 to 5 were both excellent in adhesion to the skin and breathable when the fabric electrode was mounted. On the other hand, the electrode of the comparative example was dropped without being able to adhere to the skin. Moreover, the silver-plated thread directly touched the skin and felt a very uncomfortable feeling.

本発明に係る布帛電極は、通気性があって肌に触れた際の違和感を抑制でき、布帛電極の装着時には肌との密着性にも優れ、生体への追従時の布帛電極の剥離や脱落が生じ難いので生体センサーの電極として好適に使用できる。生体センサーとしては、心電図測定用などがある。   The fabric electrode according to the present invention has air permeability and can suppress a sense of incongruity when touching the skin, has excellent adhesion to the skin when the fabric electrode is mounted, and the fabric electrode is peeled off or detached when following the living body. Can be suitably used as an electrode of a biosensor. Examples of biosensors include electrocardiogram measurement.

1・・・布帛電極
2・・・非導電性繊維層(親水性高分子繊維を含む)
3・・・導電性布帛層
4・・・シリンジ(またはタンク)
5・・・紡糸溶液
6・・・紡糸口
7・・・樹脂噴出
8・・・高電圧電源
9・・・アース
DESCRIPTION OF SYMBOLS 1 ... Fabric electrode 2 ... Nonelectroconductive fiber layer (a hydrophilic polymer fiber is included)
3 ... conductive fabric layer 4 ... syringe (or tank)
5 ... Spinning solution 6 ... Spinning port 7 ... Resin jet 8 ... High voltage power supply 9 ... Earth

Claims (6)

少なくとも親水性高分子を含む紡糸溶液を紡糸してなる繊維を含む非導電性繊維層が、導電性布帛層に積層されてなることを特徴とする布帛電極。   A fabric electrode, wherein a non-conductive fiber layer containing fibers obtained by spinning a spinning solution containing at least a hydrophilic polymer is laminated on a conductive fabric layer. 少なくとも親水性高分子を含む樹脂が少なくとも一部に付着してなる導電性布帛層と、非導電性繊維層とが積層されてなることを特徴とする布帛電極。   A fabric electrode comprising a conductive fabric layer formed by adhering a resin containing at least a hydrophilic polymer to at least a part and a non-conductive fiber layer. 前記非導電性繊維層は、少なくとも親水性高分子を含む紡糸溶液を紡糸してなる繊維を含む層である請求項2に記載の布帛電極。   The fabric electrode according to claim 2, wherein the non-conductive fiber layer is a layer containing fibers obtained by spinning a spinning solution containing at least a hydrophilic polymer. 前記非導電性繊維層は、エレクトロスピニング法により積層された層である請求項1〜3のいずれか1項に記載の布帛電極。   The fabric electrode according to any one of claims 1 to 3, wherein the non-conductive fiber layer is a layer laminated by an electrospinning method. 前記非導電性繊維層を構成する繊維の太さが、10nm〜10000nmの繊維で形成された不織布層である請求項1〜4のいずれか1項に記載の布帛電極。   The fabric electrode according to any one of claims 1 to 4, wherein the non-conductive fiber layer is a non-woven fabric layer formed of fibers having a thickness of 10 nm to 10000 nm. 前記導電性布帛層は、体積固有抵抗値が10Ω・cm以下である請求項1〜5のいずれか1項に記載の布帛電極。 The fabric electrode according to any one of claims 1 to 5, wherein the conductive fabric layer has a volume resistivity of 10 4 Ω · cm or less.
JP2016113565A 2016-06-07 2016-06-07 Cloth electrode Active JP6829524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113565A JP6829524B2 (en) 2016-06-07 2016-06-07 Cloth electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113565A JP6829524B2 (en) 2016-06-07 2016-06-07 Cloth electrode

Publications (2)

Publication Number Publication Date
JP2017218690A true JP2017218690A (en) 2017-12-14
JP6829524B2 JP6829524B2 (en) 2021-02-10

Family

ID=60656832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113565A Active JP6829524B2 (en) 2016-06-07 2016-06-07 Cloth electrode

Country Status (1)

Country Link
JP (1) JP6829524B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611763A (en) * 2018-04-09 2018-10-02 河南工程学院 Static Spinning PET/ melt-blown PP non-woven fabrics heats compound production method
CN110495876A (en) * 2019-09-29 2019-11-26 联想(北京)有限公司 A kind of electrocardio textile electrode
JP2020024850A (en) * 2018-08-07 2020-02-13 Jx金属株式会社 Composite solid electrolyte and all-solid lithium ion battery
JP2020138517A (en) * 2019-03-01 2020-09-03 住江織物株式会社 Fabric electrode and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263311A (en) * 2003-02-28 2004-09-24 Kuraray Co Ltd Underwear suitable for sensitive skin, and method for evaluating biocompatibility of the same
JP2007314911A (en) * 2006-05-25 2007-12-06 Seiren Co Ltd Electroconductive cloth and flat electrode by using the same
JP2008210557A (en) * 2007-02-23 2008-09-11 Kuraray Co Ltd Flexible sensor
JP2009256863A (en) * 2008-03-28 2009-11-05 Gunze Ltd Composite fabric
JP2014200559A (en) * 2013-04-08 2014-10-27 Tdk株式会社 Bioelectrode
JP2014237900A (en) * 2013-06-06 2014-12-18 日本電信電話株式会社 Method and apparatus for manufacturing conductive fiber
WO2016143666A1 (en) * 2015-03-12 2016-09-15 タツタ電線株式会社 Biomedical electrode device
JP2016182755A (en) * 2015-03-26 2016-10-20 住江織物株式会社 Fabric electrode and production method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263311A (en) * 2003-02-28 2004-09-24 Kuraray Co Ltd Underwear suitable for sensitive skin, and method for evaluating biocompatibility of the same
JP2007314911A (en) * 2006-05-25 2007-12-06 Seiren Co Ltd Electroconductive cloth and flat electrode by using the same
JP2008210557A (en) * 2007-02-23 2008-09-11 Kuraray Co Ltd Flexible sensor
JP2009256863A (en) * 2008-03-28 2009-11-05 Gunze Ltd Composite fabric
JP2014200559A (en) * 2013-04-08 2014-10-27 Tdk株式会社 Bioelectrode
JP2014237900A (en) * 2013-06-06 2014-12-18 日本電信電話株式会社 Method and apparatus for manufacturing conductive fiber
WO2016143666A1 (en) * 2015-03-12 2016-09-15 タツタ電線株式会社 Biomedical electrode device
JP2016182755A (en) * 2015-03-26 2016-10-20 住江織物株式会社 Fabric electrode and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611763A (en) * 2018-04-09 2018-10-02 河南工程学院 Static Spinning PET/ melt-blown PP non-woven fabrics heats compound production method
JP2020024850A (en) * 2018-08-07 2020-02-13 Jx金属株式会社 Composite solid electrolyte and all-solid lithium ion battery
JP2020138517A (en) * 2019-03-01 2020-09-03 住江織物株式会社 Fabric electrode and method for manufacturing the same
JP7359410B2 (en) 2019-03-01 2023-10-11 住江織物株式会社 Fabric electrode and its manufacturing method
CN110495876A (en) * 2019-09-29 2019-11-26 联想(北京)有限公司 A kind of electrocardio textile electrode
CN110495876B (en) * 2019-09-29 2024-02-27 联想(北京)有限公司 Electrocardiogram fabric electrode

Also Published As

Publication number Publication date
JP6829524B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP2017218690A (en) Fabric electrode
Zhang et al. A new class of electronic devices based on flexible porous substrates
CN102474998B (en) Electromagnetic shielding sheet
JP5295943B2 (en) Nanofiber sheet
JP5563817B2 (en) Method of attaching nanofiber sheet
CN103225204B (en) Wearable flexible sensor and preparation method
JP6487746B2 (en) Fabric electrode
CN113614906A (en) Electronic functional component, method for manufacturing same, and body measurement sensor
KR102064101B1 (en) Heat adhesive multi-layer film for outdoor clothings and manufacturing method thereof
KR101273346B1 (en) Silver-plated nanoweb and dry-type electrode using there of
JP2019077660A (en) Production method of cosmetic sheet
Kim et al. Advances in ultrathin soft sensors, integrated materials, and manufacturing technologies for enhanced monitoring of human physiological signals
JP5563908B2 (en) Nanofiber sheet
TW200304971A (en) Elastic nonwoven sheet
KR101947895B1 (en) Method for manufacturing dry electrode based on elastic nanofiber web
JP7170285B2 (en) Selectively permeable membrane for application to living body, transdermal absorption kit, and cosmetic method
JP7359410B2 (en) Fabric electrode and its manufacturing method
JP6721338B2 (en) Conductive cloth
KR102274598B1 (en) Nanofiber Mask sheet composed of soluble and insoluble polymers
US20200352507A1 (en) Garment for measuring biological information and stretchable laminate sheet
Chen et al. Bioinspired Robust Gas‐Permeable On‐Skin Electronics: Armor‐Designed Nanoporous Flash Graphene Assembly Enhancing Mechanical Resilience
Li et al. Recent Advances in Stretchable and Permeable Electrodes for Epidermal Electronics
Yang et al. Recent progress in fiber-based soft electronics enabled by liquid metal
US20220340726A1 (en) Gas permeable, ultrathin, stretchable epidermal electronic devices and related methods
JP6917863B2 (en) A fabric capable of forming a breathable adhesive layer in a conductive member, a conductive member and a method for manufacturing the same.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250