JP2017217657A - Gradual molding method and gradual molding device - Google Patents

Gradual molding method and gradual molding device Download PDF

Info

Publication number
JP2017217657A
JP2017217657A JP2016112350A JP2016112350A JP2017217657A JP 2017217657 A JP2017217657 A JP 2017217657A JP 2016112350 A JP2016112350 A JP 2016112350A JP 2016112350 A JP2016112350 A JP 2016112350A JP 2017217657 A JP2017217657 A JP 2017217657A
Authority
JP
Japan
Prior art keywords
tool
metal plate
sequential
force
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016112350A
Other languages
Japanese (ja)
Other versions
JP6701570B2 (en
Inventor
内山 典子
Noriko Uchiyama
典子 内山
紘敬 三輪
Hirotaka Miwa
紘敬 三輪
長山 森
Shin Nagayama
森 長山
南部 俊和
Toshikazu Nanbu
俊和 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016112350A priority Critical patent/JP6701570B2/en
Publication of JP2017217657A publication Critical patent/JP2017217657A/en
Application granted granted Critical
Publication of JP6701570B2 publication Critical patent/JP6701570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problems of being complicated in maintenance-management of a tool, and of increasing manufacturing cost, in a conventional gradual molding method.SOLUTION: When molding in a three-dimensional shape by moving a predetermined passage by pressing a tool T to a surface layer of a metal plate W by holding the periphery of the metal plate W having the surface layer, an advance quantity (h) in the pressing direction of the tool T to the metal plate W is changed in response to a processing angle θ formed by the metal plate W before molding and a processing surface S after molding, and in its case, the advance quantity (h) of the tool T is reduced as the processing angle θ becomes a small part, and the metal plate W is molded by providing the upper limit to the ratio (Fs/Fp) of sliding force Fs in the movement direction of the tool T to pressing force Fp of the tool T. Thus, besides being capable of providing a molding product having a flaking-nonexistent excellent appearance quality, simplification of maintenance-management of the tool and reduction in manufacturing cost, can be realized.SELECTED DRAWING: Figure 1

Description

本発明は、表面層を有する金属板に工具を押し付けて移動させることにより、金属板を次第に変形させて三次元形状に成形するのに用いられる逐次成形方法、及び逐次成形装置に関するものである。   The present invention relates to a sequential forming method and a sequential forming apparatus that are used to gradually deform a metal plate into a three-dimensional shape by pressing and moving the tool against the metal plate having a surface layer.

従来、逐次成形方法としては、例えば特許文献1に記載されているものがある。特許文献1に記載の逐次成形方法は、成形品の形状を有する下型と、下型の上面側に金属板を保持する外周枠と、直交する3軸方向に移動可能な成形工具とを用いる。上記の逐次成形方法は、下型の上面側において、外周枠によって平坦な金属板の周囲を保持し、この金属板に工具を押し付けて移動させると共に、外周枠に沿って金属板の周囲を降下させる。これにより、逐次成形方法は、下型に添うように金属板を次第に変形させて、最終的に三次元形状の成形品を成形(張出し成形)する。   Conventionally, as a sequential molding method, for example, there is one described in Patent Document 1. The sequential molding method described in Patent Document 1 uses a lower mold having a shape of a molded product, an outer peripheral frame that holds a metal plate on the upper surface side of the lower mold, and a molding tool that is movable in three orthogonal directions. . In the above sequential forming method, on the upper surface side of the lower mold, the periphery of the flat metal plate is held by the outer peripheral frame, and a tool is pressed against the metal plate to move, and the periphery of the metal plate is lowered along the outer peripheral frame. Let Thereby, in the sequential forming method, the metal plate is gradually deformed so as to follow the lower die, and finally a three-dimensional shaped product is formed (extrusion forming).

また、逐次成形方法では、工具の先端部が球面状を成しているので、金属板に工具が点接触し、これにより金属板に工具の走査線が転写される場合がある。そこで、特許文献1に記載の逐次成形方法では、工具の先端部を着脱可能な樹脂押圧部で形成し、この樹脂押圧部を金属板に面接触させるようにして、金属板における工具の走査線の転写を防止していた。   In the sequential forming method, since the tip of the tool has a spherical shape, the tool may make point contact with the metal plate, and thereby the scanning line of the tool may be transferred to the metal plate. Therefore, in the sequential forming method described in Patent Document 1, the tool scanning line on the metal plate is formed by forming the tip of the tool with a detachable resin pressing portion and bringing the resin pressing portion into surface contact with the metal plate. Was preventing the transfer of.

特開2002−102945号公報JP 2002-102945 A

ところで、上記したような逐次成形方法では、例えばめっき等の表面層を有する金属板を成形する場合に、表面層が剥離するフレーキングが発生することがある。このフレーキングは、表面粗さ(見栄え)や耐食性を低下させる原因になる。これに対して、上記従来の逐次成形では、樹脂押圧部を有する工具を用いるので、フレーキングの発生をある程度抑制することが可能である。   By the way, in the sequential forming method as described above, for example, when forming a metal plate having a surface layer such as plating, flaking that the surface layer peels off may occur. This flaking causes a decrease in surface roughness (look) and corrosion resistance. On the other hand, since the conventional sequential molding uses a tool having a resin pressing portion, it is possible to suppress the occurrence of flaking to some extent.

しかしながら、上記工具を用いた逐次成形方法では、樹脂押圧部の摩耗が激しく、樹脂押圧部を頻繁に交換する必要があることから、工具の保守管理が煩雑であると共に、製造コストが嵩むという問題点があり、このような問題点を解決することが課題であった。   However, in the sequential molding method using the above-mentioned tool, the wear of the resin pressing portion is severe, and it is necessary to frequently replace the resin pressing portion, so that the maintenance management of the tool is complicated and the manufacturing cost increases. There was a point, and it was a problem to solve such a problem.

本発明は、上記従来の課題に着目して成されたものであって、表面層を有する金属板の逐次成形において、フレーキングの無い良好な外観品質を有する成形品を得ることができると共に、工具の保守管理の簡略化や製造コストの低減を図ることができる逐次成形方法を提供することを目的としている。   The present invention has been made by paying attention to the above conventional problems, and in the sequential forming of a metal plate having a surface layer, it is possible to obtain a molded product having good appearance quality without flaking, It is an object of the present invention to provide a sequential forming method capable of simplifying tool maintenance management and reducing manufacturing costs.

本発明に係わる逐次成形方法は、表面層を有する金属板の周囲を保持し、その金属板の表面層に工具を押し付けて所定経路を移動させることにより、金属板を板厚方向に次第に変形させて三次元形状に成形する方法である。この逐次成形方法は、成形前の金属板と成形後の加工面とが成す加工角度に応じて、金属板に対する工具の押し付け方向の前進量を変化させ、その際、加工角度が小さい部位ほど工具の前進量を減少させる。そして、逐次成形方法は、工具の押し付け力に対する工具の移動方向のすべり力の比に上限を設けて金属板を成形することを特徴としている。   In the sequential forming method according to the present invention, the metal plate is gradually deformed in the plate thickness direction by holding the periphery of the metal plate having the surface layer and moving a predetermined path by pressing a tool against the surface layer of the metal plate. This is a method of forming a three-dimensional shape. In this sequential forming method, the amount of advance in the pressing direction of the tool against the metal plate is changed according to the processing angle formed by the metal plate before forming and the processed surface after forming. Reduce the amount of advance. The sequential forming method is characterized in that the metal plate is formed by setting an upper limit on the ratio of the sliding force in the moving direction of the tool to the pressing force of the tool.

本発明に係わる逐次成形装置は、表面層を有する金属板の周囲を保持し、その金属板の表面層に工具を押し付けて移動させることにより、金属板を板厚方向に次第に変形させて三次元形状に成形する装置である。この逐次成形装置は、金属板の周囲を保持する保持用治具と、工具及び保持用治具を直交する3軸方向に相対的に移動させる三軸移動機構と、金属板に押し付けた工具の軸線方向に生じる押し付け力、及び移動方向のすべり力を計測する分力計と、分力計の計測値に基づいて三軸移動機構を制御する主制御部とを備えたことを特徴としている。   The sequential forming apparatus according to the present invention keeps the periphery of a metal plate having a surface layer, and presses and moves the tool against the surface layer of the metal plate, thereby gradually deforming the metal plate in the plate thickness direction to obtain a three-dimensional shape. It is an apparatus for forming into a shape. This sequential forming apparatus includes a holding jig that holds the periphery of a metal plate, a triaxial moving mechanism that relatively moves the tool and the holding jig in three orthogonal directions, and a tool pressed against the metal plate. The apparatus includes a component force meter that measures a pressing force generated in the axial direction and a sliding force in the moving direction, and a main control unit that controls the three-axis moving mechanism based on the measured value of the force meter.

本発明に係わる逐次成形方法によれば、上記構成を採用したことにより、表面層を有する金属板の逐次成形において、フレーキングの無い良好な外観品質を有する成形品を得ることができると共に、工具の保守管理の簡略化や製造コストの低減を図ることができる。   According to the sequential forming method according to the present invention, by adopting the above configuration, in the sequential forming of a metal plate having a surface layer, a molded product having good appearance quality without flaking can be obtained, and a tool can be obtained. The maintenance management can be simplified and the manufacturing cost can be reduced.

本発明に係わる逐次成形装置は、主制御部により、工具の押し付け力及び移動方向のすべり力が適正値となるように三軸移動機構を制御する。これにより、逐次成形装置は、表面層を有する金属板の逐次成形において、フレーキングの無い良好な外観品質を有する成形品を得ることができると共に、工具の保守管理の簡略化や製造コストの低減を図ることができる。   In the sequential forming apparatus according to the present invention, the three-axis moving mechanism is controlled by the main control unit so that the pressing force of the tool and the sliding force in the moving direction become appropriate values. As a result, the sequential forming apparatus can obtain a molded product having good appearance quality without flaking in the sequential forming of a metal plate having a surface layer, and also simplifies tool maintenance management and reduces manufacturing costs. Can be achieved.

本発明に係わる逐次成形方法及び逐次成形装置の第1実施形態を説明する断面説明図である。It is a section explanatory view explaining a 1st embodiment of a sequential forming method and a sequential forming device concerning the present invention. 金属板に対する逐次成形を説明する平面図である。It is a top view explaining the sequential forming with respect to a metal plate. 金属板の加工角度及び工具に生じる各方向の力を示す説明図である。It is explanatory drawing which shows the force of each direction which arises in the processing angle of a metal plate, and a tool. 金属板の加工角度と工具の送りピッチを説明する実施形態の断面図である。It is sectional drawing of embodiment explaining the processing angle of a metal plate, and the feed pitch of a tool. 金属板の加工角度と工具の送りピッチを説明する比較例の断面図である。It is sectional drawing of the comparative example explaining the processing angle of a metal plate, and the feed pitch of a tool. 工具の摩擦力と工具の送りピッチとの関係を示すグラフである。It is a graph which shows the relationship between the frictional force of a tool, and the feed pitch of a tool. 工具の先端の曲率半径Rが3mmである場合において、摩擦力と工具の送りピッチとの関係を示すグラフである。It is a graph which shows the relationship between a friction force and the feed pitch of a tool, when the curvature radius R of the front-end | tip of a tool is 3 mm. 工具の送りピッチと加工角度との関係を示すグラフである。It is a graph which shows the relationship between the feed pitch of a tool, and a process angle. 金属板に生じる剪断応力と工具の送りピッチとの関係を示すグラフである。It is a graph which shows the relationship between the shear stress which arises in a metal plate, and the feed pitch of a tool. 本発明に係わる逐次成形方法の第2実施形態を説明するエンジンフード用アウタパネルの平面図及びA−A線断面図である。It is the top view and AA sectional view taken on the line of the engine hood outer panel explaining 2nd Embodiment of the sequential shaping | molding method concerning this invention. エンジンフード用インナパネルを説明する平面図、A−A線断面図及びB−B線断面図である。It is the top view explaining the inner panel for engine hoods, AA sectional view, and BB sectional drawing.

〈第1実施形態〉
図1は、本発明に係わる逐次成形方法に適用可能な逐次成形装置を説明する図である。 図示の逐次成形装置は、表面層を有する金属板Wの周囲を保持し、その金属板Wの表面層に工具Tを押し付けて移動させることにより、金属板Wを板厚方向に次第に変形させて三次元形状(成形品形状)に成形するものである。
<First Embodiment>
FIG. 1 is a diagram illustrating a sequential molding apparatus applicable to the sequential molding method according to the present invention. The sequential forming apparatus shown in the figure holds the periphery of the metal plate W having the surface layer, and presses and moves the tool T against the surface layer of the metal plate W, thereby gradually deforming the metal plate W in the plate thickness direction. It is molded into a three-dimensional shape (molded product shape).

逐次成形装置は、金属板Wの周囲を保持する保持用治具1と、工具T及び保持用治具1を直交する3軸方向に相対的に移動させる三軸移動機構2とを備えている。また、逐次成形装置は、金属板Wに押し付けた工具Tの軸線方向に生じる押し付け力Fp、及び移動方向のすべり力Fsを計測する分力計3と、分力計3の計測値に基づいて三軸移動機構2を制御する主制御部4とを備えている。   The sequential forming apparatus includes a holding jig 1 that holds the periphery of the metal plate W, and a triaxial moving mechanism 2 that relatively moves the tool T and the holding jig 1 in three orthogonal directions. . Further, the sequential forming apparatus is based on the force meter 3 that measures the pressing force Fp generated in the axial direction of the tool T pressed against the metal plate W and the sliding force Fs in the moving direction, and the measured value of the force meter 3. And a main control unit 4 for controlling the triaxial moving mechanism 2.

工具Tは、丸棒状を成すと共に、球面状の先端部を有し、この先端部を金属板Wに押し付けて成形を行うものである。金属板Wは、例えば表面層としてめっき層を有するものであり、基本的に成形前は平坦である。   The tool T has a round bar shape and has a spherical tip portion, and the tip portion is pressed against the metal plate W for molding. The metal plate W has, for example, a plating layer as a surface layer, and is basically flat before being formed.

保持用治具1は、図2に示すように、金属板Wの周囲に対応した枠状を成すと共に、下側の固定具1Aと上側の可動具1Bとを備えており、金属板Wの周囲を挟持して可動具1Bを固定することにより、金属板Wの周囲を強固に拘束する。   As shown in FIG. 2, the holding jig 1 has a frame shape corresponding to the periphery of the metal plate W, and includes a lower fixing tool 1 </ b> A and an upper movable tool 1 </ b> B. By clamping the periphery and fixing the movable tool 1B, the periphery of the metal plate W is firmly restrained.

三軸移動機構2は、例えば、NC工作機械や多軸制御型の作業ロボットなどを用いることができる。この実施形態の三軸移動機構2は、保持用治具1の上側に配置してあり、工具Tを直交する3軸方向に移動させるものである。すなわち、三軸移動機構2は、一対のガイドレール5,5と、両ガイドレール5,5に沿って往復動可能なビーム6と、ビーム6に沿って往復動可能なスライダ7と、スライダ7に対して昇降可能なホルダ8とを備えている。   As the triaxial moving mechanism 2, for example, an NC machine tool or a multi-axis control type working robot can be used. The triaxial moving mechanism 2 of this embodiment is arranged on the upper side of the holding jig 1 and moves the tool T in three orthogonal directions. That is, the triaxial moving mechanism 2 includes a pair of guide rails 5, 5, a beam 6 that can reciprocate along both guide rails 5, 5, a slider 7 that can reciprocate along the beam 6, and a slider 7 And a holder 8 that can be moved up and down.

両ガイドレール5,5は、図示しない支柱等により、互いに水平に且つ平行に支持されている。ビーム6は、両ガイドレール5,5間に架設してあり、両端部が、各ガイドレール5,5により水平なX軸方向(図1で紙面垂直方向)に案内される。スライダ7は、ビーム6の長手方向、すなわちビーム6の移動方向(X軸方向)に直交する水平なY軸方向(図1で左右方向)に案内される。ホルダ8は、スライダ7に対して垂直なZ軸方向に昇降する。   Both guide rails 5 and 5 are supported horizontally and parallel to each other by a post or the like (not shown). The beam 6 is installed between the guide rails 5 and 5, and both end portions thereof are guided by the guide rails 5 and 5 in the horizontal X-axis direction (vertical direction in FIG. 1). The slider 7 is guided in the longitudinal direction of the beam 6, that is, in the horizontal Y-axis direction (left-right direction in FIG. 1) orthogonal to the moving direction (X-axis direction) of the beam 6. The holder 8 moves up and down in the Z-axis direction perpendicular to the slider 7.

そして、三軸移動機構2は、上記のホルダ8に、分力計3を介して工具Tを垂下状態に装着している。このようにして、工具Tは、三軸移動機構2により、互いに直交するX軸方向、Y軸方向及びZ軸方向の三軸方向に移動可能である。分力計3は、例えば、周知の3分力計が用いることができ、金属板Wに工具Tを押し付けて移動させた際に、工具Tの軸線方向に生じる押し付け力Fp、及び工具Tの移動方向(接線方向)のすべり力Fsを計測することができる。   The triaxial moving mechanism 2 has the tool T mounted on the holder 8 via the force meter 3 in a suspended state. In this way, the tool T can be moved by the triaxial moving mechanism 2 in the triaxial directions of the X axis direction, the Y axis direction, and the Z axis direction that are orthogonal to each other. For example, a known three-component force meter can be used as the force meter 3. When the tool T is pressed against the metal plate W and moved, the pressing force Fp generated in the axial direction of the tool T and the tool T The sliding force Fs in the moving direction (tangential direction) can be measured.

上記の逐次成形装置は、図2に示すように、初期位置に工具Tを設定し、その工具Tを平坦な金属板Wに押し付けると共に、図2中に実線矢印で示す移動経路A1に沿って移動させる。この実施形態では、金属板Wを皿形の三次元形状に成形する場合を例示している。この場合、初期の移動経路A1は、保持用治具1の内側に沿って周回する経路である。   As shown in FIG. 2, the sequential forming apparatus sets a tool T at an initial position, presses the tool T against a flat metal plate W, and moves along a moving path A1 indicated by a solid line arrow in FIG. Move. In this embodiment, the case where the metal plate W is formed into a dish-shaped three-dimensional shape is illustrated. In this case, the initial movement path A1 is a path that circulates along the inside of the holding jig 1.

次に、逐次成形装置は、図2中の太い矢印で示すように、工具Tを金属板Wの中心側に移動させると共に、工具Tを金属板Wに向けて前進(下降)させ、図2中に点線矢印で示す次の移動経路A2に沿って周回させる。その後、逐次成形装置は、周回毎に、工具Tの移動経路A1,A2を金属板Wの中心側へ段階的に変位させると共に、工具Tの押し付け方向の前進量(下降量)を段階的に変化(増加)させる。つまり、工具Tは、図1中に黒矢印で示すように、周回を繰り返す度に斜め下方に移動する。   Next, the sequential forming apparatus moves the tool T toward the center side of the metal plate W as shown by a thick arrow in FIG. It circulates along the next movement route A2 indicated by a dotted arrow. Thereafter, the sequential forming apparatus gradually moves the movement paths A1 and A2 of the tool T toward the center side of the metal plate W at each turn, and the advance amount (down amount) in the pressing direction of the tool T in steps. Change (increase). That is, as shown by the black arrow in FIG. 1, the tool T moves obliquely downward every time it makes a round.

これにより、逐次成形装置は、金属板Wの中央領域を押し下げるようにして傾斜した加工面を形成し、最終的には、図1中に点線で示すように、加工面を側面Sとし且つ中央領域を底面Bとする皿形の三次元形状(成形品形状)に逐次成形する。この際、逐次成形装置は、成形型を用いなくても、工具T及び保持用治具1により、金属板Wを三次元形状に成形することができる。   As a result, the sequential forming apparatus forms an inclined processing surface so as to push down the central region of the metal plate W, and finally, the processing surface is the side surface S and the center as shown by the dotted line in FIG. It shape | molds sequentially in the dish-shaped three-dimensional shape (molded product shape) which makes an area | region the bottom face B. At this time, the sequential forming apparatus can form the metal plate W into a three-dimensional shape by using the tool T and the holding jig 1 without using a forming die.

また、逐次成形装置は、上記の如く金属板Wを逐次成形する際に、主制御部4に、分力計3で計測した押し付け力Fp及びすべり力Fsを入力する。主制御部4は、分力計3の計測値や、予め入力した金属板Wに対する工具Tの接触面積、及び金属板Wの材質などに基づいて、金属板Wに対する工具Tの摩擦力や、金属板Wに生じる剪断応力などを演算する。そして、主制御部4は、分力計3の計測値や算出結果に基づいて、工具Tの押し付け力Fp及びすべり力Fsが適正値になるように、三軸移動機構2のビーム6、スライダ7及びホルダ8をフィードバック制御する。   In addition, the sequential forming apparatus inputs the pressing force Fp and the sliding force Fs measured by the force meter 3 to the main control unit 4 when the metal plate W is sequentially formed as described above. The main control unit 4 determines the frictional force of the tool T against the metal plate W based on the measurement value of the force meter 3, the contact area of the tool T with the metal plate W input in advance, the material of the metal plate W, and the like. The shear stress generated in the metal plate W is calculated. Then, the main control unit 4 determines the beam 6 and slider of the triaxial moving mechanism 2 so that the pressing force Fp and the sliding force Fs of the tool T become appropriate values based on the measurement value and calculation result of the force meter 3. 7 and the holder 8 are feedback-controlled.

ここで、以下に述べる逐次成形方法では、図2に示すように、前の移動経路A1と後の移動経路A2との変位幅を送りピッチPと定義する。また、図3に示すように、成形前の平坦な金属板Wと成形後の加工面(側面S)とが成す角度を加工角度θと定義する。さらに、成形中の工具Tには、軸線方向の押し付け力Fpと、移動方向のすべり力Fsが付与され、これにより、工具Tと金属板Wとの間には、すべり力Fsとは逆向きの摩擦力Ffが発生する。   Here, in the sequential forming method described below, as shown in FIG. 2, the displacement width between the previous movement path A1 and the subsequent movement path A2 is defined as a feed pitch P. As shown in FIG. 3, the angle formed by the flat metal plate W before forming and the processed surface (side surface S) after forming is defined as a processing angle θ. Furthermore, the pressing force Fp in the axial direction and the sliding force Fs in the moving direction are applied to the tool T being formed, so that the sliding force Fs is in the opposite direction between the tool T and the metal plate W. The frictional force Ff is generated.

なお、図3には、便宜上、金属板Wの加工角度θと、工具Tに付与する力Fp,Fsの向きとを一緒に示している。図3中の金属板Wの断面に対して、実際の工具Tの移動方向(すべり力Fsの向き・移動経路の方向)は紙面垂直方向であり、工具Tの移動経路が変位する方向は図3中で右方向である。また、後に説明するが、工具Tは、基材Taと硬質材Tbとから成り、少なくとも金属板Wとの接触部分すなわち先端部が硬質材Tbで形成してある。   In FIG. 3, for the sake of convenience, the processing angle θ of the metal plate W and the directions of the forces Fp and Fs applied to the tool T are shown together. 3, the actual moving direction of the tool T (the direction of the sliding force Fs / the direction of the moving path) is the direction perpendicular to the paper surface, and the direction in which the moving path of the tool T is displaced is illustrated in FIG. 3 is the right direction. Further, as will be described later, the tool T is composed of a base material Ta and a hard material Tb, and at least a contact portion with the metal plate W, that is, a tip portion is formed of the hard material Tb.

逐次成形方法は、先の逐次成形装置で説明したように、表面層を有する金属板Wの周囲を保持し、その金属板Wの表面層に工具Tを押し付けて所定経路を移動させることにより、金属板Wを板厚方向に次第に変形させて三次元形状に成形する方法である。   In the sequential forming method, as described in the previous sequential forming apparatus, the periphery of the metal plate W having the surface layer is held, the tool T is pressed against the surface layer of the metal plate W, and the predetermined path is moved. In this method, the metal plate W is gradually deformed in the thickness direction to form a three-dimensional shape.

逐次成形方法は、成形前の金属板Wと成形後の加工面(S)とが成す加工角度θに応じて、金属板Wに対する工具Tの押し付け方向の前進量(下降量)hを変化させる。その際、逐次成形方法は、加工角度θが小さい部位ほど工具Tの前進量hを減少させると共に、工具Tの押し付け力Fpに対する工具Tの移動方向のすべり力Fsの比(Fs/Fp)に上限を設けて金属板Wを成形する。また、逐次成形方法は、より望ましい実施形態として、前記すべり力Fsの比(Fs/Fp)の上限を0.2以下とし、その上限値を維持しながら金属板Wを成形する。   In the sequential forming method, the advance amount (down amount) h in the pressing direction of the tool T against the metal plate W is changed according to the processing angle θ formed by the metal plate W before forming and the processed surface (S) after forming. . At that time, the sequential forming method reduces the advance amount h of the tool T as the machining angle θ is smaller, and also sets the ratio of the sliding force Fs in the moving direction of the tool T to the pressing force Fp of the tool T (Fs / Fp). The metal plate W is formed with an upper limit. As a more desirable embodiment, the sequential forming method sets the upper limit of the ratio (Fs / Fp) of the sliding force Fs to 0.2 or less, and forms the metal plate W while maintaining the upper limit.

図4に具体例を示す。図示の三次元形状は、湾曲した加工面(S)と平坦な底面Bとを有している。この場合、加工面(S)の加工角度θは、成形開始部位の角度θ1から成形終了部位の角度θxに至る間(θ1〜θx)で次第に減少する。そこで、逐次成形方法では、図2で説明した如く周回毎に移動経路(A1,A2)を変位させると共に、加工角度θが小さい部位ほど工具Tの前進量hを減少させる。つまり、工具の前進量hは、成形開始部位の前進量h1から成形終了部位の前進量hxに至る間(h1〜hx)で次第に減少する。その結果、逐次成形方法では、工具Tの送りピッチPは、成形開始付近(P1〜P3)では小さく、その後増大するものの、成形終了部位(Px)に至るまでの間は概ね均等になる。   A specific example is shown in FIG. The illustrated three-dimensional shape has a curved processed surface (S) and a flat bottom surface B. In this case, the processing angle θ of the processing surface (S) gradually decreases during the period from the angle θ1 of the molding start site to the angle θx of the molding end site (θ1 to θx). Therefore, in the sequential forming method, the movement path (A1, A2) is displaced for each turn as described with reference to FIG. 2, and the advance amount h of the tool T is decreased as the machining angle θ is smaller. That is, the advance amount h of the tool gradually decreases during the period from the advance amount h1 of the forming start portion to the advance amount hx of the forming end portion (h1 to hx). As a result, in the sequential forming method, the feed pitch P of the tool T is small in the vicinity of the forming start (P1 to P3) and increases thereafter, but is generally uniform until reaching the forming end portion (Px).

図5に比較例を示す。この比較例は、図4に示す三次元形状と同じものを成形するに際し、加工角度θ(θ1〜θx)が減少しているのに対して、工具Tの前進量h(h1〜hx)を均等にしたものである。この場合、工具Tの送りピッチPは、成形開始部位から成形終了部位に至る間(P1〜PX)で次第に増加し続ける。このため、比較例の場合は、金属板Wの表面層が剥離するフレーキングが生じやすくなる。   FIG. 5 shows a comparative example. In this comparative example, when the same three-dimensional shape as shown in FIG. 4 is formed, the machining angle θ (θ1 to θx) decreases, whereas the advance amount h (h1 to hx) of the tool T is reduced. It is equalized. In this case, the feed pitch P of the tool T continues to gradually increase during the period from the molding start site to the molding end site (P1 to PX). For this reason, in the case of a comparative example, it becomes easy to produce the flaking which the surface layer of the metal plate W peels.

これに対して、図4に示す逐次成形方法では、加工角度θが小さい部位ほど工具Tの前進量hを減少させるので、比較例のように工具Tの送りピッチPが次第に増加し続けることがなく、フレーキングの発生を低減させる。   On the other hand, in the sequential forming method shown in FIG. 4, the forward movement amount h of the tool T is decreased as the machining angle θ is smaller, so that the feed pitch P of the tool T may continue to increase gradually as in the comparative example. Reduce the occurrence of flaking.

そこで、逐次成形方法は、上記の加工角度θと前進量hとの関係に加えて、工具Tの押し付け力Fpに対する工具Tの移動方向のすべり力Fsの比(Fs/Fp)に上限を設け、望ましくは、その上限値を0.2以下に維持しながら金属板Wを成形することにより、フレーキングの発生を防止する。   Therefore, the sequential forming method sets an upper limit on the ratio (Fs / Fp) of the sliding force Fs in the moving direction of the tool T to the pressing force Fp of the tool T in addition to the relationship between the machining angle θ and the advance amount h. Desirably, the occurrence of flaking is prevented by forming the metal plate W while maintaining the upper limit value at 0.2 or less.

また、逐次成形方法は、より好ましい実施形態として、工具Tの先端部の曲率半径Rを3mm以下とし、工具Tを所定経路(A1,A2)に沿って移動させた後、工具Tの移動経路を段階的に変位させると共に、工具Tの押し付け方向の前進量hを段階的に変化させる。そして、逐次成形方法は、移動経路の変位幅である工具の送りピッチPを、P=(0.0087×加工角度+0.00135)以下に維持しながら金属板Wを成形することができる。ここで、上記の式中の「0.087」は、工具の送りピッチPの加工角度に対する近似直線の勾配である(図8参照)。また、同式中の「0.00135」は、前記近似直線を、加工角度30°、40°及び50°を通る条件から求めた際の加工角度0°におけるピッチPの値である。   Further, as a more preferable embodiment, the sequential forming method has a curvature radius R of the tip portion of the tool T of 3 mm or less, the tool T is moved along a predetermined path (A1, A2), and then the movement path of the tool T. Is moved stepwise and the advance amount h in the pressing direction of the tool T is changed stepwise. The sequential forming method can form the metal plate W while maintaining the tool feed pitch P, which is the displacement width of the movement path, at P = (0.0087 × working angle + 0.00135) or less. Here, “0.087” in the above equation is the slope of the approximate straight line with respect to the machining angle of the tool feed pitch P (see FIG. 8). Further, “0.00135” in the equation is a value of the pitch P at a processing angle of 0 ° when the approximate straight line is obtained from conditions that pass through processing angles of 30 °, 40 °, and 50 °.

さらに、逐次成形方法は、より好ましい実施形態として、工具Tの移動方向のすべり力Fsと工具Tの接触面積とから求められる金属板Wの剪断応力を、40MPa以下に維持しながら金属板Wを成形することができる。   Furthermore, the successive forming method is a more preferable embodiment, in which the metal plate W is formed while maintaining the shear stress of the metal plate W obtained from the sliding force Fs in the moving direction of the tool T and the contact area of the tool T at 40 MPa or less. Can be molded.

上記の逐次成形方法で用いる各数値の根拠は、以下の通りである。
すなわち、工具Tの押し付け力Fpに対するすべり力Fsの比(Fs/Fp)、工具Tの送りピッチPと形成角度θとの関係、並びに金属板Wに生じる剪断応力の最適値を求めるために、以下の試験を行った。
The basis of each numerical value used in the above sequential molding method is as follows.
That is, in order to obtain the ratio of the sliding force Fs to the pressing force Fp of the tool T (Fs / Fp), the relationship between the feed pitch P of the tool T and the forming angle θ, and the optimum value of the shear stress generated in the metal plate W, The following tests were conducted.

試験では、先端部の曲率半径Rが異なる工具Tを用い、押し付け力Fp、すべり力Fs、送りピッチP、加工角度θを夫々変えて金属板Wを逐次成形した。押し付け力Fp及びすべり力Fsは、図1で説明した分力計3により計測した。工具Tは、先端部の曲率半径Rが3mm(R3)、5mm(R5)、10mm(R10)のものを用いた。これらの工具Tは、金属板Wに対する接触面積も異なる。その結果を図6〜図9に示す。   In the test, the metal plate W was sequentially formed by using a tool T having a different curvature radius R at the tip and changing the pressing force Fp, the sliding force Fs, the feed pitch P, and the processing angle θ. The pressing force Fp and the sliding force Fs were measured by the force meter 3 described with reference to FIG. The tool T used had a radius of curvature R at the tip of 3 mm (R3), 5 mm (R5), and 10 mm (R10). These tools T also have different contact areas with the metal plate W. The results are shown in FIGS.

図6は、工具Tと金属板Wとの間で生じる摩擦力Ffと、工具Tの送りピッチPとの関係を示すグラフである。摩擦力Ffは、工具Tのすべり力Fsを押し付け力Fpで割った値(Fs/Fp)である。図6から明らかなように、いずれの工具Tを用いた場合でも、工具Tの送りピッチPの増大とともに摩擦力Ffも増大し、とくに、先端部の曲率半径Rが小さい工具Tほど摩擦力Ffの増大が顕著であった。そして、いずれの工具Tを用いた場合でも、摩擦力Ffが0.2よりも大きくなると、表面層が剥離するフレーキングが発生することが判明した。   FIG. 6 is a graph showing the relationship between the frictional force Ff generated between the tool T and the metal plate W and the feed pitch P of the tool T. The frictional force Ff is a value (Fs / Fp) obtained by dividing the sliding force Fs of the tool T by the pressing force Fp. As is apparent from FIG. 6, in any of the tools T, the frictional force Ff increases as the feed pitch P of the tool T increases. In particular, the frictional force Ff increases as the tool T has a smaller radius of curvature R at the tip. The increase was remarkable. And it became clear that the flaking which a surface layer peels generate | occur | produces, when the frictional force Ff becomes larger than 0.2 even if which tool T is used.

そこで、逐次成形方法では、金属板Wの加工角度θと工具Tの前進量hとの関係に加え、上記の試験結果に基づいて、摩擦力Ffすなわち工具Tの押し付け力Fpに対するすべり力Fsの比(Fs/Fp)の上限値を0.2以下にすることで、フレーキングの発生を防止する。   Therefore, in the sequential forming method, in addition to the relationship between the machining angle θ of the metal plate W and the advance amount h of the tool T, the frictional force Ff, that is, the sliding force Fs with respect to the pressing force Fp of the tool T is calculated based on the above test result. By setting the upper limit of the ratio (Fs / Fp) to 0.2 or less, occurrence of flaking is prevented.

図7は、先端部の曲率半径Rが3mm(R3)の工具Tを用い、加工角度θを30°、40°、50°に異ならせた場合における、摩擦力Ffと送りピッチPとの関係を示すグラフである。図7から明らかなように、いずれの加工角度θの場合でも、送りピッチPの増大とともに摩擦力Ffも増大するが、摩擦力Ffが0.2以下では増大する度合いに大差はなく、摩擦力Ffが0.2よりも大きくなると、フレーキングが発生することが判明した。   FIG. 7 shows the relationship between the frictional force Ff and the feed pitch P when using a tool T having a radius of curvature R of 3 mm (R3) at the tip and varying the machining angle θ to 30 °, 40 °, and 50 °. It is a graph which shows. As is clear from FIG. 7, the friction force Ff increases as the feed pitch P increases at any machining angle θ, but there is no significant difference in the degree of increase when the friction force Ff is 0.2 or less. It has been found that flaking occurs when Ff is greater than 0.2.

図8は、上記試験の結果に基づいて得た加工角度θと送りピッチPとの関係を示すグラフである。この場合、工具Tの先端部の曲率半径Rは3mm(R3)であり、加工角度θを30°(θ30)、40°(θ40)、50°に異ならせた。図8から明らかなように、フレーキングの発生の目安となる加工角度θと送りピッチPとの関係は、一定の勾配を有する正比例的なものとなり、勾配の上側領域ではフレーキングが発生し、勾配の下側領域ではフレーキングが発生しないことが判明した。   FIG. 8 is a graph showing the relationship between the machining angle θ and the feed pitch P obtained based on the results of the test. In this case, the radius of curvature R of the tip of the tool T was 3 mm (R3), and the machining angle θ was varied to 30 ° (θ30), 40 ° (θ40), and 50 °. As is clear from FIG. 8, the relationship between the processing angle θ and the feed pitch P, which is a guide for occurrence of flaking, is a direct proportion having a constant gradient, and flaking occurs in the upper region of the gradient. It was found that no flaking occurred in the lower region of the gradient.

そこで、逐次成形方法では、先端部の曲率半径Rが3mm以下である工具Tを用いた場合において、図8の加工角度θと送りピッチPとの関係の勾配に基づいて、フレーキングが発生しない送りピッチPの上限閾値を算出した。その結果、送りピッチPを、P=(0.0087×加工角度+0.00135)以下とした。これにより、逐次成形方法では、いずれの加工角度θで逐次成形を行っても、フレーキングの発生を防止する。   Therefore, in the sequential forming method, when the tool T having the curvature radius R of the tip portion of 3 mm or less is used, flaking does not occur based on the gradient of the relationship between the machining angle θ and the feed pitch P in FIG. The upper limit threshold value of the feed pitch P was calculated. As a result, the feed pitch P was set to P = (0.0087 × processing angle + 0.00135) or less. As a result, in the sequential molding method, flaking is prevented from occurring even if sequential molding is performed at any processing angle θ.

図9は、上記試験の結果に基づいて得た送りピッチPと金属板Wに生じる剪断応力との関係を示すグラフである。剪断応力は、工具Tの移動方向のすべり力Fsを金属板Wに対する工具Tの接触面積で割った値(Fs/接触面積)である。工具Tは、先端部の曲率半径Rが3mm(R3)、5mm(R5)、10mm(R10)のものを用いた。図9から明らかなように、いずれの工具Tを用いた場合でも、送りピッチPの増大に伴って剪断応力も増大する。そして、先端部の曲率半径Rが小さい工具Tになるほど剪断応力が大きくなる傾向にあり、前段応力の値が40MPaよりも大きくなると、フレーキングが発生することが判明した。   FIG. 9 is a graph showing the relationship between the feed pitch P obtained based on the result of the test and the shear stress generated in the metal plate W. The shear stress is a value obtained by dividing the sliding force Fs in the moving direction of the tool T by the contact area of the tool T with the metal plate W (Fs / contact area). The tool T used had a radius of curvature R at the tip of 3 mm (R3), 5 mm (R5), and 10 mm (R10). As is apparent from FIG. 9, the shear stress increases as the feed pitch P increases, regardless of which tool T is used. And it became clear that the shear stress tends to increase as the tool radius T becomes smaller, and flaking occurs when the value of the pre-stage stress exceeds 40 MPa.

そこで、逐次成形方法では、工具Tの移動方向のすべり力Fsと工具Tの接触面積とから求められる金属板Wの剪断応力を、40MPa以下にしている。これにより、逐次成形方法では、フレーキングの発生を防止する。   Therefore, in the sequential forming method, the shear stress of the metal plate W obtained from the sliding force Fs in the moving direction of the tool T and the contact area of the tool T is set to 40 MPa or less. This prevents flaking from occurring in the sequential molding method.

上記のように、逐次成形方法は、加工角度θが小さい部位ほど工具Tの前進量hを減少させると共に、工具Tの押し付け力Fpに対する工具Tの移動方向のすべり力Fsの比(Fs/Fp)に上限を設け、その上限値を0.2以下に維持しながら金属板Wを成形する。これにより、逐次成形方法は、表面層を有する金属板Wの逐次成形において、フレーキングの無い良好な外観品質(光沢性・見栄え)を有する成形品を得ることができ、フレーキングの防止により成形品の高い耐食性を得ることができる。しかも、逐次成形方法では、着脱可能な樹脂押圧部を有する工具を用いずに、硬質材から成る一体型の工具Tを用いたうえでフレーキングを防止し得るので、工具Tの保守管理の簡略化や製造コストの低減を図ることができる。   As described above, the sequential forming method reduces the advance amount h of the tool T as the machining angle θ is smaller, and the ratio of the sliding force Fs in the moving direction of the tool T to the pressing force Fp of the tool T (Fs / Fp). ) And forming the metal plate W while maintaining the upper limit value at 0.2 or less. As a result, the sequential molding method can obtain a molded product having good appearance quality (glossiness and appearance) without flaking in the sequential molding of the metal plate W having the surface layer, and molding by preventing flaking. High corrosion resistance of the product can be obtained. Moreover, in the sequential molding method, flaking can be prevented after using an integrated tool T made of a hard material without using a tool having a detachable resin pressing portion, so that maintenance management of the tool T is simplified. And manufacturing cost can be reduced.

また、上記の逐次成形方法は、工具Tの先端部の曲率半径Rを3mm以下とし、移動経路の変位幅である工具Tの送りピッチPを、P=(0.0087×加工角度+0.00135)以下に維持しながら金属板を成形する。これにより、逐次成形方法は、フレーキングの発生をより確実に防止すると共に、成形品の外観品質及び耐食性のさらなる向上に貢献することができ、例えば、コーナー部や溝部などのように、曲率半径が小さい部位の成形を良好に行うことができる。   Further, in the above-described sequential forming method, the radius of curvature R of the tip of the tool T is 3 mm or less, and the feed pitch P of the tool T, which is the displacement width of the moving path, is P = (0.0087 × working angle + 0.00135). ) Form the metal plate while maintaining the following. As a result, the sequential molding method can more reliably prevent the occurrence of flaking and contribute to further improvement in the appearance quality and corrosion resistance of the molded product. It is possible to satisfactorily mold a portion having a small diameter.

さらに、上記の逐次成形方法は、工具Tのすべり力Fsと接触面積とから求められる金属板Wの剪断応力を、40MPa以下に維持しながら成形することで、フレーキングの発生をより確実に防止することができ、成形品の外観品質及び耐食性のさらなる向上に貢献することができる。   Furthermore, the above sequential forming method more reliably prevents flaking by forming while maintaining the shear stress of the metal plate W obtained from the sliding force Fs of the tool T and the contact area at 40 MPa or less. This can contribute to further improvement in the appearance quality and corrosion resistance of the molded product.

さらに、逐次成形方法は、図1に基づいて逐次成形装置を説明したように、分力計3で計測した計測値に基づいて、工具Tの押し付け力Fp及び移動方向のすべり力Fsをフィードバック制御する。より正確には、分力計3で計測した計測値に基づいて、工具Tの押し付け力Fp及びすべり力Fsが適正値になるように三軸移動機構2をフィードバック制御する。   Further, in the sequential forming method, as described in the sequential forming apparatus based on FIG. 1, the pressing force Fp of the tool T and the sliding force Fs in the moving direction are feedback controlled based on the measurement values measured by the force meter 3. To do. More precisely, the three-axis moving mechanism 2 is feedback-controlled so that the pressing force Fp and the sliding force Fs of the tool T become appropriate values based on the measurement values measured by the force meter 3.

これにより、逐次成形方法及び逐次成形装置は、例えば、生産ラインにおいて、良好な外観品質や高い耐食性を有する成形品を連続的に生産することが可能になる。しかも、硬質材から成る一体型の工具Tを用いたうえでフレーキングを防止し得るので、工具Tの保守管理の簡略化や製造コストの低減を実現することができる。   Thereby, the sequential molding method and sequential molding apparatus can continuously produce molded products having good appearance quality and high corrosion resistance, for example, in a production line. In addition, since flaking can be prevented after using the integrated tool T made of a hard material, the maintenance and management of the tool T can be simplified and the manufacturing cost can be reduced.

さらに、逐次成形方法は、金属板Wが表面層としてのめっき層を有し、より具体的には、金属板Wが、亜鉛めっき鋼板、又は合金化溶融亜鉛めっき鋼板であるものとしている。このような金属板Wは、塗膜との密着性や耐食性が良好であることから、自動車用パネルなどに用いられる。これに対して、上記の逐次成形方法は、表面層であるめっき層の剥離を生じることなく金属板Wを逐次成形し得るので、外観品質や耐食性に優れた自動車用パネルを提供することができる。   Further, in the sequential forming method, the metal plate W has a plating layer as a surface layer, and more specifically, the metal plate W is a galvanized steel plate or an alloyed hot-dip galvanized steel plate. Such a metal plate W is used for an automotive panel or the like because it has good adhesion to the coating film and corrosion resistance. On the other hand, the above-described sequential forming method can sequentially form the metal plate W without causing peeling of the plating layer as the surface layer, so that an automotive panel having excellent appearance quality and corrosion resistance can be provided. .

さらに、逐次成形方法は、金属板Wの加工後の表面粗さ(Ra)を0.2μm以下、より望ましくは0.1μm以下としている。これにより、逐次成形方法は、外観品質、とくに光沢性に優れ且つ高い耐久性を有する成形品が得られる。   Further, in the sequential forming method, the surface roughness (Ra) after processing of the metal plate W is set to 0.2 μm or less, more desirably 0.1 μm or less. Thereby, the sequential molding method provides a molded product having excellent appearance quality, particularly glossiness, and high durability.

さらに、逐次成形方法は、より好ましい実施形態として、少なくとも金属板Wとの接触部分が同金属板Wと合金化しない非合金化材料で形成した工具Tを用い、少なくとも金属板Wとの接触部分の表面粗さ(Ra)が、Ra≦0.2μmである工具Tを用いることができる。これにより、逐次成形方法は、工具Tと金属板Wとの凝着を未然に阻止し、潤滑剤を用いなくても、高速で良好な逐次成形を行うことができ、成形品を製造するサイクルタイムの短縮化や、生産効率の向上を実現することができる。   Furthermore, the sequential forming method uses, as a more preferred embodiment, a tool T formed of a non-alloyed material in which at least a contact portion with the metal plate W is not alloyed with the metal plate W, and at least a contact portion with the metal plate W A tool T having a surface roughness (Ra) of Ra ≦ 0.2 μm can be used. As a result, the sequential forming method prevents the adhesion between the tool T and the metal plate W in advance, and can perform good sequential forming at high speed without using a lubricant. Time can be shortened and production efficiency can be improved.

さらに、逐次成形方法は、より好ましい実施形態として、図3に示すように、基材Taと硬質材Tbとから成り且つ少なくとも金属板Wとの接触部分が硬質材Tbで形成してある工具Tを用いることができる。これにより、逐次成形方法は、工具費用を低廉に抑えることができ、成形品の製造コストの低下にも貢献し得る。   Furthermore, as a more preferable embodiment, the sequential forming method is a tool T which is made of a base material Ta and a hard material Tb and at least a contact portion with the metal plate W is formed of the hard material Tb as shown in FIG. Can be used. Thereby, the sequential forming method can keep the tool cost low and can contribute to the reduction of the manufacturing cost of the molded product.

さらに、逐次成形方法は、より好ましい実施形態として、上記の硬質材Tbが、多結晶ダイヤモンド、単結晶ダイヤモンド、及びダイヤモンドライクカーボンから選択した硬質炭素被膜である工具Tを用いることができる。これにより、逐次成形方法は、工具Tと金属板Wとの凝着を未然に阻止し、潤滑剤を用いなくても高速で良好な逐次成形を行うことができ、サイクルタイムの短縮化や生産効率の向上のほか、工具Tの高寿命化などを実現することができる。   Furthermore, the sequential forming method can use, as a more preferred embodiment, a tool T in which the hard material Tb is a hard carbon film selected from polycrystalline diamond, single crystal diamond, and diamond-like carbon. As a result, the sequential forming method prevents adhesion between the tool T and the metal plate W, and can perform good sequential forming at high speed without using a lubricant, shortening the cycle time and producing In addition to improving efficiency, the tool T can have a long service life.

〈第2実施形態〉
図10及び図11は、本発明に係わる逐次成形方法の第2実施形態を説明する図であって、自動車用エンジンフードのアウタパネルOP及びインナパネルIPの逐次成形を例示している。なお、各図は、便宜上、高さ方向の大きさを誇張して示しており、実際のパネルは図示形状よりも扁平である。
Second Embodiment
FIGS. 10 and 11 are views for explaining a second embodiment of the sequential molding method according to the present invention, and illustrate sequential molding of an outer panel OP and an inner panel IP of an automobile engine hood. In addition, each figure has exaggerated and shown the magnitude | size of the height direction for convenience, and the actual panel is flatter than the illustration shape.

図10に平面を示すアウタパネルOPは、下側が車体前部であり、同図中に断面を示すように、全体的に上方に緩やかに湾曲しており、両側には、車体前後方向に沿うキャラクターラインCLが形成してある。キャラクターラインCLは、上方に突出し、本体部分に比べて、内側の曲率半径Rが小さい(一例として1〜3mm)部分である。   The outer panel OP shown in a plan view in FIG. 10 has a vehicle body front portion on the lower side, and is gently curved upward as shown in the cross section in the figure. A line CL is formed. The character line CL is a portion that protrudes upward and has an inner radius of curvature R that is smaller than the main body portion (as an example, 1 to 3 mm).

逐次成形方法では、アウタパネルOPを下面側から成形することとなり、平坦な金属板(ブランク材)を逐次成形することで、湾曲した両側の側面(加工面)Sを形成する。この側面Sは、図1における側面Sに相当する。そして、アウタパネルOPの中央領域は、図1における底面Bに相当する。その後、逐次成形方法では、先端部の曲率半径が小さい工具(例えばR3の工具)Tを用い、キャラクターラインCLを裏側から成形する。なお、図2に示す例では、工具Tを周回移動させる場合を説明したが、キャラクターラインCLを成形する場合には、工具Tを直線的に移動させ、移動毎に、移動経路や前進量(下降量)を適宜変更する。   In the sequential forming method, the outer panel OP is formed from the lower surface side, and a flat metal plate (blank material) is sequentially formed to form curved side surfaces (processed surfaces) S. The side surface S corresponds to the side surface S in FIG. The central region of the outer panel OP corresponds to the bottom surface B in FIG. Thereafter, in the sequential forming method, a character line CL is formed from the back side using a tool T (for example, a tool R3) having a small curvature radius at the tip. In the example shown in FIG. 2, the case where the tool T is moved around has been described. However, when the character line CL is formed, the tool T is moved linearly, and the movement path and the advance amount ( Change the descent amount) appropriately.

図11に平面を示すインナパネルIPは、アウタパネルOPと接合してエンジンフードを構成する。このインナパネルIPは、同図中に断面を示すように、全体的に下方に緩やかに湾曲しており、機械的強度を高めるために、複数のリブRbが配列してある。リブRbは、その裏側が溝状を成し、本体部分に比べて、内側の曲率半径Rが小さい(一例として1〜3mm)部分である。   The inner panel IP shown in a plan view in FIG. 11 is joined to the outer panel OP to constitute an engine hood. As shown in the cross section in the figure, the inner panel IP is gently curved downward as a whole, and a plurality of ribs Rb are arranged to increase the mechanical strength. The rib Rb has a groove shape on the back side, and has a smaller radius of curvature R on the inner side (1 to 3 mm as an example) than the main body portion.

逐次成形方法では、インナパネルIPを上面側から成形することとなり、平坦な金属板(ブランク材)を逐次成形することで、湾曲した両側の側面(加工面)Sを形成する。その後、逐次成形方法では、先端部の曲率半径が小さい工具(例えばR3の工具)Tを用い、リブRbを裏側から成形する。この場合にあっても、工具Tを直線的に移動させ、移動毎に、移動経路や前進量(下降量)を適宜変更してリブRbを形成する。   In the sequential forming method, the inner panel IP is formed from the upper surface side, and the curved side surfaces (processed surfaces) S are formed by sequentially forming a flat metal plate (blank material). Thereafter, in the sequential forming method, the rib Rb is formed from the back side using a tool T (for example, R3 tool) T having a small curvature radius at the tip. Even in this case, the tool T is moved linearly, and the rib Rb is formed by appropriately changing the movement path and the forward movement amount (lowering amount) for each movement.

ここで、アウタパネルOP及びインナパネルIPには、例えば、亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板が用いられる。これに対して、逐次成形方法では、先の実施形態で説明したように、表面層を有する金属板Wの逐次成形において、フレーキングの発生を防止する。したがって、逐次成形方法によれば、表面層であるめっき層を損傷することなく、良好な外観品質や高い耐食性を有するアウタパネルOP及びインナパネルIPを提供することができる。   Here, for the outer panel OP and the inner panel IP, for example, a galvanized steel plate or an alloyed hot-dip galvanized steel plate is used. On the other hand, in the sequential forming method, as described in the previous embodiment, the occurrence of flaking is prevented in the sequential forming of the metal plate W having the surface layer. Therefore, according to the sequential forming method, it is possible to provide the outer panel OP and the inner panel IP having good appearance quality and high corrosion resistance without damaging the plating layer as the surface layer.

〈実施例〉
実施例1〜9として、図1に示すような逐次成形装置を用い、工具Tの先端部の曲率半径R、加工角度θ、加工速度(移動速度)、送りピッチP、及び工具の移動方向のすべり力を変えて金属板の逐次成形を行った。なお、工具Tの先端部の材質は、いずれもダイヤモンドコーティングとした。また、工具Tの押し付け力を変化させることにより、金属板Wとの間に生じる剪断応力(すべり力/工具接触面積)、及び摩擦力Ff(すべり力/押し付け力)も変化させた。そして、フレーキングの有無を確認し、加工後の表面粗さ(Ra)を計測し、Fe溶出までの時間を求めた。
<Example>
As Examples 1 to 9, using a sequential forming apparatus as shown in FIG. 1, the curvature radius R of the tip of the tool T, the machining angle θ, the machining speed (movement speed), the feed pitch P, and the movement direction of the tool The metal plate was sequentially formed by changing the sliding force. The material of the tip portion of the tool T was a diamond coating. Further, by changing the pressing force of the tool T, the shear stress (sliding force / tool contact area) generated between the metal plate W and the frictional force Ff (sliding force / pressing force) were also changed. And the presence or absence of flaking was confirmed, the surface roughness (Ra) after a process was measured, and the time until Fe elution was calculated | required.

比較例1〜9として、工具Tの先端部の材質、加工角度θ、加工速度(移動速度)、送りピッチP、工具の押し付け力及び移動方向のすべり力を変えて金属板の逐次成形を行った。なお、工具Tの先端部の曲率半径Rは、いずれも3mmとした。そして、実施例と同様に、フレーキングの有無を確認し、加工後の表面粗さ(Ra)を計測し、Fe溶出までの時間を求めた。実施例1〜9及び比較例1〜9の諸条件及び結果を表1に示す。   As Comparative Examples 1 to 9, the material of the tip of the tool T, the processing angle θ, the processing speed (moving speed), the feed pitch P, the pressing force of the tool, and the sliding force in the moving direction are changed to sequentially form the metal plate. It was. In addition, the curvature radius R of the front-end | tip part of the tool T was all 3 mm. And like the Example, the presence or absence of flaking was confirmed, the surface roughness (Ra) after a process was measured, and the time until Fe elution was calculated | required. Table 1 shows the conditions and results of Examples 1 to 9 and Comparative Examples 1 to 9.

Figure 2017217657
Figure 2017217657

表1から明らかなように、実施例1〜9では、工具Tの押し付け力Fpに対するすべり力Fsの比(Fs/Fp)を0.2以下にし、金属板Wに生じる剪断応力を40MPa以下にして金属板Wを成形することで、いずれもフレーキングの発生は認められなかった。なお、実施例6は、0.2を超えているもののフレーキングの発生は認められなかった。   As apparent from Table 1, in Examples 1 to 9, the ratio of the sliding force Fs to the pressing force Fp of the tool T (Fs / Fp) is set to 0.2 or less, and the shear stress generated in the metal plate W is set to 40 MPa or less. In any case, no flaking was observed when the metal plate W was formed. In Example 6, flaking was not observed although it exceeded 0.2.

これに対して、比較例1〜9では、比較例7を除いて、工具Tの押し付け力Fpに対するすべり力Fsの比(Fs/Fp)が0.2を超えると共に、金属板Wに生じる剪断応力が40MPaを超えるものとなり、いずれも全面的若しくは部分的にフレーキングの発生が確認された。   On the other hand, in Comparative Examples 1 to 9, except for Comparative Example 7, the ratio of the sliding force Fs to the pressing force Fp of the tool T (Fs / Fp) exceeds 0.2, and the shear generated in the metal plate W The stress exceeded 40 MPa, and in all cases, occurrence of flaking was confirmed entirely or partially.

また、実施例1〜9では、実施例1及び9が、表面粗さRa0.2μmを超えるものとなったが、上記の如くフレーキングの発生が無いうえに、表面粗さRaが0.2μm以下となり、いずれも良好な外観品質であることを確認した。これに対して、比較例1〜9では、いずれの場合も表面粗さRaが0.2μmを明らかに超えるものとなり、実施例よりも外観品質が劣ることを確認した。   In Examples 1 to 9, Examples 1 and 9 exceeded the surface roughness Ra of 0.2 μm. However, as described above, flaking did not occur and the surface roughness Ra was 0.2 μm. It was as follows, and it was confirmed that both had good appearance quality. On the other hand, in Comparative Examples 1 to 9, the surface roughness Ra clearly exceeded 0.2 μm in any case, and it was confirmed that the appearance quality was inferior to the examples.

さらに、実施例1〜9では、いずれもFe溶出までの時間が500(Hr)を超えることが判明した。これに対して、比較例1〜9では、Fe溶出までの時間に関し、比較例6のFe溶出時間124(Hr)が最長であって、殆どが100(Hr)以下であり、実施例よりも明らかに耐久性が低いことを確認した   Furthermore, in Examples 1-9, it turned out that time until Fe elution exceeds 500 (Hr) in all. On the other hand, in Comparative Examples 1 to 9, the Fe elution time 124 (Hr) of Comparative Example 6 is the longest and most is 100 (Hr) or less with respect to the time until Fe elution. Obviously low durability

逐次成形方法は、上記した実施例と比較例との比較から明らかなように、フレーキングの有無、加工後の表面粗さ(Ra)、及びFe溶出までの時間に関して、いずれも比較例を上回る優れた結果が得られ、フレーキングの無い良好な外観品質と高い耐久性を有する成形品を提供し得ることを確認した。   As is apparent from the comparison between the above-described Examples and Comparative Examples, the sequential molding method is superior to the Comparative Examples in terms of the presence or absence of flaking, the surface roughness after processing (Ra), and the time until Fe elution. It was confirmed that excellent results were obtained and a molded product having good appearance quality and high durability without flaking could be provided.

本発明に係わる逐次成形方法及び逐次成形装置は、上記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することが可能である。さらに、上記各実施形態では、金属板の上側に配置した工具で逐次成形を行う場合を例示したが、金属板を立てた状態にし、横方向から工具を押し付けて逐次成形することも可能であり、保持用治具を可動にしても良い。   The sequential molding method and sequential molding apparatus according to the present invention are not limited to the above embodiments, and the details of the configuration can be changed as appropriate without departing from the gist of the present invention. Further, in each of the above-described embodiments, the case where sequential forming is performed with a tool arranged on the upper side of the metal plate is illustrated, but it is also possible to form the metal plate in a standing state and press the tool from the lateral direction to sequentially form. The holding jig may be movable.

Fs 工具のすべり力
Fp 工具の押し付け力
h 工具の前進量
P 工具の送りピッチ
T 工具
Ta 基材
Tb 硬質材
W 金属板
θ 加工角度
1 保持用治具
2 三軸移動機構
3 分力計
4 主制御部
Fs Tool sliding force Fp Tool pressing force h Tool advance amount P Tool feed pitch T Tool Ta Base material Tb Hard material W Metal plate θ Machining angle 1 Holding jig 2 Triaxial moving mechanism 3 Component force meter 4 Main Control unit

Claims (13)

表面層を有する金属板の周囲を保持し、その金属板の表面層に工具を押し付けて所定経路を移動させることにより、金属板を板厚方向に次第に変形させて三次元形状に成形するに際し、
成形前の金属板と成形後の加工面とが成す加工角度に応じて、金属板に対する工具の押し付け方向の前進量を変化させ、その際、加工角度が小さい部位ほど工具の前進量を減少させると共に、
工具の押し付け力に対する工具の移動方向のすべり力の比に上限を設けて金属板を成形することを特徴とする逐次成形方法。
Holding the periphery of the metal plate having the surface layer, pressing a tool against the surface layer of the metal plate and moving a predetermined path, the metal plate is gradually deformed in the plate thickness direction to form a three-dimensional shape,
Depending on the machining angle formed by the metal plate before forming and the processed surface after forming, the amount of advancement in the pressing direction of the tool against the metal plate is changed. With
A sequential forming method characterized by forming an upper limit on a ratio of a sliding force in a moving direction of a tool to a pressing force of the tool to form a metal plate.
前記すべり力の比の上限が、0.2以下であることを特徴とする請求項1に記載の逐次成形方法。   The sequential molding method according to claim 1, wherein an upper limit of the ratio of the sliding forces is 0.2 or less. 前記工具の先端部の曲率半径Rが3mm以下であり、
工具を所定経路に沿って移動させた後、工具の移動経路を段階的に変位させると共に、
工具の押し付け方向の前進量を段階的に変化させることとし、
移動経路の変位幅である工具の送りピッチPを、P=(0.0087×加工角度+0.00135)以下に維持しながら金属板を成形することを特徴とする請求項2に記載の逐次成形方法。
The radius of curvature R of the tip of the tool is 3 mm or less,
After moving the tool along a predetermined path, the tool moving path is displaced stepwise,
The advance amount in the tool pressing direction will be changed in stages,
3. The sequential forming according to claim 2, wherein the metal plate is formed while maintaining a feed pitch P of the tool, which is a displacement width of the moving path, at P = (0.0087 × processing angle + 0.00135) or less. Method.
前記工具の移動方向のすべり力と工具の接触面積とから求められる金属板の剪断応力を、40MPa以下に維持しながら金属板を成形することを特徴とする請求項1〜3のいずれか1項に記載の逐次成形方法。   The metal plate is formed while maintaining the shear stress of the metal plate obtained from the sliding force in the moving direction of the tool and the contact area of the tool at 40 MPa or less. The sequential molding method described in 1. 前記工具の押し付け力及び移動方向のすべり力を計測する分力計を用い、
分力計で計測した計測値に基づいて、工具の押し付け力及び移動方向のすべり力をフィードバック制御することを特徴とする請求項1〜5のいずれか1項に記載の逐次成形方法。
Using a force meter that measures the pressing force of the tool and the sliding force in the moving direction,
The sequential forming method according to any one of claims 1 to 5, wherein feedback control is performed on the pressing force of the tool and the sliding force in the moving direction based on a measurement value measured by a force meter.
前記金属板が、表面層としてのめっき層を有していることを特徴とする請求項1〜4のいずれか1項に記載の逐次成形方法。   The sequential forming method according to any one of claims 1 to 4, wherein the metal plate has a plating layer as a surface layer. 前記金属板が、亜鉛めっき鋼板、又は合金化溶融亜鉛めっき鋼板であることを特徴とする請求項6記載の逐次成形方法。   The sequential forming method according to claim 6, wherein the metal plate is a galvanized steel plate or an alloyed hot-dip galvanized steel plate. 前記金属板は、加工後の表面粗さ(Ra)が0.2μm以下であることを特徴とする請求項6又は7に記載の逐次成形方法。   The sequential forming method according to claim 6, wherein the metal plate has a surface roughness (Ra) after processing of 0.2 μm or less. 前記工具は、少なくとも金属板との接触部分が、前記金属板と合金化しない非合金化材料で形成してあることを特徴とする請求項1〜8のいずれか1項に記載の逐次成形方法。   The sequential forming method according to any one of claims 1 to 8, wherein at least a contact portion with the metal plate is formed of a non-alloyed material that is not alloyed with the metal plate. . 前記工具は、少なくとも金属板との接触部分の表面粗さ(Ra)が、Ra≦0.2μmであることを特徴とする請求項9に記載の逐次成形方法。   10. The sequential forming method according to claim 9, wherein the tool has a surface roughness (Ra) of at least a contact portion with a metal plate of Ra ≦ 0.2 μm. 前記工具は、基材と硬質材とから成り、少なくとも金属板との接触部分が、硬質材で形成してあることを特徴とする請求項9又は10に記載の逐次成形方法。   The sequential forming method according to claim 9 or 10, wherein the tool includes a base material and a hard material, and at least a contact portion with the metal plate is formed of the hard material. 前記硬質材が、多結晶ダイヤモンド、単結晶ダイヤモンド、及びダイヤモンドライクカーボンから選択した硬質炭素被膜であることを特徴とする請求項11に記載の逐次成形方法。   The sequential molding method according to claim 11, wherein the hard material is a hard carbon film selected from polycrystalline diamond, single crystal diamond, and diamond-like carbon. 表面層を有する金属板の周囲を保持し、その金属板の表面層に工具を押し付けて移動させることにより、金属板を板厚方向に次第に変形させて三次元形状に成形する装置であって、
金属板の周囲を保持する保持用治具と、
工具及び保持用治具を直交する3軸方向に相対的に移動させる三軸移動機構と、
金属板に押し付けた工具の軸線方向に生じる押し付け力、及び移動方向のすべり力を計測する分力計と、
分力計の計測値に基づいて三軸移動機構を制御する主制御部とを備えたことを特徴とする逐次成形装置。
An apparatus for forming a three-dimensional shape by gradually deforming the metal plate in the plate thickness direction by holding the periphery of the metal plate having the surface layer, and pressing and moving the tool against the surface layer of the metal plate,
A holding jig for holding the periphery of the metal plate;
A triaxial moving mechanism for relatively moving the tool and the holding jig in three orthogonal directions;
A force meter that measures the pressing force generated in the axial direction of the tool pressed against the metal plate and the sliding force in the moving direction;
A sequential molding apparatus comprising: a main control unit that controls a triaxial moving mechanism based on a measurement value of a force meter.
JP2016112350A 2016-06-06 2016-06-06 Sequential molding method and sequential molding apparatus Active JP6701570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016112350A JP6701570B2 (en) 2016-06-06 2016-06-06 Sequential molding method and sequential molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112350A JP6701570B2 (en) 2016-06-06 2016-06-06 Sequential molding method and sequential molding apparatus

Publications (2)

Publication Number Publication Date
JP2017217657A true JP2017217657A (en) 2017-12-14
JP6701570B2 JP6701570B2 (en) 2020-05-27

Family

ID=60657492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112350A Active JP6701570B2 (en) 2016-06-06 2016-06-06 Sequential molding method and sequential molding apparatus

Country Status (1)

Country Link
JP (1) JP6701570B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206170A (en) * 2018-03-16 2019-12-05 ザ・ボーイング・カンパニーTheBoeing Company Generation of a plurality of curved transitions connecting planar parallel alternating paths for forming workpiece
WO2021229254A1 (en) * 2020-05-14 2021-11-18 日産自動車株式会社 Sequential molding tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102585151B1 (en) * 2021-08-06 2023-10-06 한국생산기술연구원 Incremental forming apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985355A (en) * 1995-07-20 1997-03-31 Hitachi Ltd Formation of successively expanding metallic plate and apparatus therefor
JPH1157872A (en) * 1997-08-19 1999-03-02 Mitsubishi Heavy Ind Ltd Plate material forming method
JPH11327619A (en) * 1998-05-11 1999-11-26 Hitachi Ltd Nc program preparation method for successive molding, successive molding method and record medium
JP2002102945A (en) * 2000-09-25 2002-04-09 Honda Motor Co Ltd Incremental stretch forming tool
JP2003236622A (en) * 2002-02-19 2003-08-26 Honda Motor Co Ltd Sequential forming method
JP4287912B2 (en) * 1998-01-29 2009-07-01 株式会社アミノ Dieless forming device for plate
JP2011500331A (en) * 2007-10-22 2011-01-06 エーアーデーエス・ドイッチェランド・ゲゼルシャフト ミット ベシュレンクテル ハフツング Tool holder and stepwise sheet forming method using the tool holder
JP2015193913A (en) * 2014-03-27 2015-11-05 日立金属株式会社 Manufacturing method of coating tool
JP6493112B2 (en) * 2015-09-11 2019-04-03 日産自動車株式会社 Sequential forming method and tool for the sequential forming method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985355A (en) * 1995-07-20 1997-03-31 Hitachi Ltd Formation of successively expanding metallic plate and apparatus therefor
JPH1157872A (en) * 1997-08-19 1999-03-02 Mitsubishi Heavy Ind Ltd Plate material forming method
JP4287912B2 (en) * 1998-01-29 2009-07-01 株式会社アミノ Dieless forming device for plate
JPH11327619A (en) * 1998-05-11 1999-11-26 Hitachi Ltd Nc program preparation method for successive molding, successive molding method and record medium
JP2002102945A (en) * 2000-09-25 2002-04-09 Honda Motor Co Ltd Incremental stretch forming tool
JP2003236622A (en) * 2002-02-19 2003-08-26 Honda Motor Co Ltd Sequential forming method
JP2011500331A (en) * 2007-10-22 2011-01-06 エーアーデーエス・ドイッチェランド・ゲゼルシャフト ミット ベシュレンクテル ハフツング Tool holder and stepwise sheet forming method using the tool holder
JP2015193913A (en) * 2014-03-27 2015-11-05 日立金属株式会社 Manufacturing method of coating tool
JP6493112B2 (en) * 2015-09-11 2019-04-03 日産自動車株式会社 Sequential forming method and tool for the sequential forming method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206170A (en) * 2018-03-16 2019-12-05 ザ・ボーイング・カンパニーTheBoeing Company Generation of a plurality of curved transitions connecting planar parallel alternating paths for forming workpiece
JP7382728B2 (en) 2018-03-16 2023-11-17 ザ・ボーイング・カンパニー Generation of multiple curved transitions connecting parallel alternating passes on a plane for workpiece forming
WO2021229254A1 (en) * 2020-05-14 2021-11-18 日産自動車株式会社 Sequential molding tool
CN115551654A (en) * 2020-05-14 2022-12-30 日产自动车株式会社 Tool for incremental forming
JP7300096B2 (en) 2020-05-14 2023-06-29 日産自動車株式会社 Sequential molding tools
US11819900B2 (en) 2020-05-14 2023-11-21 Nissan Motor Co., Ltd. Sequential molding tool

Also Published As

Publication number Publication date
JP6701570B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6548462B2 (en) Additional manufacturing method
US5921131A (en) Method for frictionally guiding and forming ferrous metal
CN104411423B (en) The end portion segmentation method of metallic plate or metal bar, use metal parts and joint method thereof that this end portion segmentation method manufactures
US7654124B2 (en) Method of making a sheet metal part for motor vehicles
JP6806984B2 (en) Martensitic stainless steel die for optical parts Elliptical vibration cutting method
JP2017217657A (en) Gradual molding method and gradual molding device
JP5386991B2 (en) Shearing molding method
JPWO2005097373A1 (en) Shearing device
JP6518780B2 (en) Stabilizer for vehicle, processing device for eyeball of stabilizer, and processing method for eyeball
CN109622777A (en) A kind of plate progressive molding device and method based on superposition auxiliary material
JP2007061955A (en) Sliding member and machine tool equipped therewith
JP6046366B2 (en) Incremental forming method of metal plate
JP6493112B2 (en) Sequential forming method and tool for the sequential forming method
CN110023001B (en) Two-point progressive device and method for flanging
JP6714854B2 (en) Sequential molding method
JP4317573B2 (en) Press die for sheet metal molding, processing method of press die surface, and production method of vehicle body
JP2015077621A (en) Press work method
JP2010089103A (en) Plastic working method of spline
JP2711156B2 (en) Mold for stamping sheet metal parts
CN211803634U (en) Thick material support cold forging forming die structure
JP7417069B2 (en) Molded material manufacturing method
KR101859601B1 (en) Metal-member manufacturing apparatus
CN112676429A (en) Wear-resistant and anti-sticking stainless steel part drawing die
Abed et al. Study the Effect of Multilayer Single Point Incremental Forming on Tool Path Mark for AA1050 bottom plates
JP2018015805A (en) Tool for sequential forming and sequential forming method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200416

R151 Written notification of patent or utility model registration

Ref document number: 6701570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151