JP2017216829A - 管理装置および電源システム - Google Patents

管理装置および電源システム Download PDF

Info

Publication number
JP2017216829A
JP2017216829A JP2016109388A JP2016109388A JP2017216829A JP 2017216829 A JP2017216829 A JP 2017216829A JP 2016109388 A JP2016109388 A JP 2016109388A JP 2016109388 A JP2016109388 A JP 2016109388A JP 2017216829 A JP2017216829 A JP 2017216829A
Authority
JP
Japan
Prior art keywords
voltage
cell
voltage detection
circuit
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016109388A
Other languages
English (en)
Inventor
公彦 古川
Kimihiko Furukawa
公彦 古川
智徳 國光
Tomonori Kunimitsu
智徳 國光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2016109388A priority Critical patent/JP2017216829A/ja
Publication of JP2017216829A publication Critical patent/JP2017216829A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】直列接続された複数のセルの電圧測定誤差に起因する過充電を、簡単な構成で抑制する。【解決手段】セル電圧検出回路31の入力フィルタの一部を構成する複数の抵抗R1−R9が、各電圧検出線L1−L9に挿入される。複数の均等化回路は、隣接する各電圧検出線L1−L9間に接続される。制御回路32は、セル電圧検出回路31により検出される複数のセル電圧をもとに、当該複数のセル電圧の内、最も低いセル電圧に、他のセル電圧を合わせるように複数の均等化回路を制御する。リーク電流に起因するセル電圧の計測誤差の最大許容値と、抵抗R1−R9の定数にもとづく許容リーク電流の値より、均等化回路を有効化したときに流れる放電電流の値が低くなるよう、抵抗R1−R9の定数および均等化回路の定数を設定する。【選択図】図1

Description

本発明は、蓄電モジュールの状態を管理する管理装置、及び電源システムに関する。
近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの車にはキーデバイスとして二次電池が搭載される。車載用二次電池としては主に、ニッケル水素電池およびリチウムイオン電池が普及している。今後、エネルギー密度が高いリチウムイオン電池の普及が加速すると予想される。
リチウムイオン電池は常用領域と使用禁止領域が近接しているため、他の種類の電池より厳格な電圧管理が必要である。複数のリチウムイオン電池セルが直列に接続された組電池を使用する場合、各セルの電圧を検出するための電圧検出回路が設けられる。複数のセルの各ノードと電圧検出回路は、複数の電圧検出線で接続される(例えば、特許文献1、2参照)。検出されたセル電圧は、SOC(State Of Charge)管理、均等化制御などに使用される。一般的な均等化制御では複数のセルの内、SOCが高い(=電圧が高い)セルから微少電流を放電させることで、複数のセルの各SOCを略均等に保つように制御される。
電圧検出回路内には通常、ESD(Electro-Static Discharge)対策用のダイオードが埋め込まれており、当該ダイオードがリーク電流を発生させた場合、電圧測定誤差が生じる。また電圧検出回路の入力端子に設けられたRCフィルタのコンデンサがリーク電流を発生させた場合も、電圧測定誤差が生じる。制御回路は当該電圧測定誤差をSOCのズレと認識し、電圧の低いセルに合わせるように他のセルを放電させる。従って、複数のセルのSOCが揃っている場合でも、リーク電流により電圧検出回路から特定のセル電圧が低く見える場合、均等化回路により他のセルを放電して、他のセルの電圧を特定のセルの電圧に合わせようとする。この場合、均等化制御により、他のセルの電圧が低下することになる。
特定のセルのリーク電流より、他のセルの均等化制御による放電電流の方が大きい状態では、均等化制御により電圧偏差分が埋め合わされるため、特定のセルは常に、電圧の誤検出量の分だけ実電圧が他のセルより高くなり、SOCが他のセルより上昇することで、システムの充電動作時に過充電に至る可能性がある。
これに対して、均等化回路の実効抵抗値を、均等化回路の放電用スイッチのデューティ比を制御して調整し、過充電を回避する手法が提案されている(例えば、特許文献1参照)。
国際公開第2013/057820号
上述した均等化スイッチのデューティ比を制御する方式を採用する場合、スイッチのPWM駆動が可能なドライバを搭載する必要があり、回路が大型化し、コストが増大する。
本発明はこうした状況に鑑みなされたものであり、その目的は、直列接続された複数のセルの電圧測定誤差に起因する過充電を、簡単な構成で抑制する技術を提供することにある。
上記課題を解決するために、本発明のある態様の管理装置は、直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出する電圧検出回路と、各電圧検出線に挿入され、前記電圧検出回路の入力フィルタの一部を構成する複数の抵抗と、隣接する各電圧検出線間に、前記複数のセルとそれぞれ並列に接続される複数の均等化回路と、前記電圧検出回路により検出される前記複数のセル電圧をもとに、当該複数のセル電圧の内、最も低いセル電圧に、他のセル電圧を合わせるように前記複数の均等化回路を制御する制御回路と、を備える。前記電圧検出回路内における回路素子を通じた前記電圧検出線から流れるリーク電流に起因する前記セル電圧の計測誤差の最大許容値と、前記抵抗の定数にもとづく許容リーク電流の値より、前記均等化回路を有効化したときに流れる放電電流の値が低くなるよう、前記抵抗の定数および前記均等化回路の定数を設定する。
なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、直列接続された複数のセルの電圧測定誤差に起因する過充電を、簡単な構成で抑制することができる。
実施の形態の設計例1に係る電源システムを示す図である。 実施の形態の設計例2に係る電源システムを示す図である。 実施の形態の設計例3に係る電源システムを示す図である。 実施の形態の設計例4に係る電源システムを示す図である。
図1は、実施の形態の設計例1に係る電源システム1を示す図である。電源システム1は、蓄電モジュール10及び管理装置30を備える。蓄電モジュール10は、直列接続された複数のセルを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6−3.7V)を使用する例を想定する。図1では、8個のリチウムイオン電池セル(第1セルS1−第8セルS8)が直列に接続されて構成された組電池を使用する例を描いている。
管理装置30は、均等化回路、入力フィルタ、セル電圧検出回路31及び制御回路32を含み、それらはプリント配線基板上に実装される。セル電圧検出回路31は、直列接続された複数のセルS1−S8の各ノードと複数の電圧検出線L1−L9で接続され、隣接する電圧検出線間の電圧を検出して各セルS1−S8の電圧を検出する。セル電圧検出回路31は例えば、専用のカスタムICであるASIC(Application Specific Integrated Circuit)により構成される。セル電圧検出回路31は、検出した各セルS1−S8の電圧を制御回路32に送信する。
蓄電モジュール10の複数のセルS1−S8の各ノードにはワイヤーハーネスが接続され、各ワイヤーハーネスの先端のコネクタが、プリント配線基板に実装された管理装置30の各コネクタに装着される。即ち、蓄電モジュール10と管理装置30間は、ハーネス・コネクタ20を介して電気的に接続される。
複数の電圧検出線L1−L9にそれぞれ抵抗R1−R9が挿入され、隣接する2本の電圧検出線間にそれぞれコンデンサC1−C8が接続される。抵抗R1−R9及びコンデンサC1−C8は入力フィルタ(ローパスフィルタ)を構成し、セル電圧検出回路31に入力される電圧を安定化させる作用を有する。
管理装置30の各コネクタと、セル電圧検出回路31の各検出端子間は、複数の電圧検出線L1−L9で接続される。隣接する2本の電圧検出線間にそれぞれ均等化回路が接続される。図1に示す例では、均等化回路は放電抵抗R11−R18と放電スイッチQ1−Q8の直列回路で構成されている。放電スイッチQ1−Q8は例えば、トランジスタで構成される。
制御回路32は、セル電圧検出回路31から受信した複数のセルS1−S8の電圧をもとに均等化制御を実行する。具体的には複数のセルS1−S8の内、最も電圧が低いセルの電圧に他のセルの電圧を合わせる。制御回路32は、当該他のセルと並列に接続されている均等化回路の放電スイッチをターンオンして、当該他のセルを放電させる。当該他のセルの電圧が、最も電圧が低いセルの電圧まで低下したら、当該他のセルと並列に接続されている均等化回路の放電スイッチをターンオフする。制御回路32は例えば、マイクロプロセッサにより構成される。
セル電圧検出回路31の動作電源は、電源回路の簡素化のため、監視対象の蓄電モジュール10から供給を受ける。蓄電モジュール10以外の電源からセル電圧検出回路31が電力供給を受ける場合、絶縁処理が必要となるため回路が大型化し、コストが増大する。
セル電圧検出回路31の回路動作電流として通常、数mA〜数十mA発生する。電源供給線と電圧検出線を兼用する場合、当該回路動作電流による電圧降下が検出電圧に影響を与える。特に、高精度な管理が必要となるリチウムイオン電池を用いた電源システム1では無視できないものとなる。そのため、電源供給線と電圧検出線を兼用させず、個別配線とすることが考えられる。
図1に示す例では、蓄電モジュール10を構成する複数のセルS1−S8の最上位のノードとセル電圧検出回路31間を、第1電圧検出線L1と正電源供給線L0の2本で接続している。同様に複数のセルS1−S8の最下位のノードとセル電圧検出回路31間を、第9電圧検出線L9と負電源供給線L10の2本で接続している。
セル電圧検出回路31の内部において、各電圧検出線L1−L9が接続される入力端子と、負電源供給線L10が接続される負電源端子間にESD(Electro-Static Discharge)保護ダイオードが接続される。これらのESD保護ダイオードには通常、ツェナーダイオードが使用され、ICの製造時に予め組み込まれる。これらのESD保護ダイオードは通常、電圧測定に影響することは無いが、当該ダイオードがリーク電流を発生させた場合、電圧測定誤差が生じる。図1では、第7電圧検出線L7が接続される入力端子と、負電源供給線L10が接続される負電源端子間のESD保護ダイオードD1がリーク電流を発生させた場合を示している。
図1に示す設計例1では、入力フィルタの一部を構成する抵抗R1−R9の抵抗値を50Ωに設定している。この設計では、ESD保護ダイオードD1のリーク電流ILが1mAに達した場合、オームの法則(V=IL×R=1mA×50Ω)により、第6セルS6及び第7セルS7にそれぞれ50mVの誤検出が発生する。具体的には、第6セルS6の電圧が50mVの高め誤検出、第7セルS7の電圧が50mVの低め誤検出となる。
上述のように図1に示す電源システム1は均等化回路を備えている。均等化回路は、SOCの高い(=電圧の高い)セルから微少電流を放電させることで、システム全体のSOCを略均等に保つように動作する。リーク電流ILが発生している場合、制御回路32は上記誤検出分をSOCのズレと認識し、電圧の低い第7セルS7に合わせるように他のセルS1−S6、S8を放電させ、第7セルS7の検出電圧と、他のセルS1−S6、S8の検出電圧が揃うように制御する。ただし実際には誤検出された電圧値をもとに均等化しているため、第7セルS7の電圧は、第1−第5セルS1−S5及び第8セルS8の電圧に対して50mV、第6セルS6の電圧に対して100mV、高く制御されることになる。
通常は均等化能力を、回路が許容できる範囲で高く(均等化電流を大きく)設定することで短時間で均等化を終了させるように設計する。図1に示す設計例1では均等化電流を10mAに設定している。この場合、リーク電流(IL=1mA)より均等化能力(均等化電流=10mA)が高くなるため、均等化回路は電圧偏差の分を埋め合わせて均等化動作を行う。従って第7セルS7の実際の電圧は誤検出量の分だけ、他のセルS1−S6、S8より高くなり、第7セルS7のSOCが他のセルS1−S6、S8のSOCより高くなる。電源システム1の充電動作は他のセルS1−S6、S8のSOC(=セル電圧検出回路31から見えている第7セルS7のSOC)を基準に行われるため、電源システム1の充電動作時に第7セルS7が過充電に至る可能性がある。
これに対してセル電圧検出回路を冗長化し、2つの電圧検出回路の測定値を比較することにより、リーク電流による電圧測定誤差の発生を検出する方法が考えられる。しかしながら、電圧検出回路を冗長化すると、その分の回路コスト及び回路面積が増大する。
図2は、実施の形態の設計例2に係る電源システム1を示す図である。図2に示す設計例2では、入力フィルタの一部を構成する抵抗R1−R9の抵抗値を10Ωに設定している。この設計では、ESD保護ダイオードD1のリーク電流ILが5mAに達した時点で、第7セルS7の電圧が50mVの低め誤検出に至る。
設計例2では、均等化電流を5mAより低く設定する。図2に示す例では均等化電流を3mAに設定している。均等化電流は、均等化回路の回路定数を調整することにより設定できる。例えば、放電抵抗R11−R18の抵抗値および/または放電スイッチQ1−Q8のオン抵抗を調整する。なお本実施の形態では調整対象の回路定数は、素子の特性に基づく静的な定数を対象とし、制御信号に基づき動的に変化する動的な定数は対象外とする。
誤検出された電圧情報をもとに均等化動作がなされた場合でも、リーク電流>均等化電流の関係が続く限り、均等化動作は収れんしない。図2に示す例では、第7セルS7及び第8セルS8は、ESD保護ダイオードD1のリーク電流により常時5mAが放電される。しかしながら他のセルS1−S6の放電電流がこれより小さい3mAであるため、第7セルS7及び第8セルS8の電圧の低下速度の方が、他のセルS1−S6の電圧の低下速度より速くなる。なお第8セルS8は、電圧の誤検出は発生しないが放電経路上に存在するため、電圧の低下速度は第7セルS7と同じである。
制御回路32は、均等化回路に一定時間放電動作をさせても均等化が収れんしない場合、セルの不良(例えば、微短絡)と判定し、蓄電モジュール10の使用を直ちに中止させる。または、セルの下限電圧(例えば、セルの放電終止電圧、セルの過放電判定用電圧、又は当該電圧に一定のマージンを加えた電圧)に到達するまでの使用を許容し、到達した時点で使用を中止させる。これにより故障要因の特定はできないが、電源システム1を複雑な制御を用いずに、簡単かつ安全に停止させることができる。
以下、より具体的に説明する。設計者は、セル電圧検出回路31における許容電圧誤差を決定する。一般的に、許容電圧誤差は数10mV〜100mVに設定される。図2に示した例では50mVに設定される。次に入力フィルタの一部を構成する抵抗R1−R9の抵抗値をもとに許容リーク電流を決定する。図2に示した例では抵抗R1−R9の抵抗値が10Ω、許容電圧誤差が50mVであるため、許容リーク電流は5mAとなる。最後に均等化回路の均等化電流が許容リーク電流より低くなるように、均等化回路の定数を設定する。
一般的に均等化回路の放電電流は、セル間の自己放電量のばらつき、セル間の温度ばらつき等を考慮して決定される。リチウムイオン電池を使用する場合、自己放電量は比較的小さくなる。また車載用途では、セル間の温度ばらつきが比較的小さくなる。従って、車載用途のリチウムイオン電池では、均等化回路の放電電流を比較的小さい電流に設定することが許容される。なお放電電流を小さく設定すると、セル間の電圧が収れんする時間が長くなるが、放電抵抗を小さくできるため回路規模は小さくすることができる。
本実施の形態では均等化回路の放電電流が、許容リーク電流より小さくなるように設計する。この条件下において均等化時間の延長を抑制するには、許容リーク電流をできるだけ大きく設定すればよい。許容リーク電流を大きくするには、入力フィルタの一部を構成する抵抗R1−R9の抵抗値をできるだけ低く設定すればよい。
セル電圧検出回路31の入力端子電圧の安定化に最低限必要な入力フィルタの時点数、及びコンデンサC1−C8のサイズ的およびコスト的に許容される最大容量値をもとに、抵抗R1−R9の抵抗値をできるだけ低く設定する。例えば、5Ω〜10Ωに設定する。仮に抵抗値を5Ωに設定し、セル間の許容電圧誤差を100mVに設定した場合、許容リーク電流を20mAまで大きくすることができる。
図3は、実施の形態の設計例3に係る電源システム1を示す図である。図1、図2に示した例では、セル電圧検出回路31内のESD保護ダイオードがリーク電流を発生させた場合を想定した。図3、図4では、セル電圧検出回路31の入力フィルタのコンデンサC1−C8がリーク電流を発生させる場合を想定する。一般的に入力フィルタのコンデンサC1−C8には、リーク電流が発生しないようにセラミック型が使用されるが、コンデンサC1−C8にストレスがかかりクラックが入った場合、リーク電流が発生する。この場合、図1、図2に示した例と同様に、入力フィルタの抵抗R1−R9により電圧降下が発生し、セル電圧の誤検出に至る。
図3に示す設計例3では、入力フィルタの一部を構成する抵抗R1−R9の抵抗値を50Ωに設定している。この設計では、第7コンデンサC7のリーク電流ILが1mAに達した場合、オームの法則(V=IL×R=1mA×50Ω)により、第6セルS6−第8セルS8に許容範囲を超える誤検出が発生する。具体的には、第7セルS7の電圧が他のセルS1−S5に対して計100mVの低め誤検出となり、第6セルS6及び第8セルS8の電圧が他のセルS1−S5に対して50mVの高め誤検出となる。
均等化回路は、電圧の低い第7セルS7に合わせるように他のセルS1−S6、S8を放電させ、第7セルS7の検出電圧と、他のセルS1−S6、S8の検出電圧が揃うように制御する。その結果、第7セルS7は100mV分の高めSOCとなり、電源システム1の充電動作時に過充電に至る可能性がある。
図4は、実施の形態の設計例4に係る電源システム1を示す図である。図4に示す設計例4では、入力フィルタの一部を構成する抵抗R1−R9の抵抗値を10Ωに設定している。この設計では、第7コンデンサC7のリーク電流ILが5mAに達した時点で、第7セルS7の電圧が他のセルS1−S5と比較して計100mVの低め誤検出、第6セルS6及び第8セルS8の電圧が他のセルS1−S5と比較して50mVの高め誤検出となる。
設計例4では、均等化電流を5mAより低く設定する。図4に示す例では均等化電流を3mAに設定している。誤検出された電圧情報をもとに均等化動作がなされた場合でも、リーク電流>均等化電流の関係が続く限り、均等化動作は収れんしない。図4に示す例では、第7セルS7は、第7コンデンサC7のリーク電流により常時5mAが放電される。しかしながら他のセルS1−S6、S8の放電電流がこれより小さい3mAであるため、第7セルS7の電圧の低下速度の方が、他のセルS1−S6、S8の電圧の低下速度より速くなる。
制御回路32は、均等化回路に一定時間放電動作をさせても均等化が収れんしない場合、セルの不良(例えば、微短絡)と判定し、蓄電モジュール10の使用を中止させる。これにより故障要因の特定はできないが、電源システム1を複雑な制御を用いずに、簡単かつ安全に停止させることができる。
以上説明したように本実施の形態によれば、均等化回路の放電電流を、許容リーク電流より小さく設定することにより、セルS1−S8の電圧測定誤差に起因する過充電を簡単な構成で抑制することができる。即ち、リークしているセルの電圧低下に応じて、リークしていない他のセルの電圧が均等化回路により必要以上に低下させられることを防止することができる。従って、リークしていない他のセルのSOC低下に起因する充電制御の発動により、リークしている相対的にSOCが高いセルが過充電になる可能性を低下させることができる。本実施の形態によれば、リークしているセルの電圧低下の方が、リークしていないセルの電圧低下より速くなるため、充電制御が発動する前に、リークしているセルの電圧が下限電圧に到達する可能性が高く、安全に停止する。また、放電スイッチQ1−Q8のPWM制御や、セル電圧検出回路31の冗長化が不要であるため、回路コスト及び回路面積の増大を抑制することができる。
以上、本発明を実施の形態をもとに説明した。これら実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
また上述の実施の形態では電源システム1を車両用電源装置に利用する例を想定したが、車載用途に限らず、航空用電源装置、船舶用電源装置、定置型蓄電システム等、他の用途にも利用可能である。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
直列接続された複数のセル(S1−S8)の各ノードに電圧検出線(L1−L9)で接続され、当該複数のセル(S1−S8)のそれぞれの電圧を検出する電圧検出回路(31)と、
各電圧検出線(L1−L9)に挿入され、前記電圧検出回路(31)の入力フィルタの一部を構成する複数の抵抗(R1−R9)と、
隣接する各電圧検出線(L1−L9)間に、前記複数のセル(S1−S8)とそれぞれ並列に接続される複数の均等化回路と、
前記電圧検出回路(31)により検出される前記複数のセル電圧をもとに、当該複数のセル電圧の内、最も低いセル電圧に、他のセル電圧を合わせるように前記複数の均等化回路を制御する制御回路(32)と、を備え、
前記電圧検出回路(31)内における回路素子(D1)を通じた前記電圧検出線(L7)から流れるリーク電流に起因する前記セル電圧の計測誤差の最大許容値と、前記抵抗の定数にもとづく許容リーク電流の値より、前記均等化回路を有効化したときに流れる放電電流の値が低くなるよう、前記抵抗(R1−R9)の定数および前記均等化回路の定数を設定することを特徴とする管理装置(30)。
これによれば、ダイオード(D1)が許容リーク電流以上のリーク電流を発生させた場合に、簡単かつ安全に電源システム(1)を停止させることができる。
[項目2]
直列接続された複数のセル(S1−S8)の各ノードに電圧検出線(L1−L9)で接続され、当該複数のセル(S1−S8)のそれぞれの電圧を検出する電圧検出回路(31)と、
複数の電圧検出線(L1−L9)にそれぞれ挿入される複数の抵抗(R1−R9)と、隣接する電圧検出線(L1−L9)間にそれぞれ接続される複数の容量(C1−C8)とを含む入力フィルタと、
隣接する各電圧検出線(L1−L9)間に、前記複数のセル(S1−S8)とそれぞれ並列に接続される複数の均等化回路と、
前記電圧検出回路(31)により検出される前記複数のセル電圧をもとに、当該複数のセル電圧の内、最も低いセル電圧に、他のセル電圧を合わせるように前記複数の均等化回路を制御する制御回路(32)と、を備え、
前記入力フィルタに含まれるいずれかの素子(C7)を通じた前記電圧検出線(L7)から流れるリーク電流に起因する前記セル電圧の計測誤差の最大許容値と、前記抵抗(R1−R9)の定数にもとづく許容リーク電流の値より、前記均等化回路を有効化したときに流れる放電電流の値が低くなるよう、前記抵抗(R1−R9)の定数および前記均等化回路の定数を決定することを特徴とする管理装置(30)。
これによれば、容量(C7)が許容リーク電流以上のリーク電流を発生させた場合に、簡単かつ安全に電源システム(1)を停止させることができる。
[項目3]
前記制御回路(32)は、均等化制御を開始してから所定期間を経過しても前記複数のセル電圧が均等化されないとき、前記複数のセル(S1−S8)を使用禁止に制御することを特徴とする項目1または2に記載の管理装置(30)。
これによれば、許容リーク電流以上のリーク電流が発生した場合に、リークしているセルが過充電に至ることを抑制することができる。
[項目4]
前記制御回路(32)は、前記複数のセル電圧のいずれかが設定下限電圧まで低下したとき、前記複数のセル(S1−S8)を使用禁止に制御することを特徴とする項目1または2に記載の管理装置(30)。
これによれば、許容リーク電流以上のリーク電流が発生した場合に、リークしているセルが過充電に至ることを抑制することができる。
[項目5]
複数のセル(S1−S8)が直列接続された蓄電モジュール(10)と、
前記蓄電モジュール(10)を管理する項目1から4のいずれかに記載の管理装置(30)と、
を備えることを特徴とする電源システム(1)。
これによれば、許容リーク電流以上のリーク電流が発生した場合に、簡単かつ安全に電源システム(1)を停止させることができる。
1 電源システム、 10 蓄電モジュール、 S1−S8 セル、 L0 正電源供給線、 L1−L9 電圧検出線、 L10 負電源供給線、 20 ハーネス・コネクタ、 30 管理装置、 R1−R9 抵抗、 C1−C8 コンデンサ、 R11−R18 放電抵抗、 Q1−Q8 放電スイッチ、 D1 ESD保護ダイオード、 31 セル電圧検出回路、 32 制御回路。

Claims (5)

  1. 直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出する電圧検出回路と、
    各電圧検出線に挿入され、前記電圧検出回路の入力フィルタの一部を構成する複数の抵抗と、
    隣接する各電圧検出線間に、前記複数のセルとそれぞれ並列に接続される複数の均等化回路と、
    前記電圧検出回路により検出される前記複数のセル電圧をもとに、当該複数のセル電圧の内、最も低いセル電圧に、他のセル電圧を合わせるように前記複数の均等化回路を制御する制御回路と、を備え、
    前記電圧検出回路内における回路素子を通じた前記電圧検出線から流れるリーク電流に起因する前記セル電圧の計測誤差の最大許容値と、前記抵抗の定数にもとづく許容リーク電流の値より、前記均等化回路を有効化したときに流れる放電電流の値が低くなるよう、前記抵抗の定数および前記均等化回路の定数を設定することを特徴とする管理装置。
  2. 直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出する電圧検出回路と、
    複数の電圧検出線にそれぞれ挿入される複数の抵抗と、隣接する電圧検出線間にそれぞれ接続される複数の容量とを含む入力フィルタと、
    隣接する各電圧検出線間に、前記複数のセルとそれぞれ並列に接続される複数の均等化回路と、
    前記電圧検出回路により検出される前記複数のセル電圧をもとに、当該複数のセル電圧の内、最も低いセル電圧に、他のセル電圧を合わせるように前記複数の均等化回路を制御する制御回路と、を備え、
    前記入力フィルタに含まれるいずれかの素子を通じた前記電圧検出線から流れるリーク電流に起因する前記セル電圧の計測誤差の最大許容値と、前記抵抗の定数にもとづく許容リーク電流の値より、前記均等化回路を有効化したときに流れる放電電流の値が低くなるよう、前記抵抗の定数および前記均等化回路の定数を設定することを特徴とする管理装置。
  3. 前記制御回路は、均等化制御を開始してから所定期間を経過しても前記複数のセル電圧が均等化されないとき、前記複数のセルを使用禁止に制御することを特徴とする請求項1または2に記載の管理装置。
  4. 前記制御回路は、前記複数のセル電圧のいずれかが設定下限電圧まで低下したとき、前記複数のセルを使用禁止に制御することを特徴とする請求項1または2に記載の管理装置。
  5. 複数のセルが直列接続された蓄電モジュールと、
    前記蓄電モジュールを管理する請求項1から4のいずれかに記載の管理装置と、
    を備えることを特徴とする電源システム。
JP2016109388A 2016-05-31 2016-05-31 管理装置および電源システム Pending JP2017216829A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016109388A JP2017216829A (ja) 2016-05-31 2016-05-31 管理装置および電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109388A JP2017216829A (ja) 2016-05-31 2016-05-31 管理装置および電源システム

Publications (1)

Publication Number Publication Date
JP2017216829A true JP2017216829A (ja) 2017-12-07

Family

ID=60577428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109388A Pending JP2017216829A (ja) 2016-05-31 2016-05-31 管理装置および電源システム

Country Status (1)

Country Link
JP (1) JP2017216829A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492555A (zh) * 2017-12-22 2020-08-04 三洋电机株式会社 管理装置和电源系统
JP2021018969A (ja) * 2019-07-24 2021-02-15 三洋電機株式会社 管理装置、電源システム
CN112946535A (zh) * 2021-02-25 2021-06-11 广汽丰田汽车有限公司 供电插座异常检测装置、用电保护装置、充电保护装置
CN114062947A (zh) * 2021-10-28 2022-02-18 山东浪潮科学研究院有限公司 一种基于bms的电池电压采集均衡电路及系统
JP7389797B2 (ja) 2018-09-25 2023-11-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト リチウムイオンセルの異常な自己放電を検出するための方法及びバッテリーシステム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492555A (zh) * 2017-12-22 2020-08-04 三洋电机株式会社 管理装置和电源系统
CN111492555B (zh) * 2017-12-22 2023-09-15 三洋电机株式会社 管理装置和电源系统
JP7389797B2 (ja) 2018-09-25 2023-11-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト リチウムイオンセルの異常な自己放電を検出するための方法及びバッテリーシステム
JP2021018969A (ja) * 2019-07-24 2021-02-15 三洋電機株式会社 管理装置、電源システム
JP7260433B2 (ja) 2019-07-24 2023-04-18 三洋電機株式会社 管理装置、電源システム
CN112946535A (zh) * 2021-02-25 2021-06-11 广汽丰田汽车有限公司 供电插座异常检测装置、用电保护装置、充电保护装置
CN114062947A (zh) * 2021-10-28 2022-02-18 山东浪潮科学研究院有限公司 一种基于bms的电池电压采集均衡电路及系统

Similar Documents

Publication Publication Date Title
JP5683710B2 (ja) 電池システム監視装置
US8570695B2 (en) Battery system
JP2017216829A (ja) 管理装置および電源システム
US8487629B2 (en) Battery system, electric vehicle, and battery control apparatus
US20130307551A1 (en) Semiconductor device and voltage measuring device
JP2006149068A (ja) 組電池管理装置
CN110501647B (zh) 用于软件可配置电池监测系统的系统和方法
WO2019176395A1 (ja) 管理装置、蓄電システム
JPWO2017208740A1 (ja) 管理装置および電源システム
WO2021186795A1 (ja) 管理装置、及び電源システム
JP6877912B2 (ja) 組電池監視システム
US11201478B2 (en) Management device and power supply system for improved cell voltage detection accuracy
US10859635B2 (en) Management device and power supply device
CN107533097B (zh) 用于探测至少一个蓄能器与车载电网的按规定连接的方法
JP6869966B2 (ja) 管理装置および電源システム
JP2016025794A (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP2016163410A (ja) 電圧検出装置、電圧検出方法および組電池システム
JP7401058B2 (ja) 絶縁抵抗測定回路及び診断方法
JP2018021880A (ja) 電圧監視装置および組電池監視システム
EP3819161A1 (en) Control unit for a battery system
Tarle et al. Design of a battery management system for formula Student electric race vehicle
KR20210068895A (ko) 스파크 방지 장치
US20190067962A1 (en) Management device and power supply device
US20200152947A1 (en) Battery System Monitoring Device and Battery Pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929