JP2017215212A - Stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, geographic origin identification method, and stable isotope ratio analysis sample collection device - Google Patents

Stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, geographic origin identification method, and stable isotope ratio analysis sample collection device Download PDF

Info

Publication number
JP2017215212A
JP2017215212A JP2016109328A JP2016109328A JP2017215212A JP 2017215212 A JP2017215212 A JP 2017215212A JP 2016109328 A JP2016109328 A JP 2016109328A JP 2016109328 A JP2016109328 A JP 2016109328A JP 2017215212 A JP2017215212 A JP 2017215212A
Authority
JP
Japan
Prior art keywords
measurement target
stable isotope
isotope ratio
target component
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016109328A
Other languages
Japanese (ja)
Other versions
JP6715088B2 (en
Inventor
貴均 青木
Takahito Aoki
貴均 青木
池田 穣
Minoru Ikeda
穣 池田
一彦 吉原
Kazuhiko Yoshihara
一彦 吉原
塙 章
Akira Haniwa
章 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISOTOPE RESEARCH INSTITUTE Inc
Hazama Ando Corp
Original Assignee
ISOTOPE RESEARCH INSTITUTE Inc
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISOTOPE RESEARCH INSTITUTE Inc, Hazama Ando Corp filed Critical ISOTOPE RESEARCH INSTITUTE Inc
Priority to JP2016109328A priority Critical patent/JP6715088B2/en
Publication of JP2017215212A publication Critical patent/JP2017215212A/en
Application granted granted Critical
Publication of JP6715088B2 publication Critical patent/JP6715088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, geographic origin identification method, and stable isotope ratio analysis sample collection device, which allow for making stable isotope ratio analysis in a nondestructive manner.SOLUTION: A stable isotope ratio analysis sample collection method according to an embodiment of the present invention, comprises steps of; bringing a suction cup into contact with an object under measurement; discharging air inside the suction cup; filling inside the suction cup with an inert gas; allowing a measurement target component to diffuse from the object under measurement into the inert gas; collecting the inert gas containing the measurement target component; letting the inert gas containing the measurement target component flow through a filter so as to allow the measurement target component to be attached to the filter; and eluting the measurement target component into a solvent from the filter.SELECTED DRAWING: Figure 1

Description

本発明は、安定同位体比を利用した植物の産地判別に利用可能な安定同位体比分析試料収集法、安定同位体比分析方法、産地判別方法、および安定同位体比分析試料収集装置に関する。   The present invention relates to a stable isotope ratio analysis sample collection method, a stable isotope ratio analysis method, a production area discrimination method, and a stable isotope ratio analysis sample collection apparatus that can be used for plant production location discrimination using a stable isotope ratio.

生物の組織を構成する元素であるC,H,O,Nなどには、同じ元素でありながら、わずかに質量の異なる安定同位体が存在する。この安定同位体の組成比は、生物の育った環境(場所、大気、水、栄養など)により影響される。この安定同位体の元素ごとの組成比を測定し、食品や紙など生物由来の有機材料の産地を判別する測定技術が実用化している。   C, H, O, N, and the like, which are elements constituting biological tissues, have stable isotopes with slightly different masses, although they are the same element. The composition ratio of this stable isotope is influenced by the environment (location, atmosphere, water, nutrition, etc.) where the organism grew up. A measuring technique for measuring the composition ratio of each element of this stable isotope and determining the production area of biological organic materials such as food and paper has been put into practical use.

その分析機器としてGC−IRMS(ガスクロマトグラフ/同位体比質量分析計)が使われる。測定を行う際は、対象試料の一部を固形物として採取し、炭化および溶媒抽出などの前処理を行なった上で、GC−IRMSにより安定同位体比を測定する。試料と標準試料(対象となる特定の産地からの試料)との間で判別分析等により比較することで、当該試料が対象となる特定産地に由来するか否かが判定できる。   GC-IRMS (gas chromatograph / isotope ratio mass spectrometer) is used as the analytical instrument. When performing the measurement, a part of the target sample is collected as a solid, subjected to pretreatment such as carbonization and solvent extraction, and then the stable isotope ratio is measured by GC-IRMS. By comparing a sample and a standard sample (samples from a specific production area as a target) by discriminant analysis or the like, it can be determined whether or not the sample is derived from a specific production area as a target.

ガスクロマトグラフィーを用いた安定同位体比分析をする際に現状は対象材料の一部を破壊して取り出し、分析試料として採取する必要がある。例えば、特許文献1に記載のガスクロマトグラフィー等を用いた残留化学物質分析システムでは、試料農産物中の残留化学物質を分析する際に、試料農産物をミキサーで細断、均一化させる必要があった。   Currently, when performing stable isotope ratio analysis using gas chromatography, it is necessary to destroy a part of the target material and take it as an analysis sample. For example, in the residual chemical substance analysis system using gas chromatography or the like described in Patent Document 1, when analyzing the residual chemical substance in the sample agricultural product, it was necessary to chop and homogenize the sample agricultural product with a mixer. .

また、木造建築物などの重要文化財等において木材の産地判別を行う場合にも、試料採取のため木材の一部に傷をつける必要があり、安定同位体比の測定を困難なものにしていた。   In addition, when discriminating timber production sites in important cultural properties such as wooden buildings, it is necessary to damage a part of the timber for sampling, making measurement of stable isotopes difficult. It was.

特開2004−340627号公報JP 2004-340627 A

上述のように、従来の木材産地判別サンプリング法は、測定対象とする木材の部分をわずかではあるものの削りとり、試料として採取する必要がある。このため、木造建築物(特に、重要文化財等)の木材の産地判別を行う場合、材料が損傷されることのないような非破壊的な試料採取方法が求められている。   As described above, the conventional wood production region discrimination sampling method requires that a small portion of the wood to be measured be scraped and collected as a sample. For this reason, a non-destructive sampling method that does not damage the material is required when determining the production area of timber of a wooden building (especially an important cultural property).

以上のような事情に鑑み、本発明の目的は非破壊的手法によって安定同位体比分析を行うことが可能な安定同位体比分析試料収集法、安定同位体比分析方法、産地判別方法、および安定同位体比分析試料収集装置を提供することにある。   In view of the circumstances as described above, the object of the present invention is to provide a stable isotope ratio analysis sample collection method, a stable isotope ratio analysis method, a locality determination method, The object is to provide a stable isotope ratio analysis sample collection apparatus.

上記目的を達成するため、本発明の一形態に係る安定同位体比分析試料収集法は、測定対象物に吸着盤を当接させ、上記吸着盤内部の空気を排出し、上記吸着盤内部に不活性ガスを充填し、上記測定対象物から上記不活性ガス中に測定対象成分を拡散させ、上記測定対象成分を含む上記不活性ガスを収集し、上記測定対象成分を含む上記不活性ガスをフィルターに通して上記測定対象成分を上記フィルターに付着させ、上記測定対象成分を上記フィルターから溶媒中に溶出させる。   In order to achieve the above object, a stable isotope ratio analysis sample collection method according to an aspect of the present invention is configured to bring a suction plate into contact with an object to be measured, discharge air inside the suction plate, and Filling with an inert gas, diffusing a measurement target component into the inert gas from the measurement target, collecting the inert gas containing the measurement target component, and collecting the inert gas containing the measurement target component The measurement target component is attached to the filter through a filter, and the measurement target component is eluted from the filter into a solvent.

上記安定同位体比分析試料収集法によれば、測定対象物から不活性ガス中に拡散する測定対象成分を収集することができ、即ち測定対象物を非破壊的手法により収集できる。   According to the stable isotope ratio analysis sample collection method, it is possible to collect a measurement target component that diffuses into the inert gas from the measurement target, that is, it is possible to collect the measurement target by a non-destructive technique.

上記測定対象物は木材であってもよい。   The measurement object may be wood.

上記不活性ガスは希ガスであってもよい。   The inert gas may be a rare gas.

上記測定対象成分は揮発性物質及び微粒子に含まれる成分であってもよい。   The measurement target component may be a component contained in a volatile substance and fine particles.

上記溶媒は無機溶媒であってもよい。   The solvent may be an inorganic solvent.

本発明の一形態に係る分析方法では、測定対象物に吸着盤を当接させ、上記吸着盤内部の空気を排出し、上記吸着盤内部に不活性ガスを充填し、上記測定対象物から上記不活性ガス中に測定対象成分を拡散し、上記測定対象成分を含む上記不活性ガスを収集し、上記測定対象成分を含む上記不活性ガスをフィルターに通して上記測定対象成分を上記フィルターに付着させ、上記測定対象成分を上記フィルターから溶媒中に溶出させ、上記測定対象成分を含む試料溶液を作成し、上記試料溶液に対して安定同位体比分析を行う。   In the analysis method according to an aspect of the present invention, the suction disk is brought into contact with the measurement object, the air inside the suction disk is discharged, the inside of the suction disk is filled with an inert gas, and the measurement object is The measurement target component is diffused in the inert gas, the inert gas containing the measurement target component is collected, the inert gas containing the measurement target component is passed through a filter, and the measurement target component is attached to the filter. The measurement target component is eluted from the filter into a solvent, a sample solution containing the measurement target component is prepared, and stable isotope ratio analysis is performed on the sample solution.

上記安定同位体比分析試料収集法によれば、測定対象物を非破壊的手法により測定対象成分を抽出でき、安定同位体比の分析ができる。   According to the stable isotope ratio analysis sample collection method, the measurement target component can be extracted from the measurement target by a non-destructive technique, and the stable isotope ratio can be analyzed.

上記測定対象成分は、炭素、水素、酸素又は窒素であってもよい。   The measurement target component may be carbon, hydrogen, oxygen, or nitrogen.

本発明の一形態に係る産地判別方法は、測定対象物に吸着盤を当接させ、上記吸着盤内部の空気を排出し、上記吸着盤内部に不活性ガスを充填し、上記測定対象物の木材から上記不活性ガス中に測定対象成分を拡散させ、上記測定対象成分を含む上記不活性ガスを収集し、上記測定対象成分を含む上記不活性ガスをフィルターに通して上記測定対象成分を上記フィルターに付着させ、上記測定対象成分を上記フィルターから溶媒中に溶出させ、上記測定対象成分を含む試料溶液を作成し、上記試料溶液に対して安定同位体比分析を行い、上記試料溶液の安定同位体比に基づいて、上記測定対象物の産地を判別する。   The production area discrimination method according to an aspect of the present invention is to bring a suction plate into contact with a measurement object, discharge air inside the suction plate, fill the inside of the suction plate with an inert gas, and The measurement target component is diffused from wood into the inert gas, the inert gas containing the measurement target component is collected, the inert gas containing the measurement target component is passed through a filter, and the measurement target component is passed through the filter. Adhering to a filter, eluting the measurement target component from the filter into a solvent, preparing a sample solution containing the measurement target component, performing stable isotope ratio analysis on the sample solution, and stabilizing the sample solution Based on the isotope ratio, the production area of the measurement object is determined.

上記産地判別方法によれば、非破壊的手法により測定対象物の産地を判別することができる。   According to the production area determination method, the production area of the measurement object can be determined by a non-destructive method.

上記測定対象成分は、炭素、水素、酸素又は窒素であってもよい。   The measurement target component may be carbon, hydrogen, oxygen, or nitrogen.

本発明の一形態に係る安定同位体比分析試料収集装置は、測定対象物に当接される吸着盤と、上記吸着盤内部の空気を排出するポンプと、上記吸着盤内部に不活性ガスを供給するガス源と、上記測定対象物から上記吸着盤内部に拡散された上記測定対象成分を含む上記不活性ガスを収集する回収容器と、上記測定対象成分を含む上記不活性ガスから上記測定対象成分を分離するフィルターとを具備する。   A stable isotope ratio analysis sample collecting apparatus according to an aspect of the present invention includes an adsorption plate that is in contact with an object to be measured, a pump that discharges air inside the adsorption plate, and an inert gas inside the adsorption plate. A gas source to be supplied; a collection container for collecting the inert gas containing the measurement target component diffused from the measurement target into the adsorption board; and the measurement target from the inert gas containing the measurement target component And a filter for separating the components.

上記安定同位体比分析試料収集装置によれば、測定対象物を非破壊的手法により収集できる。   According to the stable isotope ratio analysis sample collection device, the measurement object can be collected by a non-destructive technique.

本実施形態に係る試料収集装置100の模式図を示す。A schematic diagram of sample collection device 100 concerning this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程1の模式図を示す。The schematic diagram of the process 1 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程2の模式図を示す。The schematic diagram of the process 2 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程3の模式図を示す。The schematic diagram of the process 3 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程4の模式図を示す。The schematic diagram of the process 4 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程5の模式図を示す。The schematic diagram of the process 5 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程6の模式図を示す。The schematic diagram of the process 6 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程7の模式図を示す。The schematic diagram of the process 7 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る安定同位体比分析試料収集方法の工程8の模式図を示す。The schematic diagram of the process 8 of the stable isotope ratio analysis sample collection method which concerns on this embodiment is shown. 本実施形態に係る産地判別方法のフローチャートを示す。The flowchart of the production center discrimination | determination method which concerns on this embodiment is shown.

[安定同位体比分析試料収集装置について]
本発明の実施形態に係る安定同位体比分析試料収集装置について説明する。図1は、本実施形態に係る試料収集装置100の模式図である。
[Stable isotope ratio analysis sample collection device]
A stable isotope ratio analysis sample collection apparatus according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram of a sample collection device 100 according to the present embodiment.

同図に示すように、試料収集装置100は、吸着盤1と、ガス容器2と、回収瓶3と、排気用ポンプ4を具備する。さらに、試料収集装置100は、後述するフィルターを具備する。これらは互いに配管X1〜X4で接続されている。配管X1〜X4には、それぞれバルブV1〜V4が設けられている。試料収集装置100は、測定対象成分(C、H、O、Nの少なくともいずれか含む)を収集する装置である。   As shown in the figure, the sample collection device 100 includes an adsorption plate 1, a gas container 2, a recovery bottle 3, and an exhaust pump 4. Furthermore, the sample collection device 100 includes a filter described later. These are mutually connected by piping X1-X4. Valves V1 to V4 are provided in the pipes X1 to X4, respectively. The sample collection device 100 is a device that collects a measurement target component (including at least one of C, H, O, and N).

吸着盤1は、測定対象物Aに密着し、内部空間を外部の空気から遮断する。吸着盤1は例えば、ガラス又は金属等からなる本体部材と、ゴムなどの弾性材料からなる封止部材からなり、封止部材が測定対象物Aに密着し、弾性変形することにより内部空間を外部から遮蔽できる構造とすることができる。本体部材及び封止部材は、測定対象成分が吸着しない材質からなるものが好適である。吸着盤1は、一定体積の内部空間を形成することが可能なものであればよく、形状は特に限定されない。   The suction disk 1 is in close contact with the measurement object A and blocks the internal space from outside air. For example, the suction disk 1 includes a main body member made of glass or metal and a sealing member made of an elastic material such as rubber. It can be set as the structure which can be shielded from. The main body member and the sealing member are preferably made of a material that does not adsorb the measurement target component. The suction disk 1 is not particularly limited as long as it can form an internal space having a constant volume.

ガス容器2は、不活性ガスが充填された容器である。不活性ガスは、測定対象成分と異なる成分からなるガスであって、測定対象成分に対して不活性であれば、特に限定されない。例えば、Ne,Arなどの希ガスであってもよい。また、ガス容器2は配管X2を介して吸着盤1に接続されている。さらに、配管X2にはバルブV2が設けられている。   The gas container 2 is a container filled with an inert gas. The inert gas is a gas composed of a component different from the measurement target component and is not particularly limited as long as it is inert with respect to the measurement target component. For example, a rare gas such as Ne or Ar may be used. Moreover, the gas container 2 is connected to the adsorption board 1 via the pipe X2. Further, a valve V2 is provided in the pipe X2.

回収瓶3は、配管X3を介して吸着盤1に接続され、吸着盤1から測定対象成分を含むガスを回収する。回収瓶3は金属又はガラス等からなり、その形状は特に限定されない。配管X3にはバルブV3が設けられている。   The collection bottle 3 is connected to the adsorption board 1 via the pipe X3, and collects the gas containing the measurement target component from the adsorption board 1. The collection bottle 3 is made of metal or glass, and its shape is not particularly limited. The pipe X3 is provided with a valve V3.

排気用ポンプ4は、配管X1を介して吸着盤1に接続され、吸着盤1内部の空気を排出する。排気用ポンプ4は、吸着盤1内部の空気が上記不活性ガスと置換できる程度に、内部の空気を排出できればよい。また、排気用ポンプ4は配管X4を介して回収瓶3に接続され、回収瓶3内部の空気を排出する。   The exhaust pump 4 is connected to the suction plate 1 via the pipe X1 and discharges air inside the suction plate 1. The exhaust pump 4 only needs to be able to exhaust the internal air to such an extent that the air inside the adsorption plate 1 can be replaced with the inert gas. The exhaust pump 4 is connected to the recovery bottle 3 via the pipe X4 and discharges the air inside the recovery bottle 3.

試料収集装置100は以上のように構成されている。なお、試料収集装置100は上記のような構成に限られず、以下に示す試料採集方法を実行可能な構成であればよい。   The sample collection device 100 is configured as described above. Note that the sample collection device 100 is not limited to the above configuration, and may be any configuration that can execute the sample collection method described below.

[測定対象物Aについて]
測定対象物Aは、木、草花等の植物であってもよい。特に、重要文化財に指定された木造建築の木材等のように、その状態のまま維持させる必要があるもの等が挙げられる。即ち、本願発明は、非破壊な試料採取が求められるもの等に有効な試料採集方法である。
[Measurement object A]
The measurement object A may be a plant such as a tree or a flower. In particular, there are things that need to be maintained in that state, such as wooden timber that has been designated as an important cultural property. That is, the present invention is a sample collection method effective for those requiring non-destructive sample collection.

[安定同位体比分析試料収集方法について]
本実施形態に係る安定同位体比分析試料収集方法について説明する。図2〜図9は、本実施形態に係る安定同位体比分析試料収集方法の工程1〜工程8を示す模式図である。
[Stable isotope ratio analysis sample collection method]
A stable isotope ratio analysis sample collection method according to this embodiment will be described. 2 to 9 are schematic diagrams showing Step 1 to Step 8 of the stable isotope ratio analysis sample collection method according to the present embodiment.

(工程1)
図2に示すように、測定対象物Aに吸着盤1を当接させ、外部の空気が入らないように密着させる。
(Process 1)
As shown in FIG. 2, the suction disk 1 is brought into contact with the measurement object A and is brought into close contact with the outside air.

(工程2)
図3に示すように、バルブV1を開き、排気用ポンプ4を用いて吸着盤1内部の空気を排気する。排気後はバルブV1を閉じる。なお、吸着盤1内部の空気を後述する不活性ガスと置換できる程度に、空気を排出できればよく、排気方法は特に限定されない。また、回収瓶3内部の空気も、排気用ポンプ4を用い、配管X4を介して予め排気しておく。
(Process 2)
As shown in FIG. 3, the valve V <b> 1 is opened, and the air inside the adsorption board 1 is exhausted using the exhaust pump 4. After exhausting, the valve V1 is closed. The exhaust method is not particularly limited as long as the air can be exhausted to such an extent that the air inside the adsorption plate 1 can be replaced with an inert gas described later. Further, the air inside the recovery bottle 3 is also exhausted in advance through the pipe X4 using the exhaust pump 4.

(工程3)
図4に示すように、バルブV2を開き、ガス容器2から不活性ガスGを吸着盤1内部に流入させる。不活性ガスGを流入させた後は、バルブV2を閉じる。
(Process 3)
As shown in FIG. 4, the valve V <b> 2 is opened, and the inert gas G is caused to flow from the gas container 2 into the adsorption plate 1. After the inert gas G is introduced, the valve V2 is closed.

(工程4)
図5に示すように、吸着盤1内の測定対象物A表面に一定時間ガスを接触させることによって、測定対象物Aから放出された測定対象成分Mを拡散させる。測定対象成分Mは、C,H,O及びNの少なくともいずれかを含み、フィトンチッド等の香気成分や微粒子等である。
(Process 4)
As shown in FIG. 5, the measurement target component M released from the measurement target A is diffused by bringing the gas into contact with the surface of the measurement target A in the suction disk 1 for a certain period of time. The measurement target component M includes at least one of C, H, O, and N, and is an aroma component such as phytoncide, fine particles, or the like.

(工程5)
図6に示すように、バルブV3を開き、吸着盤1内部の測定対象成分Mを含む不活性ガスGを回収瓶3に流入させる。不活性ガスGを流入させた後は、バルブV3を閉じる。
(Process 5)
As shown in FIG. 6, the valve V <b> 3 is opened, and the inert gas G containing the measurement target component M inside the adsorption board 1 is caused to flow into the collection bottle 3. After the inert gas G is introduced, the valve V3 is closed.

(工程6)
図7に示すように、所定の圧力、温度の下、回収瓶3に収容されたガスをフィルター5に通すことにより、測定対象成分Mと不活性ガスGを分離する。フィルター5は、測定対象成分Mを吸着でき、測定対象成分Mを含まないものであれば、特に限定されない。例えば、シリカなどが挙げられる。
(Step 6)
As shown in FIG. 7, the measurement target component M and the inert gas G are separated by passing the gas stored in the recovery bottle 3 through a filter 5 under a predetermined pressure and temperature. The filter 5 is not particularly limited as long as it can adsorb the measurement target component M and does not include the measurement target component M. For example, silica etc. are mentioned.

(工程7)
図8に示すように、フィルター5を無機溶媒に浸すことによって、フィルター5に含まれる測定対象成分Mが溶出される。測定対象成分Mを含む無機溶媒を試料液Sとして、分析にかける。
無機溶媒は測定対象成分Mの構成元素を含むものでなければ、特に限定されない。
(Step 7)
As shown in FIG. 8, the measurement target component M contained in the filter 5 is eluted by immersing the filter 5 in an inorganic solvent. An inorganic solvent containing the measurement target component M is used as a sample solution S for analysis.
The inorganic solvent is not particularly limited as long as it does not contain the constituent element of the measurement target component M.

(工程8)
図9に示すように、試料液Sを安定同位体比質量分析計6にかける。
(Process 8)
As shown in FIG. 9, the sample solution S is applied to the stable isotope ratio mass spectrometer 6.

[安定同位体比の分析方法]
上述のようにして得られた試料液Sを、安定同位体比質量分析計を用いて分析する。
ここで、植物等に含まれる安定同位体比の構成割合は、地域ごとにわずかずつ異なる。このため、測定対象成分の安定同位体比を分析することにより、測定対象物の産地を判別することができる。
[Method for analyzing stable isotope ratio]
The sample solution S obtained as described above is analyzed using a stable isotope ratio mass spectrometer.
Here, the composition ratio of stable isotope ratios contained in plants and the like varies slightly from region to region. Therefore, by analyzing the stable isotope ratio of the measurement target component, the production area of the measurement target can be determined.

本発明の一形態に係る測定対象物の産地判別方法について説明する。図10は本実施形態に係る産地判別方法のフローチャートである。   A method for determining the production area of a measurement object according to an embodiment of the present invention will be described. FIG. 10 is a flowchart of the production area determination method according to the present embodiment.

まず、測定対象成分(香気成分や微粒子等)が上記収集方法により捕集され、試料液Sが作成される。試料液S中の元素(C,H,O及びNの少なくともいずれか)の安定同位体比が、安定同位体比質量分析計を用いて分析される(S1)。   First, components to be measured (aroma components, fine particles, etc.) are collected by the collection method, and a sample solution S is created. A stable isotope ratio of an element (at least one of C, H, O and N) in the sample solution S is analyzed using a stable isotope ratio mass spectrometer (S1).

測定対象物が木材である場合、木材はセルロースなどの繊維質で構成されており、その中に樹液や微量の無機成分が含まれている。この中で、木材中に含まれる樹液から揮発する香気成分は「フィトンチッド」と呼ばれており、ピネンやリモネンなどのテルペン類の化学物質である。それらはC、H、Oの3元素を主体に構成されている。また木材からは微量の粉塵(微粒子)も生ずるが、この構成成分にはNも含まれている。これらのことから、対象とする木材の香気成分と粉塵を採取し、それらの成分を分析することで木材の産地判定が可能となる。   When the object to be measured is wood, the wood is made of a fiber such as cellulose, and contains sap and a small amount of inorganic components. Among these, the aromatic component that volatilizes from the sap contained in the wood is called “phytoncide” and is a chemical substance of terpenes such as pinene and limonene. They are mainly composed of three elements of C, H, and O. A small amount of dust (fine particles) is also generated from wood, but N is also included in this component. From these facts, it is possible to determine the production area of wood by collecting the aromatic components and dust of the target wood and analyzing those components.

予め測定された測定対象物の産地ごとの安定同位体比データベースから統計解析的手法により算出された判別関数を用いて、測定対象物の安定同位体比を解析する(S2)   The stable isotope ratio of the measurement object is analyzed using the discriminant function calculated by the statistical analysis method from the stable isotope ratio database for each production area of the measurement object measured in advance (S2).

解析結果より、測定対象物Aが、どの産地の安定同位体比のグループに属するか判定することにより、産地が判別される(S3)。   From the analysis result, the production area is discriminated by determining to which group the stable isotope ratio of the production object A belongs (S3).

以上より、産地判別分析のために行うサンプル採取を非破壊的に行うことができ、木製の重要文化財の保存・復元などに用いられる木材の産地判別を従来よりも定量的にかつ確実に行うことができる。   As described above, it is possible to non-destructively collect samples for discriminating production areas, and to quantitatively and reliably identify the production areas of wood used for the preservation and restoration of important wooden cultural properties. be able to.

木材産地判定のためのGC−IRMS分析に最小限必要な木材構成元素のサンプルとして、H9.6μg、C48.5μg、N8.8μgおよびO77.1μgがそれぞれ必要であることを確認している。   It has been confirmed that H9.6 μg, C48.5 μg, N8.8 μg, and O77.1 μg are respectively required as samples of the wood constituent elements necessary for the GC-IRMS analysis for determining the wood production area.

任意の木材サンプルにおいて、一定温度(20℃)で窒素ガスが充填された容器内に当該サンプルを1時間静置させ、容器内の木材芳香成分をGC−MS(ガスクロマトグラフ質量分析器)により測定した。その結果、CおよびHを構成元素とする芳香成分ガスを20℃で2L程度採取することにより、上記の必要量(H9.6μg、C48.5μg)を確保できることを確認できた。   For any wood sample, the sample is allowed to stand for 1 hour in a container filled with nitrogen gas at a constant temperature (20 ° C.), and the wood aroma component in the container is measured by GC-MS (gas chromatograph mass spectrometer). did. As a result, it was confirmed that the required amount (H 9.6 μg, C 48.5 μg) could be secured by collecting about 2 L of aromatic component gas containing C and H as constituent elements at 20 ° C.

1…吸着盤
2…ガス容器
3…回収瓶
4…排気用ポンプ
5…フィルター
6…安定同位体比質量分析計
X1〜X4…配管
V1〜V4…バルブ
100…試料収集装置
DESCRIPTION OF SYMBOLS 1 ... Adsorption board 2 ... Gas container 3 ... Collection bottle 4 ... Exhaust pump 5 ... Filter 6 ... Stable isotope ratio mass spectrometer X1-X4 ... Piping V1-V4 ... Valve 100 ... Sample collection apparatus

Claims (10)

測定対象物に吸着盤を当接させ、
前記吸着盤内部の空気を排出し、
前記吸着盤内部に不活性ガスを充填し、
前記測定対象物から前記不活性ガス中に測定対象成分を拡散させ、
前記測定対象成分を含む前記不活性ガスを収集し、
前記測定対象成分を含む前記不活性ガスをフィルターに通して前記測定対象成分を前記フィルターに付着させ、
前記測定対象成分を前記フィルターから溶媒中に溶出させる
安定同位体比分析試料収集法。
Bring the suction cup into contact with the measurement object,
Exhaust the air inside the suction plate,
Filling the inside of the adsorption plate with an inert gas,
Diffusing a measurement target component from the measurement target into the inert gas;
Collecting the inert gas containing the component to be measured;
Passing the inert gas containing the measurement target component through a filter to attach the measurement target component to the filter;
A stable isotope ratio analysis sample collection method for eluting the measurement target component from the filter into a solvent.
請求項1に記載の安定同位体比分析試料収集法であって、
前記測定対象物は木材である
安定同位体比分析試料収集法。
The stable isotope ratio analysis sample collection method according to claim 1,
The measuring object is wood. Stable isotope ratio analysis sample collection method.
請求項1に記載の安定同位体比分析試料収集法であって、
前記不活性ガスは希ガスである
安定同位体比分析試料収集法。
The stable isotope ratio analysis sample collection method according to claim 1,
The inert gas is a rare gas. Stable isotope ratio analysis sample collection method.
請求項1に記載の安定同位体比分析試料収集法であって、
前記測定対象成分は揮発性物質及び微粒子に含まれる成分である
安定同位体比分析試料収集法。
The stable isotope ratio analysis sample collection method according to claim 1,
The measurement target component is a component contained in volatile substances and fine particles. Stable isotope ratio analysis sample collection method.
請求項1に記載の安定同位体比分析試料収集法であって、
前記溶媒は無機溶媒である
安定同位体比分析試料収集法。
The stable isotope ratio analysis sample collection method according to claim 1,
The solvent is an inorganic solvent. A stable isotope ratio analysis sample collection method.
測定対象物に吸着盤を当接させ、
前記吸着盤内部の空気を排出し、
前記吸着盤内部に不活性ガスを充填し、
前記測定対象物から前記不活性ガス中に測定対象成分を拡散させ、
前記測定対象成分を含む前記不活性ガスを収集し、
前記測定対象成分を含む前記不活性ガスをフィルターに通して前記測定対象成分を前記フィルターに付着させ、
前記測定対象成分を前記フィルターから溶媒中に溶出させ、前記測定対象成分を含む試料溶液を作成し、
前記試料溶液に対して安定同位体比分析を行う
分析方法。
Bring the suction cup into contact with the measurement object,
Exhaust the air inside the suction plate,
Filling the inside of the adsorption plate with an inert gas,
Diffusing a measurement target component from the measurement target into the inert gas;
Collecting the inert gas containing the component to be measured;
Passing the inert gas containing the measurement target component through a filter to attach the measurement target component to the filter;
The measurement target component is eluted from the filter into a solvent to prepare a sample solution containing the measurement target component,
An analysis method for performing stable isotope ratio analysis on the sample solution.
請求項6に記載の分析方法であって、
前記測定対象成分は、炭素、水素、酸素又は窒素である
分析方法。
The analysis method according to claim 6, comprising:
The analysis target component is carbon, hydrogen, oxygen, or nitrogen.
測定対象物に吸着盤を当接させ、
前記吸着盤内部の空気を排出し、
前記吸着盤内部に不活性ガスを充填し、
前記測定対象物の植物から前記不活性ガス中に測定対象成分を拡散させ、
前記測定対象成分を含む前記不活性ガスを収集し、
前記測定対象成分を含む前記不活性ガスをフィルターに通して前記測定対象成分を前記フィルターに付着させ、
前記測定対象成分を前記フィルターから溶媒中に溶出させ、前記測定対象成分を含む試料溶液を作成し、
前記試料溶液に対して安定同位体比分析を行い、
前記試料溶液の安定同位体比に基づいて、前記測定対象物の産地を判別する
産地判別方法
Bring the suction cup into contact with the measurement object,
Exhaust the air inside the suction plate,
Filling the inside of the adsorption plate with an inert gas,
Diffusion of the measurement target component from the plant of the measurement target into the inert gas,
Collecting the inert gas containing the component to be measured;
Passing the inert gas containing the measurement target component through a filter to attach the measurement target component to the filter;
The measurement target component is eluted from the filter into a solvent to prepare a sample solution containing the measurement target component,
Perform stable isotope ratio analysis on the sample solution,
A method for discriminating the production area of the measurement object based on the stable isotope ratio of the sample solution
請求項8に記載の産地判別方法であって、
前記測定対象成分は、炭素、水素、酸素又は窒素である
産地判別方法。
A method for determining the production area according to claim 8,
The measuring object component is carbon, hydrogen, oxygen or nitrogen.
測定対象物に当接される吸着盤と、
前記吸着盤内部の空気を排出するポンプと、
前記吸着盤内部に不活性ガスを供給するガス源と、
前記測定対象物から前記吸着盤内部に拡散された前記測定対象成分を含む前記不活性ガスを収集する回収容器と、
前記測定対象成分を含む前記不活性ガスから前記測定対象成分を分離するフィルターと
を具備する安定同位体比分析試料収集装置。
A suction cup abutting against the object to be measured;
A pump for discharging the air inside the adsorption plate;
A gas source for supplying an inert gas into the adsorption plate;
A collection container for collecting the inert gas containing the measurement target component diffused from the measurement target into the suction plate;
A stable isotope ratio analysis sample collection apparatus comprising: a filter that separates the measurement target component from the inert gas containing the measurement target component.
JP2016109328A 2016-05-31 2016-05-31 Stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, production area discrimination method, and stable isotope ratio analysis sample collection device Active JP6715088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016109328A JP6715088B2 (en) 2016-05-31 2016-05-31 Stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, production area discrimination method, and stable isotope ratio analysis sample collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109328A JP6715088B2 (en) 2016-05-31 2016-05-31 Stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, production area discrimination method, and stable isotope ratio analysis sample collection device

Publications (2)

Publication Number Publication Date
JP2017215212A true JP2017215212A (en) 2017-12-07
JP6715088B2 JP6715088B2 (en) 2020-07-01

Family

ID=60575531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109328A Active JP6715088B2 (en) 2016-05-31 2016-05-31 Stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, production area discrimination method, and stable isotope ratio analysis sample collection device

Country Status (1)

Country Link
JP (1) JP6715088B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021582A (en) * 2001-07-06 2003-01-24 Kao Corp Volatile substance sampling method and sampling device thereof
JP2005214855A (en) * 2004-01-30 2005-08-11 Akito Shimouchi Surface gas sampler and surface gas sampling method
JP2008026130A (en) * 2006-07-20 2008-02-07 Shibata Kagaku Kk Collecting tube and filter used therefor
JP2008076357A (en) * 2006-09-25 2008-04-03 Taiyo Nippon Sanso Corp Gas sampling device and gas sampling method
JP2010216892A (en) * 2009-03-13 2010-09-30 Tokyo Metropolitan Univ Method for discriminating producing center of farm products, and method for discriminating cultured, imported and natural eels
US20110033943A1 (en) * 2008-04-22 2011-02-10 Total S.A. Hydrogen sulphide sampling method
JP2012194088A (en) * 2011-03-17 2012-10-11 Canon Inc Gas sampling and measuring apparatus and gas sampling and measuring method
JP2014085209A (en) * 2012-10-23 2014-05-12 Fuyuki Tokano Carbon 14 measurement sample preparation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021582A (en) * 2001-07-06 2003-01-24 Kao Corp Volatile substance sampling method and sampling device thereof
JP2005214855A (en) * 2004-01-30 2005-08-11 Akito Shimouchi Surface gas sampler and surface gas sampling method
JP2008026130A (en) * 2006-07-20 2008-02-07 Shibata Kagaku Kk Collecting tube and filter used therefor
JP2008076357A (en) * 2006-09-25 2008-04-03 Taiyo Nippon Sanso Corp Gas sampling device and gas sampling method
US20110033943A1 (en) * 2008-04-22 2011-02-10 Total S.A. Hydrogen sulphide sampling method
JP2010216892A (en) * 2009-03-13 2010-09-30 Tokyo Metropolitan Univ Method for discriminating producing center of farm products, and method for discriminating cultured, imported and natural eels
JP2012194088A (en) * 2011-03-17 2012-10-11 Canon Inc Gas sampling and measuring apparatus and gas sampling and measuring method
JP2014085209A (en) * 2012-10-23 2014-05-12 Fuyuki Tokano Carbon 14 measurement sample preparation system

Also Published As

Publication number Publication date
JP6715088B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
Steinhof et al. Sample preparation at the Jena 14C laboratory
Woolfenden Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods
Woolfenden Thermal desorption gas chromatography
Mochalski et al. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags
Batterman et al. Analysis and stability of aldehydes and terpenes in electropolished canisters
Wang et al. Determination of complex mixtures of volatile organic compounds in ambient air: canister methodology
Perrin et al. A method for collection, long-term storage, and bioassay of labile volatile chemosignals
US5482677A (en) Thermally desorbable passive dosimeter
Yassaa et al. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME
Jayanty Evaluation of sampling and analytical methods for monitoring toxic organics in air
Ruiz-Jimenez et al. Comparison of multiple calibration approaches for the determination of volatile organic compounds in air samples by solid phase microextraction Arrow and in-tube extraction
Munyeza et al. Development and optimization of a plunger assisted solvent extraction method for polycyclic aromatic hydrocarbons sampled onto multi-channel silicone rubber traps
Zain et al. Determination of hydrogen cyanide in residential ambient air using SPME coupled with GC–MS
Lawrence et al. Chemical evaluation of soil-solution in acid forest soils
Quevauviller et al. Certified reference materials (CRMs 463 and 464) for the quality control of total and methyl mercury determination in tuna fish
Li et al. Tube-type passive sampling of cyclic volatile methyl siloxanes (cVMSs) and benzene series simultaneously in indoor air: uptake rate determination and field application
Kylin et al. Determination of chlorinated pesticides and PCB in pine needles—improved method for the monitoring of airborne organochlorine pollutants
Mangani et al. “Cold” solid-phase microextraction method for the determination of volatile halocarbons present in the atmosphere at ultra-trace levels
Brown et al. Diffusive sampling using tube-type samplers
JP6715088B2 (en) Stable isotope ratio analysis sample collection method, stable isotope ratio analysis method, production area discrimination method, and stable isotope ratio analysis sample collection device
Sartoratto et al. Application of headspace solid phase microextraction and gas chromatography to the screening of volatile compounds from some Brazilian aromatic plants
Iannone et al. A technique for atmospheric measurements of stable carbon isotope ratios of isoprene, methacrolein, and methyl vinyl ketone
Zini III et al. Automation of solid-phase microextraction-gas chromatography-mass spectrometry extraction of eucalyptus volatiles
Sanusi et al. Pesticide vapours in confined atmospheres. Determination of dichlorvos by SPME-GC-MS at the µg m− 3 level
Arrhenius et al. Development of analytical methods to gain insight into the role of terpenes in biogas plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6715088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250