JP2017215145A - Inner quality determination system - Google Patents

Inner quality determination system Download PDF

Info

Publication number
JP2017215145A
JP2017215145A JP2016107003A JP2016107003A JP2017215145A JP 2017215145 A JP2017215145 A JP 2017215145A JP 2016107003 A JP2016107003 A JP 2016107003A JP 2016107003 A JP2016107003 A JP 2016107003A JP 2017215145 A JP2017215145 A JP 2017215145A
Authority
JP
Japan
Prior art keywords
light receiving
light
measurement object
unit
internal quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016107003A
Other languages
Japanese (ja)
Other versions
JP6708479B2 (en
Inventor
古澤 健太郎
Kentaro Furusawa
健太郎 古澤
山田 久也
Hisaya Yamada
久也 山田
田中 伸明
Nobuaki Tanaka
伸明 田中
高田 咲子
Sakiko Takada
咲子 高田
春彦 坂井
Haruhiko Sakai
春彦 坂井
智之 岩田
Tomoyuki Iwata
智之 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2016107003A priority Critical patent/JP6708479B2/en
Publication of JP2017215145A publication Critical patent/JP2017215145A/en
Application granted granted Critical
Publication of JP6708479B2 publication Critical patent/JP6708479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner quality determination system that can highly accurately determine an inner quality even if a size of a plurality of measurement objects having a part not transmitting light such as a seed and the like inside is different.SOLUTION: A light reception unit receiving transmission light transmitting a measurement object is configured to be movable in a prescribed direction by a movement mechanism in a tilting state where the light reception unit is located on an opposite side of a light projection unit across the measurement object and the light reception axis is tilted at a prescribed angle with respect to a light projection axis of the light projection unit. On the basis of size information from a size detection unit and preliminarily stored light reception position data, a control device is configured to decide a light reception position to be located with respect to a prescribed direction by the light reception unit upon detecting inner quality information of the measurement object; and determine the inner quality of the measurement object on the basis of the inner quality information to be detected by the light reception unit in a state causing the movement mechanism to locate the light reception unit at the light reception position.SELECTED DRAWING: Figure 3

Description

本発明は、マンゴーやアボガドなどの大きな種を有する農産物等の測定対象物の内部品質を判定する内部品質判定システムに関する。   The present invention relates to an internal quality determination system that determines the internal quality of an object to be measured such as agricultural products having large seeds such as mango and avocado.

測定対象物に光を照射して内部透過光を受光し、この透過光を分光処理して測定対象物の内部品質を判定する内部品質判定システムは、公知である。   An internal quality determination system that irradiates a measurement object with light and receives internal transmitted light and spectrally processes the transmitted light to determine the internal quality of the measurement object is known.

例えば、下記特許文献1には、内部品質計測箇所を通過するように被計測物を搬送する搬送手段と、内部品質計測箇所において被計測物を横断するように光を照射する投光部及び横断方向に透過した光を受光する受光部を有する投受光手段と、前記投受光手段にて受光した光に基づいて被計測物の内部品質を解析する制御手段とを備えた内部品質判定システムにおいて、前記内部品質計測箇所より搬送方向上流側の外観検査計測箇所において被計測物の外観情報を検出する外観検出手段を設け、前記制御装置が、前記外観検出手段による被計測物の大きさ情報に基づいて、前記投受光手段によって被計測物の内部品質情報を検出する際の検出条件を調整するように構成することが提案されている。   For example, in the following Patent Document 1, a transport unit that transports an object to be measured so as to pass through an internal quality measurement point, a light projecting unit that irradiates light so as to cross the object to be measured at the internal quality measurement point, and a crossing In an internal quality determination system including a light projecting / receiving unit having a light receiving unit that receives light transmitted in a direction, and a control unit that analyzes the internal quality of an object to be measured based on the light received by the light projecting / receiving unit, Appearance detection means is provided for detecting appearance information of an object to be measured at an appearance inspection measurement position upstream of the internal quality measurement position in the transport direction, and the control device is based on the size information of the object to be measured by the appearance detection means. Thus, it has been proposed to adjust the detection condition when detecting the internal quality information of the object to be measured by the light projecting / receiving unit.

具体的には、前記特許文献1には、前記検出条件の調整として、前記投受光手段が被計測物の内部品質情報を検出する際の投受光量を調整すること(以下、第1の調整という)、及び/又は、前記投受光部が被計測物の内部品質情報を検出する際の前記投光部及び前記受光部と被計測物との相対位置を調整すること(以下、第2の調整という)が記載されてる。   Specifically, in Patent Document 1, as the adjustment of the detection condition, the light projecting / receiving unit adjusts the light projecting / receiving amount when detecting the internal quality information of the object to be measured (hereinafter referred to as the first adjustment). And / or adjusting the relative position between the light projecting unit and the light receiving unit and the measured object when the light projecting / receiving unit detects the internal quality information of the measured object (hereinafter referred to as the second). Adjustment)).

しかしながら、前記特許文献1に記載の内部品質判定システムにおいては、被計測物がマンゴーやアボガドなどの大きな種を有する場合には、前記種の影響で被計測物の内部品質を正確に判定できないという問題があった。   However, in the internal quality determination system described in Patent Document 1, when the measurement object has a large species such as mango or avocado, the internal quality of the measurement object cannot be accurately determined due to the influence of the species. There was a problem.

詳しくは、前記第1の調整は、被計測物が大きくなるほど透過光の光量が少なくなることを考慮して、被計測物が大きいほど投光部による投光強度を大きくするものである。   Specifically, the first adjustment increases the light projection intensity by the light projecting unit as the object to be measured is larger in consideration of the fact that the amount of transmitted light decreases as the object to be measured increases.

しかしながら、この第1の調整は、被計測物が大きな種を有することを想定しておらず、従って、被計測物が大きな種を有する場合には、前記投光部から被計測物の大きさに応じた的確な光量の光を被計測物に照射させたとしても、前記光のうちの多くが被計測物の種によって遮断されることになり、その結果、前記受光部には十分な光量の光が届かないことが起こり得る。   However, this first adjustment does not assume that the object to be measured has a large seed. Therefore, when the object to be measured has a large seed, the size of the object to be measured from the light projecting unit. Even if the object to be measured is irradiated with an appropriate amount of light corresponding to the light, much of the light is blocked by the seed of the object to be measured. It may happen that the light does not reach.

また、前記第2の調整は、被計測物の大きさに応じて、投光部及び受光部を一体的に移動させることにより、被計測物の大きさに拘わらず、投光部から被計測部に照射され、被計測物を透過した透過光が受光部によって受光されるようにしたものである。   In addition, the second adjustment is performed by moving the light projecting unit and the light receiving unit integrally according to the size of the object to be measured, regardless of the size of the object to be measured. The transmitted light that has been irradiated to the part and transmitted through the object to be measured is received by the light receiving part.

しかしながら、この第2の調整も、被計測物が大きな種を有することを想定しておらず、従って、被計測物が大きな種を有する場合には、前記投光部からの光が被計測物には的確に照射されるものの、被計測物の内部に侵入した光の多くが被計測物の種によって遮断されることになり、その結果、前記受光部には十分な光量の光が届かないことが起こり得る。   However, this second adjustment also does not assume that the object to be measured has a large seed. Therefore, when the object to be measured has a large seed, the light from the light projecting unit is not measured. Although the light is properly irradiated, much of the light that has entered the inside of the object to be measured is blocked by the seed of the object to be measured, and as a result, a sufficient amount of light does not reach the light receiving unit. Can happen.

また、下記特許文献2には、内部品質計測箇所を通過するように被計測物を搬送する搬送手段と、内部品質計測箇所において前記搬送手段の下方から被計測物へ向けて光を照射する投光部と、被計測物を透過した光を受光する受光部と、前記受光部にて受光した光に基づいて被計測物の内部品質を解析する制御手段とを備えた内部品質判定システムにおいて、前記内部品質計測箇所より搬送方向上流側の大きさ計測箇所において被計測物の大きさを検出する大きさ検出手段と、前記投光部及び被計測物の間に配置されたチョッピング手段とを備え、前記受光部は前記チョッピング手段のチョッピング周波数に同期した受光タイミングで被計測物からの透過光を受光し積算するように構成され、前記制御装置が、前記大きさ検出手段によって検出される被計測物の大きさに応じて前記受光手段の受光回数を決定するように構成することが開示されている。   Patent Document 2 below discloses a transport unit that transports an object to be measured so as to pass through an internal quality measurement point, and a projection that irradiates light from below the transport unit toward the object to be measured at the internal quality measurement point. In an internal quality determination system comprising an optical part, a light receiving part for receiving light transmitted through the object to be measured, and a control means for analyzing the internal quality of the object to be measured based on the light received by the light receiving part, A size detecting means for detecting the size of the object to be measured at the size measuring position upstream of the internal quality measuring position, and a chopping means disposed between the light projecting unit and the object to be measured; The light receiving unit is configured to receive and accumulate transmitted light from the measurement object at a light receiving timing synchronized with the chopping frequency of the chopping means, and the control device detects the magnitude by the size detecting means. Be configured is disclosed to determine the number of light reception times of said light receiving means in accordance with the size of the object to be measured to be.

前記特許文献2に記載の内部品質判定システムは、被計測物が大きい場合には透過量が少なくなることに鑑み、被計測物が大きい場合には前記受光手段による受光積算時間を長くしてS/N比を向上させ、被計測物が小さい場合には前記受光手段による受光積算時間を短くして被計測物周辺からの直接反射光の混入を避けようとするものである。   In the internal quality determination system described in Patent Document 2, in view of the fact that the amount of transmission decreases when the object to be measured is large, when the object to be measured is large, the light reception integration time by the light receiving means is increased. The / N ratio is improved, and when the object to be measured is small, the light reception integration time by the light receiving means is shortened so as to avoid the direct reflection of light from the periphery of the object to be measured.

前記特許文献2には、前記受光部の受光光軸が前記投光部からの投光光軸に対して傾斜されている形態が図示されているが、前記特許文献2も、被計測物の種による内部品質判定の精度劣化については何ら考慮されていない。   Although the patent document 2 shows a form in which the light receiving optical axis of the light receiving unit is inclined with respect to the light projecting optical axis from the light projecting unit, the patent document 2 also describes the object to be measured. No consideration is given to the deterioration in accuracy of internal quality judgment due to seeds.

特開2002−174592号公報Japanese Patent Laid-Open No. 2002-174582 特開平6−300680号公報JP-A-6-300680

本発明は、斯かる従来技術に鑑みなされたものであり、内部に種等の光を透過しない部分を有し、大きさが異なる複数の測定対象物のそれぞれの内部品質を精度良く判定可能な内部品質判定システムの提供を目的とする。   The present invention has been made in view of such a conventional technique, and has an internal portion that does not transmit light such as seeds, and can accurately determine the internal quality of each of a plurality of measurement objects having different sizes. The purpose is to provide an internal quality judgment system.

本発明は、前記目的を達成するために、大きさ検出領域及び前記大きさ検出領域より搬送方向下流側の内部品質検出領域を通過するように測定対象物を搬送する搬送部と、前記大きさ検出領域において測定対象物の大きさ情報を検出する大きさ検出部と、前記内部品質検出領域において測定対象物の内部品質情報を検出する内部品質検出部と、制御装置とを備え、前記内部品質検出部は、前記内部品質検出領域に位置する測定対象物に向けて測定光を投光するように固定設置された投光部と、測定対象物を挟んで前記投光部とは反対側に位置され且つ受光光軸が前記投光部の投光光軸に対して所定角度傾斜された傾斜状態で、測定対象物を透過した透過光を受光する受光部と、前記受光部を所定方向へ移動可能な移動機構とを有し、前記制御装置には、前記受光部の前記所定方向に関する受光位置が測定対象物の大きさに応じて設定された受光位置データが記憶されており、前記制御装置は、前記大きさ検出部からの大きさ情報及び前記受光位置データに基づき決定される所定受光位置に前記受光部が位置するように前記移動機構を作動させ、前記所定受光位置に位置された状態の前記受光部によって検出される内部品質情報に基づき前記一の測定対象物の内部品質を判定するように構成された内部品質判定システムを提供する。   In order to achieve the above object, the present invention provides a size detection region and a transport unit that transports a measurement object so as to pass through an internal quality detection region downstream in the transport direction from the size detection region, and the size. A size detector that detects size information of the measurement object in the detection region; an internal quality detection unit that detects internal quality information of the measurement object in the internal quality detection region; and a control device, and the internal quality The detection unit is fixedly installed so as to project measurement light toward the measurement object located in the internal quality detection region, and on the opposite side of the light projection unit across the measurement object. A light receiving unit that receives the transmitted light that has passed through the measurement object in a state where the light receiving optical axis is positioned and the light receiving optical axis is inclined at a predetermined angle with respect to the light projecting optical axis of the light projecting unit; Movable control mechanism, and the control The light receiving position data in which the light receiving position in the predetermined direction of the light receiving unit is set according to the size of the measurement object is stored in the device, and the control device receives the size from the size detecting unit. Internal quality information detected by the light receiving unit in a state where the moving mechanism is operated so that the light receiving unit is positioned at a predetermined light receiving position determined based on information and the light receiving position data An internal quality determination system configured to determine the internal quality of the one measurement object is provided.

第1の形態においては、前記搬送部は、搬送方向に直列配置された複数の搬送トレイを有し、前記搬送トレイは、測定対象物が載置可能とされ且つ測定光の通過を許容する開口が設けられた主面を有するものとされる。   In the first embodiment, the transport unit has a plurality of transport trays arranged in series in the transport direction, and the transport tray is an opening that allows a measurement object to be placed and allows measurement light to pass therethrough. It has a main surface provided with.

この場合、前記投光部は、前記搬送部の下方から前記開口を介して測定対象物に測定光を投光するように配置され、前記受光部は、前記搬送トレイに載置された測定対象物より上方で且つ前記測定対象物の搬送幅方向中心から搬送幅方向一方側に変位された位置で、受光光軸が下向き方向を基準にして搬送幅方向他方側へ前記所定角度だけ傾斜された第1受光部と、前記搬送トレイに載置された測定対象物より上方で且つ前記測定対象物の搬送幅方向中心から搬送幅方向他方側に変位された位置で、受光光軸が下向き方向を基準にして搬送幅方向一方側へ前記所定角度だけ傾斜された第2受光部とを含むものとされる。   In this case, the light projecting unit is disposed so as to project measurement light onto the measurement object from below the transport unit through the opening, and the light receiving unit is a measurement target placed on the transport tray. The light receiving optical axis is tilted by the predetermined angle to the other side in the transport width direction with respect to the downward direction at a position above the object and displaced from the center of the measurement object in the transport width direction to one side in the transport width direction. The light-receiving optical axis has a downward direction at a position that is displaced above the measurement object placed on the conveyance tray and from the center of the measurement object in the conveyance width direction to the other side in the conveyance width direction. And a second light receiving portion that is inclined to the one side in the transport width direction by the predetermined angle.

第2の形態においては、前記投光部は、搬送幅方向一方側から測定対象物に測定光を投光するように配置され、前記受光部は、前記搬送トレイに載置された測定対象物より搬送幅方向他方側で且つ前記測定対象物の搬送方向中心から搬送方向上流側に変位された位置で、受光光軸が搬送幅方向を基準にして搬送方向下流側へ前記所定角度だけ傾斜された第1受光部と、前記搬送トレイに載置された測定対象物より搬送幅方向他方側で且つ前記測定対象物の搬送方向中心から搬送方向下流側に変位された位置で、受光光軸が搬送幅方向を基準にして搬送方向上流側へ前記所定角度だけ傾斜された第2受光部とを含むものとされる。   In the second embodiment, the light projecting unit is arranged to project measurement light onto the measurement object from one side in the conveyance width direction, and the light receiving unit is the measurement object placed on the conveyance tray. The light receiving optical axis is inclined toward the downstream side in the transport direction by the predetermined angle with respect to the transport width direction at a position displaced further from the transport direction center of the measurement object to the upstream side in the transport direction. A light receiving optical axis at a position displaced on the other side in the conveyance width direction from the measurement object placed on the conveyance tray and on the downstream side in the conveyance direction from the center in the conveyance direction of the measurement object. And a second light receiving portion inclined by the predetermined angle toward the upstream side in the transport direction with respect to the transport width direction.

この場合、前記搬送部には、前記投光部からの測定光が測定対象物に投光されることを許容する開口を有し、且つ、前記投光部からの測定光が前記第1及び第2受光部に直接入り込むことを防止する遮蔽板が設けられる。   In this case, the transport unit has an opening that allows the measurement light from the light projecting unit to be projected onto the measurement object, and the measurement light from the light projecting unit is the first and A shielding plate that prevents direct entry into the second light receiving unit is provided.

前記第1の形態においては、前記移動機構によって前記受光部が移動される所定方向は上下方向とされ得る。   In the first embodiment, a predetermined direction in which the light receiving unit is moved by the moving mechanism may be a vertical direction.

前記第1及び第2の形態においては、前記移動機構によって前記受光部が移動される所定方向は前記受光部の受光光軸方向、又は、搬送幅方向とされ得る。   In the first and second embodiments, the predetermined direction in which the light receiving unit is moved by the moving mechanism may be the light receiving optical axis direction of the light receiving unit or the conveyance width direction.

前記第2の形態においては、前記移動機構によって前記受光部が移動される所定方向は搬送方向とされ得る。   In the second embodiment, the predetermined direction in which the light receiving unit is moved by the moving mechanism may be a transport direction.

本発明に係る内部品質判定システムによれば、受光部が移動機構によって所定方向に移動可能とされており、大きさ検出部からの大きさ情報と受光位置データとに基づいて、制御装置が、一の測定対象物の内部品質情報を検出する際に前記受光部が前記所定方向に関し位置すべき受光位置を決定し、前記移動機構によって前記受光部を前記受光位置に位置させた状態で当該受光部によって検出される内部品質情報に基づき前記一の測定対象物の内部品質を判定するように構成されているので、マンゴーやアボガド等の大きな種を有する複数の測定対象物の大きさが異なっていたとしても、複雑な機構を要すること無く、大きさが異なる複数の測定対象物のそれぞれの内部品質を精度良く判定することができる。   According to the internal quality determination system according to the present invention, the light receiving unit is movable in a predetermined direction by the moving mechanism, and based on the size information and the light receiving position data from the size detecting unit, the control device When detecting the internal quality information of one measurement object, the light receiving unit determines a light receiving position that should be positioned in the predetermined direction, and the light receiving unit is positioned in the light receiving position by the moving mechanism. Since the internal quality of the one measurement object is determined based on the internal quality information detected by the unit, the sizes of the plurality of measurement objects having large species such as mango and avocado are different. Even in such a case, it is possible to accurately determine the internal quality of each of the plurality of measurement objects having different sizes without requiring a complicated mechanism.

図1は、本発明の実施の形態1に係る内部品質判定システムの模式平面図である。FIG. 1 is a schematic plan view of an internal quality determination system according to Embodiment 1 of the present invention. 図2は、図1におけるII-II線に沿った前記内部品質判定システムの内部品質検出領域での模式縦断面図であり、大きさ「大」の測定対象物の内部品質情報を検出している状態を示している。FIG. 2 is a schematic longitudinal sectional view in the internal quality detection area of the internal quality determination system along the line II-II in FIG. 1, and detects the internal quality information of the measurement object of size “large”. It shows the state. 図3は、図2に対応した模式縦断面図であり、大きさ「小」の測定対象物の内部品質情報を検出している状態を示している。FIG. 3 is a schematic longitudinal sectional view corresponding to FIG. 2 and shows a state in which the internal quality information of the measurement object having the size “small” is detected. 図4は、前記実施の形態1の第1変形例に係る内部品質判定システムの内部品質検出領域での模式縦断面図であり、大きさ「大」の測定対象物の内部品質情報を検出している状態を示している。FIG. 4 is a schematic longitudinal sectional view in the internal quality detection region of the internal quality determination system according to the first modification of the first embodiment, which detects internal quality information of a measurement object having a size “large”. It shows the state. 図5は、図4に対応した模式縦断面図であり、大きさ「小」の測定対象物の内部品質情報を検出している状態を示している。FIG. 5 is a schematic longitudinal sectional view corresponding to FIG. 4 and shows a state in which the internal quality information of the measurement object having the size “small” is detected. 図6は、前記実施の形態1の第2変形例に係る内部品質判定システムの内部品質検出領域での模式縦断面図であり、大きさ「大」の測定対象物の内部品質情報を検出している状態を示している。FIG. 6 is a schematic longitudinal sectional view in the internal quality detection area of the internal quality determination system according to the second modification of the first embodiment, which detects internal quality information of a measurement object of size “large”. It shows the state. 図7は、図6に対応した模式縦断面図であり、大きさ「小」の測定対象物の内部品質情報を検出している状態を示している。FIG. 7 is a schematic longitudinal sectional view corresponding to FIG. 6 and shows a state in which the internal quality information of the measurement object having the size “small” is detected. 図8は、本発明の実施の形態2に係る内部品質判定システムの模式平面図である。FIG. 8 is a schematic plan view of an internal quality determination system according to Embodiment 2 of the present invention. 図9は、前記実施の形態2に係る内部品質判定システムの内部品質検出領域での模式横断面図であり、大きさ「大」の測定対象物の内部品質情報を検出している状態を示している。FIG. 9 is a schematic cross-sectional view in the internal quality detection region of the internal quality determination system according to the second embodiment, showing a state in which the internal quality information of the measurement object having the size “large” is detected. ing. 図10は、図9に対応した模式横断面図であり、大きさ「小」の測定対象物の内部品質情報を検出している状態を示している。FIG. 10 is a schematic cross-sectional view corresponding to FIG. 9 and shows a state in which the internal quality information of the measurement object having the size “small” is detected. 図11は、前記実施の形態2の第1変形例に係る内部品質判定システムの内部品質検出領域での模式横断面図であり、大きさ「大」の測定対象物の内部品質情報を検出している状態を示している。FIG. 11 is a schematic cross-sectional view in the internal quality detection region of the internal quality determination system according to the first modification of the second embodiment, and detects the internal quality information of the measurement object having the size “large”. It shows the state. 図12は、図11に対応した模式横断面図であり、大きさ「小」の測定対象物の内部品質情報を検出している状態を示している。FIG. 12 is a schematic cross-sectional view corresponding to FIG. 11 and shows a state in which internal quality information of a measurement object having a size “small” is detected. 図13は、前記実施の形態2の第2変形例に係る内部品質判定システムの内部品質検出領域での模式横断面図であり、大きさ「大」の測定対象物の内部品質情報を検出している状態を示している。FIG. 13 is a schematic cross-sectional view in the internal quality detection region of the internal quality determination system according to the second modification of the second embodiment, and detects the internal quality information of the measurement object having the size “large”. It shows the state. 図14は、図13に対応した模式横断面図であり、大きさ「小」の測定対象物の内部品質情報を検出している状態を示している。FIG. 14 is a schematic cross-sectional view corresponding to FIG. 13 and shows a state in which the internal quality information of the measurement object having the size “small” is detected.

実施の形態1
以下、本発明に係る内部品質判定システムの好ましい一実施の形態について、添付図面を参照しつつ説明する。
図1に、本実施の形態に係る内部品質判定システム1Aの模式平面図を示す。
Embodiment 1
Hereinafter, a preferred embodiment of an internal quality determination system according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a schematic plan view of an internal quality determination system 1A according to the present embodiment.

図1に示すように、本実施の形態に係る内部品質判定システム1は、測定対象物を搬送する搬送部10と、前記搬送部10によって搬送されている測定対象物300の大きさ情報を検出する大きさ検出部(図示せず)と、測定対象物300の内部品質情報を検出する内部品質検出部30と、制御装置100とを備えている。   As shown in FIG. 1, the internal quality determination system 1 according to the present embodiment detects the size information of the conveyance unit 10 that conveys the measurement object and the measurement object 300 that is conveyed by the conveyance unit 10. A size detection unit (not shown), an internal quality detection unit 30 that detects internal quality information of the measurement object 300, and a control device 100.

本実施の形態においては、図1に示すように、前記搬送部10は、駆動スプロケット等の駆動回転体11と、従動スプロケット等の従動回転体12と、前記駆動回転体11及び前記従動回転体の搬送幅方向一方側に巻き回されたチェーン等の第1無端体15(1)と、前記駆動回転体11及び前記従動回転体の搬送幅方向他方側に巻き回されたチェーン等の第2無端体15(2)と、測定対象物300が載置される主面21を有し、前記第1及び第2無端体15(1)、15(2)によって支持・搬送されるトレイ20とを有している。   In the present embodiment, as shown in FIG. 1, the transport unit 10 includes a drive rotator 11 such as a drive sprocket, a driven rotator 12 such as a driven sprocket, the drive rotator 11 and the driven rotator. A first endless body 15 (1) such as a chain wound around one side in the transport width direction of the second and a second end such as a chain wound around the other side in the transport width direction of the drive rotator 11 and the driven rotator. An endless body 15 (2) and a tray 20 having a main surface 21 on which the measurement object 300 is placed and supported and conveyed by the first and second endless bodies 15 (1) and 15 (2). have.

前記搬送部10は、前記主面21が上方を向く姿勢で前記トレイ20を搬送する搬送区域と、前記搬送区域の終端から前記搬送区域の始端まで前記主面21が下方を向く姿勢で前記トレイ20を戻り搬送する戻り区域とを有している。   The transport unit 10 transports the tray 20 with the main surface 21 facing upward, and the tray 10 with the main surface 21 facing downward from the end of the transport area to the start of the transport area. 20 and a return area for returning and transporting.

図1に示すように、前記搬送区域は、大きさ検出領域10B及び前記大きさ検出領域10Bより搬送方向下流側に位置する内部品質検出領域10Cを有しており、前記大きさ検出部は前記大きさ検出領域10Bにおいて測定対象物300の大きさ情報を検出し、前記内部品質検出部30は前記内部品質検出領域10Cにおいて測定対象物300の内部品質情報を検出する。   As shown in FIG. 1, the transport area has a size detection region 10B and an internal quality detection region 10C located downstream in the transport direction from the size detection region 10B, and the size detection unit The size information of the measurement object 300 is detected in the size detection area 10B, and the internal quality detection unit 30 detects the internal quality information of the measurement object 300 in the internal quality detection area 10C.

図1に示すように、本実施の形態においては、前記搬送区域は、さらに、前記大きさ検出領域10Bより搬送方向上流側に設けられた載置領域10Aと、前記内部品質検出領域10Cより搬送方向下流側に設けられた仕分け領域10Dとを有している。   As shown in FIG. 1, in the present embodiment, the transport area is further transported from a placement area 10A provided upstream in the transport direction from the size detection area 10B and from the internal quality detection area 10C. And a sorting area 10D provided on the downstream side in the direction.

前記載置領域10Aは、前記トレイ20の主面21に測定対象物300を載置させる作業領域であり、前記仕分け領域10Dは内部品質判定結果に基づき前記トレイ20の主面21上の測定対象物300の仕分け作業を行う領域である。   The placement area 10A is a work area in which the measurement target 300 is placed on the main surface 21 of the tray 20, and the sorting area 10D is a measurement target on the main surface 21 of the tray 20 based on an internal quality determination result. This is an area where the sorting operation of the objects 300 is performed.

前記大きさ検出部は、前記搬送部10によって搬送される測定対象物300の大きさに関する情報を検出する。
測定対象物の前記「大きさ」には平面積又は高さが含まれ、前記大きさ検出部は、CCDカメラや光電センサー等の種々の形態を有し得る。
The size detection unit detects information related to the size of the measurement object 300 conveyed by the conveyance unit 10.
The “size” of the measurement object includes a flat area or a height, and the size detection unit may have various forms such as a CCD camera and a photoelectric sensor.

図2に、図1におけるII-II線に沿った模式断面図を示す。
図2に示すように、前記内部品質検出部30は、投光部31と、受光部35と、前記受光部35を所定方向へ移動させる移動機構40とを有している。
FIG. 2 shows a schematic cross-sectional view along the line II-II in FIG.
As shown in FIG. 2, the internal quality detection unit 30 includes a light projecting unit 31, a light receiving unit 35, and a moving mechanism 40 that moves the light receiving unit 35 in a predetermined direction.

前記投光部31は、前記内部品質検出領域10Cに位置する測定対象物300に向けて測定光を投光するように固定設置されている。
図2に示すように、本実施の形態においては、前記投光部31は、前記搬送部10の下方から上方へ向けて測定光を投光するように配置されている。
The light projecting unit 31 is fixedly installed so as to project measurement light toward the measurement object 300 located in the internal quality detection region 10C.
As shown in FIG. 2, in the present embodiment, the light projecting unit 31 is disposed so as to project measurement light from below to above the transport unit 10.

詳しくは、図2に示すように、測定対象物300が載置される前記トレイ20の前記主面21には、測定光の通過を許容する開口22が設けられており、前記投光部31から投光された測定光は、前記開口22を介して下方から測定対象物300に照射されるようになっている。   Specifically, as shown in FIG. 2, the main surface 21 of the tray 20 on which the measurement object 300 is placed is provided with an opening 22 that allows measurement light to pass therethrough, and the light projecting unit 31. The measurement light projected from is irradiated to the measurement object 300 from below through the opening 22.

前記投光部31としては、近赤外領域の波長の光を照射可能なハロゲンランプ、キセノンランプ、LEDランプ等が利用される。   As the light projecting unit 31, a halogen lamp, a xenon lamp, an LED lamp, or the like that can irradiate light having a wavelength in the near infrared region is used.

前記受光部35は、測定対象物300を挟んで前記投光部31とは反対側において、測定対象物300を透過した光を受光するように配置されている。
前述の通り、本実施の形態においては、前記投光部31は、前記搬送部10の下方から上方へ向けて測定光を投光しており、従って、前記受光部35は、前記搬送部10より上方において、下方から上方へ向けて進む透過光を受光し得るように配置されている。
The light receiving unit 35 is disposed on the side opposite to the light projecting unit 31 with the measurement object 300 interposed therebetween so as to receive light transmitted through the measurement object 300.
As described above, in the present embodiment, the light projecting unit 31 projects measurement light from the bottom to the top of the transport unit 10, and thus the light receiving unit 35 is configured to transmit the light receiving unit 35. It is arranged so as to be able to receive transmitted light that travels from below to above in the upper part.

詳しくは、図2に示すように、前記受光部35は、受光光軸35Xが前記投光部31の投光光軸に対して所定傾斜角度αだけ傾斜された状態で測定対象物300の方向を向いており、これにより、前記受光部35の視野35Vが、測定対象物300の種を回避しつつ、測定対象物300の内部を可及的広くカバーできるようになっている。   Specifically, as shown in FIG. 2, the light receiving unit 35 has a direction of the measuring object 300 in a state where the light receiving optical axis 35 </ b> X is inclined by a predetermined inclination angle α with respect to the light projecting optical axis of the light projecting unit 31. Thus, the field of view 35V of the light receiving unit 35 can cover the inside of the measuring object 300 as widely as possible while avoiding the seeds of the measuring object 300.

前記受光光軸35Xの前記投光光軸に対する傾斜角度αは、前記受光部35の視野角や測定対象物300の大きさ、さらには、測定対象物300の種の大きさ等に基づき、経験的に設定される。   The inclination angle α of the light receiving optical axis 35X with respect to the light projecting optical axis is based on experience based on the viewing angle of the light receiving unit 35, the size of the measurement object 300, the size of the species of the measurement object 300, and the like. Is set automatically.

前記受光部35として、後端が下記分光装置70に光学的に接続された光ファイバーの先端を用いる場合においては、前記受光部35の視野角は例えば23°ぐらいとなる。
斯かる構成においては、前記受光部35の受光光軸35Xは前記投光光軸に対して、例えば、30°〜40°、好適には35°の角度で傾斜される。
When the front end of an optical fiber whose rear end is optically connected to the spectroscopic device 70 described below is used as the light receiving unit 35, the viewing angle of the light receiving unit 35 is about 23 °, for example.
In such a configuration, the light receiving optical axis 35X of the light receiving unit 35 is inclined at an angle of, for example, 30 ° to 40 °, preferably 35 ° with respect to the light projecting optical axis.

本実施の形態に係る前記内部品質判定システム1Aは、前記受光部35として、測定対象物300の種より搬送幅方向一方側及び他方側からの透過光をそれぞれ受光する第1受光部35(1)及び第2受光部35(2)を有している。   In the internal quality determination system 1A according to the present embodiment, as the light receiving unit 35, a first light receiving unit 35 (1 that receives transmitted light from one side and the other side in the transport width direction from the seed of the measurement object 300, respectively. ) And the second light receiving portion 35 (2).

この場合、前記第1受光部35(1)の受光光軸35(1)X及び前記第2受光部35(2)の受光光軸35(2)Xは、投光光軸を基準にして対称に傾斜される。   In this case, the light receiving optical axis 35 (1) X of the first light receiving unit 35 (1) and the light receiving optical axis 35 (2) X of the second light receiving unit 35 (2) are based on the light projecting optical axis. It is tilted symmetrically.

即ち、前記第1受光部35(1)は、測定対象物300の搬送幅方向中心から搬送幅方向一方側に変位された位置で、受光光軸35(1)Xが下向き方向を基準にして搬送幅方向他方側へ前記所定角度αだけ傾斜される一方で、前記第2受光部35(2)は、測定対象物300の搬送幅方向中心から搬送幅方向他方側に変位された位置で、受光光軸35(2)Xが下向き方向を基準にして搬送幅方向一方側へ前記所定角度αだけ傾斜される。   That is, the first light receiving unit 35 (1) is displaced from the center of the measurement object 300 in the conveyance width direction to one side in the conveyance width direction, and the light reception optical axis 35 (1) X is based on the downward direction. While the second light receiving portion 35 (2) is inclined to the other side of the conveyance width direction by the predetermined angle α, the second light receiving unit 35 (2) is displaced from the center of the measurement object 300 in the conveyance width direction to the other side of the conveyance width direction. The light receiving optical axis 35 (2) X is inclined by the predetermined angle α to one side in the transport width direction with reference to the downward direction.

前記移動機構40は、前記受光部35を所定方向に移動させ得るように構成されている。
本実施の形態においては、前記移動機構40は、前記受光部35を前記投光部31の投光光軸に平行な方向に移動可能とされている。
The moving mechanism 40 is configured to move the light receiving unit 35 in a predetermined direction.
In the present embodiment, the moving mechanism 40 can move the light receiving unit 35 in a direction parallel to the light projecting optical axis of the light projecting unit 31.

前記移動機構40は、前記受光部35を所定方向に移動させ得る限り種々の形態を取り得る。
本実施の形態においては、前記移動機構40は、固定設置されるシリンダ41と、前記シリンダ41に対して前記所定方向に沿って進退自在とされたピストン42とを有しており、前記ピストン42の自由端部に前記受光部35が支持されることで、前記受光部35が前記所定方向に移動可能とされている。
The moving mechanism 40 can take various forms as long as the light receiving unit 35 can be moved in a predetermined direction.
In the present embodiment, the moving mechanism 40 includes a cylinder 41 that is fixedly installed, and a piston 42 that is movable forward and backward along the predetermined direction with respect to the cylinder 41. Since the light receiving part 35 is supported by the free end of the light receiving part 35, the light receiving part 35 can be moved in the predetermined direction.

なお、本実施の形態に係る前記内部品質判定システム1Aは、前記移動機構40として、前記第1及び第2受光部35(1)、35(2)をそれぞれ前記所定方向に移動させる第1及び第2移動機構40(1)、40(2)を有している。   Note that the internal quality determination system 1A according to the present embodiment uses the first and second light receiving portions 35 (1) and 35 (2) as the moving mechanism 40 to move in the predetermined direction, respectively. It has 2nd moving mechanism 40 (1) and 40 (2).

これに代えて、単一の移動機構40が前記第1及び第2受光部35(1)、35(2)を一体的に前記所定方向へ移動させるように構成することも可能である。   Alternatively, a single moving mechanism 40 may be configured to move the first and second light receiving portions 35 (1) and 35 (2) integrally in the predetermined direction.

前記制御装置100は、前記受光部35によって検出される内部品質情報に基づき測定対象物300の内部品質を判定する。   The control device 100 determines the internal quality of the measurement object 300 based on the internal quality information detected by the light receiving unit 35.

前述の通り、本実施の形態においては、前記受光部35として光ファイバーの先端部が用いられている。
この場合、前記内部品質判定システム1Aには、前記光ファイバーの後端部が光学的に接続される分光装置70が備えられる。
As described above, in the present embodiment, a tip portion of an optical fiber is used as the light receiving unit 35.
In this case, the internal quality determination system 1A includes a spectroscopic device 70 to which the rear end of the optical fiber is optically connected.

前記分光装置70は、前記受光部35にて受光された測定対象物300の透過光を分光してスペクトル信号等の分光情報を生成する。
そして、前記制御装置10は、前記分光装置70からの分光情報に基づき測定対象物300の内部品質を判定する。
The spectroscopic device 70 divides the transmitted light of the measuring object 300 received by the light receiving unit 35 to generate spectral information such as a spectral signal.
Then, the control device 10 determines the internal quality of the measurement object 300 based on the spectral information from the spectroscopic device 70.

即ち、前記制御装置100には、予め、糖度等の特定内部品質に関する閾値データが記憶されている。
前記制御装置100は、前記分光装置70から受信する、一の測定対象物300の分光情報と前記閾値データとの対比に基づき、当該測定対象物300の内部品質の判定を行う。
That is, the control device 100 stores threshold data related to specific internal quality such as sugar content in advance.
The control device 100 determines the internal quality of the measurement target 300 based on the comparison between the spectral information of one measurement target 300 received from the spectroscopic device 70 and the threshold data.

なお、本実施の形態に係る前記内部品質判定システム1Aは、前記分光装置70として、前記第1及び第2受光部35(1)、35(2)にそれぞれ光学的に接続された第1及び第2分光装置70(1)、70(2)を有している。   In addition, the internal quality determination system 1A according to the present embodiment includes a first and second optically connected to the first and second light receiving units 35 (1) and 35 (2) as the spectroscopic device 70, respectively. It has the 2nd spectroscopy apparatus 70 (1) and 70 (2).

前記制御装置100は、さらに、前記大きさ検出部からの大きさ情報に基づいて、前記移動機構40の作動制御を行うように構成されている。   The control device 100 is further configured to perform operation control of the moving mechanism 40 based on size information from the size detection unit.

詳しくは、前記制御装置100には、予め、前記受光部35の前記所定方向に関する受光位置が測定対象物300の大きさに応じて設定された受光位置データが記憶されている。   Specifically, the control device 100 stores light reception position data in which the light reception position in the predetermined direction of the light receiving unit 35 is set according to the size of the measurement object 300 in advance.

例えば、前記制御装置100は、前記大きさ検出部からの大きさ情報に基づいて、測定対象物300の大きさを「大」及び「小」の二種類に区別するものとされる。
この場合、前記受光位置データは、「大」用受光位置と「小」用受光位置とを有するものとされる。
For example, the control device 100 distinguishes the size of the measurement object 300 into two types of “large” and “small” based on the size information from the size detection unit.
In this case, the light receiving position data includes a “large” light receiving position and a “small” light receiving position.

当然ながら、測定対象物300の大きさを三種類以上に区別することも可能であり、前記受光位置データは、区別される測定対象物300の大きさ毎に設定された受光位置を有するものとされる。   Of course, the size of the measurement object 300 can be distinguished into three or more types, and the light reception position data has a light reception position set for each size of the measurement object 300 to be distinguished. Is done.

ここで、前記制御装置100が前記大きさ検出部からの大きさ情報に基づいて測定対象物300の大きさを「大」及び「小」の二種類に区別するように構成されている場合を例に、前記内部品質判定システム1Aの動作説明を行う。   Here, a case where the control device 100 is configured to distinguish the size of the measurement object 300 into two types of “large” and “small” based on the size information from the size detection unit. As an example, the operation of the internal quality determination system 1A will be described.

例えば、大きさ「大」の測定対象物(以下、第1測定対象物300(1)という)が前記大きさ検出領域10Bに到達したとする。
この場合、前記制御装置100は、前記大きさ検出部からの大きさ情報に基づき前記第1測定対象物300(1)の大きさを「大」と判断する。
For example, it is assumed that a measurement object having a size “large” (hereinafter, referred to as a first measurement object 300 (1)) has reached the size detection region 10B.
In this case, the control device 100 determines that the size of the first measurement object 300 (1) is “large” based on the size information from the size detection unit.

なお、前記制御装置100は、前記第1測定対象物300(1)が前記大きさ検出領域10Bに到達したことを、例えば、大きさ検出領域用位置センサ111(図1参照)からの信号によって認識する。   Note that the control device 100 indicates that the first measurement object 300 (1) has reached the size detection region 10B by, for example, a signal from the size detection region position sensor 111 (see FIG. 1). recognize.

この場合において、前記第1測定対象物300(1)が前記搬送部10によって前記内部品質検出領域10Cに到達したことを検知すると、前記制御装置100は、前記受光部35を前記受光位置データに基づき把握される「大」用受光位置に位置させた状態で前記受光部35からの内部品質情報を入力し、このようにして入力した内部品質情報に基づき前記第1測定対象物300(1)の内部品質判定を行う。   In this case, upon detecting that the first measurement object 300 (1) has reached the internal quality detection region 10C by the transport unit 10, the control device 100 sets the light receiving unit 35 to the light receiving position data. The internal quality information from the light receiving unit 35 is input in a state of being positioned at the “large” light receiving position grasped based on the first measurement object 300 (1) based on the internal quality information thus input. Perform internal quality judgment.

なお、前記制御装置100は、前記第1測定対象物300(1)が前記内部品質検出領域10Cに到達したことを、例えば、内部品質検出領域用位置センサ112(図1参照)からの信号、若しくは、前記大きさ検出領域10Bを通過したタイミングからの経過時間及び前記搬送部10の搬送速度によって認識することができる。   Note that the control device 100 indicates that the first measurement object 300 (1) has reached the internal quality detection region 10C, for example, a signal from the internal quality detection region position sensor 112 (see FIG. 1), Alternatively, it can be recognized by the elapsed time from the timing of passing through the size detection region 10 </ b> B and the transport speed of the transport unit 10.

ここで、「大」用受光位置は、前記受光部35の視野範囲35Vが、大きさ「大」の第1測定対象物300(1)に対して、種310を避けつつ、可及的に大きな内部領域をカバーし得るように設定される(図2参照)。   Here, the light receiving position for “large” is as much as possible while avoiding the seed 310 with respect to the first measuring object 300 (1) whose viewing range 35 V of the light receiving unit 35 is “large”. It is set so as to cover a large internal area (see FIG. 2).

即ち、「大」用受光位置は、大きさ「大」の第1測定対象物300(1)からの透過光をできるだけ多く受光し得る位置とされる。
この「大」用受光位置は、実験等によって定められる。
That is, the “large” light receiving position is a position where as much transmitted light as possible from the first measurement object 300 (1) having the size “large” can be received.
This “large” light receiving position is determined by experiments or the like.

一方、大きさ「小」の測定対象物300(以下、第2測定対象物300(2)という)が前記大きさ検出領域10Bに到達した場合には、前記制御装置100は、前記大きさ検出部からの大きさ情報に基づき前記第2測定対象物300(2)の大きさを「小」と判断する。   On the other hand, when the measurement object 300 having the size “small” (hereinafter referred to as the second measurement object 300 (2)) has reached the size detection region 10B, the control device 100 detects the size detection. Based on the size information from the part, the size of the second measuring object 300 (2) is determined as “small”.

この場合において、前記第2測定対象物300(2)が前記搬送部10によって前記内部品質検出領域10Cに到達したことを検知すると、前記制御装置100は、前記受光部35を前記受光位置データに基づき決定される「小」用受光位置に位置させた状態で前記受光部35からの内部品質情報を入力し、このようにして入力した内部品質情報に基づき前記第2測定対象物300(2)の内部品質判定を行う。   In this case, when detecting that the second measurement object 300 (2) has reached the internal quality detection region 10C by the transport unit 10, the control device 100 sets the light receiving unit 35 to the light receiving position data. Internal quality information from the light receiving unit 35 is input in a state where the light receiving position for “small” is determined based on the second measurement object 300 (2) based on the input internal quality information. Perform internal quality judgment.

ここで、「小」用受光位置は、前記受光部35の視野範囲35Vが、大きさ「小」の第2測定対象物300(2)に対して、種310を避けつつ、可及的に大きな内部領域をカバーし得るように、実験等によって設定される。   Here, the light receiving position for “small” is as much as possible while avoiding the seed 310 with respect to the second measuring object 300 (2) whose field of view range 35 V of the light receiving unit 35 is “small”. It is set by experiments or the like so as to cover a large internal area.

図3に、大きさ「小」の第2測定対象物300(2)が内部品質検出領域10Cに位置されている状態の、図1におけるII-II線に沿った模式縦断面図を示す。
図3において、「大」用受光位置に位置された状態の前記受光部35を実線で且つその際の視野範囲35Vを破線で示し、「小」用受光位置に位置された状態の前記受光部35及びその際の視野範囲35Vを二点鎖線で示している。
FIG. 3 is a schematic longitudinal sectional view taken along line II-II in FIG. 1 in a state where the second measurement object 300 (2) having the size “small” is positioned in the internal quality detection region 10C.
In FIG. 3, the light receiving portion 35 in the state of being positioned at the “large” light receiving position is indicated by a solid line, and the visual field range 35V at that time is indicated by a broken line, and the light receiving portion in the state of being positioned at the “small” light receiving position. 35 and the visual field range 35V at that time are indicated by a two-dot chain line.

図3に示すように、前記受光部35が「大」用受光位置に位置された状態のままで、大きさ「小」の第2測定対象物300(2)から透過光を受光する場合には、前記受光部35の視野範囲35V(破線参照)中に、当該第2測定対象物300(2)の種310が含まれることになる。
従って、前記受光部35によって受光可能な第2測定対象物300(2)の透過光量が少なくなり、当該第2測定対象物300(2)の内部品質判定を精度良く行うことが困難になる。
As shown in FIG. 3, when the light receiving unit 35 is positioned at the “large” light receiving position and receives transmitted light from the second measurement object 300 (2) having the size “small”. In the visual field range 35V (see the broken line) of the light receiving unit 35, the seed 310 of the second measurement object 300 (2) is included.
Accordingly, the amount of transmitted light of the second measurement object 300 (2) that can be received by the light receiving unit 35 is reduced, and it is difficult to accurately determine the internal quality of the second measurement object 300 (2).

この点に鑑み、本実施の形態においては、大きさ「小」の第2測定対象物300(2)が前記内部品質検出領域10Cに到達すると、前記制御装置100は、前記移動機構40によって前記受光部35を「小」用受光位置(図3の二点鎖線参照)に移動させた上で、第2測定対象物300(2)からの透過光を受光する。   In view of this point, in the present embodiment, when the second measurement object 300 (2) having a size “small” reaches the internal quality detection region 10C, the control device 100 causes the moving mechanism 40 to After the light receiving unit 35 is moved to the “small” light receiving position (see the two-dot chain line in FIG. 3), the transmitted light from the second measurement object 300 (2) is received.

従って、図3に示すように、前記受光部35が第2測定対象物300(2)の透過光を可及的に多く受光することができ、当該第2測定対象物300(2)の内部品質判定を精度良く行うことが可能となる。
なお、図示の形態においては、「小」用受光位置は、「大」用受光位置に比して投光光軸に沿って下方へLだけ移動された位置とされている。
Therefore, as shown in FIG. 3, the light receiving unit 35 can receive as much transmitted light as possible from the second measurement object 300 (2), and the inside of the second measurement object 300 (2). Quality judgment can be performed with high accuracy.
In the illustrated embodiment, the “small” light receiving position is a position moved downward by L along the light projecting optical axis as compared with the “large” light receiving position.

このように、本実施の形態に係る前記内部品質判定システム1Aによれば、前記受光部35を所定方向(本実施の形態のおいては上下方向)に移動させるという極めて簡単な構成でありながら、前記受光部35が種々の大きさの測定対象物300に対して可及的に多くの透過光を受光することを可能とすることができ、測定対象物300の内部品質の精度を向上させることができる。   As described above, according to the internal quality determination system 1A according to the present embodiment, the light receiving unit 35 is moved in a predetermined direction (vertical direction in the present embodiment) while having an extremely simple configuration. The light receiving unit 35 can receive as much transmitted light as possible with respect to the measurement object 300 of various sizes, and the accuracy of the internal quality of the measurement object 300 is improved. be able to.

なお、前記受光部35の移動方向である前記所定方向を、投光光軸に沿った上下方向に代えて、前記受光部35の受光光軸方向とすることも可能である。
図4及び図5に、前記受光部35が受光光軸方向に移動可能とされた第1変形例に係る内部品質判定システム1Bにおける前記内部品質検出領域10Cでの模式縦断面図を示す。
Note that the predetermined direction, which is the moving direction of the light receiving unit 35, may be the light receiving optical axis direction of the light receiving unit 35 instead of the vertical direction along the light projecting optical axis.
4 and 5 are schematic longitudinal sectional views in the internal quality detection region 10C in the internal quality determination system 1B according to the first modification example in which the light receiving unit 35 is movable in the light receiving optical axis direction.

図4は、大きさ「大」の第1測定対象物300(1)が前記内部品質検出領域10Cに位置され、それに応じて前記受光部35が「大」用受光位置に位置されている状態を示しており、前記受光部35の視野範囲35Vを破線で示している。   FIG. 4 shows a state in which the first measurement object 300 (1) having the size “large” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is positioned in the light reception position for “large” accordingly. The visual field range 35V of the light receiving unit 35 is indicated by a broken line.

一方、図5は、大きさ「小」の第2測定対象物300(2)が前記内部品質検出領域10Cに位置された状態を示しており、前記受光部35が「大」用受光位置に位置されたままの状態を実線で且つその際の視野範囲35Vを破線で示し、前記受光部35が「小」用受光位置に位置された状態及びその際の視野範囲35Vを二点鎖線で示している。
前記第1変形例1Bにおいては、「小」用受光位置は、「大」用受光位置に比して受光光軸に沿って下方へLだけ移動された位置とされている。
On the other hand, FIG. 5 shows a state in which the second measurement object 300 (2) having the size “small” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is set to the “large” light receiving position. The state of being positioned is indicated by a solid line and the visual field range 35V at that time is indicated by a broken line, and the state where the light receiving unit 35 is positioned at the “small” light receiving position and the visual field range 35V at that time is indicated by a two-dot chain line. ing.
In the first modification 1B, the “small” light receiving position is a position moved downward by L along the light receiving optical axis as compared to the “large” light receiving position.

前記第1変形例1Bにおいても、本実施の形態におけると同様の効果を得ることができる。   Also in the first modified example 1B, the same effect as in the present embodiment can be obtained.

また、前記受光部35の移動方向である前記所定方向を、投光光軸に沿った上下方向及び受光光軸方向に代えて、搬送幅方向とすることも可能である。
図6及び図7に、前記受光部35が搬送幅方向に移動可能とされた第2変形例に係る内部品質判定システム1Cにおける前記内部品質検出領域10Cでの模式縦断面図を示す。
In addition, the predetermined direction, which is the moving direction of the light receiving unit 35, can be changed to the transport width direction instead of the vertical direction along the light projecting optical axis and the light receiving optical axis direction.
6 and 7 are schematic longitudinal sectional views in the internal quality detection region 10C in the internal quality determination system 1C according to the second modification example in which the light receiving unit 35 is movable in the conveyance width direction.

図6は、大きさ「大」の第1測定対象物300(1)が前記内部品質検出領域10Cに位置され、それに応じて前記受光部35が「大」用受光位置に位置されている状態を示しており、前記受光部35の視野範囲35Vを破線で示している。   FIG. 6 shows a state in which the first measurement object 300 (1) having the size “large” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is positioned in the light reception position for “large” accordingly. The visual field range 35V of the light receiving unit 35 is indicated by a broken line.

一方、図7は、大きさ「小」の第2測定対象物300(2)が前記内部品質検出領域10Cに位置された状態を示しており、前記受光部35が「大」用受光位置に位置されたままの状態を実線で且つその際の視野範囲35Vを破線で示し、前記受光部35が「小」用受光位置に位置された状態及びその際の視野範囲35Vを二点鎖線で示している。
前記第2変形例1Cにおいては、「小」用受光位置は、「大」用受光位置に比して搬送幅方向外方へLだけ移動された位置とされている。
On the other hand, FIG. 7 shows a state in which the second measurement object 300 (2) having the size “small” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is set to the “large” light receiving position. The state of being positioned is indicated by a solid line and the visual field range 35V at that time is indicated by a broken line, and the state where the light receiving unit 35 is positioned at the “small” light receiving position and the visual field range 35V at that time is indicated by a two-dot chain line. ing.
In the second modification 1C, the “small” light receiving position is a position moved by L outward in the transport width direction as compared with the “large” light receiving position.

前記第2変形例1Cにおいても、本実施の形態におけると同様の効果を得ることができる。   Also in the second modified example 1C, the same effect as in the present embodiment can be obtained.

好ましくは、前記内部品質検出領域10Cを遮蔽部材15によって覆われた暗室空間とすることができる。
斯かる構成によれば、外乱光の影響を可及的に防止することができる。
Preferably, the internal quality detection area 10 </ b> C can be a dark room space covered with a shielding member 15.
According to such a configuration, the influence of disturbance light can be prevented as much as possible.

また、図1に示すように、前記内部品質判定システム1A〜1Cは、さらに、前記制御装置100による一の測定対象物300の内部品質判定結果を表示させるモニタ等の表示手段90を備えることができる。   As shown in FIG. 1, the internal quality determination systems 1 </ b> A to 1 </ b> C further include display means 90 such as a monitor for displaying the internal quality determination result of one measurement object 300 by the control device 100. it can.

この場合、前記制御装置90は、仕分け領域位置センサ113からの信号又は内部品質検出領域10Cの通過時点からの経過時間及び前記搬送部10の搬送速度に基づき一の測定対象物300が仕分け領域10Dに到達したことを検知すると、当該一の測定対象物300の判定結果を前記表示手段90に表示させるように構成される。   In this case, the control device 90 determines that the one measurement object 300 is based on the signal from the sorting area position sensor 113 or the elapsed time from the passing time of the internal quality detection area 10C and the transport speed of the transport unit 10 in the sorting area 10D. Is detected, the determination result of the one measurement object 300 is displayed on the display unit 90.

斯かる構成によれば、作業者は、前記表示手段90に表示された判定結果に基づき、前記一の測定対象物300を仕分け処理することができる。   According to such a configuration, the worker can sort the one measurement object 300 based on the determination result displayed on the display unit 90.

これに代えて、前記内部品質判定システム1A〜1Cに、仕分け領域10Dにおいて測定対象物300を前記搬送機構10から対応する仕分け位置へ払い出す払い出し機構(図示せず)を備え、前記制御装置100が、内部品質の判定結果に基づき、前記払い出し機構を作動させるように構成することも可能である。   Instead, the internal quality determination systems 1A to 1C are provided with a payout mechanism (not shown) that pays out the measurement object 300 from the transport mechanism 10 to the corresponding sorting position in the sorting area 10D. However, it is possible to configure the payout mechanism to operate based on the determination result of the internal quality.

実施の形態2
以下、本発明に係る内部品質判定システムの他の実施の形態について、添付図面を参照しつつ説明する。
図8に、本実施の形態に係る内部品質判定システム2Aの模式平面図を示す。
なお、図中、前記実施の形態1におけると同一部材には同一符号を付して、その説明を適宜省略する。
Embodiment 2
Hereinafter, another embodiment of the internal quality determination system according to the present invention will be described with reference to the accompanying drawings.
FIG. 8 is a schematic plan view of the internal quality determination system 2A according to the present embodiment.
In the figure, the same members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.

本実施の形態に係る内部品質判定システム2Aは、前記投光部31が測定対象物300より搬送幅方向一方側から当該測定対象物300に向けて測定光を投光するように配置され、前記受光部35が前記測定対象物300より搬送幅方向他方側において当該測定対象物300からの透過光を受光するように配置されている点において、前記実施の形態1に係る内部品質判定システム1Aと相違している。   The internal quality determination system 2A according to the present embodiment is arranged such that the light projecting unit 31 projects measurement light from the measurement object 300 toward the measurement object 300 from one side in the transport width direction. The internal quality determination system 1A according to the first embodiment is different in that the light receiving unit 35 is disposed so as to receive transmitted light from the measurement target 300 on the other side in the transport width direction from the measurement target 300. It is different.

図9及び図10に、それぞれ、大きさ「大」の前記第1測定対象物300(1)及び大きさ「小」の前記第2測定対象物300(2)が前記内部品質検出領域10Cに位置されている状態の、当該内部品質検出領域10Cの模式横断面図を示す。   In FIGS. 9 and 10, the first measurement object 300 (1) having a size “large” and the second measurement object 300 (2) having a size “small” are placed in the internal quality detection region 10C, respectively. A schematic cross-sectional view of the internal quality detection region 10C in a positioned state is shown.

図9は、前記受光部35が大きさ「大」の前記第1測定対象物300(1)に応じて、「大」用受光位置に位置された状態を示しており、その際の視野範囲35Vを破線で示している。   FIG. 9 shows a state in which the light receiving unit 35 is positioned at the “large” light receiving position according to the first measurement object 300 (1) having the size “large”, and the visual field range at that time 35V is indicated by a broken line.

一方、図9は、前記受光部35が「大」用受光位置に位置されたままの状態を実線で且つその際の視野範囲35Vを破線で示し、前記受光部35が「小」用受光位置に位置された状態及びその際の視野範囲35Vを二点鎖線で示している。   On the other hand, FIG. 9 shows a state in which the light receiving unit 35 is positioned at the “large” light receiving position by a solid line and a visual field range 35V at that time by a broken line, and the light receiving unit 35 is a “small” light receiving position. And the visual field range 35V at that time are indicated by a two-dot chain line.

本実施の形態においては、前記第1受光部35(1)は、搬送幅方向に関しては測定対象物300を挟んで前記投光部31とは反対側で且つ搬送方向に関しては測定対象物300の搬送方向中心から上流側に変位された状態で、受光光軸35(1)Xが搬送幅方向を基準にして搬送方向下流側へ前記所定角度αだけ傾斜するように配置されている。   In the present embodiment, the first light receiving unit 35 (1) is on the opposite side of the light projecting unit 31 with the measurement object 300 in the conveyance width direction and the measurement object 300 in the conveyance direction. The light receiving optical axis 35 (1) X is disposed so as to be inclined at the predetermined angle α toward the downstream side in the transport direction with respect to the transport width direction in a state of being displaced upstream from the center in the transport direction.

一方、前記第2受光部35(2)は、搬送幅方向に関しては測定対象物300を挟んで前記投光部31とは反対側で且つ搬送方向に関しては測定対象物300の搬送方向中心から下流側に変位された状態で、受光光軸35(2)Xが搬送幅方向を基準にして搬送方向上流側へ前記所定角度αだけ傾斜するように配置されている。   On the other hand, the second light receiving unit 35 (2) is opposite to the light projecting unit 31 with respect to the conveyance width direction with respect to the measurement object 300, and downstream from the conveyance direction center of the measurement object 300 with respect to the conveyance direction. The light receiving optical axis 35 (2) X is disposed so as to be inclined by the predetermined angle α toward the upstream side in the transport direction with reference to the transport width direction.

本実施の形態においては、前記移動機構40によって前記受光部35が移動可能とされる前記所定方向は搬送幅方向とされている。   In the present embodiment, the predetermined direction in which the light receiving unit 35 can be moved by the moving mechanism 40 is a conveyance width direction.

詳しくは、大きさ「大」の第1測定対象物300(1)の場合には、前記制御装置100は、図9に示すように、前記受光部35が「大」用受光位置に位置するように前記移動機構40を作動させる。   Specifically, in the case of the first measuring object 300 (1) having the size “large”, the control device 100 causes the light receiving unit 35 to be positioned at the “large” light receiving position as shown in FIG. Thus, the moving mechanism 40 is operated.

ここで、「大」用受光位置は、前記受光部35の視野範囲35V内に第1測定対象物300(1)の種が入り込むことを防止しつつ、第1測定対象物300(1)からの透過光を可及的多く受光可能な位置とされる。   Here, the “large” light receiving position is from the first measuring object 300 (1) while preventing the seed of the first measuring object 300 (1) from entering the visual field range 35 V of the light receiving unit 35. The position is such that it can receive as much transmitted light as possible.

一方、大きさ「小」の第2測定対象物300(2)に対して前記受光部35を「大」用受光位置(図10の実線参照)に位置させたままの状態とすると、前記受光部35の視野範囲35V(図10の破線参照)のうち前記第2測定対象物300(2)から外れる領域が広がり、第2測定対象物300(2)からの透過光の受光量が減少する。   On the other hand, when the light receiving unit 35 is left in the “large” light receiving position (see the solid line in FIG. 10) with respect to the second measurement object 300 (2) having the size “small”, the light receiving is performed. A region deviating from the second measurement object 300 (2) in the visual field range 35V (see the broken line in FIG. 10) of the part 35 widens, and the amount of light transmitted through the second measurement object 300 (2) is reduced. .

そこで、本実施の形態においては、測定対象物300の大きさが「小」であると判断した場合には、前記制御装置100は、前記受光部35が「小」用受光位置(図10の二点鎖線参照)へ移動するように前記移動機構40を作動させる。   Therefore, in the present embodiment, when it is determined that the size of the measurement object 300 is “small”, the control device 100 causes the light receiving unit 35 to detect the light receiving position for “small” (in FIG. 10). The moving mechanism 40 is operated so as to move to the alternate long and two short dashes line).

ここで、「小」用受光位置(図10の二点鎖線参照)は、前記受光部35の視野範囲35V(図10の二点鎖線参照)内に第2測定対象物300(2)の種が存在しないようにしつつ、前記受光部35が第2測定対象物300(2)からの透過光を可及的多く受光し得る位置とされる。
なお、本実施の形態においては、図10に示すように、「小」用受光位置は、「大」用受光位置に比して搬送幅方向に関し測定対象物300から離間する方向へLだけ移動された位置とされている。
Here, the light receiving position for “small” (see the two-dot chain line in FIG. 10) is the seed of the second measurement object 300 (2) within the visual field range 35V of the light receiving unit 35 (see the two-dot chain line in FIG. 10). The light receiving unit 35 is set to a position where it can receive as much transmitted light as possible from the second measurement object 300 (2).
In the present embodiment, as shown in FIG. 10, the “small” light receiving position moves by L in a direction away from the measurement object 300 in the transport width direction as compared to the “large” light receiving position. It is assumed that the position.

このように、本実施の形態に係る前記内部品質判定システム2Aによれば、前記受光部35を所定方向(本実施の形態のおいては投光光軸に沿った搬送幅方向)に移動させるという極めて簡単な構成で、種々の大きさの測定対象物300に対して前記受光部35が可及的多くの透過光を受光することを可能とし、種々の大きさの測定対象物300の内部品質の精度を向上させることができる。   Thus, according to the internal quality determination system 2A according to the present embodiment, the light receiving unit 35 is moved in a predetermined direction (in the transport width direction along the light projecting optical axis in the present embodiment). With this extremely simple configuration, the light receiving unit 35 can receive as much transmitted light as possible with respect to the measurement object 300 of various sizes, and the inside of the measurement object 300 of various sizes can be obtained. Quality accuracy can be improved.

なお、前記受光部35の移動方向である前記所定方向を、搬送幅方向に代えて、前記受光軸35の受光光軸方向とすることも可能である。
図11及び図12に、前記受光部35が受光光軸方向に移動可能とされた第1変形例に係る内部品質判定システム2Bにおける前記内部品質検出領域10Cでの模式横断面図を示す。
Note that the predetermined direction, which is the moving direction of the light receiving unit 35, may be the light receiving optical axis direction of the light receiving shaft 35 instead of the transport width direction.
11 and 12 are schematic cross-sectional views in the internal quality detection region 10C in the internal quality determination system 2B according to the first modification example in which the light receiving unit 35 is movable in the light receiving optical axis direction.

図11は、大きさ「大」の第1測定対象物300(1)が前記内部品質検出領域10Cに位置され、それに応じて前記受光部35が「大」用受光位置に位置されている状態を示しており、視野範囲35Vを破線で示している。   FIG. 11 shows a state in which the first measuring object 300 (1) having the size “large” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is positioned in the “large” light receiving position accordingly. The visual field range 35V is indicated by a broken line.

一方、図12は、大きさ「小」の第2測定対象物300(2)が前記内部品質検出領域10Cに位置された状態を示しており、前記受光部35が「大」用受光位置に位置されたままの状態を実線で且つその際の視野範囲35Vを破線で示し、前記受光部35が「小」用受光位置に位置された状態及びその際の視野範囲35Vを二点鎖線で示している。   On the other hand, FIG. 12 shows a state in which the second measurement object 300 (2) having the size “small” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is positioned at the “large” light receiving position. The state of being positioned is indicated by a solid line and the visual field range 35V at that time is indicated by a broken line, and the state where the light receiving unit 35 is positioned at the “small” light receiving position and the visual field range 35V at that time is indicated by a two-dot chain line. ing.

この第1変形例2Bにおいては、「小」用受光位置は、「大」用受光位置に比して受光光軸に沿って測定対象物300から離間する方向へLだけ移動された位置とされている。   In the first modification 2B, the “small” light receiving position is a position moved by L in the direction away from the measuring object 300 along the light receiving optical axis as compared with the “large” light receiving position. ing.

前記第1変形例2Bにおいても、本実施の形態におけると同様の効果を得ることができる。   Also in the first modification 2B, the same effect as in the present embodiment can be obtained.

また、前記受光部35の移動方向である前記所定方向を、搬送幅方向及び受光光軸方向に代えて、搬送方向とすることも可能である。
図13及び図14に、前記受光部35が搬送方向に移動可能とされた第2変形例に係る内部品質判定システム2Cにおける前記内部品質検出領域10Cでの模式横断面図を示す。
Further, the predetermined direction, which is the moving direction of the light receiving unit 35, can be changed to the transport direction instead of the transport width direction and the light receiving optical axis direction.
13 and 14 are schematic cross-sectional views in the internal quality detection region 10C in the internal quality determination system 2C according to the second modification example in which the light receiving unit 35 is movable in the transport direction.

図13は、大きさ「大」の第1測定対象物300(1)が前記内部品質検出領域10Cに位置され、それに応じて前記受光部35が「大」用受光位置に位置されている状態を示しており、視野範囲35Vを破線で示している。   FIG. 13 shows a state in which the first measurement object 300 (1) having the size “large” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is positioned at the light reception position for “large” accordingly. The visual field range 35V is indicated by a broken line.

一方、図14は、大きさ「小」の第2測定対象物300(2)が前記内部品質検出領域10Cに位置された状態を示しており、前記受光部35が「大」用受光位置に位置されたままの状態を実線で且つその際の視野範囲35Vを破線で示し、前記受光部35Vが「小」用受光位置に位置された状態及びその際の視野範囲35Vを二点鎖線で示している。   On the other hand, FIG. 14 shows a state in which the second measurement object 300 (2) having the size “small” is positioned in the internal quality detection region 10C, and the light receiving unit 35 is set to the “large” light receiving position. The state of being positioned is indicated by a solid line and the visual field range 35V at that time is indicated by a broken line, and the state where the light receiving unit 35V is positioned at the “small” light receiving position and the visual field range 35V is indicated by a two-dot chain line. ing.

この第2変形例2Cにおいては、前記第1受光部35(1)の「小」用受光位置は、「大」用受光位置に比して搬送方向下流側へLだけ移動された位置とされ、前記第2受光部35(2)の「小」用受光位置は、「大」用受光位置に比して搬送方向上流側へLだけ移動された位置とされている。   In the second modification 2C, the “small” light receiving position of the first light receiving unit 35 (1) is a position moved by L toward the downstream side in the transport direction compared to the “large” light receiving position. The “small” light receiving position of the second light receiving unit 35 (2) is a position moved by L to the upstream side in the transport direction as compared with the “large” light receiving position.

前記第2変形例2Cにおいても、本実施の形態におけると同様の効果を得ることができる。   In the second modification 2C, the same effect as in the present embodiment can be obtained.

好ましくは、図8〜図14に示すように、前記搬送部10には、前記投光部からの測定光が測定対象物に投光されることを許容する開口82を有し、且つ、前記投光部31からの測定光が前記受光部35に直接入り込むことを防止する遮蔽板80を設けることができる。   Preferably, as shown in FIGS. 8 to 14, the transport unit 10 has an opening 82 that allows measurement light from the light projecting unit to be projected onto a measurement object, and A shielding plate 80 for preventing measurement light from the light projecting unit 31 from directly entering the light receiving unit 35 can be provided.

前記遮蔽板80を設けることにより、前記受光部35によって受光される光のうち透過光量が占める割合を高めることができ、外乱光の影響を可及的に防止することができる。   By providing the shielding plate 80, the ratio of the amount of transmitted light in the light received by the light receiving unit 35 can be increased, and the influence of disturbance light can be prevented as much as possible.

より好ましくは、前記遮蔽板80は、想定される測定対象物300のうちの最も大きい測定対象物300の外表面と接するように配置される。
斯かる構成を備えることにより、前記投光部31から前記遮蔽板80の開口82を通過した光のうち、測定対象物300を透過せずに反射する光の量を可及的に抑えることができる。
More preferably, the shielding plate 80 is disposed so as to be in contact with the outer surface of the largest measurement object 300 among the assumed measurement objects 300.
By providing such a configuration, it is possible to suppress as much as possible the amount of light reflected from the light projecting unit 31 without passing through the measurement object 300 out of the light passing through the opening 82 of the shielding plate 80. it can.

なお、前記各実施の形態においては、後端が前記分光装置70に光学的に接続された光ファイバーの先端を前記受光部として作用させているが、本発明はかかる形態に限定されるものでは無く、ハイパースペクトルカメラ又はマルチスペクトルカメラを前記受光部として作用させることも可能である。この場合、前記分光装置70は省略される。   In each of the above embodiments, the front end of an optical fiber whose rear end is optically connected to the spectroscopic device 70 is used as the light receiving unit. However, the present invention is not limited to such a form. A hyperspectral camera or a multispectral camera can be used as the light receiving unit. In this case, the spectroscopic device 70 is omitted.

10 搬送部
10B 大きさ検出領域
10C 内部品質検出領域
20 トレイ
22 開口
30 内部品質検出部
31 投光部
35(1) 第1受光部
35(2) 第2受光部
35X 受光光軸
35V 受光部の視野範囲
40(1) 第1移動機構
40(2) 第2移動機構
80 遮蔽板
82 開口
100 制御装置
DESCRIPTION OF SYMBOLS 10 Conveyance part 10B Size detection area 10C Internal quality detection area 20 Tray 22 Opening 30 Internal quality detection part 31 Light projection part 35 (1) First light reception part 35 (2) Second light reception part 35X Light reception optical axis 35V Field of view range 40 (1) First moving mechanism 40 (2) Second moving mechanism 80 Shield plate 82 Opening 100 Control device

Claims (7)

大きさ検出領域及び前記大きさ検出領域より搬送方向下流側の内部品質検出領域を通過するように測定対象物を搬送する搬送部と、前記大きさ検出領域において測定対象物の大きさ情報を検出する大きさ検出部と、前記内部品質検出領域において測定対象物の内部品質情報を検出する内部品質検出部と、制御装置とを備え、
前記内部品質検出部は、前記内部品質検出領域に位置する測定対象物に向けて測定光を投光するように固定設置された投光部と、測定対象物を挟んで前記投光部とは反対側に位置され且つ受光光軸が前記投光部の投光光軸に対して所定角度傾斜された傾斜状態で、測定対象物を透過した透過光を受光する受光部と、前記受光部を所定方向へ移動可能な移動機構とを有し、
前記制御装置には、前記受光部の前記所定方向に関する受光位置が測定対象物の大きさに応じて設定された受光位置データが記憶されており、前記制御装置は、前記大きさ検出部からの大きさ情報及び前記受光位置データに基づき決定される所定受光位置に前記受光部が位置するように前記移動機構を作動させ、前記所定受光位置に位置された状態の前記受光部によって検出される内部品質情報に基づき前記一の測定対象物の内部品質を判定することを特徴とする内部品質判定システム。
A size detection region and a conveyance unit that conveys the measurement object so as to pass through the internal quality detection region downstream in the conveyance direction from the size detection region, and size information of the measurement object is detected in the size detection region A size detection unit, an internal quality detection unit that detects internal quality information of a measurement object in the internal quality detection region, and a control device,
The internal quality detection unit includes a light projecting unit fixedly installed so as to project measurement light toward a measurement object located in the internal quality detection region, and the light projecting unit across the measurement object. A light receiving portion that is positioned on the opposite side and receives a transmitted light that has passed through a measurement object in a state where the light receiving optical axis is inclined at a predetermined angle with respect to the light projecting optical axis of the light projecting portion; and A moving mechanism movable in a predetermined direction,
The control device stores light receiving position data in which the light receiving position of the light receiving unit in the predetermined direction is set in accordance with the size of the measurement object, and the control device receives from the size detection unit. The moving mechanism is operated so that the light receiving unit is located at a predetermined light receiving position determined based on size information and the light receiving position data, and an internal detected by the light receiving unit in a state positioned at the predetermined light receiving position An internal quality determination system characterized by determining an internal quality of the one measurement object based on quality information.
前記搬送部は搬送方向に直列配置された複数の搬送トレイを有し、前記搬送トレイは測定対象物が載置可能とされ且つ測定光の通過を許容する開口が設けられた主面を有し、
前記投光部は、前記搬送部の下方から前記開口を介して測定対象物に測定光を投光するように配置され、
前記受光部は、前記搬送トレイに載置された測定対象物より上方で且つ前記測定対象物の搬送幅方向中心から搬送幅方向一方側に変位された位置で、受光光軸が下向き方向を基準にして搬送幅方向他方側へ前記所定角度だけ傾斜された第1受光部と、前記搬送トレイに載置された測定対象物より上方で且つ前記測定対象物の搬送幅方向中心から搬送幅方向他方側に変位された位置で、受光光軸が下向き方向を基準にして搬送幅方向一方側へ前記所定角度だけ傾斜された第2受光部とを含むことを特徴とする請求項1に記載の内部品質判定システム。
The transport unit has a plurality of transport trays arranged in series in the transport direction, and the transport tray has a main surface on which an object to be measured can be placed and an opening that allows measurement light to pass. ,
The light projecting unit is arranged so as to project measurement light onto a measurement object from the lower side of the transport unit through the opening.
The light receiving unit is positioned above the measurement object placed on the conveyance tray and displaced from the center of the measurement object in the conveyance width direction to one side in the conveyance width direction, and the light reception optical axis is based on the downward direction. A first light receiving portion inclined to the other side in the transport width direction by the predetermined angle, and the other side in the transport width direction from the center of the transport width direction of the measurement object above the measurement object placed on the transport tray 2. The interior according to claim 1, further comprising: a second light receiving portion that is inclined to the one side in the transport width direction by the predetermined angle with respect to a downward direction at a position displaced toward the side. Quality judgment system.
前記投光部は、搬送幅方向一方側から測定対象物に測定光を投光するように配置され、
前記受光部は、前記搬送トレイに載置された測定対象物より搬送幅方向他方側で且つ前記測定対象物の搬送方向中心から搬送方向上流側に変位された位置で、受光光軸が搬送幅方向を基準にして搬送方向下流側へ前記所定角度だけ傾斜された第1受光部と、前記搬送トレイに載置された測定対象物より搬送幅方向他方側で且つ前記測定対象物の搬送方向中心から搬送方向下流側に変位された位置で、受光光軸が搬送幅方向を基準にして搬送方向上流側へ前記所定角度だけ傾斜された第2受光部とを含み、
前記搬送部には、前記投光部からの測定光が測定対象物に投光されることを許容する開口を有し、且つ、前記投光部からの測定光が前記第1及び第2受光部に直接入り込むことを防止する遮蔽板が設けられていることを特徴とする請求項1に記載の内部品質判定システム。
The light projecting unit is arranged to project measurement light to the measurement object from one side in the conveyance width direction,
The light receiving unit is displaced from the measurement object placed on the conveyance tray to the other side in the conveyance width direction and from the center in the conveyance direction of the measurement object to the upstream side in the conveyance direction, and the light reception optical axis is the conveyance width. A first light-receiving portion that is inclined by the predetermined angle to the downstream side in the transport direction with respect to the direction, and a transport direction center of the measurement object on the other side in the transport width direction from the measurement object placed on the transport tray A light receiving optical axis inclined at the predetermined angle with respect to the transport width direction at a position displaced from the transport direction downstream to the transport direction,
The transport unit has an opening that allows the measurement light from the light projecting unit to be projected onto the measurement object, and the measurement light from the light projecting unit receives the first and second light receptions. The internal quality determination system according to claim 1, further comprising a shielding plate that prevents direct entry into the part.
前記移動機構によって前記受光部が移動される所定方向は上下方向とされていることを特徴とする請求項2に記載の内部品質判定システム。   The internal quality determination system according to claim 2, wherein a predetermined direction in which the light receiving unit is moved by the moving mechanism is a vertical direction. 前記移動機構によって前記受光部が移動される所定方向は前記受光部の受光光軸方向とされていることを特徴とする請求項2又は3に記載の内部品質判定システム。   The internal quality determination system according to claim 2 or 3, wherein a predetermined direction in which the light receiving unit is moved by the moving mechanism is a light receiving optical axis direction of the light receiving unit. 前記移動機構によって前記受光部が移動される所定方向は搬送幅方向とされていることを特徴とする請求項2又は3に記載の内部品質判定システム。   The internal quality determination system according to claim 2 or 3, wherein a predetermined direction in which the light receiving unit is moved by the moving mechanism is a conveyance width direction. 前記移動機構によって前記受光部が移動される所定方向は搬送方向とされていることを特徴とする請求項3に記載の内部品質判定システム。   The internal quality determination system according to claim 3, wherein a predetermined direction in which the light receiving unit is moved by the moving mechanism is a conveyance direction.
JP2016107003A 2016-05-30 2016-05-30 Internal quality judgment system Active JP6708479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016107003A JP6708479B2 (en) 2016-05-30 2016-05-30 Internal quality judgment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016107003A JP6708479B2 (en) 2016-05-30 2016-05-30 Internal quality judgment system

Publications (2)

Publication Number Publication Date
JP2017215145A true JP2017215145A (en) 2017-12-07
JP6708479B2 JP6708479B2 (en) 2020-06-10

Family

ID=60576726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016107003A Active JP6708479B2 (en) 2016-05-30 2016-05-30 Internal quality judgment system

Country Status (1)

Country Link
JP (1) JP6708479B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128233A (en) * 1993-10-28 1995-05-19 Kumamoto Techno Porisu Zaidan Melon inspection device
JPH09243555A (en) * 1996-03-06 1997-09-19 Saika Gijutsu Kenkyusho Method and apparatus for measuring qualities of vegetables and fruits
JP2000292359A (en) * 1999-04-02 2000-10-20 Hisaichi Shibazaki Internal quality inspection method of vegetable and fruit and its device
JP2002174594A (en) * 2000-12-08 2002-06-21 Kubota Corp Interior quality measuring apparatus for agricultural product
JP2005043315A (en) * 2003-07-25 2005-02-17 Yanmar Co Ltd Nondestructive quality determination apparatus for agricultural product
JP2006267037A (en) * 2005-03-25 2006-10-05 Mitsui Mining & Smelting Co Ltd Internal quality evaluating apparatus and internal quality evaluation method of fresh product
JP2007303940A (en) * 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Device and method for inspecting internal quality of vegetables and fruits
US20090219535A1 (en) * 2005-07-08 2009-09-03 Dario Beltrandi Fruit and vegetable quality control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128233A (en) * 1993-10-28 1995-05-19 Kumamoto Techno Porisu Zaidan Melon inspection device
JPH09243555A (en) * 1996-03-06 1997-09-19 Saika Gijutsu Kenkyusho Method and apparatus for measuring qualities of vegetables and fruits
JP2000292359A (en) * 1999-04-02 2000-10-20 Hisaichi Shibazaki Internal quality inspection method of vegetable and fruit and its device
JP2002174594A (en) * 2000-12-08 2002-06-21 Kubota Corp Interior quality measuring apparatus for agricultural product
JP2005043315A (en) * 2003-07-25 2005-02-17 Yanmar Co Ltd Nondestructive quality determination apparatus for agricultural product
JP2006267037A (en) * 2005-03-25 2006-10-05 Mitsui Mining & Smelting Co Ltd Internal quality evaluating apparatus and internal quality evaluation method of fresh product
US20090219535A1 (en) * 2005-07-08 2009-09-03 Dario Beltrandi Fruit and vegetable quality control device
JP2007303940A (en) * 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Device and method for inspecting internal quality of vegetables and fruits

Also Published As

Publication number Publication date
JP6708479B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6711755B2 (en) Method and device for detecting substances
EP2619552B1 (en) An apparatus and method for inspecting matter
KR102395039B1 (en) Bulk material inspection apparatus and method
JP2015537219A (en) Dynamic digital imaging system calibration to detect defects in production flow
JP2015219090A (en) Transmission inspection device
JP2002174592A (en) Evaluation apparatus
JP2008014873A (en) Device for determining internal quality
KR20180136421A (en) System and method for defect detection
JP6708479B2 (en) Internal quality judgment system
JP5386114B2 (en) Fruit and vegetable quality judgment device
WO2019202868A1 (en) Coin wear or deformation detection device, coin handling machine, and coin wear or deformation detection method
JP7375277B2 (en) Internal quality inspection equipment for fruits and vegetables
NL2023271B1 (en) Apparatus and method for determining a property of products
JP5391734B2 (en) Quality measuring device
JP6662807B2 (en) Internal quality evaluation system
JP6577395B2 (en) Internal quality judgment system
JP2018146439A (en) System and tray for evaluating internal quality
JP3576158B2 (en) Agricultural product internal quality evaluation device
EP4130725A1 (en) Foreign matter inspection device
JP6662729B2 (en) Internal quality evaluation system
JP2018179871A (en) Internal quality evaluation system
JP6662752B2 (en) Internal quality evaluation system
JP6662751B2 (en) Internal quality evaluation system
JP3574919B2 (en) Optical measuring device
JP3847285B2 (en) Spectroscopic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R150 Certificate of patent or registration of utility model

Ref document number: 6708479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150