JP2017213070A - Method for producing sheet-like radon gas generation source - Google Patents

Method for producing sheet-like radon gas generation source Download PDF

Info

Publication number
JP2017213070A
JP2017213070A JP2016107472A JP2016107472A JP2017213070A JP 2017213070 A JP2017213070 A JP 2017213070A JP 2016107472 A JP2016107472 A JP 2016107472A JP 2016107472 A JP2016107472 A JP 2016107472A JP 2017213070 A JP2017213070 A JP 2017213070A
Authority
JP
Japan
Prior art keywords
carbide
ore powder
radon gas
gas generation
radium ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016107472A
Other languages
Japanese (ja)
Other versions
JP6082834B1 (en
Inventor
友信 平野
Tomonobu Hirano
友信 平野
信弘 関口
Nobuhiro Sekiguchi
信弘 関口
叡典 時政
Eisuke Tokimasa
叡典 時政
恒弘 上床
Tsunehiro Uetoko
恒弘 上床
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millenium Enviroment Corp
Original Assignee
Millenium Enviroment Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millenium Enviroment Corp filed Critical Millenium Enviroment Corp
Priority to JP2016107472A priority Critical patent/JP6082834B1/en
Application granted granted Critical
Publication of JP6082834B1 publication Critical patent/JP6082834B1/en
Publication of JP2017213070A publication Critical patent/JP2017213070A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for fixing radium ore powder on a pulp fiber uniformly with a high content.SOLUTION: A method for producing a sheet-like radon gas generation source has the step for paper-making a slurry raw material in which water, a pulp fiber, radium ore powder, and a carbide source are mixed. The carbide source serves as a binder, and the radium ore powder is fixed on the pulp fiber uniformly in improved high yields.SELECTED DRAWING: None

Description

本発明は,パルプ繊維にラジウム鉱石粉末を担持させたシート状のラドンガス発生源の製造方法に関する。具体的に説明すると,本発明は,ラドンガスを呼吸器系などから吸入させて代謝機能を促進したり,弱放射線療法によって生活習慣病等の予防・改善に寄与することのできるラドンガス発生源の製造方法に関するものである。   The present invention relates to a method for producing a sheet-like radon gas generation source in which radium ore powder is supported on pulp fibers. More specifically, the present invention relates to the production of a radon gas generation source that can promote the metabolic function by inhaling radon gas from the respiratory system or contribute to the prevention and improvement of lifestyle-related diseases by weak radiation therapy. It is about the method.

ラドンは,原子番号86の常温で化学的に安定な気体であり,無色無臭希ガス族放射性元素である。自然界には,ラドン−222とラドン−220が主として存在しており,ラドン222は,ラジウム原子量226のアルファ崩壊によって発生する。ラドン−222の半減期は約3.8日であるため,人間の健康の維持・増進や,疲労回復,予防医学などの目的のために利用するには好適な元素である。ラドンは自然界の雰囲気中にも存在しており,人は知らず知らずのうちに一定量のラドンを呼吸により吸入している。また,現在では,血液中に取り込まれたラドンから発生するアルファ線による刺激(ホルミシス)効果にも注目が集まり,ラドンの有効な利用方法が検討されている。   Radon is a chemically stable gas having an atomic number of 86 at room temperature, and is a colorless and odorless rare gas group radioactive element. In the natural world, radon-222 and radon-220 exist mainly, and radon 222 is generated by alpha decay of radium atomic weight 226. Since the half-life of radon-222 is about 3.8 days, it is a suitable element for use for the purpose of maintaining / promoting human health, recovery from fatigue, preventive medicine, and the like. Radon is also present in the natural atmosphere, and humans inhale a certain amount of radon by breathing without knowing it. At present, attention is also focused on the effect of alpha radiation generated by radon taken into the blood (hormesis), and effective use of radon is being studied.

例えば,特許文献1には,粉状又は粒状のラジウム鉱石に賦形剤を混練して固めた成形体を,500℃以上700℃未満の焼成温度で素焼きする工程を含むラドンガス発生源の製造方法が開示されている。具体的に説明すると,特許文献1の従来発明では,ラドンガス発生源になるラジウム鉱石片又はラジウム鉱石の原石を粉砕し,これを板状,チップ状,又は球状に成形したものを使用することとしている。また,この従来発明では,ラドンガス発生源を製造するにあたり,まず,粉状又は粒状のラジウム鉱石と,粘土や,セメント,化学接着剤,麦粉,椨粉(たぶこ)などの賦形剤とを混練して固めた成形体を得る。その後,得られた成形体を自然乾燥又は素焼きすることで,安定した構造体(ラドンガス発生源)を成形することができるとされている。特に,ラジウム鉱石に椨粉を混練した成形体を素焼きすることで,椨粉の繊維によって成形体に微細な空隙構造が形成されるようになり,成形体の内部で発生したラドンガスを成形体表面に導出する効果が向上するとされている。   For example, Patent Document 1 discloses a method for producing a radon gas generation source, which includes a step of unbaking a molded body obtained by kneading an excipient with powdered or granular radium ore at a firing temperature of 500 ° C. or higher and lower than 700 ° C. Is disclosed. Specifically, in the conventional invention of Patent Document 1, a radium ore piece or radium ore that becomes a radon gas generation source is crushed and used as a plate, chip, or spherical shape. Yes. In addition, according to this conventional invention, in producing a radon gas generation source, first, powdered or granular radium ore, and excipients such as clay, cement, chemical adhesive, wheat flour, and rice flour (tabu) A kneaded and molded product is obtained. Thereafter, it is said that a stable structure (radon gas generation source) can be formed by naturally drying or uncoating the obtained formed body. In particular, when a compacted body in which radium ore is kneaded with powdered powder is unbaked, a fine void structure is formed in the compacted body by the fibers of the powdered powder. It is said that the effect derived in this will be improved.

特開2015−39506公報JP, 2015-39506, A

ところで,従来のラドンガス発生源は,板状,チップ状,又は球状などの焼成物であり,そのラドンガス発生能力を維持したまま軽量化,薄型化,小型化を実現することが困難であるとされていた。また,従来のラドンガス発生源は,固形物であることから,柔軟性に乏しく,摩擦や衝撃により破損や粉塵が生じることが問題であるとされていた。そこで,本発明者らは,固形状のラドンガス発生源の問題を改善し,安心・安全で取り扱い便利な製品を製造するために,ラドンガス発生源をシート状とする開発に着手した。具体的には,植物繊維を担体とし,そこにラジウム鉱石粉末を定着させたシート状のラドンガス発生源の開発を開始した。   By the way, the conventional radon gas generation source is a fired product of plate shape, chip shape, or spherical shape, and it is difficult to realize weight reduction, thickness reduction, and size reduction while maintaining the radon gas generation capability. It was. In addition, since the conventional radon gas generation source is a solid substance, it has poor flexibility, and damage and dust are caused by friction and impact. Accordingly, the present inventors have started the development of a radon gas generation source in a sheet form in order to improve the problem of the solid radon gas generation source and to manufacture a product that is safe, safe and convenient to handle. Specifically, we started the development of a sheet-like radon gas generation source using plant fibers as a carrier and fixing radium ore powder there.

ところで,紙の製造においては,所望の機能・適性等を付与するために,填料や,サイズ剤,紙力増強剤,染料等などの種々の薬剤を,使用目的に応じて木製系パルプ繊維(機械パルプや化学パルプ等)に添加する手法が取られている。また,これらの薬剤を紙の原料に含まれるパルプ繊維に定着させるためのバインダー(定着剤)として,プラスの電荷を有する硫酸アルミニウムや,陽性澱粉,カチオン性高分子化合物等が一般的に採用されている。このため,シート状のラドンガス発生源を製造するにあたり,植物繊維に対するラジウム鉱石粉末の定着率を高めるために,一般的な紙の製造に用いられている硫酸アルミニウム等の定着剤を用いることも考えられる。しかしながら,ラジウム鉱石粉末などの無機物質をパルプ繊維に定着させるにあたり,前述した硫酸アルミニウムをバインダーとして用いても,ラジウム鉱石粉末の吸着率が低いことから線量の高いシート状のラドンガス発生源を得ることが困難であるうえ,得られた紙が酸性紙となり劣化の進行が早いという問題がある。また,高分子の陽性澱粉やカチオン性の高分子凝集剤等をバインダーとして用いる場合,その添加量の増加に伴って,フロック塊が生じて不均一な紙シートとなり,ラジウム鉱石粉末の含有率を局所的に高める傾向がある。このためにその添加量を増加させると,植物繊維にラジウム鉱石粉末を均一に定着させることが困難になるという問題がある。   By the way, in the manufacture of paper, various agents such as fillers, sizing agents, paper strength enhancers, dyes, etc. are used in accordance with the purpose of use in order to impart desired functions and suitability. Addition to mechanical pulp, chemical pulp, etc.) In addition, as a binder (fixing agent) for fixing these agents to pulp fibers contained in paper raw materials, aluminum sulfate having positive charge, positive starch, cationic polymer compounds, etc. are generally employed. ing. For this reason, in producing a sheet-like radon gas generation source, it is also possible to use a fixing agent such as aluminum sulfate, which is used in general paper production, in order to increase the fixing rate of radium ore powder to plant fibers. It is done. However, when fixing inorganic substances such as radium ore powder to pulp fibers, even if the above-mentioned aluminum sulfate is used as a binder, the radium ore powder adsorption rate is low, so a sheet-like radon gas generation source with a high dose can be obtained. In addition, there are problems that the obtained paper becomes acid paper and the deterioration progresses quickly. In addition, when polymer positive starch or cationic polymer flocculant is used as a binder, flocs are formed as the amount added increases, resulting in a non-uniform paper sheet, and the radium ore powder content is reduced. There is a tendency to increase locally. For this reason, when the addition amount is increased, there is a problem that it is difficult to uniformly fix the radium ore powder on the plant fiber.

そこで,本発明は,ラジウム鉱石粉末を高い含有率で均一にパルプ繊維に定着させることのできる,シート状のラドンガス発生源の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the sheet-like radon gas generation source which can fix radium ore powder to a pulp fiber uniformly with high content rate.

本発明の発明者らは,上記問題を解決する手段について鋭意検討した結果,パルプ繊維にラジウム鉱石粉末を定着させるためのバインダーとして炭化物源を利用することで,ラジウム鉱石粉末を高い含有率で均一にパルプ繊維に定着させることに成功した。すなわち,炭化物源は一般的な製紙工程においてバインダーとして使用されていないものであるが,本発明者らは,炭化物源が植物性のパルプ繊維とラジウム鉱石粉末とを結合させるバインダーとして好適に機能し得るものであることを見出した。そして,本発明者らは,上記知見に基づけば,従来技術の課題を解決できることに想到し本発明を完成させた。具体的に説明すると,本発明は以下の工程を含むものである。   The inventors of the present invention have intensively studied the means for solving the above problems, and as a result, by using a carbide source as a binder for fixing radium ore powder to pulp fibers, the radium ore powder can be uniformly distributed at a high content. Was successfully fixed to pulp fiber. That is, although the carbide source is not used as a binder in a general papermaking process, the present inventors have suitably functioned as a binder that binds vegetable pulp fibers and radium ore powder. I found out that Then, the inventors of the present invention have completed the present invention, conceiving that the problems of the prior art can be solved based on the above knowledge. Specifically, the present invention includes the following steps.

本発明は,パルプ繊維とラジウム鉱石粉末を主原料とするシート状のラドンガス発生源の製造方法に関する。本発明の製造方法は,水,パルプ繊維,及びラジウム鉱石粉末に,さらにバインダーとして炭化物源を添加して混合し,得られたスラリー状の原料を抄紙する工程を含む。つまり,炭化物源に存在する単一化された多価の炭素イオンの働きを介して,ラジウム鉱石粉末がパルプ繊維に高い歩留まりで定着するものと考えられる。これにより,ラジウム鉱石粉末を多量に含んだラドンガス発生源を製造することができる。   The present invention relates to a method for producing a sheet-like radon gas generation source using pulp fibers and radium ore powder as main raw materials. The production method of the present invention includes a step of adding a carbide source as a binder to water, pulp fiber, and radium ore powder and mixing them, and papermaking the resulting slurry-like raw material. That is, it is considered that the radium ore powder is fixed to the pulp fiber with a high yield through the action of the singulated polyvalent carbon ions present in the carbide source. Thereby, a radon gas generation source containing a large amount of radium ore powder can be produced.

シート状に抄紙されたラドンガス発生源は,柔軟性があり,軽量化,薄型化,小型化が可能であることから,多方面で利用することができる。例えば,シート状のラドンガス発生源を利用すれば,吸引送風機なしでラドンガスを吸引できる新型製品として,二重構造の不織布の間にシート状にラドンガス発生源(特にシートに微細な孔を形成したもの)を挿入したマスク型のラドンガス吸入器を製造できる。シート状のラドンガス発生源を利用したマスク型のラドンガス吸入器は,携行に便利であり,場所を選ばずラドンガスの吸入が可能となる。   The radon gas generation source, which is made into a sheet, is flexible and can be used in many ways because it can be reduced in weight, thickness, and size. For example, if a sheet-shaped radon gas generation source is used, a new product that can suck radon gas without a suction blower is used, and a radon gas generation source (especially with fine holes formed in the sheet) between double-layered nonwoven fabrics. ) Inserted mask type radon gas inhaler. A mask-type radon gas inhaler using a sheet-shaped radon gas source is convenient to carry and can inhale radon gas anywhere.

また,ラジウム鉱石から放出されるラドン線量は,鉱石粒子の比表面積に比例するため,ラドンガス発生源をシート状とし,発生源の面積を拡大させることで,好適な線量を得ることができる。また,前述のように,炭化物源をバインダーとして利用することで,ラジウム鉱石粉末がパルプ繊維に対して高い歩留まりで均一に定着するため,例えば特許文献1等に開示された固形状のラドンガス発生源と同等或いはそれ以上の線量が得られる。   Further, since the radon dose emitted from the radium ore is proportional to the specific surface area of the ore particles, a suitable dose can be obtained by making the radon gas generation source into a sheet and enlarging the area of the generation source. Further, as described above, by using a carbide source as a binder, the radium ore powder is uniformly fixed to the pulp fiber with a high yield. For example, a solid radon gas generation source disclosed in Patent Document 1 or the like is used. A dose equivalent to or higher than can be obtained.

さらに,炭化物源は,硫酸アルミニウム等とは異なり,それをバインダーとして利用しても得られた紙が酸性紙とはならず,中性紙を得ることができる。このため,本発明によって製造されたシート状のラドンガス発生源は酸性物質を含まず劣化しにくく長期保存性にも優れているといえる。   Furthermore, the carbide source is different from aluminum sulfate or the like, and even if it is used as a binder, the obtained paper does not become acidic paper, and neutral paper can be obtained. For this reason, it can be said that the sheet-like radon gas generation source produced by the present invention does not contain an acidic substance, is hardly deteriorated, and is excellent in long-term storage.

本発明の製造方法は,水,パルプ繊維,及び炭化物源を混合してスラリー状の紙料を得る第1工程と,ここで得られた紙料にラジウム鉱石粉末を添加してスラリー状の原料を得る第2工程と,ここで得られた原料を抄紙する第3工程とを含むことが好ましい。このように,シート状のラドンガス発生源の製造過程においては,パルプスラリーに優先的に炭化物源を添加して均一に混合・撹拌し,その後にラジウム鉱石粉末を添加することで,パルプ繊維に対するラジウム鉱石粉末の歩留まり率を高めることができることを見出した。   The production method of the present invention includes a first step of mixing slurry of water, pulp fiber, and carbide to obtain a slurry-like stock, and adding a radium ore powder to the stock obtained here to obtain a slurry-like raw material It is preferable to include a second step of obtaining the paper and a third step of papermaking the raw material obtained here. Thus, in the manufacturing process of the sheet-like radon gas generation source, the carbide source is preferentially added to the pulp slurry and uniformly mixed and stirred, and then the radium ore powder is added, so that radium for the pulp fiber is added. It has been found that the yield rate of ore powder can be increased.

本発明において,炭化物源は,植物を低酸素雰囲気下で炭化させて炭化物を得て,当該炭化物を水に溶出させることによって得られた炭化物含有水(炭素水とも言う)であることが好ましい。なお,「低酸素雰囲気下」とは,大気中の酸素濃度(21%)よりも酸素濃度が低い雰囲気下を意味するものであり,無酸素状態を含む。このように,炭化物源として炭化物含有水を利用することで,ラジウム鉱石粉末をパルプ繊維に対して高い歩留まりで均一に定着させ,通気性のあるシートが形成できる。   In the present invention, the carbide source is preferably carbide-containing water (also referred to as carbon water) obtained by carbonizing a plant in a low oxygen atmosphere to obtain a carbide, and eluting the carbide into water. Note that “under a low oxygen atmosphere” means an atmosphere where the oxygen concentration is lower than the oxygen concentration (21%) in the atmosphere, and includes an oxygen-free state. Thus, by using the carbide-containing water as the carbide source, the radium ore powder can be uniformly fixed to the pulp fiber with a high yield, and a breathable sheet can be formed.

本発明において,パルプ繊維は,植物から得た木質系繊維,或いは靭皮繊維を用いることが出来るが,長い繊維の楮であることが好ましい。楮繊維は和紙の原料としても利用される。楮繊維は植物繊維の中でも特に繊維が長いものであるため,ラジウム鉱石粉末を定着させやすくなる。   In the present invention, wood fiber or bast fiber obtained from a plant can be used as the pulp fiber, but it is preferably a long fiber cocoon. Koji fiber is also used as a raw material for Japanese paper. Since the koji fiber is a long fiber among plant fibers, it becomes easy to fix the radium ore powder.

本発明の製造方法は,スラリー状の原料を抄紙して第1の湿紙を得る工程と,第1の湿紙の片面又は両面に,ラジウム鉱石粉末を含まない第2の湿紙を当てて,第1の湿紙と第2の湿紙とをプレスし乾燥させる工程と,を含むことが好ましい。このように,ラジウム鉱石粉末を含む紙の片面又は両面にラジウム鉱石粉末を含まない紙が積層されていることで,粉末の飛散や落下防止が図られ,利用者の肌に直接触れることを回避できる。このように,ラジウム鉱石粉末を含まない紙を積層した場合であっても,ラドンガス発生源の性能は維持される。   In the production method of the present invention, a first wet paper is obtained by papermaking a slurry raw material, and a second wet paper not containing radium ore powder is applied to one or both sides of the first wet paper. , And pressing and drying the first wet paper and the second wet paper. In this way, paper that does not contain radium ore powder is laminated on one or both sides of the paper that contains radium ore powder, so that the powder can be prevented from scattering and falling and avoiding direct contact with the user's skin. it can. In this way, the performance of the radon gas generation source is maintained even when papers not containing radium ore powder are laminated.

本発明の製造方法によれば,ラジウム鉱石粉末が高い含有率で均一にパルプ繊維に定着したシート状のラドンガス発生源を得ることができる。   According to the production method of the present invention, it is possible to obtain a sheet-like radon gas generation source in which radium ore powder is uniformly fixed to pulp fibers with a high content.

以下,本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜変更したものも含む。なお,本願明細書において,「A〜B」とは「A以上B以下」であることを意味する。   Hereinafter, modes for carrying out the present invention will be described. This invention is not limited to the form demonstrated below, The thing suitably changed in the range obvious to those skilled in the art from the following forms is also included. In the present specification, “A to B” means “A to B”.

本発明は,基本的に,ラジウム鉱石粉末を混練した紙を製造するにあたり,ラジウム鉱石粉末とパルプ繊維のバインダーとして炭化物源を利用するという知見に基づくものである。本発明により製造された紙は,ラドンガスを発生させるラジウム鉱石粉末を多量に含むものであるため,ラドンガス発生源として好適に利用できる。ラドンガスの吸入が人間の健康の維持・増進や,疲労回復,予防医学において良い影響を与えることは,周知の事実である。本発明により得られるラドンガス発生源は,シート状(紙状)であるため,柔軟性に優れ,従来の固形状の発生源と比較して薄型化及び軽量化されたものであるため,様々な用途に利用することができる。   The present invention is basically based on the knowledge that a carbide source is used as a binder for radium ore powder and pulp fibers in producing paper kneaded with radium ore powder. Since the paper produced by the present invention contains a large amount of radium ore powder that generates radon gas, it can be suitably used as a radon gas generation source. It is a well-known fact that radon gas inhalation has a positive impact on maintaining and improving human health, fatigue recovery, and preventive medicine. Since the radon gas generation source obtained by the present invention is in the form of a sheet (paper), the radon gas generation source is excellent in flexibility and is thinner and lighter than the conventional solid generation source. It can be used for applications.

シート状のラドンガス発生源の主原料は,水,パルプ繊維,ラジウム鉱石粉末であり,パルプ繊維とラジウム鉱石粉末のバインダーとして炭化物源が利用される。なお,シート状のラドンガス発生源には,上述した主原料の他に,公知の填料や,サイズ剤,紙力増強剤,染料等などの種々の薬剤が添加されていてもよい。   The main raw materials for the sheet-like radon gas generation source are water, pulp fiber, and radium ore powder, and a carbide source is used as a binder for pulp fiber and radium ore powder. In addition to the main raw materials described above, various agents such as known fillers, sizing agents, paper strength enhancers, dyes, and the like may be added to the sheet-like radon gas generation source.

パルプ繊維は,紙の原料として用いられている公知のものを採用できる。具体的には,楮や,三椏,雁皮,麻,ケナフ等を原料とする非木材パルプ,針葉樹パルプ(N材)や広葉樹パルプ(L材)等の木材パルプから成るクラフトパルプ(KP)や,サルファイトパルプ(SP),ソーダパルプ(AP)等の化学パルプ,セミケミカルパルプ(SCP)やケミグラウンドウッドパルプ(CGP)等の半化学パルプ,砕木パルプ(GP)やサーモメカニカルパルプ(TMP,BCTMP)等の機械パルプ,コットンリンターやコットンリント等の綿系パルプ,古紙を原料とする脱墨パルプが挙げられる。これらのパルプ繊維を単独で用いてもよいし,2種以上混合して用いてもよい。特に,本発明においては,和紙の原料となる楮パルプや,三椏パルプ,雁皮パルプを利用することが好ましい。その中でも,繊維が長くラジウム鉱石粉末との定着性が高いことから,楮パルプを利用することが特に好ましい。   As the pulp fiber, a known fiber used as a raw material of paper can be adopted. Specifically, kraft pulp (KP) made of wood pulp such as non-wood pulp, softwood pulp (N material), hardwood pulp (L material), etc. made from persimmon, cocoon, cocoon, hemp, kenaf, etc., Chemical pulps such as sulfite pulp (SP) and soda pulp (AP), semi-chemical pulps such as semi-chemical pulp (SCP) and chemi-ground wood pulp (CGP), groundwood pulp (GP) and thermomechanical pulp (TMP, BCTMP) ) And other mechanical pulp, cotton-based pulp such as cotton linter and cotton lint, and deinked pulp made from waste paper. These pulp fibers may be used alone or in combination of two or more. In particular, in the present invention, it is preferable to use cocoon pulp, trifoam pulp, or husk pulp as a raw material for Japanese paper. Among them, it is particularly preferable to use straw pulp because of its long fibers and high fixability with radium ore powder.

ラジウム鉱石粉末は,ラジウム鉱石の原石を粉状に粉砕したものである。ラジウム鉱石粉末は,平均粒子径を0.1μm〜100μmとすればよい。なお,平均粒子径の測定方法は,レーザー回折式粒度分布測定装置(島津製作所社製 SALD−2200)にて測定し,個数%により割合を算出する。   The radium ore powder is a powder of an ore of radium ore. The radium ore powder may have an average particle size of 0.1 μm to 100 μm. In addition, the measuring method of an average particle diameter is measured with a laser diffraction type particle size distribution measuring device (SALD-2200 manufactured by Shimadzu Corporation), and the ratio is calculated by number%.

炭化物源は,炭化物を含むか,炭化物を発生させるものである。炭化物源は,水とパルプ繊維とを混合したパルプスラリーに添加できるように,液状又は粉状のものが採用される。具体的に,炭化物源は,植物を低酸素雰囲気下で炭化させて炭化物を得て,当該炭化物を純水に溶出させることによって得られた,炭化物含有水であることが好ましい。すなわち,炭化物含有水には,純水の中に微小な粉末状の炭化物が存在していることとなる。炭化物含有水における炭化物粉末の濃度は,質量比において10〜50%であることが好ましい。炭化物の原料となる植物は特に限定されないが,例えば,小豆や籾殻などを原料とすることが好ましい。特に,本発明では小豆を炭化物の原料とすることが好ましい。また,天然の植物(小豆等)を炭化させる工程は,0〜15%の低酸素雰囲気下において,350〜550度又は400度〜500度で植物を加熱して炭化させることが好ましい。特に,400度〜500度(さらに好ましくは450度以下の範囲)で炭化させた植物の炭化物を利用することで,ラジウム鉱石粉末をパルプ繊維に定着させるのに好適な炭化物含有水を得ることができる。   A carbide source is one that contains or generates carbide. The carbide source is liquid or powdery so that it can be added to the pulp slurry in which water and pulp fiber are mixed. Specifically, the carbide source is preferably carbide-containing water obtained by carbonizing a plant in a low oxygen atmosphere to obtain a carbide, and eluting the carbide into pure water. That is, in the carbide-containing water, fine powdered carbide is present in the pure water. The concentration of the carbide powder in the carbide-containing water is preferably 10 to 50% in mass ratio. Although the plant used as the raw material of a carbide | carbonized_material is not specifically limited, For example, it is preferable to use red beans, rice husks, etc. as a raw material. In particular, in the present invention, red beans are preferably used as a raw material for carbide. In the step of carbonizing a natural plant (red beans or the like), it is preferable to heat and carbonize the plant at 350 to 550 degrees or 400 to 500 degrees in a low oxygen atmosphere of 0 to 15%. In particular, by using plant carbide carbonized at 400 to 500 degrees (more preferably in a range of 450 degrees or less), it is possible to obtain carbide-containing water suitable for fixing radium ore powder to pulp fibers. it can.

また,炭化物含有水は,純水に混合されている植物の炭化物が,例えばジェットミル粉砕や湿式粉砕などの粉砕法により,粒度分布のピークが10μm以下となる微粉末に粉砕されていることが好ましい。炭化物含有水に含まれる炭化物粉末の平均粒子径は,ラジウム鉱石粉末より小さいことが好ましく,具体的には,0.001〜0.1μm,又は0.01〜0.1μmであることが好ましい。なお,平均粒子径の測定方法は,レーザー回折式粒度分布測定装置(島津製作所社製 SALD−2200)にて測定し,個数%により割合を算出する。また,炭化物含有水に含まれる炭化物粉末の濃度の下限は,例えば,0.1ppm以上であることが好ましく,特に1ppm又は8ppm以上であることが好ましい。なお,炭化物粉末の濃度は,炭化物含有水に含まれる水の分子数に対する炭素の原子数に割合によって求める。水の分子量は18であり,炭素の原子量は12であり,アボガドロ定数は6.02214086×1023mol−1とする。炭化物含有水に含まれる炭化物粉末の濃度の上限は特に限定されないが50%以下であることが好ましい。 In addition, the carbide-containing water is such that the plant carbide mixed with pure water is pulverized into fine powder having a particle size distribution peak of 10 μm or less by a pulverization method such as jet mill pulverization or wet pulverization. preferable. The average particle size of the carbide powder contained in the carbide-containing water is preferably smaller than the radium ore powder, and specifically, it is preferably 0.001 to 0.1 μm or 0.01 to 0.1 μm. In addition, the measuring method of an average particle diameter is measured with a laser diffraction type particle size distribution measuring device (SALD-2200 manufactured by Shimadzu Corporation), and the ratio is calculated by number%. Further, the lower limit of the concentration of the carbide powder contained in the carbide-containing water is, for example, preferably 0.1 ppm or more, and particularly preferably 1 ppm or 8 ppm or more. The concentration of carbide powder is determined by the ratio of the number of carbon atoms to the number of water molecules contained in the carbide-containing water. The molecular weight of water is 18, the atomic weight of carbon is 12, and the Avogadro constant is 6.02114086 × 10 23 mol −1 . Although the upper limit of the density | concentration of the carbide powder contained in carbide containing water is not specifically limited, It is preferable that it is 50% or less.

続いて,前述した主原料を利用してシート状のラドンガス発生源を製造する方法について説明する。   Next, a method for producing a sheet-shaped radon gas generation source using the main raw material described above will be described.

好ましい実施形態においては,まず,水,パルプ繊維,及び炭化物含有水(炭化物源)を混合してスラリー状の紙料を得て,よく撹拌する。このとき,ラジウム鉱石粉末は未だ投入せず,優先的に炭化物含有水をパルプスラリー(水+パルプ繊維)に投入しておき,均一に混合しておく。炭化物含有水は,例えば炭化物粉末の濃度が8.6ppmである場合,パルプ繊維の重量に対して5〜50%で添加を行うことが好ましい。なお,炭化物含有水の添加量は,ラジウム鉱石粉末の添加量に応じて適宜調整すればよい。例えば,炭化物含有水(炭化物粉末濃度8.6ppm)は,ラジウム鉱石粉末の重量に対して,80〜150%で添加することが好ましく,特に110〜150%のようにラジウム鉱石粉末よりも多く添加することが好ましい。   In a preferred embodiment, first, water, pulp fiber, and carbide-containing water (carbide source) are mixed to obtain a slurry-like stock, which is thoroughly stirred. At this time, the radium ore powder is not yet added, and the carbide-containing water is preferentially charged into the pulp slurry (water + pulp fiber) and mixed uniformly. For example, when the concentration of the carbide powder is 8.6 ppm, the carbide-containing water is preferably added at 5 to 50% with respect to the weight of the pulp fiber. In addition, what is necessary is just to adjust the addition amount of carbide containing water suitably according to the addition amount of radium ore powder. For example, carbide-containing water (carbide powder concentration: 8.6 ppm) is preferably added in an amount of 80 to 150% with respect to the weight of the radium ore powder, and in particular, more than the radium ore powder such as 110 to 150%. It is preferable to do.

上記工程においてパルプスラリーと炭化物含有水の混合が完了した後,ここで得られたスラリー状の紙料に対して,ラジウム鉱石粉末を添加する。このように,炭化物含有水が均一に撹拌された紙料に対してラジウム鉱石粉末を添加する手順をとることで,炭化物含有水が効果的にバインダーとして機能するため,ラジウム鉱石粉末をパルプ繊維に高い歩留まりで定着させることができる。ラジウム鉱石粉末は,パルプ繊維の重量に対して,5〜20%の範囲で添加することが好ましい。ラジウム鉱石粉末の重量比率が5%を下回ると,好適な放射線量を得ることが出来ず,20%を上回るとパルプ繊維に対する定着性が悪くなり,得られたシート状のラドンガス発生源から粉末が飛散・脱落するおそれがある。このため,ラジウム鉱石粉末の添加量は,求める放射線量やラドンガス発生源の用途に応じて,5〜20%の範囲で調整することが好ましい。   After mixing of the pulp slurry and the carbide-containing water in the above step, the radium ore powder is added to the slurry-like stock obtained here. Thus, by taking the procedure of adding radium ore powder to the stock in which the carbide-containing water is uniformly stirred, the carbide-containing water effectively functions as a binder. It can be fixed at a high yield. The radium ore powder is preferably added in a range of 5 to 20% with respect to the weight of the pulp fiber. If the weight ratio of the radium ore powder is less than 5%, a suitable radiation dose cannot be obtained, and if it exceeds 20%, the fixing property to the pulp fiber is deteriorated, and the powder from the sheet-like radon gas generation source is obtained. There is a risk of splashing or dropping off. For this reason, it is preferable to adjust the addition amount of radium ore powder in the range of 5 to 20% according to the required radiation dose and the use of the radon gas generation source.

上記工程において,パルプスラリー,炭化物含有水,及びラジウム鉱石粉末の混合が完了した後,ここで得られた原料を抄紙してシート状のラドンガス発生源を得る。ここでの抄紙工程は,公知の手漉法と機械漉法のいずれであってもよい。例えば,手漉法においては,水槽内の水で薄めた原料から1枚ずつ手作業で紙原料を掬い上げたのち,プレスして平坦にならし乾燥させる。機械漉法においては,公知の機械式抄紙機を利用して,水で薄めた原料を機械により連続的に抄紙し,プレスし,乾燥させればよい。   In the above process, after the mixing of the pulp slurry, the carbide-containing water, and the radium ore powder is completed, the raw material obtained here is paper-made to obtain a sheet-like radon gas generation source. The paper making process here may be either a known manual method or mechanical method. For example, in the manual method, paper materials are scooped up manually one by one from the raw material diluted with water in a water tank, and then pressed and flattened to dry. In the mechanical dredge method, a known mechanical paper machine may be used to continuously make a paper diluted with water, press the paper, and dry it.

以下では,本発明に係るシート状ラドンガス発生源の製造方法について,実施例を挙げてより具体的に説明する。   Below, the manufacturing method of the sheet-like radon gas generation source according to the present invention will be described more specifically with reference to examples.

[実施例1]
実施例1では,大型の和紙作成用の紙漉器を利用して,シート状のラドンガス発生源を製造した。まず,水150Lが入った水槽に,楮繊維90gを投入し,撹拌による十分な分散を行い,次いで50ml(50g)の炭化物含有水(炭化物粉末濃度8.6ppm)を撹拌しながら加えた。その後,水槽にラジウム鉱石粉末40gを投入しよく撹拌して,ラジウム鉱石粉末と楮繊維を定着させた。ラジウム鉱石粉末が均一に撹拌された後,得られた原料を紙状に抄き上げて,プレスによって平坦にならし,その後乾燥させた。つまり,実施例1において,原料の比率は,180g(100%)=楮繊維90g(50%)+炭化物含有水50ml(28%)+ラジウム鉱石粉末40g(22%)であった。なお,炭化物含有水(炭化物粉末濃度8.6ppm)は,小豆を低酸素雰囲気下で,450度弱で加熱して粉末状の炭化物を得て,さらに当該炭化物に対してジェットミル粉砕及び湿式粉砕を行って粒度分布のピークが10μm以下となり平均粒子径が0.071μmとなった微粉末を得て,当該微粉末を純水に溶出させることによって得られたものを使用した。
[Example 1]
In Example 1, a sheet-shaped radon gas generation source was manufactured using a paper bowl for making large Japanese paper. First, 90 g of straw fibers were put into a water tank containing 150 L of water, sufficiently dispersed by stirring, and then 50 ml (50 g) of carbide-containing water (carbide powder concentration 8.6 ppm) was added with stirring. Thereafter, 40 g of radium ore powder was put into the water tank and stirred well to fix the radium ore powder and the soot fiber. After the radium ore powder was uniformly stirred, the obtained raw material was made into a paper, flattened by a press, and then dried. That is, in Example 1, the ratio of the raw materials was 180 g (100%) = 90 g of soot fiber (50%) + carbide-containing water 50 ml (28%) + radium ore powder 40 g (22%). Carbide-containing water (carbide powder concentration: 8.6 ppm) is obtained by heating the red beans under a low oxygen atmosphere at a temperature of less than 450 degrees to obtain powdered carbides, and jet mill grinding and wet grinding for the carbides. To obtain fine powder having a particle size distribution peak of 10 μm or less and an average particle diameter of 0.071 μm, and eluting the fine powder into pure water.

ラドンガス発生源の製造過程で,楮スラリーに炭化物含有水を優先して添加した後,ラジウム鉱石粉末を添加することで,高い歩留率が得られることを見出した。この方法で得られたラドンガス発生源は,ハガキ大1.3gで,ラジウム線量が14101Bq/m/gを示すものであり,十分な線量が得られることが判った。この結果は,水槽に楮繊維90g,炭化物含有水50ml(50g),ラジウム鉱石粉末40gの順に材料を投入した実施例によるものであるが,これ以外の実施例では,原料投入順や割合によって異なった数値が得られた。 In the manufacturing process of radon gas generation source, we found that high yield can be obtained by adding radium ore powder after adding carbide-containing water with priority to dredged slurry. The radon gas generation source obtained by this method has a large postcard of 1.3 g and a radium dose of 14101 Bq / m 3 / g, which indicates that a sufficient dose can be obtained. This result is based on an example in which materials were charged in the order of 90 g of dredged fiber, 50 ml of carbide-containing water (50 g), and radium ore powder 40 g in the water tank. Numerical values were obtained.

[実施例2]
実施例2では,原料及び製造手順は実施例1と同じとし,楮繊維の添加量を実施例1よりも少なくした。つまり,実施例2においては,原料の比率を,150g(100%)=楮繊維60g(40%)+炭化物含有水(炭化物粉末濃度8.6ppm)50g(33.3%)+ラジウム鉱石粉末40g(26.6%)とした。この場合のラドンガス発生源のラジウム線量は,10612Bq/m/gであった。これにより,楮繊維の量が多い方が高濃度の線量を得ることができることが確認された。
[Example 2]
In Example 2, the raw materials and the production procedure were the same as in Example 1, and the addition amount of soot fiber was less than that in Example 1. That is, in Example 2, the ratio of the raw materials was 150 g (100%) = 60 g (40%) soot fiber + carbide-containing water (carbide powder concentration 8.6 ppm) 50 g (33.3%) + radium ore powder 40 g. (26.6%). In this case, the radium dose of the radon gas generation source was 10612 Bq / m 3 / g. As a result, it was confirmed that a higher dose can be obtained when the amount of soot fiber is larger.

[実施例3]
実施例3では,ハガキ大のシート状のラドンガス発生源を製造するため,小型の和紙作成用の紙漉き器を利用した。実施例3は,実施例1とは紙漉き器の制約により各原料の割合が異なるものの,原料の投入順は実施例1とした。実施例3においては,原料の比率を,合計7g(100%)=楮繊維3g(43%)+炭化物含有水(炭化物粉末濃度8.6ppm)3g(43%)+ラジウム鉱石粉末1g(14%)とした。この場合に,ラドンガス発生源のラジウム線量は,2934Bq/m/gであった。
[Example 3]
In Example 3, in order to produce a postcard-sized sheet-shaped radon gas generation source, a small paper-making machine for making Japanese paper was used. Although Example 3 differs from Example 1 in the ratio of each raw material due to restrictions on the paper cutter, the raw material charging order was set to Example 1. In Example 3, the ratio of the raw materials was 7 g (100%) in total = 3 g (43%) soot fiber + 3 g (43%) carbide-containing water (carbide powder concentration 8.6 ppm) +1 g radium ore powder (14%) ). In this case, the radium dose of the radon gas generation source was 2934 Bq / m 3 / g.

[実施例4]
実施例4では,実施例3と同様に小型の紙漉き器を利用し,原料の投入順序を実施例3とは異ならせた。すなわち,実施例4では,水,楮繊維,及びラジウム鉱石粉末を先に混合した後,最後に炭化物含有水を投入した。なお,実施例4においては,原料の比率を実施例3とほぼ同様とし,合計7.15g(100%)=楮繊維3g(42%)+炭素水3g(42%)+ラジウム鉱石粉末1.15g(16%)とした。この場合に,ラドンガス発生源のラジウム線量は,765Bq/m/gであった。実施例3と実施例4の比較結果により,原料投入順によりラドンガス発生源から得られる線量が大幅に異なることが判明した。すなわち,実施例3で示したように,先に楮繊維と炭化物含有水とを混合し,最後にラジウム鉱石粉末を投入することが好ましいことが判った。
[Example 4]
In Example 4, as in Example 3, a small paper-making machine was used, and the charging order of raw materials was different from that in Example 3. That is, in Example 4, water, bran fiber, and radium ore powder were mixed first, and then carbide-containing water was added. In Example 4, the ratio of the raw materials was almost the same as in Example 3, and the total was 7.15 g (100%) = soot fiber 3 g (42%) + carbon water 3 g (42%) + radium ore powder. 15 g (16%). In this case, the radium dose of the radon gas generation source was 765 Bq / m 3 / g. From the comparison results of Example 3 and Example 4, it was found that the dose obtained from the radon gas generation source varies greatly depending on the raw material charging order. That is, as shown in Example 3, it was found that it is preferable to first mix the soot fiber and the carbide-containing water and finally add the radium ore powder.

[実施例5]
実施例5は,原料の材料投入順は実施例3と同じであるが,炭化物含有水の割合を実施例3の2倍となる6gとした。つまり,実施例5においては,合計10g(100%)=楮繊維3g(30%)+炭化物含有水(炭化物粉末濃度8.6ppm)6g(60%)+ラジウム鉱石粉末1g(10%)とした。この場合に,ラドンガス発生源のラジウム線量は,1166Bq/m3/gであった。炭化物含有水の添加量を倍増しても,楮繊維3gの割合が材料投入量全体でみると約12%も少なくなることにより,ラジウム鉱石粉末が効率的に定着せず,線量が少なかったものと考えられる。一方,バインダーを増やしたことによるラジウム線量の向上は見られるものの,過剰の炭化物含有水は有効に寄与していないため,楮に対して1−50%程度の有効添加率が示唆される。
[Example 5]
In Example 5, the raw material charging order was the same as in Example 3, but the ratio of carbide-containing water was 6 g, which was twice that of Example 3. That is, in Example 5, 10 g (100%) in total = 3 g of soot fiber (30%) + carbide-containing water (carbide powder concentration 8.6 ppm) 6 g (60%) + radium ore powder 1 g (10%) . In this case, the radium dose of the radon gas generation source was 1166 Bq / m 3 / g. Even if the amount of carbide-containing water added is doubled, the ratio of 3g of soot fiber is about 12% less than the total amount of material input, so the radium ore powder does not settle efficiently and the dose is low it is conceivable that. On the other hand, although the radium dose is improved by increasing the binder, excess carbide-containing water does not contribute effectively, suggesting an effective addition rate of about 1-50% with respect to soot.

[比較例1]
比較例1は,実施例1に対する比較例である。比較例1では,大型の和紙作成用の紙漉器を利用して,シート状のラドンガス発生源を製造した。比較例1は,炭化物含有水を添加しない以外は,実施例1と同じ条件でラドンガス発生源を製造した。すなわち,比較例1では,水150Lが入った水槽に,楮繊維90gを投入し,撹拌による十分な分散を行った。その後,水槽にラジウム鉱石粉末40gを投入しよく撹拌して,ラジウム鉱石粉末と楮繊維を定着させた。ラジウム鉱石粉末が均一に撹拌された後,得られた原料を紙状に抄き上げて,プレスによって平坦にならし,その後乾燥させた。つまり,比較例1において,原料の比率は,130g(100%)=楮繊維90g(69%)+ラジウム鉱石粉末40g(30%)であった。この方法で得られたラドンガス発生源は,ハガキ大1.3gで,ラジウム線量が7562Bq/m/gであり,実施例1のおよそ半分であった。このため,炭化物含有水を添加することで,楮繊維に対するラジウム鉱石粉末の定着率が高まり,その結果得られる線量が向上することが判った。
[Comparative Example 1]
Comparative Example 1 is a comparative example with respect to Example 1. In Comparative Example 1, a sheet-shaped radon gas generation source was manufactured using a paper bowl for making large Japanese paper. In Comparative Example 1, a radon gas generation source was produced under the same conditions as in Example 1 except that no carbide-containing water was added. That is, in Comparative Example 1, 90 g of straw fiber was put into a water tank containing 150 L of water and sufficiently dispersed by stirring. Thereafter, 40 g of radium ore powder was put into the water tank and stirred well to fix the radium ore powder and the soot fiber. After the radium ore powder was uniformly stirred, the obtained raw material was made into a paper, flattened by a press, and then dried. That is, in Comparative Example 1, the ratio of the raw materials was 130 g (100%) = soot fiber 90 g (69%) + radium ore powder 40 g (30%). The radon gas generation source obtained by this method had a postcard size of 1.3 g and a radium dose of 7562 Bq / m 3 / g, which was about half that of Example 1. For this reason, it was found that the addition of carbide-containing water increases the fixing rate of radium ore powder to straw fibers and improves the resulting dose.

[比較例2]
比較例1は,実施例3に対する比較例である。比較例2では,ハガキ大のシート状のラドンガス発生源を製造するため,小型の和紙作成用の紙漉き器を利用した。比較例2は,炭化物含有水を添加しない以外は,実施例3と同じ条件でラドンガス発生源を製造した。つまり,比較例2において,原料の比率は,合計4g(100%)=楮繊維3g(75%)+ラジウム鉱石粉末1g(25%)とした。この方法で得られたラドンガス発生源は,ラジウム線量が1868Bq/m/gであり,実施例3と比較して低い値であった。このため,炭化物含有水を添加することで,楮繊維に対するラジウム鉱石粉末の定着率が高まり,その結果得られる線量が向上することが判った。
[Comparative Example 2]
Comparative Example 1 is a comparative example with respect to Example 3. In Comparative Example 2, a small paper-making machine for making Japanese paper was used to produce a postcard-sized sheet-shaped radon gas generation source. In Comparative Example 2, a radon gas generation source was produced under the same conditions as in Example 3 except that no carbide-containing water was added. That is, in Comparative Example 2, the ratio of the raw materials was 4 g (100%) in total = 3 g of soot fiber (75%) + 1 g of radium ore powder (25%). The radon gas generation source obtained by this method had a radium dose of 1868 Bq / m 3 / g, which was a low value compared to Example 3. For this reason, it was found that the addition of carbide-containing water increases the fixing rate of radium ore powder to straw fibers and improves the resulting dose.

以上,本願明細書では,本発明の内容を表現するために,本発明の好ましい実施形態の説明を行った。ただし,本発明は,上記実施形態に限定されるものではなく,本願明細書に記載された事項に基づいて当業者が自明な変更形態や改良形態を包含するものである。   As mentioned above, in this specification, in order to express the content of this invention, preferable embodiment of this invention was described. However, the present invention is not limited to the above-described embodiments, but includes modifications and improvements obvious to those skilled in the art based on the matters described in the present specification.

本発明は,ラドンガス発生源の製造方法に関する。本発明により得られたラドンガス発生源は,ラドンガスを呼吸器系などから吸入させて代謝機能を促進させたり,弱放射線療法によって生活習慣病等の予防・改善に寄与することができる。特に,シート状のラドンガス発生源を利用すれば,安心・安全で取り扱い便利な製品を開発することができる。例えば,二重構造の不織布の間にシート状にラドンガス発生源(特にシートに微細な孔を形成したもの)を挿入したマスク型ラドンガス吸入器の作成が可能である。これによれば,利用者は携行に便利であり,場所を選ばず手軽にラドンガスの吸入が可能となる。   The present invention relates to a method for producing a radon gas generation source. The radon gas generation source obtained by the present invention can contribute to the prevention and improvement of lifestyle-related diseases and the like by inhaling radon gas from the respiratory system and the like to promote metabolic function, or by weak radiation therapy. In particular, if a sheet-like radon gas source is used, products that are safe, safe and convenient to handle can be developed. For example, it is possible to create a mask type radon gas inhaler in which a radon gas generation source (particularly, a fine hole formed in a sheet) is inserted between double-layered nonwoven fabrics. According to this, the user is convenient to carry, and can easily inhale radon gas regardless of location.

Claims (5)

水,パルプ繊維,ラジウム鉱石粉末,及び炭化物源が混合されたスラリー状の原料を抄紙する工程を含む,
シート状のラドンガス発生源の製造方法。
Papermaking a slurry-like raw material mixed with water, pulp fiber, radium ore powder, and carbide source,
A method for producing a sheet-like radon gas generation source.
前記抄紙する工程は,
水,パルプ繊維,及び炭化物源を混合してスラリー状の紙料を得る工程と,
前記紙料にラジウム鉱石粉末を添加して前記スラリー状の原料を得る工程と,
前記スラリー状の原料を抄紙する工程と,を含む
請求項1に記載の製造方法。
The paper making process includes:
Mixing water, pulp fiber, and carbide sources to obtain a slurry stock;
Adding a radium ore powder to the stock to obtain the slurry-like raw material;
The manufacturing method according to claim 1, further comprising a step of papermaking the slurry raw material.
前記炭化物源は,植物を低酸素雰囲気下で炭化させて炭化物を得て,当該炭化物を水に溶出させることによって得られた,炭化物含有水である
請求項1又は請求項2に記載の製造方法。
The manufacturing method according to claim 1, wherein the carbide source is a carbide-containing water obtained by carbonizing a plant in a low oxygen atmosphere to obtain a carbide, and eluting the carbide into water. .
前記パルプ繊維は,楮繊維である
請求項1から請求項3のいずれかに記載の製造方法。
The manufacturing method according to any one of claims 1 to 3, wherein the pulp fibers are straw fibers.
前記抄紙する工程によって前記スラリー状の原料を抄紙して第1の湿紙を得る工程と,
前記第1の湿紙の片面又は両面に,ラジウム鉱石粉末を含まない第2の湿紙を当てて,前記第1の湿紙と前記第2の湿紙とをプレスし乾燥させる工程と,をさらに含む
請求項1から請求項4のいずれかに記載の製造方法。
Paper making the slurry-like raw material by the paper making step to obtain a first wet paper;
Applying a second wet paper not containing radium ore powder to one or both sides of the first wet paper, and pressing and drying the first wet paper and the second wet paper; Furthermore, the manufacturing method in any one of Claims 1-4.
JP2016107472A 2016-05-30 2016-05-30 Method for producing sheet-shaped radon gas generation source Active JP6082834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016107472A JP6082834B1 (en) 2016-05-30 2016-05-30 Method for producing sheet-shaped radon gas generation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016107472A JP6082834B1 (en) 2016-05-30 2016-05-30 Method for producing sheet-shaped radon gas generation source

Publications (2)

Publication Number Publication Date
JP6082834B1 JP6082834B1 (en) 2017-02-15
JP2017213070A true JP2017213070A (en) 2017-12-07

Family

ID=58043358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016107472A Active JP6082834B1 (en) 2016-05-30 2016-05-30 Method for producing sheet-shaped radon gas generation source

Country Status (1)

Country Link
JP (1) JP6082834B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322762B1 (en) * 2017-12-12 2018-05-09 未来環境研究機構株式会社 Manufacturing method of carbide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104798A (en) * 1988-10-11 1990-04-17 Nippon Foil Mfg Co Ltd Antimicrobial paper
JPH0824350A (en) * 1994-07-13 1996-01-30 Tamae Oote Mineral powder-mixed health promoting material and health promoting appliance
JP2004010547A (en) * 2002-06-07 2004-01-15 Power Tekku:Kk Ore composition, sheet material containing the same, and sheet-shaped member using the same
JP2004052152A (en) * 2002-07-19 2004-02-19 Kincho Tokushu Seishi Kk Japanese paper of sandwich structure
JP2004189517A (en) * 2002-12-10 2004-07-08 Power Tekku:Kk Radio-active mineral-containing composition and method of manufacturing the same
JP2005218651A (en) * 2004-02-05 2005-08-18 Yunitekku Defense Kk Body worn implement
JP2012055648A (en) * 2010-09-03 2012-03-22 Katsuo Sasaki Composition having main component structure by combination and adjustment of plural radioactive hot spring precipitates, and method for producing the same
JP2015137433A (en) * 2014-01-21 2015-07-30 日本製紙クレシア株式会社 Sanitation tissue paper

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104798A (en) * 1988-10-11 1990-04-17 Nippon Foil Mfg Co Ltd Antimicrobial paper
JPH0824350A (en) * 1994-07-13 1996-01-30 Tamae Oote Mineral powder-mixed health promoting material and health promoting appliance
JP2004010547A (en) * 2002-06-07 2004-01-15 Power Tekku:Kk Ore composition, sheet material containing the same, and sheet-shaped member using the same
JP2004052152A (en) * 2002-07-19 2004-02-19 Kincho Tokushu Seishi Kk Japanese paper of sandwich structure
JP2004189517A (en) * 2002-12-10 2004-07-08 Power Tekku:Kk Radio-active mineral-containing composition and method of manufacturing the same
JP2005218651A (en) * 2004-02-05 2005-08-18 Yunitekku Defense Kk Body worn implement
JP2012055648A (en) * 2010-09-03 2012-03-22 Katsuo Sasaki Composition having main component structure by combination and adjustment of plural radioactive hot spring precipitates, and method for producing the same
JP2015137433A (en) * 2014-01-21 2015-07-30 日本製紙クレシア株式会社 Sanitation tissue paper

Also Published As

Publication number Publication date
JP6082834B1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
US20210338547A1 (en) Complexes of hydrotalcites and fibers
US6296737B1 (en) Method of making readily debonded pulp products
CN100337608C (en) Absorbent articles including fibrous nits and free flowing particles
Zambrano et al. Micro-and nanofibrillated cellulose from virgin and recycled fibers: A comparative study of its effects on the properties of hygiene tissue paper
JP5296257B2 (en) Heating element and heating tool provided with the same
CN1307343C (en) Reducing odor in absorbent products
JP6082834B1 (en) Method for producing sheet-shaped radon gas generation source
GB2081320A (en) Low density peat moss board
JP6094285B2 (en) Absorbent substrate
CN107849766A (en) Thin slice preparation facilities, method for preparing slices, resin powder and thin slice
TWI277681B (en) Flowable and meterable densified fiber particle
JP2024015206A (en) Steam generator and heating device
CN107641993A (en) The preparation method of microfine cellulose
JP5957351B2 (en) Manufacturing method of papermaking molded body
EP0104905A2 (en) Process for manufacturing a calendered peat moss board
JPH09173429A (en) Sheet container activated carbon particle
US3269889A (en) Asbestos paper containing carbon and method of making it
CN106480765A (en) A kind of preparation method of Lignum seu Ramulus Cunninghamiae Lanceolatae nanofiber
RU2426828C1 (en) Method to introduce filler into paper
CN106917319A (en) A kind of papermaking Special high-strength flexibility sepiolite fibre and preparation method thereof
JP2008101095A (en) Exothermic sheet form and method for producing the same
JP2004137641A (en) Negative ion-generating paper
JP2015101719A (en) Exothermic composition
CN116770632A (en) Boron carbide special paper for neutron absorption and papermaking method thereof
JP2023007354A (en) Production method of molding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6082834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250