JP2017212778A - Iron core forming method, iron core forming device, and program - Google Patents

Iron core forming method, iron core forming device, and program Download PDF

Info

Publication number
JP2017212778A
JP2017212778A JP2016102756A JP2016102756A JP2017212778A JP 2017212778 A JP2017212778 A JP 2017212778A JP 2016102756 A JP2016102756 A JP 2016102756A JP 2016102756 A JP2016102756 A JP 2016102756A JP 2017212778 A JP2017212778 A JP 2017212778A
Authority
JP
Japan
Prior art keywords
iron core
core piece
laminated
thickness
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016102756A
Other languages
Japanese (ja)
Other versions
JP6653619B2 (en
Inventor
勤 永利
Tsutomu Nagatoshi
勤 永利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2016102756A priority Critical patent/JP6653619B2/en
Publication of JP2017212778A publication Critical patent/JP2017212778A/en
Application granted granted Critical
Publication of JP6653619B2 publication Critical patent/JP6653619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely resolute an inclination of a laminate iron core caused by a plate thickness deviation of an iron core piece, and further improve formation precisely of the laminate iron core.SOLUTION: An iron core forming method includes: a material plate thickness measuring step of measuring the thickness of a steel plate 2 in a plurality of measurement reference point; an iron core piece punching step of punching an iron core piece 3 from the steel plate 2; and a rotation laminate layer step of estimating the height of a laminate at the plurality of laminate references in a case where the iron core piece 3 is relatively rotated around a center axis to a laminate body previously laminated and is laminated on the laminate body on the basis of the thickness of the steel plate 2 in the calculated reference point measured by the material plate thickness measuring step, determining an optimal rotation angle in which a laminate high polarization difference becomes the minimum value by repeating an operation of calculation of the laminate high polarization by reducing the minimum value from the maximum value of the plurality of laminate heights to be estimated at a plurality of rotation angles, and relatively laminating the iron core piece 3 onto the laminate body around the center axis by actually rotating at the optimal rotation angle.SELECTED DRAWING: Figure 1

Description

本発明は、鉄心片を積層して積層鉄心を形成する方法及び装置並びにプログラムに関するものである。   The present invention relates to a method, an apparatus, and a program for stacking iron core pieces to form a laminated iron core.

回転電機の電機子を構成する積層鉄心は、鉄心片を積層して形成される。鉄心片は、一般に電磁鋼板あるいは珪素鋼板と呼ばれる板状の素材をプレス加工によって打ち抜いて製造される。鉄心片の素材(以下、本明細書においては、単に「素材」と言う)は、圧延機によって形成されたコイル状の鋼板(原鋼板)を所望の幅にスリット加工して製造される。   The laminated iron core constituting the armature of the rotating electric machine is formed by laminating iron core pieces. The core piece is manufactured by punching a plate-shaped material generally called an electromagnetic steel plate or a silicon steel plate by press working. The material of the core piece (hereinafter simply referred to as “material” in the present specification) is manufactured by slitting a coiled steel plate (raw steel plate) formed by a rolling mill to a desired width.

素材は、完全な平板であること、つまり、全ての部位において板厚が均一であることが求められる。しかしながら、原鋼板を形成する圧延機が備える圧延ローラは、加工対象から反力を受けて、僅かではあるが撓む。この圧延ローラの撓みによって、原材料の板厚は不均一になる。一般に、原鋼板の板厚は幅方向の中央において厚く、幅方向の両端において薄くなる。また、僅かではあるが、原鋼板の板厚は、製造ロット毎に微妙に異なる。そして、前述したように、素材は原鋼板をスリット加工して製造される。そのため、素材から打ち抜かれた鉄心片の板厚も均一にはならない。板厚が不均一な鉄心片の最大板厚と最小板厚の差を板厚偏差と言う。   The material is required to be a complete flat plate, that is, to have a uniform plate thickness at all parts. However, the rolling roller included in the rolling mill that forms the raw steel plate is bent slightly although receiving a reaction force from the object to be processed. Due to the bending of the rolling roller, the thickness of the raw material becomes non-uniform. In general, the plate thickness of the original steel plate is thick at the center in the width direction and thin at both ends in the width direction. Moreover, although it is slight, the plate | board thickness of an original steel plate changes delicately for every production lot. And as mentioned above, a raw material is manufactured by slitting a raw steel plate. For this reason, the thickness of the iron core piece punched from the material is not uniform. The difference between the maximum thickness and the minimum thickness of an iron core piece with non-uniform thickness is called thickness deviation.

そして、素材から打ち抜かれた鉄心片を、向きを変えずに、つまり打ち抜き加工機から取り出された向きのままで、積層すると、先に積層された鉄心片の板厚が厚い部位の直上に、次に積層される鉄心片の板厚が厚い部位が載置される。そのため、鉄心片を積層すると、板厚偏差も積算される。その結果、積層鉄心は、積層高さが不均一になり、全体として傾いた状態になる。積層鉄心が傾くと、回転子と固定子の間のギャップが不均一になり、トルク変動や振動が発生する。つまり、回転電機に不具合が生じる。   And, when the core piece punched from the material is stacked without changing the orientation, that is, in the orientation taken out from the punching machine, immediately above the part where the thickness of the core piece laminated earlier is thick, Next, a portion where the plate thickness of the core pieces to be stacked is thick is placed. Therefore, when the core pieces are stacked, the plate thickness deviation is also integrated. As a result, the laminated iron core has a non-uniform laminated height and is inclined as a whole. When the laminated iron core is tilted, the gap between the rotor and the stator becomes non-uniform, and torque fluctuation and vibration occur. That is, a malfunction occurs in the rotating electrical machine.

このような不具合を解消するために、「転積」が行われる。「転積」とは、鉄心片を積層鉄心の中心軸回りに回転させて、鉄心片の向きを変えて、積層することである。例えば、最初の鉄心片を、打ち抜き加工機から取り出された状態のまま積層し、次に積層される鉄心片を、回転中心軸回りに120°回転させて積層し、3回目に積層される鉄心片を、回転中心軸回りに240°回転させて積層し、4回目以降は、これらを繰り返すことが知られている。このようにすれば、最初に積層された鉄心片の板厚の厚い部位の直上に、2回目及び3回目に積層される鉄心片の板厚の薄い部位が載置される。その結果、板厚偏差が相殺され、積層鉄心の積層高さが平均化される。   In order to solve such a problem, “conversion” is performed. “Rolling” means that the iron core pieces are rotated around the central axis of the laminated iron core to change the direction of the iron core pieces and laminate. For example, the first iron core piece is laminated while being taken out from the punching machine, and the next laminated iron core piece is laminated by rotating 120 ° around the rotation center axis, and the iron core laminated for the third time. It is known that the pieces are laminated by rotating by 240 ° around the rotation center axis, and these are repeated after the fourth time. If it does in this way, the thin part of the thickness of the core piece laminated | stacked the 2nd time and the 3rd time will be mounted directly on the thick part of the core piece laminated | stacked initially. As a result, the plate thickness deviation is canceled out, and the laminated height of the laminated iron cores is averaged.

特開2003−62623号公報JP 2003-62623 A

前述したように、転積を行えば、転積を行わない場合に比べて、積層鉄心の傾きは一応は減少する。しかしながら、鉄心片の板厚偏差は一定ではない。最大板厚と最小板厚が生じる部位も、鉄心片毎に微妙に変動する。そのため、毎回、同じ角度だけ回転角度を変更する従来の転積法では、板厚偏差を十分に相殺できない場合がある。つまり、積層鉄心の形状精度を十分に改善できない場合がある。また、回転電機の性能を向上させるために、積層鉄心の形状精度を更に改善することが求められている。   As described above, if the rollover is performed, the inclination of the laminated iron core is temporarily reduced as compared with the case where the rollover is not performed. However, the thickness deviation of the iron core piece is not constant. The portion where the maximum and minimum plate thicknesses also vary slightly for each core piece. For this reason, the conventional inversion method in which the rotation angle is changed by the same angle every time may not sufficiently cancel the thickness deviation. That is, the shape accuracy of the laminated core may not be sufficiently improved. Further, in order to improve the performance of the rotating electrical machine, it is required to further improve the shape accuracy of the laminated core.

本発明は、このような事情に鑑みてなされたものであり、鉄心片の板厚偏差に起因する積層鉄心の傾きをより確実に解消して、積層鉄心の形状精度を更に改善できる積層鉄心形成方法、積層鉄心形成装置及びプログラムを提供することを目的とする。   The present invention has been made in view of such circumstances, and the formation of a laminated core that can more reliably eliminate the inclination of the laminated core caused by the thickness deviation of the core piece and further improve the shape accuracy of the laminated core. It is an object to provide a method, a laminated core forming apparatus, and a program.

上記課題を解決するために、本発明に係る積層鉄心形成方法は、素材から打ち抜かれた複数の鉄心片を積層して、積層鉄心を形成する積層鉄心形成方法において、複数の計測基準点において、前記素材の板厚を計測する素材板厚計測ステップと、前記素材から前記鉄心片を打ち抜く鉄心片打抜ステップと、前記素材板厚計測ステップで計測された前記計測基準点における前記素材の板厚に基づいて、前記鉄心片を、先に積層された積層体に対して中心軸回りに相対的に回転させて、前記積層体の上に積層した場合の、複数の積層基準点における積層高さを推定し、推定された複数の前記積層高さの最大値から最小値を減じて積層高偏差を算出する操作を、複数の回転角度について繰り返して、前記積層高偏差が最小になる最適回転角度を決定し、前記鉄心片を、中心軸回りに、前記積層体に対して相対的に、前記最適回転角度だけ実際に回転させて、前記積層体の上に積層する回転積層ステップと、を有するものである。   In order to solve the above problems, a laminated core forming method according to the present invention is a laminated core forming method in which a plurality of core pieces punched from a material are laminated to form a laminated core, and at a plurality of measurement reference points, The material thickness measurement step for measuring the thickness of the material, the core piece punching step for punching the core piece from the material, and the thickness of the material at the measurement reference point measured in the material thickness measurement step The stacking height at a plurality of stacking reference points when the core pieces are stacked on the stacked body by rotating relative to the previously stacked stacked body around the central axis. And calculating the stacking height deviation by subtracting the minimum value from the estimated maximum value of the plurality of stacking heights, and repeating the operation for a plurality of rotation angles, so that the stacking height deviation is minimized. Decide A rotating lamination step of actually rotating the iron core piece around the central axis relative to the laminated body by the optimum rotation angle and laminating the laminated body on the laminated body. .

前記計測基準点及び前記積層基準点は、前記素材の前記鉄心片にされる領域の外側に配置されていても良い。   The measurement reference point and the lamination reference point may be arranged outside an area of the material that is used as the core piece.

前記計測基準点は、前記素材の前記鉄心片にされる領域の外側に配置され、前記積層基準点は、前記素材の前記鉄心片にされる領域内に配置されていても良い。   The measurement reference point may be disposed outside a region of the material that is the core piece, and the lamination reference point may be disposed within a region of the material that is the core piece.

前記計測基準点及び前記積層基準点は、前記素材の前記鉄心片にされる領域内に配置されていても良い。   The measurement reference point and the lamination reference point may be arranged in a region of the material that is used as the core piece.

前記回転積層ステップは、前記素材板厚計測ステップで計測された複数の前記計測基準点における前記素材の板厚に基づいて、補間演算を行って、前記積層基準点における前記素材の板厚を推定する補間演算ステップを含んでいても良い。   The rotating lamination step estimates the thickness of the material at the lamination reference point by performing an interpolation operation based on the thickness of the material at the plurality of measurement reference points measured in the material thickness measurement step. An interpolation calculation step may be included.

前記素材から複数の前記鉄心片を打ち抜く場合に、複数の前記計測基準点の少なくとも一部は、前記鉄心片にされる領域であって前記素材において隣接する2つの領域の中間に配置されていて、当該2つの領域の間で共有されていても良い。   When punching a plurality of the iron core pieces from the material, at least a part of the plurality of measurement reference points is an area to be used as the iron core piece and arranged between two adjacent areas in the material. , May be shared between the two areas.

本発明に係る積層鉄心形成装置は、素材から打ち抜かれた複数の鉄心片を積層して、積層鉄心を形成する積層鉄心形成装置において、複数の計測基準点において、前記素材の板厚を計測する板厚計測ユニットと、前記素材から前記鉄心片を打ち抜く鉄心片打抜ユニットと、前記板厚計測ユニットで計測された前記計測基準点における前記素材の板厚に基づいて、前記鉄心片を、先に積層された積層体に対して中心軸回りに相対的に回転させて、前記積層体の上に積層した場合の、複数の積層基準点における積層高さを推定し、推定された複数の前記積層高さの最大値から最小値を減じて積層高偏差を算出する操作を、複数の回転角度について繰り返して、前記積層高偏差が最小になる最適回転角度を決定し、前記鉄心片を、中心軸回りに、前記積層体に対して相対的に、前記最適回転角度だけ実際に回転させて、前記積層体の上に積層する回転積層ユニットと、を備えるものである。   The laminated core forming apparatus according to the present invention is a laminated core forming apparatus that forms a laminated core by laminating a plurality of core pieces punched from a material, and measures the plate thickness of the material at a plurality of measurement reference points. Based on the thickness of the material at the measurement reference point measured by the plate thickness measuring unit, the core piece punching unit for punching the core piece from the material, and the core piece, When the layers are laminated on the laminate, the stacking height at a plurality of stacking reference points is estimated, and the estimated plurality of the plurality The operation of calculating the stacking height deviation by subtracting the minimum value from the maximum value of the stacking height is repeated for a plurality of rotation angles to determine the optimum rotation angle at which the stacking height deviation is minimized, and the iron core piece is centered. Around the axis, front Relative to the stack, the optimum rotation angle only by actually rotating the rotary lamination unit for laminating over the laminate, in which comprises a.

本発明に係るプログラムは、素材から打ち抜かれた複数の鉄心片を積層して、積層鉄心を形成する積層鉄心形成装置を構成するコンピュータであって、前記素材の板厚を計測する板厚計測ユニットと、前記素材から前記鉄心片を打ち抜く鉄心片打抜ユニットと、前記鉄心片を、中心軸回りに、積層体に対して相対的に回転させて、前記積層体の上に積層する回転積層ユニットを制御するコンピュータにインストールされて、前記板厚計測ユニットを、複数の計測基準点において、前記素材の板厚を計測する素材板厚計測手段として、機能させ、前記回転積層ユニットを、前記素材板厚計測手段で計測された前記計測基準点における前記素材の板厚に基づいて、前記鉄心片を、先に積層された積層体に対して中心軸回りに相対的に回転させて、前記積層体の上に積層した場合の、複数の積層基準点における積層高さを推定し、推定された複数の前記積層高さの最大値から最小値を減じて積層高偏差を算出する操作を、複数の回転角度について繰り返して、前記積層高偏差が最小になる最適回転角度を決定し、前記鉄心片を、中心軸回りに、前記積層体に対して相対的に、前記最適回転角度だけ実際に回転させて、前記積層体の上に積層する回転積層手段として、機能させるものである。   A program according to the present invention is a computer constituting a laminated core forming apparatus that forms a laminated core by laminating a plurality of core pieces punched from a material, and is a plate thickness measuring unit that measures the thickness of the material And an iron core piece punching unit that punches the iron core piece from the material, and a rotating lamination unit that rotates the iron core piece relative to the laminate around the central axis and laminates the laminate on the laminate. Installed in a computer for controlling the sheet thickness measurement unit to function as a sheet thickness measurement means for measuring the sheet thickness of the material at a plurality of measurement reference points, and the rotating lamination unit is operated as the material plate. Based on the thickness of the material at the measurement reference point measured by the thickness measuring means, the iron core piece is rotated relative to the previously laminated body around the central axis, When stacking on the laminate, the stacking height at a plurality of stacking reference points is estimated, and the stack height deviation is calculated by subtracting the minimum value from the maximum value of the plurality of estimated stacking heights. , Repeatedly for a plurality of rotation angles to determine an optimal rotation angle at which the stacking height deviation is minimized, and the iron core piece is actually moved around the central axis relative to the stack by the optimal rotation angle. It is made to function as a rotation laminating means for laminating and laminating on the laminated body.

本発明によれば、鉄心片の板厚偏差に応じて、鉄心片の転積角度を最適化できるので、積層鉄心の積層高さの偏差を最小化し、積層鉄心の傾きを最小化することができる。その結果、電機子の品質と回転電機の性能が向上する。   According to the present invention, the roll angle of the iron core piece can be optimized according to the thickness deviation of the iron core piece, so that the deviation of the lamination height of the laminated iron core can be minimized and the inclination of the laminated iron core can be minimized. it can. As a result, the quality of the armature and the performance of the rotating electrical machine are improved.

本発明の実施形態に係る積層鉄心形成装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the laminated iron core formation apparatus which concerns on embodiment of this invention. 図1に記載の積層鉄心形成装置が備える板厚計測ユニットの構成を示す図であって、図2(a)は板厚計測ユニットの平面図であり、図2(b)は板厚計測ユニットを図1でA−A’線で示す断面で切断した断面図である。It is a figure which shows the structure of the plate | board thickness measuring unit with which the laminated core formation apparatus of FIG. 1 is provided, Comprising: Fig.2 (a) is a top view of a plate | board thickness measuring unit, FIG.2 (b) is a plate | board thickness measuring unit. It is sectional drawing cut | disconnected by the cross section shown by the AA 'line | wire in FIG. 図1に記載の積層鉄心形成装置が備える打抜ユニットの構成を示す図であって、打抜ユニットを図1でB−B’線で示す断面で切断した断面図である。It is a figure which shows the structure of the punching unit with which the laminated core formation apparatus of FIG. 1 is provided, Comprising: It is sectional drawing which cut | disconnected the punching unit in the cross section shown by the B-B 'line | wire in FIG. 図1に記載の積層鉄心形成装置が備える回転積層ユニットの構成を示す図であって、回転積層ユニットを図1でC−C’線で示す断面で切断した断面図である。載置部の変形例を示す図であって、図2に対応する断面図である。It is a figure which shows the structure of the rotation lamination | stacking unit with which the laminated iron core formation apparatus of FIG. 1 is provided, Comprising: It is sectional drawing which cut | disconnected the rotation lamination | stacking unit in the cross section shown by the C-C 'line | wire in FIG. It is a figure which shows the modification of a mounting part, Comprising: It is sectional drawing corresponding to FIG. 板厚計測プログラムの一例を示すフローチャートである。It is a flowchart which shows an example of a plate thickness measurement program. 計測基準点の配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of a measurement reference point. 積層基準点の配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of a lamination | stacking reference point. 回転積層プログラムの一例を示すフローチャートである。It is a flowchart which shows an example of a rotation lamination | stacking program. 鉄心片を中心軸回りに回転させた状態を示す平面図であって、図9(a)は回転角度0°の状態、図9(b)は回転角度90°の状態、図9(c)は回転角度180°の状態、図9(d)は回転角度270°の状態を、それぞれ示す図である。FIG. 9A is a plan view showing a state in which the iron core piece is rotated around the central axis, FIG. 9A is a state at a rotation angle of 0 °, FIG. 9B is a state at a rotation angle of 90 °, and FIG. FIG. 9D is a view showing a state at a rotation angle of 180 °, and FIG. 9D is a view showing a state at a rotation angle of 270 °. 計測基準点の配置の変形例を示す平面図であって、図10(a)は鉄心片の外側の領域に3個の計測基準点を配置した例、図10(b)は鉄心片の外側の領域に配置された4個に加えて、鉄心片の中心に計測基準点を1個配置した例、図10(c)は鉄心片の内側の領域に4個の計測基準点を配置した例を、それぞれ示す。FIG. 10A is a plan view showing a modified example of the arrangement of measurement reference points, FIG. 10A shows an example in which three measurement reference points are arranged in an area outside the core piece, and FIG. 10B shows the outside of the core piece. FIG. 10C shows an example in which four measurement reference points are arranged in the area inside the core piece in addition to the four arranged in the area of FIG. Are shown respectively. 計測基準点の配置の別の変形例を示す平面図であって、図11(a)は隣接する鉄心片の間で計測基準点を2個ずつ共有する例、図11(b)は隣接する鉄心片の間で計測基準点を1個ずつ共有する例を、それぞれ示す。FIG. 11A is a plan view showing another modified example of the arrangement of measurement reference points, FIG. 11A is an example in which two measurement reference points are shared between adjacent iron core pieces, and FIG. An example in which one measurement reference point is shared between iron core pieces will be shown. 計測基準点を鉄心片の外側の領域に、積層基準点を鉄心片の内側の領域に、それぞれ配置した例を示す平面図である。It is a top view which shows the example which has each arrange | positioned the measurement reference point in the area | region outside an iron core piece, and the lamination | stacking reference point in the area | region inside an iron core piece. 計測基準点の個数と積層基準点の個数が異なる例を示す平面図である。It is a top view which shows the example from which the number of measurement reference points differs from the number of lamination | stacking reference points.

以下、本発明の実施形態に係る積層鉄心形成方法、積層鉄心形成装置及びプログラムについて図面を参照しながら詳細に説明する。   Hereinafter, a laminated core forming method, a laminated core forming apparatus, and a program according to embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る積層鉄心形成装置1の構成を示す説明図である。積層鉄心形成装置1は、鋼板2から鉄心片3を打ち抜いて、その鉄心片3を積層して積層鉄心4を形成する装置である。また、図1に示すように、積層鉄心形成装置1は、板厚計測ユニット5、打抜ユニット6及び回転積層ユニット7を備えている。これらは、図の左側から右側に順に配列されている。なお、積層鉄心形成装置1は、図示しない送り装置を備えている。鋼板2は該送り装置によって、図1において、左側から右側に向かう方向(送り方向)に移送される。そのため、鋼板2は、板厚計測ユニット5、打抜ユニット6及び回転積層ユニット7に順次、搬入されて、後述するような処理が成される。また、積層鉄心形成装置1はコンピュータ8を備えている。板厚計測ユニット5、打抜ユニット6、回転積層ユニット7、及び前記の送り装置は、コンピュータ8によって制御されて、動作する。   FIG. 1 is an explanatory diagram showing a configuration of a laminated core forming apparatus 1 according to an embodiment of the present invention. The laminated iron core forming apparatus 1 is an apparatus for punching out iron core pieces 3 from a steel plate 2 and laminating the iron core pieces 3 to form a laminated iron core 4. As shown in FIG. 1, the laminated core forming apparatus 1 includes a plate thickness measuring unit 5, a punching unit 6, and a rotating laminated unit 7. These are arranged in order from the left side to the right side of the figure. The laminated core forming apparatus 1 includes a feeding device (not shown). The steel plate 2 is transferred by the feeding device in the direction from the left side to the right side (feeding direction) in FIG. Therefore, the steel plate 2 is sequentially carried into the plate thickness measuring unit 5, the punching unit 6, and the rotary lamination unit 7, and processing as described later is performed. The laminated core forming apparatus 1 includes a computer 8. The plate thickness measuring unit 5, the punching unit 6, the rotary lamination unit 7, and the feeding device are controlled and operated by a computer 8.

鋼板2は、鉄心片3を構成する素材であって、一般に電磁鋼板あるいは珪素鋼板と呼ばれる圧延鋼の帯状の薄板である。なお、鋼板2は、圧延機で連続圧延された幅広の原鋼板を、図示しない前工程において、鉄心片3の製造に適した幅にスリット加工して製造される。また、鋼板2は、コイル状に巻き取られた状態(図示せず)で、図1において積層鉄心形成装置1の左側に配置されている。そして、鋼板2はコイルから引き出されて、図1における右方向に順次移送されて、積層鉄心形成装置1の内部に搬入される。なお、鋼板2の送り方向(図1における左右方向)は、圧延機の送り方向と一致する。鋼板2の幅方向(図1における上下方向)は、圧延機の幅方向と一致する。   The steel plate 2 is a material constituting the iron core piece 3 and is a strip-like thin plate of rolled steel generally called an electromagnetic steel plate or a silicon steel plate. In addition, the steel plate 2 is manufactured by slitting a wide raw steel plate continuously rolled by a rolling mill into a width suitable for manufacturing the iron core piece 3 in a previous process (not shown). Moreover, the steel plate 2 is arrange | positioned in the left side of the laminated core formation apparatus 1 in FIG. 1 in the state (not shown) wound up by the coil shape. Then, the steel plate 2 is drawn out of the coil, sequentially transferred in the right direction in FIG. 1, and carried into the laminated iron core forming apparatus 1. In addition, the feed direction (left-right direction in FIG. 1) of the steel plate 2 corresponds to the feed direction of the rolling mill. The width direction of the steel plate 2 (the vertical direction in FIG. 1) coincides with the width direction of the rolling mill.

鉄心片3は、積層鉄心4を構成する部材であって、打抜ユニット6において鋼板2から打ち抜かれる。鉄心片3は、回転積層ユニット7において、順次積層されて、積層鉄心4を構成する。なお、積層鉄心4は図示しない回転電機の電機子(固定子又は回転子)を構成する部品である。   The iron core piece 3 is a member constituting the laminated iron core 4 and is punched from the steel plate 2 in the punching unit 6. The iron core pieces 3 are sequentially laminated in the rotary lamination unit 7 to constitute a laminated iron core 4. The laminated iron core 4 is a component constituting an armature (stator or rotor) of a rotating electric machine (not shown).

板厚計測ユニット5は、積層鉄心形成装置1において、鋼板2が最初に搬入されるユニットである。板厚計測ユニット5では、鋼板2の板厚が複数の部位において計測される。板厚計測ユニット5において計測された鋼板2の板厚はコンピュータ8に記憶される。なお、板厚計測ユニット5の詳細な構成については後述する。板厚の計測が終わった鋼板2は、打抜ユニット6に移送される。   The plate thickness measuring unit 5 is a unit in which the steel plate 2 is first carried in the laminated core forming apparatus 1. In the plate thickness measuring unit 5, the plate thickness of the steel plate 2 is measured at a plurality of parts. The thickness of the steel plate 2 measured by the thickness measuring unit 5 is stored in the computer 8. The detailed configuration of the plate thickness measuring unit 5 will be described later. The steel plate 2 whose thickness has been measured is transferred to the punching unit 6.

打抜ユニット6は、鋼板2から鉄心片3を打ち抜くユニットである。打抜ユニット6の詳細な構成については後述する。また、鋼板2から打ち抜かれた鉄心片3と鋼板2は、回転積層ユニット7に移送される。   The punching unit 6 is a unit for punching the iron core piece 3 from the steel plate 2. The detailed configuration of the punching unit 6 will be described later. Further, the iron core piece 3 and the steel plate 2 punched out from the steel plate 2 are transferred to the rotary lamination unit 7.

回転積層ユニット7は、打抜ユニット6から、鋼板2と共に移送された鉄心片3を、鋼板2から分離して、順次積層して積層鉄心4を形成するユニットである。また、回転積層ユニット7は、新たに積層される鉄心片3を、先に積層された鉄心片3(の積層体)に対して、相対的に回転させてから、積層する。つまり、回転積層ユニット7では、転積が行われる。また、鉄心片3が分離された後に残った鋼板2(つまり、スクラップ)は、図1において、右方向(送り方向)に移送されて、積層鉄心形成装置1の外に排出される。回転積層ユニット7の詳細な構成については後述する。   The rotary lamination unit 7 is a unit that separates the iron core pieces 3 transferred together with the steel plate 2 from the punching unit 6 from the steel plate 2 and sequentially laminates them to form the laminated iron core 4. Further, the rotary lamination unit 7 laminates the newly laminated iron core pieces 3 after relatively rotating with respect to the iron core pieces 3 (laminated body) previously laminated. That is, in the rotary lamination unit 7, transposition is performed. In addition, the steel plate 2 (that is, scrap) remaining after the core piece 3 is separated is transferred to the right (feed direction) in FIG. 1 and discharged out of the laminated core forming apparatus 1. The detailed configuration of the rotary lamination unit 7 will be described later.

図2(a)に示すように、板厚計測ユニット5は、4組の板厚計51を備えている。板厚計51は、図2(b)に示すように、上プローブ51aと下プローブ51bとから構成されて、上プローブ51aを鋼板2の上面に、下プローブ51bを鋼板2の下面に、それぞれ接触させて、つまり、上プローブ51aと下プローブ51bで鋼板2を挟持して、鋼板2の板厚を計測する接触式の板厚計である。また、図2(a)に示すように、4組の板厚計51は、鋼板2の鉄心片3を構成する領域(鋼板2から分離されて鉄心片3となる領域)の外側に仮想される正方形10の各頂点に配置されている。また、板厚計測ユニット5はコンピュータ8に制御されて、前述したような計測を行う。板厚計51で計測された鋼板2の板厚の値はコンピュータ8に入力される。   As shown in FIG. 2A, the plate thickness measuring unit 5 includes four sets of plate thickness meters 51. As shown in FIG. 2B, the thickness gauge 51 is composed of an upper probe 51a and a lower probe 51b. The upper probe 51a is on the upper surface of the steel plate 2, and the lower probe 51b is on the lower surface of the steel plate 2, respectively. This is a contact-type thickness gauge that measures the thickness of the steel plate 2 by contacting the steel plate 2 with the upper probe 51a and the lower probe 51b. Further, as shown in FIG. 2A, the four sets of thickness gauges 51 are virtually imagined outside the region constituting the core piece 3 of the steel plate 2 (the region separated from the steel plate 2 to become the core piece 3). It is arranged at each vertex of the square 10. Further, the plate thickness measuring unit 5 is controlled by the computer 8 to perform the measurement as described above. The thickness value of the steel plate 2 measured by the thickness gauge 51 is input to the computer 8.

図3に示すように、打抜ユニット6は、打抜パンチ61、打抜ダイス62、板押え63を備えている。また、打抜ダイス62の内部には、プッシュバック用逆押え64が配置されている。打抜パンチ61と板押え63は、それぞれ、図示しない駆動装置で駆動されて、鋼板2に対して昇降される。板押え63が押し下げられて、板押え63と打抜ダイス62の間に鋼板2が挟まれると、その後に、打抜パンチ61が押し下げられて、鋼板2から鉄心片3を打ち抜く。鋼板2から鉄心片3を打ち抜いたら、打抜パンチ61は元の位置に戻される(上方に引き上げられる)。また、プッシュバック用逆押え64の下方には図示しないばね要素が配置されていて、打抜パンチ61が上昇すると、鉄心片3は鋼板2に嵌め戻される。鉄心片3が鋼板2に嵌め戻されたら、板押え63は元の位置に戻される(上方に引き上げられる)。なお、打抜ユニット6はコンピュータ8に制御される。上記の動作はコンピュータ8に制御されてなされる。   As shown in FIG. 3, the punching unit 6 includes a punching punch 61, a punching die 62, and a plate presser 63. A pushback reverse presser 64 is disposed inside the punching die 62. The punching punch 61 and the plate presser 63 are respectively driven by a driving device (not shown) and moved up and down with respect to the steel plate 2. When the plate retainer 63 is pushed down and the steel plate 2 is sandwiched between the plate retainer 63 and the punching die 62, the punching punch 61 is subsequently pushed down to punch out the core piece 3 from the steel plate 2. When the iron core piece 3 is punched from the steel plate 2, the punching punch 61 is returned to its original position (raised upward). Further, a spring element (not shown) is arranged below the pushback reverse presser 64 and when the punching punch 61 is raised, the core piece 3 is fitted back to the steel plate 2. When the core piece 3 is fitted back into the steel plate 2, the plate retainer 63 is returned to its original position (raised upward). The punching unit 6 is controlled by the computer 8. The above operation is controlled by the computer 8.

図4に示すように、回転積層ユニット7は、積層パンチ71、回転積層ダイス72、及び回転積層ダイス72を鉄心片3の中心軸(図4においてXで示す軸)回りに回転駆動する回転駆動装置73を備えている。また、回転積層ユニット7は、積層パンチ71を昇降させる図示しない駆動装置を備えている。鉄心片3が嵌め込まれた状態で鋼板2が、回転積層ユニット7内に搬入されると、後述するような手順で、コンピュータ8において、最適回転角度が決定され、回転駆動装置73によって、回転積層ダイス72がX軸回りに回転される。その結果、鉄心片3は、回転積層ダイス72に対して、最適回転角度だけ相対的に回転する。その後で、積層パンチ71が押し下げられて、鉄心片3が回転積層ダイス72内に押し入れられる。このようにして、複数の鉄心片3が、回転積層ダイス72に、逐次、押し入れられて、積層体9を形成する。事前に規定された枚数の鉄心片3が回転積層ダイス72内で積層されると、積層鉄心4が完成する。   As shown in FIG. 4, the rotary stacking unit 7 rotates and drives the stacking punch 71, the rotating stacking die 72, and the rotating stacking die 72 around the central axis of the iron core piece 3 (axis indicated by X in FIG. 4). A device 73 is provided. Further, the rotary lamination unit 7 includes a driving device (not shown) that moves the lamination punch 71 up and down. When the steel plate 2 is carried into the rotary lamination unit 7 with the core piece 3 fitted, an optimum rotation angle is determined in the computer 8 by the procedure as described later, and the rotary drive device 73 rotates the lamination. The die 72 is rotated around the X axis. As a result, the iron core piece 3 rotates relative to the rotating laminated die 72 by an optimum rotation angle. Thereafter, the lamination punch 71 is pushed down, and the core piece 3 is pushed into the rotary lamination die 72. In this way, the plurality of iron core pieces 3 are sequentially pushed into the rotary laminating die 72 to form the laminated body 9. When a predetermined number of core pieces 3 are stacked in the rotary stacking die 72, the stacked core 4 is completed.

回転積層ダイス72の中には、積層体9が載置されているので、回転積層ダイス72が回転されて、鉄心片3が、回転積層ダイス72に対して、最適回転角度だけ相対的に回転すると、鉄心片3は、積層体9に対して、最適回転角度だけ相対的に回転する。   Since the laminated body 9 is placed in the rotating laminated die 72, the rotating laminated die 72 is rotated, and the iron core piece 3 rotates relative to the rotating laminated die 72 by an optimum rotation angle. Then, the iron core piece 3 rotates relative to the laminate 9 by an optimum rotation angle.

さて、前述したように、板厚計測ユニット5と回転積層ユニット7は、コンピュータ8に制御されて、上記のように動作する。かかる制御を行うために、板厚計測プログラムと回転積層プログラムがコンピュータ8にインストールされている。以下において、板厚計測プログラムと回転積層プログラムによってなされる処理を説明する。   As described above, the plate thickness measuring unit 5 and the rotary lamination unit 7 are controlled by the computer 8 and operate as described above. In order to perform such control, a plate thickness measurement program and a rotating lamination program are installed in the computer 8. Hereinafter, processing performed by the plate thickness measurement program and the rotating lamination program will be described.

板厚計測プログラムは、鋼板2が板厚計測ユニット5に搬入されると起動される。図5に示すように、板厚計測プログラムが起動されると、板厚計測ユニット5が備える4組の板厚計51が動作されて、鋼板2上に設定された4点の計測基準点において、板厚が計測される(STEP11)。そして、計測された板厚の値をコンピュータ8に記憶して(STEP12)、処理を終える。コンピュータ8に記憶された板厚の計測値は、回転積層プログラムにおいて参照される。なお、前述したように、4点の計測基準点は鋼板2の鉄心片3を構成する領域(鋼板2から打ち抜かれて鉄心片3となる領域)の外側に仮想された正方形10の各頂点に配置されている。以後、図6に示すように、これら4点の計測基準点に符号a,b,c,dを付けて説明する。また、計測基準点a,b,c,dにおいて計測された、鋼板2の板厚の値を、それぞれ、t,t,t,tで表示する。つまり、板厚計測プログラムの処理が終了すると、コンピュータ8には板厚t,t,t,tが記憶される。また、板厚t,t,t,tでは、回転積層プログラムにおいて参照される。 The plate thickness measurement program is started when the steel plate 2 is carried into the plate thickness measurement unit 5. As shown in FIG. 5, when the plate thickness measurement program is started, four sets of plate thickness meters 51 provided in the plate thickness measurement unit 5 are operated, and at the four measurement reference points set on the steel plate 2. The plate thickness is measured (STEP 11). Then, the measured thickness value is stored in the computer 8 (STEP 12), and the process is finished. The measured value of the plate thickness stored in the computer 8 is referred to in the rotary lamination program. As described above, the four measurement reference points are located at the apexes of the square 10 that are virtually outside the region constituting the core piece 3 of the steel plate 2 (the region that is punched from the steel plate 2 to become the core piece 3). Has been placed. Hereinafter, as shown in FIG. 6, the four measurement reference points will be described with reference symbols a, b, c, and d. Further, the values of the plate thicknesses of the steel plate 2 measured at the measurement reference points a, b, c, and d are displayed as t a , t b , t c , and t d , respectively. That is, when the processing of the plate thickness measurement program is finished, the computer 8 stores the plate thicknesses t a , t b , t c , and t d . Further, the plate thicknesses t a , t b , t c , and t d are referred to in the rotating lamination program.

このように、積層鉄心形成装置1においては、コンピュータ8が板厚計測プログラムに従って、処理を行うことによって、素材板厚計測ステップが実行される。また、コンピュータ8が板厚計測プログラムに従って、処理を行うことによって、板厚計測ユニット5が、素材板厚計測手段として機能する。   In this way, in the laminated core forming apparatus 1, the material plate thickness measurement step is executed by the computer 8 performing the processing according to the plate thickness measurement program. Further, when the computer 8 performs processing according to the plate thickness measurement program, the plate thickness measurement unit 5 functions as a material plate thickness measurement means.

回転積層プログラムによる処理を説明する前に、回転積層プログラムで参照される積層基準点について説明する。積層基準点は、図7に示すように、平面形において積層体9の外側に仮想された正方形10の各頂点に配置されている。また、積層基準点の積層体9に対する相対的な位置は、計測基準点の鉄心片3に対する相対的な位置に等しい。以後、図7に示すように、これら4点の積層基準点に符号A,B,C,Dを付けて説明する。また、積層基準点A,B,C,Dにおける積層高さを、それぞれT,T,T,Tで表示する。積層基準点A,B,C,Dの積層高さT,T,T,Tは、積層体9を構成する全ての鉄心片3の計測基準点a,b,c,dにおいて計測された板厚t,t,t,tに基づいて推定される。 Before explaining the processing by the rotating lamination program, the lamination reference point referred to by the rotating lamination program will be explained. As illustrated in FIG. 7, the stacking reference point is arranged at each vertex of a square 10 that is virtually outside the stacked body 9 in a planar shape. Further, the relative position of the lamination reference point with respect to the laminate 9 is equal to the relative position of the measurement reference point with respect to the iron core piece 3. Hereinafter, as shown in FIG. 7, the four stacking reference points are denoted by reference symbols A, B, C, and D. In addition, the stacking heights at the stacking reference points A, B, C, and D are displayed as T A , T B , T C , and T D , respectively. The stacking heights T A , T B , T C , and T D of the stacking reference points A, B, C, and D are measured at the measurement reference points a, b, c, and d of all the core pieces 3 constituting the stacked body 9. It is estimated based on the measured plate thicknesses t a , t b , t c and t d .

さて、回転積層プログラムは、鉄心片3が回転積層ユニット7に搬入されると起動される。図8に示すように、回転積層プログラムが起動されると、まず、鉄心片3を回転させないで(回転角度=0°)、つまり、回転積層ユニット7に搬入された時の向きのままで、積層体9の上に積層した(図7に示した積層体9の上に、図9(a)に示した鉄心片3を積層した)場合の、積層基準点A,B,C,Dの積層高さT’,T’,T’,T’を推定する(STEP21)。積層高さT’,T’,T’,T’の推定は下式によってなされる。 Now, the rotating lamination program is started when the iron core piece 3 is carried into the rotating lamination unit 7. As shown in FIG. 8, when the rotating lamination program is started, first, the iron core piece 3 is not rotated (rotation angle = 0 °), that is, in the orientation when it is carried into the rotating lamination unit 7, Lamination reference points A, B, C, and D when laminated on the laminated body 9 (the iron core piece 3 shown in FIG. 9A is laminated on the laminated body 9 shown in FIG. 7). The stacking heights T ′ A , T ′ B , T ′ C and T ′ D are estimated (STEP 21). The stacking heights T ′ A , T ′ B , T ′ C , and T ′ D are estimated by the following equations.

T’=T+t
T’=T+t
T’=T+t
T’=T+t
T 'A = T A + t a
T ′ B = T B + t b
T ′ C = T C + t c
T ′ D = T D + t d

そして、T’,T’,T’,T’の最大値T’MAXと最小値T’MINを求め、その差(T’MAX−T’MIN)を積層高偏差ΔT’として算出する(STEP22)。 Then, the maximum value T ′ MAX and the minimum value T ′ MIN of T ′ A , T ′ B , T ′ C and T ′ D are obtained, and the difference (T ′ MAX −T ′ MIN ) is set as the stacking height deviation ΔT ′. Calculate (STEP 22).

次に、回転積層ユニット7に搬入された鉄心片3を時計回りに90°回転させて(回転角度=90°)、積層体9の上に積層した(図7に示した積層体9の上に、図9(b)に示した鉄心片3を積層した)場合の、積層基準点A,B,C,Dの積層高さT’,T’,T’,T’を推定する(STEP23)。積層高さT’,T’,T’,T’の推定は下式によってなされる。 Next, the iron core piece 3 carried into the rotary lamination unit 7 was rotated 90 ° clockwise (rotation angle = 90 °) and laminated on the laminate 9 (on the laminate 9 shown in FIG. 7). The stacking heights T ′ A , T ′ B , T ′ C , and T ′ D of the stacking reference points A, B, C, and D when the core pieces 3 illustrated in FIG. Estimate (STEP 23). The stacking heights T ′ A , T ′ B , T ′ C , and T ′ D are estimated by the following equations.

T’=T+t
T’=T+t
T’=T+t
T’=T+t
T ′ A = T A + t d
T 'B = T B + t a
T ′ C = T C + t b
T ′ D = T D + t c

そして、T’,T’,T’,T’の最大値T’MAXと最小値T’MINを求め、その差(T’MAX−T’MIN)を積層高偏差ΔT’として算出する(STEP24)。 Then, the maximum value T ′ MAX and the minimum value T ′ MIN of T ′ A , T ′ B , T ′ C and T ′ D are obtained, and the difference (T ′ MAX −T ′ MIN ) is set as the stacking height deviation ΔT ′. Calculate (STEP 24).

次に、回転積層ユニット7に搬入された鉄心片3を時計回りに180°回転させて(回転角度=180°)、積層体9の上に積層した(図7に示した積層体9の上に、図9(c)に示した鉄心片3を積層した)場合の、積層基準点A,B,C,Dの積層高さT’,T’,T’,T’を推定する(STEP25)。積層高さT’,T’,T’,T’の推定は下式によってなされる。 Next, the iron core piece 3 carried into the rotary lamination unit 7 was rotated 180 ° clockwise (rotation angle = 180 °) and laminated on the laminate 9 (on the laminate 9 shown in FIG. 7). The stacking heights T ′ A , T ′ B , T ′ C , and T ′ D of the stacking reference points A, B, C, and D when the core pieces 3 illustrated in FIG. Estimate (STEP 25). The stacking heights T ′ A , T ′ B , T ′ C , and T ′ D are estimated by the following equations.

T’=T+t
T’=T+t
T’=T+t
T’=T+t
T ′ A = T A + t c
T ′ B = T B + t d
T 'C = T C + t a
T ′ D = T D + t b

そして、T’,T’,T’,T’の最大値T’MAXと最小値T’MINを求め、その差(T’MAX−T’MIN)を積層高偏差ΔT’として算出する(STEP26) Then, the maximum value T ′ MAX and the minimum value T ′ MIN of T ′ A , T ′ B , T ′ C and T ′ D are obtained, and the difference (T ′ MAX −T ′ MIN ) is set as the stacking height deviation ΔT ′. Calculate (STEP26)

最後に、回転積層ユニット7に搬入された鉄心片3を時計回りに270°回転させて(回転角度=270°)、積層体9の上に積層した(図7に示した積層体9の上に、図9(d)に示した鉄心片3を積層した)場合の、積層基準点A,B,C,Dの積層高さT’,T’,T’,T’を推定する(STEP27)。積層高さT’,T’,T’,T’の推定は下式によってなされる。 Finally, the iron core piece 3 carried into the rotary lamination unit 7 was rotated 270 ° clockwise (rotation angle = 270 °) and laminated on the laminate 9 (on the laminate 9 shown in FIG. 7). The stacking heights T ′ A , T ′ B , T ′ C , and T ′ D of the stacking reference points A, B, C, and D when the core pieces 3 illustrated in FIG. Estimate (STEP 27). The stacking heights T ′ A , T ′ B , T ′ C , and T ′ D are estimated by the following equations.

T’=T+t
T’=T+t
T’=T+t
T’=T+t
T ′ A = T A + t b
T ′ B = T B + t c
T ′ C = T C + t d
T 'D = T D + t a

そして、T’,T’,T’,T’の最大値T’MAXと最小値T’MINを求め、その差(T’MAX−T’MIN)を積層高偏差ΔT’として算出する(STEP28)。 Then, the maximum value T ′ MAX and the minimum value T ′ MIN of T ′ A , T ′ B , T ′ C and T ′ D are obtained, and the difference (T ′ MAX −T ′ MIN ) is set as the stacking height deviation ΔT ′. Calculate (STEP 28).

次に、STEP22,24,26,28で算出された、積層高偏差ΔT’を比較して、板厚偏差ΔT’が最小になる回転角度θを決定する(STEP29)。   Next, the stacking height deviation ΔT ′ calculated in STEPs 22, 24, 26 and 28 is compared to determine the rotation angle θ at which the plate thickness deviation ΔT ′ is minimized (STEP 29).

次に、回転積層ダイス72を反時計回り方向に、回転角度θだけ回転させる(STEP30)。その後、積層パンチ71を下降させて、鉄心片3を回転積層ダイス72の中に押し入れて、積層体9の上に積層する。そして、積層パンチ71を上昇させる(STEP31)。そして、積層高さT,T,T,Tの値を、積層体9の上に鉄心片3を積層して構成された新たな積層体9の積層高さT’,T’,T’,T’の値に更新して(STEP32)、処理を終える。 Next, the rotating lamination die 72 is rotated counterclockwise by the rotation angle θ (STEP 30). Thereafter, the stacking punch 71 is lowered, and the core pieces 3 are pushed into the rotating stacking die 72 and stacked on the stacked body 9. Then, the stacked punch 71 is raised (STEP 31). Then, the values of the stacking heights T A , T B , T C , and T D are used as the stacking heights T ′ A , T of the new stacked body 9 formed by stacking the core pieces 3 on the stacked body 9. The values are updated to “ B , T ′ C , T ′ D” (STEP 32), and the process ends.

このように、積層鉄心形成装置1においては、コンピュータ8が回転積層プログラムに従って、処理を行うことによって、回転積層ステップが実行される。また、コンピュータ8が回転積層プログラムに従って、処理を行うことによって、回転積層ユニット7が、回転積層手段として機能する。   As described above, in the laminated iron core forming apparatus 1, the rotational lamination step is executed by the computer 8 performing processing according to the rotational lamination program. Further, when the computer 8 performs processing according to the rotation stacking program, the rotation stacking unit 7 functions as a rotation stacking unit.

さて、上記において、鉄心片3の外側の領域に仮想された正方形10の各頂点に計測基準点と積層基準点を配置する例を示したが、計測基準点と積層基準点の配置は、このようなものには限定されない。例えば、図10(a)に示すように、鉄心片3の外側の領域に3個の計測基準点a,b,cと3個の積層基準点A,B,Cを配置しても良い。この場合、最適回転角度の選択は、鉄心片3を120°ずつ回転させて行われる。つまり、最適回転角度は、0°、120°、240°の中から選択される。あるいは、図10(b)に示すように、鉄心片3の外側の領域に配置された計測基準点a〜d(積層基準点A〜D)に加えて、計測基準点e(積層基準点E)を鉄心片3の中心に配置するようにしても良い。また、計測基準点と積層基準点を配置する領域は、鉄心片3の外側の領域には限定されない。図10(c)に示すように、計測基準点a〜d(積層基準点A〜D)を鉄心片3の内側の領域に配置しても良い。   In the above, an example in which the measurement reference point and the stacking reference point are arranged at each vertex of the square 10 imaginary in the area outside the iron core piece 3 is shown. It is not limited to such a thing. For example, as shown in FIG. 10A, three measurement reference points a, b, and c and three stacked reference points A, B, and C may be arranged in the region outside the iron core piece 3. In this case, the optimum rotation angle is selected by rotating the iron core piece 3 by 120 °. That is, the optimum rotation angle is selected from 0 °, 120 °, and 240 °. Alternatively, as shown in FIG. 10B, in addition to the measurement reference points a to d (stacking reference points A to D) arranged in the region outside the iron core piece 3, the measurement reference point e (stacking reference point E). ) May be arranged at the center of the iron core piece 3. Further, the region where the measurement reference point and the stacking reference point are arranged is not limited to the region outside the core piece 3. As shown in FIG. 10 (c), the measurement reference points a to d (stacking reference points A to D) may be arranged in a region inside the iron core piece 3.

また、上記において、鉄心片3のそれぞれに固有の計測基準点の組が配置される例を示したが、隣接する鉄心片3の間で計測基準点を共有するようにしても良い。例えば、計測基準点a〜hを図11(a)に示すように配置して、計測基準点c,dを鉄心片3aと鉄心片3bの間で、計測基準点e,fを鉄心片3bと鉄心片3cの間で,それぞれ共有するようにしても良い。あるいは、計測基準点a〜jを図11(b)に示すように配置して、計測基準点dを鉄心片3aと鉄心片3bの間で、計測基準点gを鉄心片3bと鉄心片3cの間で、それぞれ共有するようにしても良い。このように、計測基準点の一部を、隣接する鉄心片3a〜3cの間に配置して、鉄心片3a〜3cの間で共有すれば、板厚計測ユニット5が備える板厚計51の個数を減らすことができる。その結果、板厚計測ユニット5の製造コストが削減される。   In the above description, an example in which a set of unique measurement reference points is arranged in each of the iron core pieces 3 has been described. However, the measurement reference points may be shared between adjacent iron core pieces 3. For example, the measurement reference points a to h are arranged as shown in FIG. 11A, the measurement reference points c and d are between the iron core piece 3a and the iron core piece 3b, and the measurement reference points e and f are iron pieces 3b. And the iron core piece 3c may be shared respectively. Alternatively, the measurement reference points a to j are arranged as shown in FIG. 11B, the measurement reference point d is between the iron core piece 3a and the iron core piece 3b, and the measurement reference point g is the iron core piece 3b and the iron core piece 3c. You may make it share between each. Thus, if a part of measurement reference point is arrange | positioned between adjacent iron core pieces 3a-3c, and will be shared between iron core pieces 3a-3c, the plate | board thickness measuring unit 5 with which the plate | board thickness measuring unit 5 is equipped will be used. The number can be reduced. As a result, the manufacturing cost of the plate thickness measuring unit 5 is reduced.

また、上記においては、計測基準点と積層基準点が同じ位置に配置されて、互いに一対一で対応する例を示した。つまり、鉄心片3を積層体9の上に載置した場合に、平面形において、計測基準点a〜dがそれぞれ積層基準点A〜Dに重なるように構成した例を示した。しかしながら、計測基準点と積層基準点の相互の関係はこのような物には限定されない。例えば図12に示すように、計測基準点a〜dを鉄心片3の外側の領域に配置して、積層基準点A〜Dを鉄心片3の内側の領域に配置しても良い。この場合、計測基準点a〜dで計測された鉄心片3の板厚に基づいて補間演算を行って、積層基準点A〜Dにおける鉄心片3の積層高さを推定する。図12の場合において、転積を行わない(回転角度=0°)時の積層高さT’〜T’は下式によって推定される。転積を行う(回転角度≠0°)時は、これに準じる。 Moreover, in the above, the example which the measurement reference point and the lamination | stacking reference point are arrange | positioned in the same position, and respond | corresponds one-to-one was shown. That is, an example is shown in which when the iron core piece 3 is placed on the laminated body 9, the measurement reference points a to d overlap with the lamination reference points A to D, respectively, in a planar shape. However, the mutual relationship between the measurement reference point and the stacking reference point is not limited to such a thing. For example, as shown in FIG. 12, the measurement reference points a to d may be arranged in a region outside the core piece 3, and the lamination reference points A to D may be arranged in a region inside the core piece 3. In this case, an interpolation operation is performed based on the thickness of the core pieces 3 measured at the measurement reference points a to d, and the stacking height of the core pieces 3 at the stack reference points A to D is estimated. In the case of FIG. 12, the stacking heights T ′ A to T ′ D when no transposition is performed (rotation angle = 0 °) are estimated by the following equation. The same applies to the case of performing the inversion (rotation angle ≠ 0 °).

T’=T+(t+t)/2
T’=T+(t+t)/2
T’=T+(t+t)/2
T’=T+(t+t)/2
T 'A = T A + ( t a + t b) / 2
T ′ B = T B + (t b + t c ) / 2
T ′ C = T C + (t c + t d ) / 2
T 'D = T D + ( t d + t a) / 2

計測基準点の個数と積層基準点の個数は異なっていても良い。例えば、図13(a)に示すように、計測基準点を4個(計測基準点a〜d)を設定して、図13(b)に示すように積層基準点を8個(積層基準点A〜H)を設定するようにしても良い。図13の場合において、転積を行わない(回転角度=0°)時に、対応する計測基準点がない積層基準点の積層高さは下式によって推定される。転積を行う(回転角度≠0°)時は、これに準じる。   The number of measurement reference points and the number of stacking reference points may be different. For example, as shown in FIG. 13A, four measurement reference points (measurement reference points a to d) are set, and as shown in FIG. 13B, eight stack reference points (stack reference points). A to H) may be set. In the case of FIG. 13, when no transposition is performed (rotation angle = 0 °), the stacking height of the stacking reference point having no corresponding measurement reference point is estimated by the following equation. The same applies to the case of performing the inversion (rotation angle ≠ 0 °).

T’=T+(t+t)/2
T’=T+(t+t)/2
T’=T+(t+t)/2
T’=T+(t+t)/2
T 'B = T B + ( t a + t b) / 2
T ′ D = T D + (t b + t c ) / 2
T ′ F = T F + (t c + t d ) / 2
T ′ H = T H + (t d + t a ) / 2

以上、説明したように、本発明の実施形態によれば、鉄心片3を積層体9の上に積層した場合の、積層高偏差が最小になる最適回転角度を決定して、当該最適回転角度だけ鉄心片3を中心軸周りに、積層体9に対して相対的に回転させて、鉄心片3を積層体9の上に積層するので、積層鉄心の積層高偏差を最小化して、積層鉄心の傾きを最小化することができる。そのため、積層鉄心の形状精度を十分に改善することができる。その結果、回転電機の性能が向上する。   As described above, according to the embodiment of the present invention, when the core piece 3 is laminated on the laminate 9, the optimum rotation angle at which the stacking height deviation is minimized is determined, and the optimum rotation angle is determined. Since the core piece 3 is laminated on the laminated body 9 by rotating the iron piece 3 around the central axis relative to the laminated body 9, the laminated core core can be minimized by minimizing the laminated core deviation. Can be minimized. Therefore, the shape accuracy of the laminated iron core can be sufficiently improved. As a result, the performance of the rotating electrical machine is improved.

上記において、本発明の実施形態と変形例を説明したが、これらは、この発明の具体的実施態様を例示するものであって、この発明の技術的範囲を画すものではない。この発明は特許請求の範囲に記述された技術的思想の限りにおいて、自由に変形、応用あるいは改良して実施することができる。   In the above, although embodiment and the modification of this invention were demonstrated, these illustrate the specific embodiment of this invention, and do not delimit the technical scope of this invention. The present invention can be freely modified, applied or improved within the scope of the technical idea described in the claims.

例えば、上記実施形態においては、素材板厚計測ステップで計測された鋼板2の板厚t,t,t,tを、そのまま、回転積層ステップにおいて参照する例を示したが、素材板厚計測ステップに異常値排除ステップを備えて、異常値を排除するようにしても良い。例えば、閾値Eを定めておき、板厚tが、他の板厚t,t,tとの差、つまり、|t−t|,|t−t|,|t−t|のいずれもが、閾値Eを超えるような極端に大きい、あるいは極端に小さい値である場合には、板厚tの実際の計測値に代えて、板厚t,t,tの算術平均を板厚tの値にしても良い。あるいは、板厚tと板厚tの算術平均を板厚tの値にしても良い。あるいは、当該素材板厚計測ステップの直前のターンに係る素材板厚計測ステップで計測された板厚tの値を、当該素材板厚計測ステップにおける板厚tの値にしても良い。なお、閾値Eは、素材の基準板厚や経験則等により定めれば良い。閾値Eの決定方法は特に限定されない。 For example, in the above-described embodiment, an example is shown in which the plate thicknesses t a , t b , t c , and t d of the steel plate 2 measured in the material plate thickness measurement step are referred to as they are in the rotational lamination step. An abnormal value elimination step may be provided in the plate thickness measurement step to eliminate the abnormal value. For example, the threshold value E is determined, and the plate thickness t c is different from other plate thicknesses t a , t b , t d , that is, | t c −t a |, | t c −t b |, | t c -t d | any of, in the case of extremely large or extremely small value that exceeds the threshold value E, instead of the actual measured value of the thickness t c, the thickness t a, The arithmetic average of t b and t d may be the value of the plate thickness t c . Alternatively, it may be the arithmetic mean of the thickness t b and the plate thickness t d of the value of the thickness t c. Alternatively, the value of the plate thickness t c measured in the material plate thickness measurement step related to the turn immediately before the material plate thickness measurement step may be set to the value of the plate thickness t c in the material plate thickness measurement step. Note that the threshold value E may be determined based on a reference thickness of the material, an empirical rule, or the like. The method for determining the threshold value E is not particularly limited.

また、一般に電磁鋼板の磁気特性は、圧延方向に対する角度によって異なる。そこで、最適回転角度を決定する際に、積層鉄心4の磁気特性に偏りが生じないように、各鉄心片3の回転角度を分散させるようにしても良い。   In general, the magnetic properties of the electrical steel sheet vary depending on the angle with respect to the rolling direction. Therefore, when the optimum rotation angle is determined, the rotation angle of each core piece 3 may be dispersed so that the magnetic characteristics of the laminated core 4 are not biased.

また、鉄心片3の積層に当たっては、積層高さによる制御を行っても良い。つまり、積層体9の高さが、事前に規定された積層鉄心4の積層高さに達するまで、鉄心片3の積層を繰り返すようにしても良い。   In stacking the iron core pieces 3, the stack height may be controlled. That is, you may make it repeat lamination | stacking of the core piece 3 until the height of the laminated body 9 reaches the lamination | stacking height of the lamination | stacking iron core 4 prescribed | regulated previously.

上記実施形態においては、板厚計測ユニット5に接触式の板厚計51を備える例を示したが、板厚計測ユニット5が備える板厚計51は接触式のものには限定されない板厚計51は非接触式のセンサであっても良い。板厚計51の検出原理は特に限定されない。板厚計51は例えば、静電容量センサやレーザセンサであっても良い。   In the said embodiment, although the example which equips the plate | board thickness measuring unit 5 with the contact-type plate | board thickness meter 51 was shown, the plate | board thickness meter 51 with which the plate | board thickness measuring unit 5 is provided is not limited to a contact-type thing. 51 may be a non-contact type sensor. The detection principle of the thickness gauge 51 is not particularly limited. The thickness gauge 51 may be, for example, a capacitance sensor or a laser sensor.

上記実施形態においては、板厚計測ユニット5、打抜ユニット6及び回転積層ユニット7を独立させて、分散配置した例を示したが、これらの全部又は一部を一体に構成しても良い。例えば、打抜ユニット6に板厚計51を備えて、板厚計測ユニット5と打抜ユニット6を一体に構成しても良い。また、打抜ユニット6と回転積層ユニット7を一体に構成し、打抜きと積層を同時に行うようにしても良い。あるいは、板厚計測ユニット5、打抜ユニット6及び回転積層ユニット7を一体に構成しても良い。   In the said embodiment, although the plate | board thickness measuring unit 5, the punching unit 6, and the rotation lamination | stacking unit 7 were made independent and distributed, the example arrange | positioned disperse | distributed all or one part may be comprised. For example, the punching unit 6 may be provided with a plate thickness meter 51, and the plate thickness measuring unit 5 and the punching unit 6 may be configured integrally. Alternatively, the punching unit 6 and the rotary stacking unit 7 may be integrally configured so that punching and stacking are performed simultaneously. Alternatively, the plate thickness measuring unit 5, the punching unit 6, and the rotary lamination unit 7 may be configured integrally.

上記実施形態においては、打抜ユニット6に打抜パンチ61と打抜ダイス62の組を1組だけ備えて、1工程で鉄心片3を打ち抜く例を示したが、打抜ユニット6に打抜パンチ61と打抜ダイス62の組を複数組備えて、複数の工程を経て鉄心片3が完成するようにしても良い。   In the above embodiment, the punching unit 6 is provided with only one set of the punching punch 61 and the punching die 62, and the iron core piece 3 is punched in one process. A plurality of pairs of punches 61 and punching dies 62 may be provided, and the core piece 3 may be completed through a plurality of steps.

上記実施形態においては、回転積層ユニット7において、回転積層ダイス72をX軸回りに回転させる回転駆動装置73を備えて、積層体9を回転させる例を示したが、積層体9を固定して、鉄心片3をX軸回りに回転させるようにしても良い。   In the above-described embodiment, the rotary stacking unit 7 includes the rotation driving device 73 that rotates the rotary stacking die 72 around the X axis and rotates the stack 9. However, the stack 9 is fixed. The iron core piece 3 may be rotated around the X axis.

上記実施形態においては、鋼板2から1種類の鉄心片3を打抜き、1種類の積層鉄心4を形成する例を示した。しかしながら、本発明の適用対象は、このようなものには限定されない。同一の鋼板2から複数種類の鉄心片3を打抜いて、複数種類の積層鉄心4を形成するようにしても良い。そのために、積層鉄心形成装置1に複数台の回転積層ユニット7を備えるようにしても良い。例えば、同一の鋼板2から、回転子鉄心片と固定子鉄心片を同心円状に打抜いて、回転子鉄心片と固定子鉄心片をそれぞれ積層して、回転子積層鉄心と固定子積層鉄心を形成するようにしても良い。その場合、回転子鉄心片専用の板厚計51と固定子鉄心片専用の板厚計51を、それぞれ別個に備えても良いし、同一の板厚計51で兼用しても良い。   In the said embodiment, the example which punches one type of iron core piece 3 from the steel plate 2, and forms one type of laminated iron core 4 was shown. However, the application target of the present invention is not limited to such a case. A plurality of types of cores 3 may be punched from the same steel plate 2 to form a plurality of types of laminated cores 4. For this purpose, the laminated core forming apparatus 1 may be provided with a plurality of rotating laminated units 7. For example, a rotor core piece and a stator core piece are punched concentrically from the same steel plate 2, and the rotor core piece and the stator core piece are laminated, respectively. You may make it form. In that case, the thickness gauge 51 dedicated to the rotor core piece and the thickness gauge 51 dedicated to the stator core piece may be provided separately or may be shared by the same thickness gauge 51.

1 積層鉄心形成装置
2 鋼板
3 鉄心片
3a,3b,3c 鉄心片
4 積層鉄心
5 板厚計測ユニット
51 板厚計
51a 上プローブ
51b 下プローブ
6 打抜ユニット
61 打抜パンチ
62 打抜ダイス
63 板押え
64 プッシュバック用逆押え
7 回転積層ユニット
71 積層パンチ
72 回転積層ダイス
73 回転駆動装置
8 コンピュータ
9 積層体
10 正方形
DESCRIPTION OF SYMBOLS 1 Laminated iron core formation apparatus 2 Steel plate 3 Iron core piece 3a, 3b, 3c Iron core piece 4 Laminated iron core 5 Plate thickness measuring unit 51 Plate thickness meter 51a Upper probe 51b Lower probe 6 Punch unit 61 Punch punch 62 Punch die 63 Punch presser 64 Reverse presser for pushback 7 Rotating laminating unit 71 Laminating punch 72 Rotating laminating die 73 Rotation drive device 8 Computer 9 Laminate 10 Square

Claims (8)

素材から打ち抜かれた複数の鉄心片を積層して、積層鉄心を形成する積層鉄心形成方法において、
複数の計測基準点において、前記素材の板厚を計測する素材板厚計測ステップと、
前記素材から前記鉄心片を打ち抜く鉄心片打抜ステップと、
前記素材板厚計測ステップで計測された前記計測基準点における前記素材の板厚に基づいて、前記鉄心片を、先に積層された積層体に対して中心軸回りに相対的に回転させて、前記積層体の上に積層した場合の、複数の積層基準点における積層高さを推定し、推定された複数の前記積層高さの最大値から最小値を減じて積層高偏差を算出する操作を、複数の回転角度について繰り返して、前記積層高偏差が最小になる最適回転角度を決定し、前記鉄心片を、中心軸回りに、前記積層体に対して相対的に、前記最適回転角度だけ実際に回転させて、前記積層体の上に積層する回転積層ステップと、
を有する積層鉄心形成方法。
In the laminated core forming method of laminating a plurality of core pieces punched from a material to form a laminated core,
A material thickness measurement step for measuring the thickness of the material at a plurality of measurement reference points;
An iron core piece punching step for punching the iron piece from the material;
Based on the thickness of the material at the measurement reference point measured in the material thickness measurement step, the iron core piece is relatively rotated around the central axis with respect to the previously laminated body, An operation of estimating a stacking height at a plurality of stacking reference points when stacked on the stacked body, and calculating a stacking height deviation by subtracting a minimum value from a maximum value of the estimated plurality of stacking heights. , Repeatedly for a plurality of rotation angles to determine an optimal rotation angle at which the stacking height deviation is minimized, and the iron core piece is actually moved around the central axis relative to the stack by the optimal rotation angle. Rotating and laminating on the laminate,
A method for forming a laminated iron core.
前記計測基準点及び前記積層基準点は、前記素材の前記鉄心片にされる領域の外側に配置される、
請求項1に記載の積層鉄心形成方法。
The measurement reference point and the lamination reference point are disposed outside the region of the material that is the core piece,
The laminated core formation method according to claim 1.
前記計測基準点は、前記素材の前記鉄心片にされる領域の外側に配置され、
前記積層基準点は、前記素材の前記鉄心片にされる領域内に配置される、
請求項1に記載の積層鉄心形成方法。
The measurement reference point is disposed outside the region of the material to be the core piece,
The lamination reference point is arranged in a region to be the iron core piece of the material,
The laminated core formation method according to claim 1.
前記計測基準点及び前記積層基準点は、前記素材の前記鉄心片にされる領域内に配置される、
請求項1に記載の積層鉄心形成方法。
The measurement reference point and the lamination reference point are arranged in a region to be the core piece of the material,
The laminated core formation method according to claim 1.
前記回転積層ステップは、前記素材板厚計測ステップで計測された複数の前記計測基準点における前記素材の板厚に基づいて、補間演算を行って、前記積層基準点における前記素材の板厚を推定する補間演算ステップを含む、
請求項1に記載の積層鉄心形成方法。
The rotating lamination step estimates the thickness of the material at the lamination reference point by performing an interpolation operation based on the thickness of the material at the plurality of measurement reference points measured in the material thickness measurement step. Including an interpolation step to
The laminated core formation method according to claim 1.
前記素材から複数の前記鉄心片を打ち抜く場合に、
複数の前記計測基準点の少なくとも一部は、前記鉄心片にされる領域であって前記素材において隣接する2つの領域の中間に配置されていて、当該2つの領域の間で共有されている、
請求項1に記載の積層鉄心形成方法。
When punching a plurality of the core pieces from the material,
At least a part of the plurality of measurement reference points is an area formed in the iron core piece, arranged in the middle of two adjacent areas in the material, and shared between the two areas.
The laminated core formation method according to claim 1.
素材から打ち抜かれた複数の鉄心片を積層して、積層鉄心を形成する積層鉄心形成装置において、
複数の計測基準点において、前記素材の板厚を計測する板厚計測ユニットと、
前記素材から前記鉄心片を打ち抜く鉄心片打抜ユニットと、
前記板厚計測ユニットで計測された前記計測基準点における前記素材の板厚に基づいて、前記鉄心片を、先に積層された積層体に対して中心軸回りに相対的に回転させて、前記積層体の上に積層した場合の、複数の積層基準点における積層高さを推定し、推定された複数の前記積層高さの最大値から最小値を減じて積層高偏差を算出する操作を、複数の回転角度について繰り返して、前記積層高偏差が最小になる最適回転角度を決定し、前記鉄心片を、中心軸回りに、前記積層体に対して相対的に、前記最適回転角度だけ実際に回転させて、前記積層体の上に積層する回転積層ユニットと、
を備える積層鉄心形成装置。
In a laminated core forming apparatus that forms a laminated core by laminating a plurality of core pieces punched from a material,
A thickness measuring unit that measures the thickness of the material at a plurality of measurement reference points;
An iron core piece punching unit for punching the iron piece from the material;
Based on the plate thickness of the material at the measurement reference point measured by the plate thickness measurement unit, the iron core piece is rotated relative to the previously laminated body around the central axis, An operation of estimating the stacking height at a plurality of stacking reference points when stacked on the stack, and calculating the stacking height deviation by subtracting the minimum value from the maximum value of the plurality of estimated stacking heights, It repeats for a plurality of rotation angles to determine the optimum rotation angle at which the stacking height deviation is minimized, and the iron core piece is actually moved around the center axis relative to the stack by the optimum rotation angle. A rotating stack unit that rotates and stacks on the stack;
A laminated iron core forming apparatus.
素材から打ち抜かれた複数の鉄心片を積層して、積層鉄心を形成する積層鉄心形成装置を構成するコンピュータであって、前記素材の板厚を計測する板厚計測ユニットと、前記素材から前記鉄心片を打ち抜く鉄心片打抜ユニットと、前記鉄心片を、中心軸回りに、積層体に対して相対的に回転させて、前記積層体の上に積層する回転積層ユニットを制御するコンピュータにインストールされて、
前記板厚計測ユニットを、複数の計測基準点において、前記素材の板厚を計測する素材板厚計測手段として、機能させ、
前記回転積層ユニットを、
前記素材板厚計測手段で計測された前記計測基準点における前記素材の板厚に基づいて、前記鉄心片を、先に積層された積層体に対して中心軸回りに相対的に回転させて、前記積層体の上に積層した場合の、複数の積層基準点における積層高さを推定し、推定された複数の前記積層高さの最大値から最小値を減じて積層高偏差を算出する操作を、複数の回転角度について繰り返して、前記積層高偏差が最小になる最適回転角度を決定し、前記鉄心片を、中心軸回りに、前記積層体に対して相対的に、前記最適回転角度だけ実際に回転させて、前記積層体の上に積層する回転積層手段として、機能させる、
プログラム。














A computer constituting a laminated core forming apparatus for forming a laminated core by laminating a plurality of core pieces punched from a material, the thickness measuring unit for measuring the thickness of the material, and the iron core from the material Installed in a computer that controls an iron core piece punching unit that punches a piece and a rotary lamination unit that rotates the iron core piece relative to the laminate around the central axis and laminates the laminate on the laminate. And
The plate thickness measuring unit functions as a material plate thickness measuring means for measuring the plate thickness of the material at a plurality of measurement reference points,
The rotating lamination unit,
Based on the thickness of the material at the measurement reference point measured by the material thickness measuring means, the iron core piece is relatively rotated around the central axis with respect to the previously laminated body, An operation of estimating a stacking height at a plurality of stacking reference points when stacked on the stacked body, and calculating a stacking height deviation by subtracting a minimum value from a maximum value of the estimated plurality of stacking heights. , Repeatedly for a plurality of rotation angles to determine an optimal rotation angle at which the stacking height deviation is minimized, and the iron core piece is actually moved around the central axis relative to the stack by the optimal rotation angle. To function as a rotating laminating means for laminating on the laminate.
program.














JP2016102756A 2016-05-23 2016-05-23 Laminated core forming method, laminated core forming apparatus and program Active JP6653619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102756A JP6653619B2 (en) 2016-05-23 2016-05-23 Laminated core forming method, laminated core forming apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102756A JP6653619B2 (en) 2016-05-23 2016-05-23 Laminated core forming method, laminated core forming apparatus and program

Publications (2)

Publication Number Publication Date
JP2017212778A true JP2017212778A (en) 2017-11-30
JP6653619B2 JP6653619B2 (en) 2020-02-26

Family

ID=60476308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102756A Active JP6653619B2 (en) 2016-05-23 2016-05-23 Laminated core forming method, laminated core forming apparatus and program

Country Status (1)

Country Link
JP (1) JP6653619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109570324A (en) * 2018-11-28 2019-04-05 罗美羚 A kind of battery production pole piece blanking units that can remove leftover pieces automatically
EP3550698A4 (en) * 2016-11-29 2019-11-27 Panasonic Intellectual Property Management Co., Ltd. Electric motor rotor, electric motor equipped with same, and manufacturing method for said rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550698A4 (en) * 2016-11-29 2019-11-27 Panasonic Intellectual Property Management Co., Ltd. Electric motor rotor, electric motor equipped with same, and manufacturing method for said rotor
CN109570324A (en) * 2018-11-28 2019-04-05 罗美羚 A kind of battery production pole piece blanking units that can remove leftover pieces automatically
CN109570324B (en) * 2018-11-28 2020-07-24 浙江华荣电池股份有限公司 Battery production is with die-cut device of pole piece of automatic clear leftover bits

Also Published As

Publication number Publication date
JP6653619B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP5691462B2 (en) Manufacturing method of laminated iron core and laminated iron core manufacturing system
WO2011077830A1 (en) Core stack, motor provided with core stack, and method for manufacturing core stack
CN102891571B (en) Method of manufacturing laminated core segment
JP2017208955A (en) Method for manufacturing laminated iron core
CN107565715B (en) Laminated iron core and manufacturing method thereof
JP2006353001A (en) Laminated iron core and its manufacturing method and apparatus
JP2017017855A (en) Manufacturing method for laminated core
JP6653619B2 (en) Laminated core forming method, laminated core forming apparatus and program
JP2007190570A (en) Feeding method and feeding device in press machine
JP2005094951A (en) Core, its manufacturing process and apparatus
KR100990969B1 (en) manufacturing device for a motor core
CN103703655A (en) Laminated core manufacturing method and laminated core manufactured using same
JPWO2008133090A1 (en) Method for manufacturing deformed laminated core
JP5814304B2 (en) Laminated iron core manufacturing apparatus and laminated iron core manufacturing method
KR101964695B1 (en) Apparatus For Manufacturing Core Lamination And Manufacturing Method Of Core Lamination Using The Same
JP2011101464A (en) Method of manufacturing stacked core and manufacturing device thereof
JP4762954B2 (en) Rolled material, manufacturing method thereof, and screen mesh
JP6838466B2 (en) Rolling bending method and rolling bending equipment
JP6456753B2 (en) Method and apparatus for manufacturing rotor laminated core
JP2012135120A (en) Method for processing rolled member
JP6911698B2 (en) Manufacturing equipment for cores for rotary electric machines
JP6489026B2 (en) Method for detecting warpage of laminated steel sheet for motor
JP5924200B2 (en) Laminated structure and laminated structure manufacturing method
JP4398444B2 (en) Iron core manufacturing method and iron core manufacturing apparatus
JP2020184863A (en) Manufacturing system for laminated iron cores and manufacturing method for laminated iron cores

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200128

R150 Certificate of patent or registration of utility model

Ref document number: 6653619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250