JP2017212312A - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP2017212312A
JP2017212312A JP2016103955A JP2016103955A JP2017212312A JP 2017212312 A JP2017212312 A JP 2017212312A JP 2016103955 A JP2016103955 A JP 2016103955A JP 2016103955 A JP2016103955 A JP 2016103955A JP 2017212312 A JP2017212312 A JP 2017212312A
Authority
JP
Japan
Prior art keywords
substrate
energy density
film
wiring board
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016103955A
Other languages
Japanese (ja)
Inventor
悠季 中村
Yuki Nakamura
悠季 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2016103955A priority Critical patent/JP2017212312A/en
Publication of JP2017212312A publication Critical patent/JP2017212312A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To inhibit defects due to excess or deficiency of an energy amount of irradiating light in photo sintering.SOLUTION: A manufacturing method of a wiring board 10 comprises the steps of: forming on a substrate 12, a liquid film 14 where copper oxide particles or noble metal oxide particles are dispersed; dehydrating the liquid film 14 formed on the substrate 12 to form a film body 16; performing photo sintering on the film body 16 formed on the substrate 12 to form a conductive film 18 on the substrate 12. An energy density I (kJ/cm) of irradiating light in the photo sintering, the lower limit Iand the upper limit Iof the energy density of the irradiating light and a thermodiffusion ratio x(mm/s) of the substrate satisfy the following formulas (1)-(3): I≤I≤I(1); I=566ln(x)+1021 (2); I=1891ln(x)+3532 (3).SELECTED DRAWING: Figure 2

Description

本発明は、配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a wiring board.

基板上に導電性薄膜を形成する方法として、還元性金属化合物と還元剤とが分散された分散液を薄膜として基板上に堆積させ、当該薄膜を基板と共にパルス電磁放射線に曝露して還元性金属化合物と還元剤とを化学的に反応させることで、当該薄膜に導電性を付与する方法が知られている(例えば、特許文献1参照)。   As a method for forming a conductive thin film on a substrate, a dispersion liquid in which a reducing metal compound and a reducing agent are dispersed is deposited on the substrate as a thin film, and the thin film is exposed to pulsed electromagnetic radiation together with the substrate to form a reducing metal. A method of imparting conductivity to the thin film by chemically reacting a compound and a reducing agent is known (see, for example, Patent Document 1).

特表2012−505966号公報Special table 2012-505966 gazette

酸化銅粒子又は貴金属の酸化物の粒子が分散された液膜を基板上に形成し、当該液膜を乾燥させて膜体を形成し、当該膜体に光焼結処理(Photo-sintering Process)を施すことにより、基板上に導電膜を形成する場合、照射光のエネルギー量が過剰になると、基板の溶融や導電性薄膜の基板からの剥離等が生じ、照射光のエネルギー量が不足すると、導電膜が高抵抗になる。   A liquid film in which copper oxide particles or noble metal oxide particles are dispersed is formed on a substrate, the liquid film is dried to form a film body, and a photo-sintering process is performed on the film body. When the conductive film is formed on the substrate by applying, if the energy amount of the irradiation light becomes excessive, the substrate is melted or the conductive thin film is peeled off from the substrate, and the energy amount of the irradiation light is insufficient. The conductive film becomes high resistance.

本発明が解決しようとする課題は、光焼結処理における照射光のエネルギー量の過不足に起因する不良の発生を抑制できる配線基板の製造方法を提供することである。   The problem to be solved by the present invention is to provide a method for manufacturing a wiring board capable of suppressing the occurrence of defects due to excess or deficiency of the amount of energy of irradiation light in the photosintering process.

[1]本発明に係る配線基板の製造方法は、酸化銅粒子又は貴金属の酸化物の粒子が分散された液膜を基板上に形成し、前記基板上に形成された前記液膜を乾燥させて膜体を形成し、前記基板上に形成された前記膜体に光焼結処理を施すことにより、前記基板上に導電膜を形成する配線基板の製造方法であって、下記(1)〜(3)式を満足する。
min≦I≦Imax …(1)
min=566ln(x)+1021 …(2)
max=1891ln(x)+3532 …(3)
但し、Iは、前記光焼結処理における照射光のエネルギー密度(kJ/cm)であり、Iminは、前記照射光のエネルギー密度の下限値であり、Imaxは、前記照射光のエネルギー密度の上限値であり、xは、前記基板の熱拡散率(mm/s)である。
[1] A method of manufacturing a wiring board according to the present invention includes forming a liquid film in which copper oxide particles or noble metal oxide particles are dispersed on a substrate, and drying the liquid film formed on the substrate. Forming a film body and subjecting the film body formed on the substrate to a photo-sintering process to form a conductive film on the substrate, comprising the following (1) to (3) Formula is satisfied.
I min ≦ I ≦ I max (1)
I min = 566 ln (x) +1021 (2)
I max = 1891ln (x) +3532 (3)
However, I is the energy density (kJ / cm 3 ) of the irradiation light in the photosintering process, I min is the lower limit value of the energy density of the irradiation light, and I max is the energy of the irradiation light. It is an upper limit value of the density, and x is the thermal diffusivity (mm 2 / s) of the substrate.

[2]上記発明において、前記光焼結処理における前記照射光のエネルギー密度Iを調整する工程を備えてもよい。 [2] In the above invention, a step of adjusting an energy density I of the irradiation light in the photosintering process may be provided.

本発明では、光焼結処理における照射光のエネルギー密度を、基板の熱拡散率に基づいて設定することにより、光焼結処理における照射光のエネルギー量の過不足に起因する不良の発生を抑制できる。   In the present invention, by setting the energy density of the irradiation light in the photo-sintering process based on the thermal diffusivity of the substrate, the occurrence of defects due to excess or deficiency of the energy amount of the irradiation light in the photo-sintering process is suppressed. it can.

図1は、本発明の一実施形態に係る配線基板の製造方法を説明するための工程図である。FIG. 1 is a process diagram for explaining a method of manufacturing a wiring board according to an embodiment of the present invention. 図2(A)〜(C)は、本発明の一実施形態に係る配線基板の製造方法を説明するための断面図である。2A to 2C are cross-sectional views for explaining a method of manufacturing a wiring board according to an embodiment of the present invention. 図3は、基板の室温での熱拡散率と成功最小値との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the thermal diffusivity of the substrate at room temperature and the minimum success value. 図4は、体積抵抗率が、10−4Ω・cmよりも高くなった試験体における基板の室温での熱拡散率と照射エネルギー密度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the thermal diffusivity of the substrate at room temperature and the irradiation energy density in the test specimen having a volume resistivity higher than 10 −4 Ω · cm. 図5は、下記(2)式で表される光焼結処理での照射エネルギー密度の下限値と基板の室温での熱拡散率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the lower limit value of the irradiation energy density and the thermal diffusivity of the substrate at room temperature in the photosintering treatment represented by the following formula (2). 図6は、基板の室温での熱拡散率と成功最大値との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the thermal diffusivity of a substrate at room temperature and the maximum success value. 図7は、溶融が確認された試験体と剥離が確認された試験体とにおける基板の室温での熱拡散率と照射エネルギー密度との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the thermal diffusivity at room temperature of the substrate and the irradiation energy density of the test body in which melting was confirmed and the test body in which peeling was confirmed. 図8は、下記(3)式で表される光焼結処理での照射エネルギー密度の上限値と基板の室温での熱拡散率との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the upper limit value of the irradiation energy density and the thermal diffusivity of the substrate at room temperature in the photosintering process represented by the following formula (3).

以下、本発明の一実施形態を図面に基づいて説明する。本発明の一実施形態に係る配線基板10の製造方法は、光焼結処理を用いて配線基板10を製造する方法である。この配線基板10としては、メンブレンスイッチ等のフレキシブルプリント配線板を例示することができる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The manufacturing method of the wiring board 10 which concerns on one Embodiment of this invention is a method of manufacturing the wiring board 10 using a photosintering process. An example of the wiring board 10 is a flexible printed wiring board such as a membrane switch.

図1は、本実施形態に係る配線基板10の製造方法を説明するための工程図であり、図2(A)〜図2(C)は、本実施形態に係る配線基板10の製造方法を説明するための断面図である。   FIG. 1 is a process diagram for explaining a method for manufacturing a wiring board 10 according to the present embodiment. FIGS. 2A to 2C illustrate a method for manufacturing the wiring board 10 according to the present embodiment. It is sectional drawing for demonstrating.

まず、図1のステップS10において、図2(A)に示すように、酸化銅粒子又は貴金属の酸化物の粒子が分散された分散液を基板12上に塗布することにより、酸化銅粒子又は貴金属の酸化物の粒子が分散された液膜14を基板12上に形成する。基板12を構成する材料としては、ポリエチレンテレフタラート(PET)、ABS樹脂、ポリイミド(PI)等の樹脂材料、ガラス材料を例示することができる。   First, in step S10 of FIG. 1, as shown in FIG. 2 (A), a dispersion liquid in which copper oxide particles or noble metal oxide particles are dispersed is applied onto the substrate 12, thereby producing copper oxide particles or noble metal. A liquid film 14 in which the oxide particles are dispersed is formed on the substrate 12. Examples of the material constituting the substrate 12 include resin materials such as polyethylene terephthalate (PET), ABS resin, polyimide (PI), and glass materials.

液膜1を構成する分散液は、酸化銅粒子又は貴金属の酸化物の粒子、バインダ、溶剤を含有する。貴金属の酸化物の粒子としては、銀(Ag)、金(Au)、白金(Pt)等の酸化物の粒子を例示することができる。酸化銅粒子を含有する場合には、その含有率は、70〜80wt%であることが好ましい。貴金属の酸化物の粒子を含有する場合には、その含有率は、75〜85wt%であることが好ましい。   The dispersion liquid constituting the liquid film 1 contains copper oxide particles or noble metal oxide particles, a binder, and a solvent. Examples of the noble metal oxide particles include oxide particles such as silver (Ag), gold (Au), and platinum (Pt). When it contains copper oxide particles, the content is preferably 70 to 80 wt%. In the case of containing noble metal oxide particles, the content is preferably 75 to 85 wt%.

バインダとしては、ビスフェノールA(BPA)形エポキシ樹脂等のエポキシ樹脂、ポリビニルピロリドン(PVP)、アクリル樹脂等を例示することができる。バインダの含有率は、3〜10wt%であることが好ましい。溶剤としては、ジエチレングリコールモノブチルエーテルアセタート等のエステル系溶剤、エチレングリコール等の炭化水素系溶剤等を例示することができる。溶剤の含有率は、10〜30wt%であることが好ましい。   Examples of the binder include epoxy resins such as bisphenol A (BPA) type epoxy resins, polyvinyl pyrrolidone (PVP), acrylic resins, and the like. The binder content is preferably 3 to 10 wt%. Examples of the solvent include ester solvents such as diethylene glycol monobutyl ether acetate, hydrocarbon solvents such as ethylene glycol, and the like. It is preferable that the content rate of a solvent is 10-30 wt%.

分散液を基板12上に塗布する方法としては、特に限定されないが、接触塗布法又は非接触塗布法のいずれを用いてもよい。接触塗布法としては、スクリーン印刷、グラビア印刷、オフセット印刷、グラビアオフセット印刷、フレキソ印刷等を例示することができる。非接触塗布法としては、インクジェット印刷、スプレー塗布法、ディスペンス塗布法、ジェットディスペンス法等を例示することができる。   A method for applying the dispersion liquid onto the substrate 12 is not particularly limited, and either a contact coating method or a non-contact coating method may be used. Examples of the contact coating method include screen printing, gravure printing, offset printing, gravure offset printing, flexographic printing, and the like. Examples of the non-contact coating method include ink jet printing, spray coating method, dispense coating method, and jet dispensing method.

なお、基板12上への分散液の塗布回数は、特に1回に限定されず、分散液を基板12上に複数回塗布してもよい。また、各回の塗布毎に、分散液の組成を異ならせてもよい。   Note that the number of times of applying the dispersion liquid onto the substrate 12 is not particularly limited to once, and the dispersion liquid may be applied onto the substrate 12 a plurality of times. Further, the composition of the dispersion may be varied for each application.

次に、図1のステップS20において、図2(B)に示すように、液膜14を乾燥させて溶媒を除去することで、膜体16を形成する。本工程では、液膜14を形成した基板12を、100〜120℃の窒素雰囲気下において60分間加熱する。溶剤が除去された膜体16は、酸化銅粒子又は金属の酸化物の粒子、及びバインダを含む層である。   Next, in step S20 of FIG. 1, the film body 16 is formed by drying the liquid film 14 and removing the solvent, as shown in FIG. 2B. In this step, the substrate 12 on which the liquid film 14 has been formed is heated for 60 minutes in a nitrogen atmosphere at 100 to 120 ° C. The film body 16 from which the solvent has been removed is a layer containing copper oxide particles or metal oxide particles and a binder.

次に、図1のステップS30において、後述の光焼結処理で用いる光焼結装置1を調整する。光焼結装置1としては、特に限定されないが、キセノンランプ、水銀灯、メタルハイドランプ、ケミカルランプ、カーボンアーク灯、赤外線ランプ等を光源とするものや、レーザ照射装置等を例示することができる。光焼結装置1の光源から照射されるパルス光が含む波長成分としては、可視光線、紫外線、赤外線等を例示することができる。なお、パルス光が含む波長成分は、電磁波であれば特に限定されず、例えば、X線やマイクロ波等を含んでもよい。   Next, in step S30 of FIG. 1, the photosintering apparatus 1 used in the below-described photosintering process is adjusted. The photosintering apparatus 1 is not particularly limited, and examples thereof include xenon lamps, mercury lamps, metal hydride lamps, chemical lamps, carbon arc lamps, infrared lamps and the like, and laser irradiation apparatuses. Examples of the wavelength component included in the pulsed light emitted from the light source of the photosintering apparatus 1 include visible light, ultraviolet light, and infrared light. The wavelength component included in the pulsed light is not particularly limited as long as it is an electromagnetic wave, and may include, for example, X-rays or microwaves.

本実施形態では、光焼結装置1として、NOVACENTRIX社製の光焼成装置PulseForgeシリーズを使用する。本工程では、パルス光照射装置としての光焼結装置1の放射照度(単位面積当たりの照射エネルギー)(kW/m)と、パルス照射時間(1パルス当りの照射時間)(μs)と、パルス照射間隔(μs)と、処理時間(msec)とを設定する。この処理時間(msec)は、照射がオン状態の時間(以下、照射時間という)(msec)と照射がオフの時間(msec)との合計時間である。 In this embodiment, as the photosintering apparatus 1, a photobaking apparatus PulseForge series manufactured by NOVACENTRIX is used. In this step, the irradiance (irradiation energy per unit area) (kW / m 2 ) of the photosintering apparatus 1 as a pulsed light irradiation apparatus, pulse irradiation time (irradiation time per pulse) (μs), A pulse irradiation interval (μs) and a processing time (msec) are set. This processing time (msec) is the total time of the time when irradiation is on (hereinafter referred to as irradiation time) (msec) and the time when irradiation is off (msec).

ここで、照射エネルギー密度(単位体積当たりの照射エネルギー量)I(kJ/cm)が下記(1)式を満足するように、放射照度(kW/m)と、パルス照射時間(1パルス当りの照射時間)(μs)と、パルス照射間隔(μs)と、処理時間(msec)とを設定する。
min≦I≦Imax …(1)
Here, the irradiance (kW / m 2 ) and the pulse irradiation time (one pulse) so that the irradiation energy density (irradiation energy amount per unit volume) I (kJ / cm 3 ) satisfies the following formula (1): Per irradiation time) (μs), a pulse irradiation interval (μs), and a processing time (msec) are set.
I min ≦ I ≦ I max (1)

上記(1)式のIminは、下記(2)式を満足し、上記(1)式のImaxは、下記(3)式を満足する。
min=566ln(x)+1021 …(2)
max=1891ln(x)+3532 …(3)
但し、Iminは、照射エネルギー密度の下限値であり、Imaxは、照射エネルギー密度の上限値であり、xは、基板12の室温での熱拡散率(mm/s)である。
I min in the above formula (1) satisfies the following formula (2), and I max in the above formula (1) satisfies the following formula (3).
I min = 566 ln (x) +1021 (2)
I max = 1891ln (x) +3532 (3)
However, I min is a lower limit value of the irradiation energy density, I max is an upper limit value of the irradiation energy density, and x is a thermal diffusivity (mm 2 / s) of the substrate 12 at room temperature.

基板12の熱拡散率x(mm/s)は下記(4)式を満足する。
x=k/(ρ・C) …(4)
但し、kは、基板12の熱伝導率(J/(s・mm・K))であり、ρは、基板12の密度(kg/mm)であり、Cは、基板12の比熱容量(J/(kg・K))である。
The thermal diffusivity x (mm 2 / s) of the substrate 12 satisfies the following formula (4).
x = k / (ρ · C p ) (4)
Here, k is the thermal conductivity (J / (s · mm · K)) of the substrate 12, ρ is the density (kg / mm 3 ) of the substrate 12, and C p is the specific heat capacity of the substrate 12. (J / (kg · K)).

照射エネルギー密度I(J/cm)は、下記(5)式で表される。
I=I・I/t …(5)
但し、Iは、放射照度であり、Iは、照射時間であり、tは、基板12の厚さである。
The irradiation energy density I (J / cm 3 ) is expressed by the following formula (5).
I = I A · I t / t (5)
However, I A is the irradiance, I t is the irradiation time, t is the thickness of the substrate 12.

次に、図1のステップS40において、ステップS30で設定した条件で、光焼結装置1により基板12上の膜体16に光焼結処理を施すことによって導電膜18を形成する。図2(C)に示すように、本工程において、基板12上の膜体16に含まれる酸化銅粒子又は貴金属の酸化物の粒子の還元反応と金属焼結が進行することによって、導電膜18が形成される。   Next, in step S40 of FIG. 1, the conductive film 18 is formed by subjecting the film body 16 on the substrate 12 to the light sintering process by the photosintering apparatus 1 under the conditions set in step S30. As shown in FIG. 2C, in this step, the reduction of the copper oxide particles or noble metal oxide particles contained in the film body 16 on the substrate 12 and the metal sintering proceed, whereby the conductive film 18 is obtained. Is formed.

ここで、本願の発明者は、以下に説明する実験を実施した結果、基板12の熱拡散率x(mm/s)に基づいて、照射エネルギー密度I(kJ/cm)を設定することによって、基板12の種類にかかわらず、光焼結処理における照射エネルギー量の過不足に起因する不良の発生を抑制できるという知見を得た。以下、本願の発明者が行った実験について説明する。 Here, the inventor of the present application sets the irradiation energy density I (kJ / cm 3 ) based on the thermal diffusivity x (mm 2 / s) of the substrate 12 as a result of performing the experiment described below. Thus, it has been found that, regardless of the type of the substrate 12, it is possible to suppress the occurrence of defects due to excessive or insufficient irradiation energy amount in the photo-sintering process. Hereinafter, experiments conducted by the inventors of the present application will be described.

本実験では、下記表1に示す試験体1〜16を作製し、これらの試験体1〜16に対して照射エネルギー密度を増減させながら光焼結処理を施した後、基板12の溶融の有無、基板12からの導電膜18の剥離の有無を目視にて確認し、導電膜18の体積抵抗率(Ω・cm)を測定した。導電膜18の体積抵抗率(Ω・cm)は、導電膜18のシート抵抗に導電膜18の厚さを乗じた値である。導電膜18のシート抵抗は、抵抗率計(三菱化学アナリテック社製のロレスタGP MCP−T610型)を用いて測定した。また、導電膜18の厚さは、マイクロメーターを用いて測定した。導電膜18の体積抵抗率の評価では、メンブレンスイッチ等のフレキシブルプリント基板での使用を考慮して、10−4Ω・cm以上を高抵抗とした。 In this experiment, specimens 1 to 16 shown in Table 1 below were prepared, and after subjecting these specimens 1 to 16 to a light sintering treatment while increasing or decreasing the irradiation energy density, the presence or absence of melting of the substrate 12 The presence or absence of peeling of the conductive film 18 from the substrate 12 was visually confirmed, and the volume resistivity (Ω · cm) of the conductive film 18 was measured. The volume resistivity (Ω · cm) of the conductive film 18 is a value obtained by multiplying the sheet resistance of the conductive film 18 by the thickness of the conductive film 18. The sheet resistance of the conductive film 18 was measured using a resistivity meter (Loresta GP MCP-T610 type manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The thickness of the conductive film 18 was measured using a micrometer. In the evaluation of the volume resistivity of the conductive film 18, 10 −4 Ω · cm or more was set as a high resistance in consideration of use with a flexible printed circuit board such as a membrane switch.

まず、下記A、Bの分散液を作製した。
<分散液A>
平均粒径5μmの酸化銅(CuO)粒子を75wt%、ポリビニルピロリドンを5wt%、ジエチレングリコールモノブチルエーテルアセタートを20wt%の比率で混合したもの
<分散液B>
平均粒径5μmの酸化銀(AgO)粒子を80wt%、ポリビニルピロリドンを5wt%、エチレングリコールを15wt%の比率で混合したもの
First, the following dispersions A and B were prepared.
<Dispersion A>
Mixture of copper oxide (CuO) particles having an average particle size of 5 μm in a ratio of 75 wt%, polyvinyl pyrrolidone in a ratio of 5 wt%, and diethylene glycol monobutyl ether acetate in a ratio of 20 wt% <Dispersion B>
A mixture of silver oxide (AgO) particles with an average particle size of 5 μm at a ratio of 80 wt%, polyvinyl pyrrolidone at 5 wt%, and ethylene glycol at 15 wt%.

次に、分散液A、Bの何れかを基板12の一面に塗布した。塗布パターンはベタ塗であり、下記A、B、C、Dの基板12を用いた。
<基板A>
材料:PET、寸法(縦×横×厚み):30mm×30mm×0.155mm、熱拡散率:0.16mm/s
<基板B>
材料:ABS、寸法(縦×横×厚み):30mm×30mm×2.0mm、熱拡散率:0.17mm/s
<基板C>
材料:PI、寸法(縦×横×厚み):30mm×30mm×0.127mm、熱拡散率:0.21mm/s
<基板D>
材料:無アルカリガラス、寸法(縦×横×厚み):30mm×30mm×0.70mm、熱拡散率:0.60mm/s
Next, one of the dispersions A and B was applied to one surface of the substrate 12. The coating pattern was solid coating, and the following substrates A, B, C, and D were used.
<Substrate A>
Material: PET, Dimensions (length x width x thickness): 30 mm x 30 mm x 0.155 mm, thermal diffusivity: 0.16 mm 2 / s
<Substrate B>
Material: ABS, dimensions (length x width x thickness): 30 mm x 30 mm x 2.0 mm, thermal diffusivity: 0.17 mm 2 / s
<Substrate C>
Material: PI, dimensions (length x width x thickness): 30 mm x 30 mm x 0.127 mm, thermal diffusivity: 0.21 mm 2 / s
<Substrate D>
Material: alkali-free glass, dimensions (length x width x thickness): 30 mm x 30 mm x 0.70 mm, thermal diffusivity: 0.60 mm 2 / s

次に、分散液A、Bの何れかによる液膜14が形成された基板12を、100℃の窒素雰囲気下において60分間加熱して液膜14を乾燥させることによって、基板12上に膜体16を形成した。最後に、基板12上に形成された膜体16に光焼結処理を施すことによって、基板12上に導電膜18を形成した。光焼結処理は、novacentrix社製のPulseForge1300を用いて行った。   Next, the substrate 12 on which the liquid film 14 is formed from either of the dispersions A and B is heated for 60 minutes in a nitrogen atmosphere at 100 ° C. to dry the liquid film 14, thereby forming a film body on the substrate 12. 16 was formed. Finally, the conductive film 18 was formed on the substrate 12 by subjecting the film body 16 formed on the substrate 12 to light sintering. The photosintering process was performed using PulseForge 1300 manufactured by novacentrix.

以上のようにして作製された試験体1〜16の仕様、光焼結処理の条件、導電膜18の抵抗値(体積抵抗率(Ω・cm))の測定結果、及び剥離・溶融の評価結果を、表1にまとめた。なお、導電膜18の基板12からの剥離は、光焼結処理の後に、導電膜18が基板12から浮き上がったり飛散したりしているか否かを目視で確認した。また、基板12の溶融は、光焼結処理の後に、基板12の表面に波形状の変形が生じたか否かを目視で確認した。

Figure 2017212312
Specifications of test bodies 1 to 16 produced as described above, conditions for photosintering treatment, measurement results of resistance value of conductive film 18 (volume resistivity (Ω · cm)), and evaluation results of peeling / melting Are summarized in Table 1. In addition, peeling of the electrically conductive film 18 from the board | substrate 12 confirmed visually whether the electrically conductive film 18 lifted or scattered from the board | substrate 12 after the light sintering process. In addition, the melting of the substrate 12 was visually confirmed as to whether or not the waveform of the surface of the substrate 12 was deformed after the photosintering process.
Figure 2017212312

表1に示すように、試験体1〜11では、導電膜18の体積抵抗率が10−4Ω・cm以下となり、導電膜18の基板12からの剥離や基板12の溶融は生じなかった。この結果から、試験体1〜11の光焼結処理では、照射光のエネルギー量の過不足は生じなかったことを確認できる。一方、試験体12では、基板12の溶融が生じ、試験体13では、導電膜18の基板12からの剥離が生じた。なお、試験体12、13の体積抵抗率は測定できなかった。これらの結果から、試験体12、13の光焼結処理では、照射光のエネルギー量が過剰であったことを確認できる。また、試験体14〜16では、導電膜18の基板12からの剥離や基板12の溶融は生じなかったものの、導電膜18の体積抵抗率が、10−4Ω・cmよりも高くなった。この結果から、試験体14〜16の光焼結処理では、照射光のエネルギー量が不足したことを確認できる。 As shown in Table 1, in the test bodies 1 to 11, the volume resistivity of the conductive film 18 was 10 −4 Ω · cm or less, and peeling of the conductive film 18 from the substrate 12 and melting of the substrate 12 did not occur. From this result, it can be confirmed that the excess or deficiency of the energy amount of the irradiation light did not occur in the photosintering treatment of the test bodies 1 to 11. On the other hand, in the test body 12, the substrate 12 was melted, and in the test body 13, the conductive film 18 was peeled from the substrate 12. In addition, the volume resistivity of the test bodies 12 and 13 was not measurable. From these results, it can be confirmed that the energy amount of the irradiation light was excessive in the photosintering treatment of the test bodies 12 and 13. Moreover, in the test bodies 14-16, although peeling from the board | substrate 12 of the electrically conductive film 18 and melting | fusing of the board | substrate 12 did not arise, the volume resistivity of the electrically conductive film 18 became higher than 10 <-4> ohm * cm. From this result, it can be confirmed that the amount of energy of the irradiation light is insufficient in the photosintering treatment of the test bodies 14 to 16.

以上の実験結果に基づいて、本願の発明者は、光焼結処理での照射エネルギー密度Iの最適値について検討した。まず、光焼結処理での照射エネルギー密度Iの下限値Iminの設定方法について説明する。 Based on the above experimental results, the inventors of the present application examined the optimum value of the irradiation energy density I in the photosintering process. First, a method for setting the lower limit value I min of the irradiation energy density I in the light sintering process will be described.

ここで、体積抵抗率と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がAである試験体10、11のうち、照射エネルギー密度が最小であるのが試験体10である。また、抵抗値と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がBである試験体1、2のうち、照射エネルギー密度が最小であるのが試験体2である。また、抵抗値と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がCである試験体7、8、9のうち、照射エネルギー密度が最小であるのが試験体7である。さらに、また、抵抗値と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がDである試験体3、4、5、6のうち、照射エネルギー密度が最小であるのが試験体3である。   Here, among the test bodies 10 and 11 in which good results were obtained for both the volume resistivity and the presence or absence of peeling and melting, the test body 10 having the smallest irradiation energy density among the test bodies 10 and 11 having the substrate type A. It is. In addition, among the test bodies 1 and 2 in which good results were obtained for both the resistance value and the presence or absence of peeling and melting, the test body 2 has the lowest irradiation energy density among the test bodies 1 and 2 whose substrate type is B. . Further, among the test bodies 7, 8, and 9 in which good results were obtained for both the resistance value and the presence or absence of peeling and melting, the test body 7 had the lowest irradiation energy density among the test bodies 7, 8, and 9 having the substrate type C. It is. Furthermore, the irradiation energy density is the smallest among the test bodies 3, 4, 5, and 6 in which the substrate type is D, which has obtained good results for both the resistance value and the presence or absence of peeling and melting. Is the specimen 3.

以下、試験体10の照射エネルギー密度を基板Aの成功最小値と称し、試験体12の照射エネルギー密度を基板Bの成功最小値と称し、試験体13の照射エネルギー密度を基板Cの成功最小値と称し、試験体5の照射エネルギー密度を基板Dの成功最小値と称する。   Hereinafter, the irradiation energy density of the test body 10 is referred to as the minimum success value of the substrate A, the irradiation energy density of the test body 12 is referred to as the minimum success value of the substrate B, and the irradiation energy density of the test body 13 is referred to as the minimum success value of the substrate C. The irradiation energy density of the test body 5 is referred to as the minimum success value of the substrate D.

図3は、基板A〜Dの室温での熱拡散率xと成功最小値Imin_sとの関係を示すグラフである。このグラフに示すように、基板A〜Dの熱拡散率xと成功最小値Imin_sとの関係は、下記(7)式で表される近似曲線で示される。
min_s=767.58×ln(x)+1356.8 …(6)
FIG. 3 is a graph showing the relationship between the thermal diffusivity x of the substrates A to D at room temperature and the minimum success value Imin_s . As shown in this graph, the relationship between the thermal diffusivity x of the substrates A to D and the minimum success value I min — s is represented by an approximate curve represented by the following equation (7).
I min — s = 767.58 × ln (x) +1356.8 (6)

図4は、体積抵抗率が、10−4Ω・cmよりも高くなった試験体14(基板D)、試験体15(基板A)、試験体16(基板C)の室温での熱拡散率xと照射エネルギー密度との関係を示すグラフである。以下、体積抵抗率が10−4Ω・cmよりも高くなった試験体の照射エネルギー密度を、下限越え値と称する。このグラフに示すように、基板A、C、Dの熱拡散率xと下限越え値Imin_fとの関係は、下記(7)式で表される近似曲線で示される。
min_f=365.02×ln(x)+685.77 …(7)
FIG. 4 shows the thermal diffusivity at room temperature of the test body 14 (substrate D), the test body 15 (substrate A), and the test body 16 (substrate C) whose volume resistivity is higher than 10 −4 Ω · cm. It is a graph which shows the relationship between x and irradiation energy density. Hereinafter, the irradiation energy density of the test specimen having a volume resistivity higher than 10 −4 Ω · cm is referred to as a value exceeding the lower limit. As shown in this graph, the relationship between the thermal diffusivity x of the substrates A, C, and D and the lower limit value Imin_f is represented by an approximate curve represented by the following equation (7).
I minf = 365.02 × ln (x) +685.77 (7)

図5は、上記(2)式で表される光焼結処理での照射エネルギー密度の下限値Iminと基板A〜Dの室温での熱拡散率xとの関係を示すグラフである。ここで、光焼結処理での照射エネルギー密度の下限値Iminと基板A〜Dの室温での熱拡散率xとの関係を示す近似曲線は、基板A〜Dの室温での熱拡散率xと成功最小値Imin_sとの関係を示す上記(6)式の近似曲線と、基板A〜Dの室温での熱拡散率xと下限越え値Imin_fとの関係を示す上記(7)式の近似曲線との中間を通る曲線である。具体的には、上記(2)式の傾き(566)は、上記(6)式の傾き(767.58)と上記(7)式の傾き(365.02)との相加平均である。また、上記(2)式の切片(1021)は、上記(6)式の切片(1356.8)と上記(7)式の切片(685.77)との相加平均である。 FIG. 5 is a graph showing the relationship between the lower limit value I min of the irradiation energy density in the photosintering process represented by the above formula (2) and the thermal diffusivity x of the substrates A to D at room temperature. Here, the approximate curve showing the relationship between the lower limit value I min of the irradiation energy density in the photosintering process and the thermal diffusivity x of the substrates A to D at room temperature is the thermal diffusivity of the substrates A to D at room temperature. The approximate curve of the above equation (6) showing the relationship between x and the minimum success value Imin_s, and the above equation (7) showing the relationship between the thermal diffusivity x of the substrates A to D at room temperature and the lower limit value Imin_f. It is a curve passing through the middle of the approximate curve. Specifically, the slope (566) of the above formula (2) is an arithmetic average of the slope (767.58) of the above formula (6) and the slope (365.02) of the above formula (7). Further, the intercept (1021) of the above formula (2) is an arithmetic average of the intercept (1356.8) of the above formula (6) and the intercept (685.77) of the above formula (7).

次に、光焼結処理での照射エネルギー密度の上限値Imaxの設定方法について説明する。 Next, a method for setting the upper limit value I max of the irradiation energy density in the photosintering process will be described.

抵抗値と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がAである試験体10、11のうち、照射エネルギー密度が最大であるのが試験体11である。また、抵抗値と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がBである試験体1、2のうち、照射エネルギー密度が最大であるのが試験体1である。また、抵抗値と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がCである試験体7、8、9のうち、照射エネルギー密度が最大であるのが試験体8である。さらに、また、抵抗値と剥離及び溶融の有無との双方について良好な結果が得られた、基板種類がDである試験体3、4、5、6のうち、照射エネルギー密度が最大であるのが試験体6である。   Of the test bodies 10 and 11 in which good results were obtained for both the resistance value and the presence / absence of peeling and melting, the test body 11 has the highest irradiation energy density among the test bodies 10 and 11 having the substrate type A. Moreover, the test body 1 has the highest irradiation energy density among the test bodies 1 and 2 in which good results were obtained for both the resistance value and the presence or absence of peeling and melting, and the substrate type is B. . In addition, among the test bodies 7, 8, and 9 in which good results were obtained for both the resistance value and the presence / absence of peeling and melting, the test body 8 has the highest irradiation energy density among the test bodies 7, 8, and 9 having the substrate type C. It is. Furthermore, the irradiation energy density is the highest among the test specimens 3, 4, 5, and 6 in which the substrate type is D, which has obtained good results for both the resistance value and the presence or absence of peeling and melting. Is the specimen 6.

以下、試験体11の照射エネルギー密度を基板Aの成功最大値と称し、試験体1の照射エネルギー密度を基板Bの成功最大値と称し、試験体8の照射エネルギー密度を基板Cの成功最大値と称し、試験体6の照射エネルギー密度を基板Dの成功最大値と称する。   Hereinafter, the irradiation energy density of the test body 11 is referred to as the maximum success value of the substrate A, the irradiation energy density of the test body 1 is referred to as the maximum success value of the substrate B, and the irradiation energy density of the test body 8 is the maximum success value of the substrate C. The irradiation energy density of the test body 6 is referred to as the maximum success value of the substrate D.

図6は、基板A〜Dの室温での熱拡散率xと成功最大値Imax_sとの関係を示すグラフである。このグラフに示すように、基板A〜Dの熱拡散率xと成功最大値Imax_sとの関係は、下記(8)式で表される近似曲線で示される。
max_s=1016.1×ln(x)+1937.8 …(8)
FIG. 6 is a graph showing the relationship between the thermal diffusivity x of the substrates A to D at room temperature and the maximum success value Imax_s . As shown in this graph, the relationship between the thermal diffusivity x of the substrates A to D and the maximum success value Imax_s is indicated by an approximate curve represented by the following equation (8).
I max — s = 1016.1 × ln (x) +1937.8 (8)

図7は、溶融が確認された試験体12(基板A)、剥離が確認された試験体13(基板C)の室温での熱拡散率xと照射エネルギー密度との関係を示すグラフである。以下、溶融又は剥離が確認された試験体の照射エネルギー密度を、上限越え値と称する。このグラフに示すように、基板A、Cの熱拡散率xと上限越え値Imax_fとの関係は、下記(9)式で表される近似曲線で示される。
max_f=2766.31×ln(x)+5125.7 …(9)
FIG. 7 is a graph showing the relationship between the thermal diffusivity x at room temperature and the irradiation energy density of the specimen 12 (substrate A) whose melting was confirmed and the specimen 13 (substrate C) whose peeling was confirmed. Hereinafter, the irradiation energy density of the specimen in which melting or peeling is confirmed is referred to as an upper limit exceeded value. As shown in this graph, the relationship between the thermal diffusivity x of the substrates A and C and the upper limit value Imax_f is shown by an approximate curve represented by the following equation (9).
I maxf = 2766.31 × ln (x) +5125.7 (9)

図8は、上記(3)式で表される光焼結処理での照射エネルギー密度の上限値Imaxと基板A〜Dの室温での熱拡散率xとの関係を示すグラフである。ここで、光焼結処理での照射エネルギー密度の上限値Imaxと基板A〜Dの室温での熱拡散率xとの関係を示す近似曲線は、基板A〜Dの熱拡散率xと成功最大値Imax_sとの関係を示す上記(8)式の近似曲線と、基板A〜Dの熱拡散率xと上限越え値Imax_fとの関係を示す上記(9)式の近似曲線との中間を通る曲線である。具体的には、上記(3)式の傾き(1891)は、上記(8)式の傾き(1016.1)と上記(9)式の傾き(2766.31)との相加平均である。また、上記(3)式の切片(3532)は、上記(8)式の切片(1937.8)と上記(9)式の切片(5125.7)との相加平均である。 FIG. 8 is a graph showing the relationship between the upper limit value I max of the irradiation energy density in the photosintering process represented by the above formula (3) and the thermal diffusivity x of the substrates A to D at room temperature. Here, the approximate curve showing the relationship between the upper limit value I max of the irradiation energy density in the photosintering process and the thermal diffusivity x of the substrates A to D at room temperature is the thermal diffusivity x of the substrates A to D and success. Between the approximate curve of the above formula (8) showing the relationship with the maximum value I max — s and the approximate curve of the above formula (9) showing the relationship between the thermal diffusivity x of the substrates A to D and the upper limit value I max — f It is a curve that passes through. Specifically, the slope (1891) of the above formula (3) is an arithmetic average of the slope (1016.1) of the above formula (8) and the slope (276.31) of the above formula (9). The intercept (3532) of the above formula (3) is an arithmetic mean of the intercept (1937.8) of the above formula (8) and the intercept (5125.7) of the above formula (9).

即ち、本願の発明者は、光焼結処理における照射光のエネルギー密度(kJ/cm)の過少な範囲と基板12の熱拡散率x(mm/s)との間に相関関係があると共に、光焼結処理における照射光のエネルギー密度(kJ/cm)の過剰な範囲と基板12の熱拡散率x(mm/s)との間に相関関係があるとの新規な知見を実験により得た。そこで、本願の発明者は、光焼結処理における照射光のエネルギー密度(kJ/cm)の下限値Imin及び上限値Imaxを、基板12の熱拡散率x(mm/s)を変数とする近似曲線で規定した。これにより、基板12の種類にかかわらず、照射エネルギー量の過不足に起因する光焼結処理での不良の発生を抑制できる。 That is, the inventor of the present application has a correlation between the excessive range of the energy density (kJ / cm 3 ) of the irradiation light in the photosintering process and the thermal diffusivity x (mm 2 / s) of the substrate 12. In addition, there is a new finding that there is a correlation between the excessive range of the energy density (kJ / cm 3 ) of irradiation light in the photosintering process and the thermal diffusivity x (mm 2 / s) of the substrate 12. Obtained by experiment. Therefore, the inventor of the present application sets the lower limit value I min and the upper limit value I max of the energy density (kJ / cm 3 ) of the irradiation light in the photosintering process, and sets the thermal diffusivity x (mm 2 / s) of the substrate 12. It was defined by an approximate curve as a variable. Thereby, regardless of the type of the substrate 12, it is possible to suppress the occurrence of defects in the photosintering process due to the excess or deficiency of the irradiation energy amount.

本実施形態における「配線基板10」が本実施形態における「配線基板」の一例に相当し、本実施形態における「基板12」が本発明における「基板」の一例に相当し、本実施形態における「液膜14」が本発明における「液膜」の一例に相当し、本実施形態における「膜体16」が本発明における「膜体」の一例に相当し、本実施形態における「導電膜18」が本発明における「導電膜」の一例に相当する。   The “wiring board 10” in the present embodiment corresponds to an example of the “wiring board” in the present embodiment, and the “board 12” in the present embodiment corresponds to an example of the “board” in the present invention. The “liquid film 14” corresponds to an example of the “liquid film” in the present invention, the “film body 16” in the present embodiment corresponds to an example of the “film body” in the present invention, and the “conductive film 18” in the present embodiment. Corresponds to an example of the “conductive film” in the present invention.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

1…光焼結装置
10…配線基板
12…基板
14…液膜
16…膜体
18…導電膜
DESCRIPTION OF SYMBOLS 1 ... Light sintering apparatus 10 ... Wiring board 12 ... Board | substrate 14 ... Liquid film 16 ... Film body 18 ... Conductive film

Claims (2)

酸化銅粒子又は貴金属の酸化物の粒子が分散された液膜を基板上に形成し、
前記基板上に形成された前記液膜を乾燥させて膜体を形成し、
前記基板上に形成された前記膜体に光焼結処理を施すことにより、前記基板上に導電膜を形成する配線基板の製造方法であって、
下記(1)〜(3)式を満足する配線基板の製造方法。
min≦I≦Imax …(1)
min=566ln(x)+1021 …(2)
max=1891ln(x)+3532 …(3)
但し、Iは、前記光焼結処理における照射光のエネルギー密度(kJ/cm)であり、Iminは、前記照射光のエネルギー密度の下限値であり、Imaxは、前記照射光のエネルギー密度の上限値であり、xは、前記基板の熱拡散率(mm/s)である。
Forming a liquid film in which copper oxide particles or noble metal oxide particles are dispersed on a substrate;
Drying the liquid film formed on the substrate to form a film body;
A method of manufacturing a wiring board, in which a conductive film is formed on the substrate by subjecting the film body formed on the substrate to a light sintering process,
The manufacturing method of the wiring board which satisfies following (1)-(3) Formula.
I min ≦ I ≦ I max (1)
I min = 566 ln (x) +1021 (2)
I max = 1891ln (x) +3532 (3)
However, I is the energy density (kJ / cm 3 ) of the irradiation light in the photosintering process, I min is the lower limit value of the energy density of the irradiation light, and I max is the energy of the irradiation light. It is an upper limit value of the density, and x is the thermal diffusivity (mm 2 / s) of the substrate.
請求項1に記載の配線基板の製造方法であって、
前記光焼結処理における前記照射光のエネルギー密度Iを調整する工程を備える配線基板の製造方法。
It is a manufacturing method of the wiring board according to claim 1,
The manufacturing method of a wiring board provided with the process of adjusting the energy density I of the said irradiation light in the said light sintering process.
JP2016103955A 2016-05-25 2016-05-25 Wiring board manufacturing method Pending JP2017212312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016103955A JP2017212312A (en) 2016-05-25 2016-05-25 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016103955A JP2017212312A (en) 2016-05-25 2016-05-25 Wiring board manufacturing method

Publications (1)

Publication Number Publication Date
JP2017212312A true JP2017212312A (en) 2017-11-30

Family

ID=60474823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016103955A Pending JP2017212312A (en) 2016-05-25 2016-05-25 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP2017212312A (en)

Similar Documents

Publication Publication Date Title
TWI534838B (en) Copper particulate dispersion
JP2009124032A (en) Method of manufacturing printing type electronic circuit board
JP2013135089A (en) Conductive film formation method, copper fine particle dispersion liquid and circuit board
KR20140134305A (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
CN108017957A (en) A kind of preparation method of Graphene conductive ink applied to flexible circuit
Li et al. Conductive line preparation on resin surfaces by laser micro-cladding conductive pastes
JP2009124029A (en) Method of manufacturing electronic circuit board using ink jetting
JP2017212312A (en) Wiring board manufacturing method
JP2017212311A (en) Wiring board manufacturing method
JP5412357B2 (en) Membrane wiring board
WO2016029400A1 (en) Copper-containing conductive pastes and electrodes made therefrom
KR20150045605A (en) Composition for copper ink and method for forming conductive pattern using the same
JP7353185B2 (en) Molecular ink with improved thermal stability
JP2020119737A (en) Conductive paste, base material with conductive film, production method of base material with conductive film
JP5353248B2 (en) Wiring board and method of manufacturing wiring board
Putaala et al. Characterization of laser-sintered thick-film paste on polycarbonate substrates
KR101748105B1 (en) Method for forming wiring line
JP7357099B2 (en) Pattern forming method and baking device
JP6321906B2 (en) Conductive pattern forming substrate, conductive pattern forming substrate, and manufacturing method thereof
JP6247069B2 (en) Lamination of polymer thick film conductor composition
WO2024047728A1 (en) Pattern forming method and baking device
JP2017082296A (en) Method for forming metal film
JP6574553B2 (en) Conductive pattern forming composition and conductive pattern forming method
JP2014127501A (en) Conductive pattern forming method and ink for photonic curing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201006