JP2017212175A - Method for resistance evaluation of positive electrode material for nonaqueous electrolyte secondary battery - Google Patents

Method for resistance evaluation of positive electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017212175A
JP2017212175A JP2016106490A JP2016106490A JP2017212175A JP 2017212175 A JP2017212175 A JP 2017212175A JP 2016106490 A JP2016106490 A JP 2016106490A JP 2016106490 A JP2016106490 A JP 2016106490A JP 2017212175 A JP2017212175 A JP 2017212175A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
battery
evaluation
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016106490A
Other languages
Japanese (ja)
Other versions
JP7064821B2 (en
Inventor
好治 栗原
Koji Kurihara
好治 栗原
近藤 光国
Mitsukuni Kondo
光国 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016106490A priority Critical patent/JP7064821B2/en
Publication of JP2017212175A publication Critical patent/JP2017212175A/en
Application granted granted Critical
Publication of JP7064821B2 publication Critical patent/JP7064821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To evaluate the resistance of a positive electrode material of a nonaqueous electrolyte secondary battery readily in a faster, accurate and low-cost manner.SOLUTION: A method for resistance evaluation of a positive electrode material for a nonaqueous electrolyte secondary battery is arranged to evaluate the resistance of a positive electrode material for a nonaqueous electrolyte secondary battery. The method comprises: a step S12 for stationarily leaving a battery for evaluation which is a nonaqueous electrolyte secondary battery for a given time after production thereof; a step S13 for charging the battery for evaluation which has been stationarily left for the given time with a constant current; a step S15 for discharging the battery for evaluation with a constant current after the constant current charging the battery and a pausing step subsequent thereto; a step S17 for charging the battery for evaluation with a constant current and a constant voltage after the constant current discharging the battery and a pausing step subsequent thereto; and a step S18 for measuring the resistance of the positive electrode material by an AC impedance method after the charging with the constant current and constant voltage.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン二次電池等の非水系電解質二次電池の正極材料の抵抗評価を行う非水系電解質二次電池用正極材料の抵抗評価方法に関する。   The present invention relates to a resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery, which evaluates the resistance of the positive electrode material of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

近年、携帯電話やノート型パソコン等の携帯機器の普及に伴い、高いエネルギー密度を有する小型かつ軽量な二次電池の開発が強く望まれている。また、XEVと呼ばれる環境対応自動車においても小型、軽量、高容量、高出力などの高性能化や低コスト化が求められている。さらに、環境対応自動車における1回の充電当たりの走行距離の向上や小型化の必要性が増し、更なる高容量化が求められている。   In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries having high energy density is strongly desired. In addition, environmentally friendly vehicles called XEV are also required to have high performance and low cost such as small size, light weight, high capacity, and high output. Furthermore, there is an increasing need for improvement in the travel distance per charge in an environmentally-friendly vehicle and miniaturization, and a further increase in capacity is required.

このような高容量の二次電池として、非水系電解質二次電池がある。非水系電解質二次電池の代表的な電池としてはリチウムイオン二次電池があり、リチウムイオン二次電池の正極材料には、リチウム金属複合酸化物が正極活物質として使用される。リチウムイオン二次電池に使用される各材料に対する要求、とりわけ、例えば、LiCoO、LiNiOまたはLiMnO4等の正極材料に対する高性能化の開発要求は、ますます高まっている。これらの開発を迅速かつ低コストで進めるためには評価手段が重要な一つであり、リチウムイオン二次電池正極材の開発における評価方法の重要性は、益々高まっている。 As such a high capacity secondary battery, there is a non-aqueous electrolyte secondary battery. A typical non-aqueous electrolyte secondary battery is a lithium ion secondary battery, and a lithium metal composite oxide is used as a positive electrode active material for a positive electrode material of the lithium ion secondary battery. The demand for each material used for the lithium ion secondary battery, in particular, the development demand for higher performance for a positive electrode material such as LiCoO 2 , LiNiO 2, or LiMnO 4 is increasing. In order to proceed with these developments quickly and at low cost, evaluation means are one of the important factors, and the importance of evaluation methods in the development of positive electrode materials for lithium ion secondary batteries is increasing.

具体的な評価方法としては、組成分析やXRD、SEM EDX、XPS等のいわゆる分析評価方法による正極材料の組成、粒度分布、粒子形状、結晶構造、構成元素の配置等と電池性能との相関評価があるが、電池を実際に作製して電池特性の評価を行うことは、不可欠である。また、電池特性の評価においては、充放電容量特性と出力特性が重要となり、特に、車載用電池では、出力特性の評価が不可欠となる。   As a specific evaluation method, a correlation evaluation between the composition of the positive electrode material, the particle size distribution, the particle shape, the crystal structure, the arrangement of constituent elements, etc. and the battery performance by so-called analytical evaluation methods such as composition analysis and XRD, SEM EDX, XPS However, it is indispensable to actually manufacture the battery and evaluate the battery characteristics. In the evaluation of battery characteristics, charge / discharge capacity characteristics and output characteristics are important. In particular, evaluation of output characteristics is indispensable for in-vehicle batteries.

電池の出力特性の評価方法には、直流法と交流法があり、直流法では、作製した電池を所定の充電深度の充電状態として短時間電流を印可し、その時間の電圧降下量(V)と印可した電流値(A)から抵抗を算出する方法(特許文献1参照)や、作製した電池について、定電流定電圧充電を行い、一定時間休止の後、所定の電池電圧まで定電流で放電させ、このとき一定時間休止後の開回路電圧(OCV)、及び放電開始一定短時間後の閉回路電圧(CCV)、放電開始一定短時間後の放電電流(I)から、当該電池の直流抵抗(R)を算出する方法(算出式は、R=(OCV−CCV)/Iである)(特許文献2参照)等がある。一方、交流法は、電池に微小な電流を重畳印可し、周波数を変化させることで抵抗を分離する交流インピーダンス法が用いられている。前者は、電池全体の抵抗(出力)評価となり、電池メーカー等で利用されることが多い。後者は、正極、負極などの各抵抗成分の分離ができることから、正極活物質や負極活物質の解析に用いられ、研究機関や正極、負極、電解液のメーカー等で利用されている。   There are two methods for evaluating the output characteristics of a battery: a direct current method and an alternating current method. In the direct current method, a current is applied for a short time with the fabricated battery in a charged state at a predetermined charging depth, and the voltage drop (V) during that time. The resistance is calculated from the applied current value (A) (see Patent Document 1) and the manufactured battery is subjected to constant current and constant voltage charging, and after a certain period of rest, the battery is discharged at a constant current to a predetermined battery voltage. At this time, from the open circuit voltage (OCV) after a certain period of rest, the closed circuit voltage (CCV) after a certain short period of discharge start, and the discharge current (I) after a certain short period of discharge start, the DC resistance of the battery There is a method for calculating (R) (the calculation formula is R = (OCV−CCV) / I) (see Patent Document 2). On the other hand, the alternating current method uses an alternating current impedance method in which a resistance is separated by applying a minute current to the battery and changing the frequency. The former is a resistance (output) evaluation of the entire battery, and is often used by battery manufacturers and the like. Since the latter can separate resistance components such as a positive electrode and a negative electrode, it is used for analysis of a positive electrode active material and a negative electrode active material, and used by research institutions, manufacturers of positive electrodes, negative electrodes, and electrolytes.

出力特性を評価する電池作製において、負極にカーボンを用いる場合は、カーボン粒子をバインダー(結着剤ともいう。)と共に溶媒を使ってスラリー化し混練、塗工、乾燥する作製方法が一般的であるが、工程が煩雑となる。また、均一な分散、塗工膜厚や空隙構造が求められるため、金属リチウムシートを所望のサイズに切り抜いたものを使用する方法が簡易で経済的である。しかし、電極にかかる圧力や電極間の電解液量、正、負極のサイズ、サイズ比等により負極表面のデンドライトの生成状態が変化することから、特に、電池の状態に過敏に反応する交流インピーダンス法等では、再現性のあるデータを得ることが難しいといった問題もある。   In the production of batteries for evaluating output characteristics, when carbon is used for the negative electrode, a production method is generally used in which carbon particles are slurried using a solvent together with a binder (also referred to as a binder), kneaded, coated, and dried. However, the process becomes complicated. Further, since uniform dispersion, coating film thickness and void structure are required, a method using a metal lithium sheet cut out to a desired size is simple and economical. However, since the state of dendrite formation on the negative electrode surface changes depending on the pressure applied to the electrodes, the amount of electrolyte between the electrodes, the size of the positive electrode, the size of the negative electrode, the size ratio, etc. Etc., there is a problem that it is difficult to obtain reproducible data.

正極の作製方法は、正極活物質を導電材、結着材、溶媒と共に混練、塗工、乾燥し、所望のサイズに打ち抜く方法や、同様の部材を乾式混合し、ロールプレス等を使ってシートを作製し、所望のサイズに打ち抜く方法があるが、前者の塗工法は、塗工厚みを薄くすることが可能である。リチウムイオンの拡散が律速となるリチウムイオン二次電池において塗工厚みを薄く、リチウムの拡散距離を短くすることで、高レートでの充放電が可能となり、直流法による抵抗評価が可能なリチウムイオン二次電池を得ることができるが、負極作製と同様に工程が煩雑で、研究開発などの少量多品種の評価が必要な開発用電池作製には適当ではない。後者の乾式混合によるシート法では、塗工による電極作製法と比べ、手早く電極が作製できるメリットがあるが電極が厚くなることから高レートを印可する直流法による抵抗評価は難しい。   The positive electrode is produced by mixing a positive electrode active material with a conductive material, a binder, and a solvent, coating, drying, punching out to a desired size, dry mixing similar members, and using a roll press or the like. The former coating method can reduce the thickness of the coating. Lithium ion rechargeable batteries, which have a rate-determining diffusion rate of lithium ions, can be charged and discharged at a high rate by reducing the coating thickness and shortening the diffusion distance of lithium. Although a secondary battery can be obtained, the process is complicated as in the preparation of the negative electrode, and it is not suitable for the development of a development battery that requires evaluation of a small variety of products such as research and development. The latter dry mixing sheet method has an advantage that the electrode can be quickly produced as compared with the electrode producing method by coating. However, since the electrode becomes thick, it is difficult to evaluate the resistance by the direct current method that applies a high rate.

このような電極が厚い電池の場合は、印可する電流が微小な交流インピーダンス法による抵抗評価が好ましい。交流インピーダンス法による抵抗評価として、特許文献3には、集電体上に電極活物質層が形成された電極の抵抗を交流インピーダンス法で簡便、かつ精度よく検査する電極の検査方法が開示されている。また、特許文献4には、電池を組み立てることなく、電極の状態で組立後の電池の特性を直接的に反映し得る電極の評価方法として、電極の抵抗を交流インピーダンス法で評価する方法が開示されている。   In the case of a battery having such a thick electrode, resistance evaluation by an alternating current impedance method with a small applied current is preferable. As a resistance evaluation by the AC impedance method, Patent Document 3 discloses an electrode inspection method for simply and accurately inspecting the resistance of an electrode in which an electrode active material layer is formed on a current collector by an AC impedance method. Yes. Patent Document 4 discloses a method for evaluating the resistance of an electrode by an AC impedance method as an electrode evaluation method that can directly reflect the characteristics of the assembled battery in the electrode state without assembling the battery. Has been.

国際公開第2015/182560号International Publication No. 2015/182560 特開2015−167118号公報JP2015-167118A 特開2014−025850号公報JP 2014-025850 A 特開2013−110082号公報JP 2013-110082 A

出荷前検査等に作製される二次電池のセパレータには、厚み数十ミクロンのポリプロプレン、又はポリエチレン製多孔膜を用いることが一般的である。これらのセパレータは、短絡の際、発生する熱により収縮し、細孔を閉じることで電池としての機能を停止することが出来、これにより電池としての安全性を向上させることができる。しかし、これらのセパレータは、安全性の面では、メリットがあるものの、電解液の保液性や濡れ性が悪く、電極間の電解液量が安定せず、測定再現性が不安定になるという問題もある。特に、セルの小さな抵抗変化に敏感に反応する交流インピーダンス法においては、測定再現性の面で評価用セルとして用いるのは難しい。   In general, a separator of a secondary battery produced for inspection before shipment or the like is made of a polypropylene having a thickness of several tens of microns or a porous film made of polyethylene. These separators are contracted by the heat generated at the time of a short circuit, and the function as a battery can be stopped by closing the pores, thereby improving the safety of the battery. However, these separators have advantages in terms of safety, but the electrolyte retention and wettability are poor, the amount of electrolyte between the electrodes is not stable, and measurement reproducibility becomes unstable. There is also a problem. In particular, in the AC impedance method that reacts sensitively to a small resistance change of the cell, it is difficult to use it as an evaluation cell in terms of measurement reproducibility.

また、出荷前検査用電池の各部分の作製において、常に安定した品質を維持し、電池の組立精度を高く保つことは、当然必要とされるが、組立後の温度制御や通電によるコンディショニングは、抵抗測定のために重要である。この中でも特に負極上のLiデンドライトを一様に形成することが困難であり課題となっている。このように従来の電池作製及び測定方法では、開発の評価や生産品の出荷前検査を目的とした場合、安定性、作業性、即応性そしてコスト的に優れているとは言い難い。   In addition, in manufacturing each part of the inspection battery before shipping, it is naturally necessary to maintain stable quality and maintain high battery assembly accuracy, but conditioning by temperature control and energization after assembly is necessary. Important for resistance measurements. Among these, it is particularly difficult to uniformly form Li dendrite on the negative electrode, which is a problem. As described above, it is difficult to say that the conventional battery fabrication and measurement methods are excellent in stability, workability, responsiveness, and cost for the purpose of evaluation of development and inspection before shipment of products.

本発明は、上記課題に鑑みてなされたものであり、非水系電解質二次電池の正極材料の抵抗評価をより迅速、高精度かつ低コストで容易に行うことの可能な、新規かつ改良された非水系電解質二次電池用正極材料の抵抗評価方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is new and improved which can easily and quickly perform resistance evaluation of a positive electrode material of a non-aqueous electrolyte secondary battery at a low cost. It aims at providing the resistance evaluation method of the positive electrode material for non-aqueous electrolyte secondary batteries.

本発明者らは、前述した本発明の目的を達成するために鋭意検討を重ねた結果、非水系電解質二次電池の正極材料の交流抵抗を測定する場合に、充電及び放電を行った後に所定の充電深度まで充電することを交流抵抗測定前のコンディショニングとし、その後に交流抵抗測定を行うことで、高精度で安定した測定結果を得ることができること、また、かかるコンディショニングが初期充放電容量測定を兼ねることで効率的な電池評価ができることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to achieve the above-described object of the present invention, the present inventors have determined a predetermined value after charging and discharging when measuring the AC resistance of the positive electrode material of the non-aqueous electrolyte secondary battery. It is possible to obtain a highly accurate and stable measurement result by performing AC resistance measurement after charging to the charging depth of AC, and to perform initial charge / discharge capacity measurement. As a result, it was found that efficient battery evaluation can be performed, and the present invention has been completed.

本発明の一態様は、非水系電解質二次電池の正極材料の抵抗評価を行う非水系電解質二次電池用正極材料の抵抗評価方法であって、前記非水系電解質二次電池の評価用電池を作製後に該評価用電池を所定時間静置する工程と、前記所定時間を静置後に定電流充電する工程と、前記定電流充電後に前記評価用電池を休止してから定電流放電をする工程と、前記定電流放電後に前記評価用電池を休止してから定電流定電圧充電を行う工程と、前記定電流定電圧充電後に交流インピーダンス法により前記正極材料の抵抗測定を行う工程と、を含むことを特徴とする。   One aspect of the present invention is a method for evaluating resistance of a positive electrode material for a non-aqueous electrolyte secondary battery that evaluates resistance of the positive electrode material of the non-aqueous electrolyte secondary battery, wherein the evaluation battery for the non-aqueous electrolyte secondary battery is A step of allowing the evaluation battery to stand for a predetermined time after fabrication; a step of charging the constant current after leaving the predetermined time; a step of resting the evaluation battery after the constant current charging and discharging a constant current; A step of performing constant-current constant-voltage charging after suspending the evaluation battery after the constant-current discharge, and a step of measuring resistance of the positive electrode material by an alternating current impedance method after the constant-current constant-voltage charging. It is characterized by.

本発明の一態様によれば、負極表面に形成されるデンドライトの形成量のばらつきが低減されて負極表面が安定するようになるので、交流インピーダンス法で正極材料の抵抗評価値の精度が向上する。   According to one embodiment of the present invention, variation in the amount of dendrite formed on the negative electrode surface is reduced and the negative electrode surface becomes stable, so that the accuracy of the resistance evaluation value of the positive electrode material is improved by the AC impedance method. .

このとき、本発明の一態様では、前記評価用電池を作製後に静置する前記所定時間は、少なくとも4時間以上であることとしてもよい。   At this time, in one embodiment of the present invention, the predetermined time for allowing the evaluation battery to stand after production may be at least 4 hours or longer.

このようにすれば、評価用電池の正極膜に電解液が完全に浸透するようになるので、その後の交流インピーダンス法による正極材料の抵抗評価値の精度が向上する。   In this way, since the electrolyte solution completely penetrates into the positive electrode membrane of the evaluation battery, the accuracy of the resistance evaluation value of the positive electrode material by the subsequent AC impedance method is improved.

また、本発明の一態様では、前記非水系電解質二次電池は、リチウムを含む遷移金属酸化物の正極と、金属リチウム又はリチウムを主成分とする金属からなる負極とがセパレータを挟んで向かい合うように配置されたリチウムイオン二次電池であり、特に、前記セパレータは、主成分をSiOとするガラス繊維からなることとしてもよい。 In one embodiment of the present invention, the non-aqueous electrolyte secondary battery is configured such that a positive electrode of a transition metal oxide containing lithium and a negative electrode made of metal lithium or a metal containing lithium as a main component face each other with a separator interposed therebetween. In particular, the separator may be made of glass fiber whose main component is SiO 2 .

このようにすれば、特に、リチウムイオン二次電池における交流インピーダンス法による正極材料の抵抗評価値の精度が向上する。   In this way, in particular, the accuracy of the resistance evaluation value of the positive electrode material by the AC impedance method in the lithium ion secondary battery is improved.

また、本発明の一態様では、前記正極は、多孔質の正極膜から構成されることとしてもよい。   In one embodiment of the present invention, the positive electrode may be composed of a porous positive electrode film.

このようにすれば、正極膜の孔部に電解液が完全に浸透するようになるので、その後の交流インピーダンス法による正極材料の抵抗評価値の精度が向上する。   In this way, since the electrolyte solution completely penetrates into the hole of the positive electrode film, the accuracy of the resistance evaluation value of the positive electrode material by the subsequent AC impedance method is improved.

また、本発明の一態様では、前記正極膜は、乾式混合又は湿式混合で形成されることとしてもよい。   In one embodiment of the present invention, the positive electrode film may be formed by dry mixing or wet mixing.

このようにすれば、リチウムイオン二次電池の正極材料として好適な正極膜を効率的に形成できる。   In this way, a positive electrode film suitable as a positive electrode material for a lithium ion secondary battery can be efficiently formed.

以上説明したように本発明によれば、リチウムイオン二次電池等の非水系電解質二次電池の電池材料開発や生産品の出荷前検査における抵抗評価の観点から、非水電解質二次電池の正極活物質の抵抗評価を迅速、高精度かつ低コストで容易に行うことができる。   As described above, according to the present invention, from the viewpoint of resistance evaluation in battery material development of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and pre-shipment inspection of a product, the positive electrode of the non-aqueous electrolyte secondary battery The resistance evaluation of the active material can be easily performed quickly, with high accuracy and at low cost.

本発明の一実施形態に係る非水系電解質二次電池用正極材料の抵抗評価方法で適用される評価用非水系電解質二次電池の構成を示す断面図である。It is sectional drawing which shows the structure of the nonaqueous electrolyte secondary battery for evaluation applied with the resistance evaluation method of the positive electrode material for nonaqueous electrolyte secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法の概略を示すフロー図である。It is a flowchart which shows the outline of the resistance evaluation method of the positive electrode active material for non-aqueous electrolyte secondary batteries which concerns on one Embodiment of this invention.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.

本発明の一実施形態に係る非水系電解質二次電池用正極材料の容量評価方法で適用される非水系電解質二次電池は、正極、負極及び非水系電解液等からなり、一般の非水系電解質二次電池と同様の構成要素により構成される。本発明の一実施形態に係る非水系電解質二次電池を2032型コイン電池に適用した例について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る非水系電解質二次電池用正極材料の容量評価方法で適用される評価用非水系電解質二次電池の構成を示す断面図である。   A non-aqueous electrolyte secondary battery applied in the capacity evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and the like, and is a general non-aqueous electrolyte. It is comprised by the component similar to a secondary battery. An example in which a non-aqueous electrolyte secondary battery according to an embodiment of the present invention is applied to a 2032 type coin battery will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a nonaqueous electrolyte secondary battery for evaluation applied in a capacity evaluation method for a positive electrode material for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

本発明の一実施形態に係る非水系電解質二次電池1は、2032型コイン電池であり、ケース2と、ケース2内に収容された電極3とから構成される。ケース2は、図1(B)に示すように、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成される。電極3は、正極3a、セパレータ3c、及び負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bがウェーブワッシャー4を介して、負極缶2bの内面に接触するようにケース2に収容される。   A nonaqueous electrolyte secondary battery 1 according to an embodiment of the present invention is a 2032 type coin battery, and includes a case 2 and an electrode 3 accommodated in the case 2. As shown in FIG. 1B, the case 2 has a positive electrode can 2a that is hollow and open at one end, and a negative electrode can 2b that is disposed in the opening of the positive electrode can 2a. Is disposed in the opening of the positive electrode can 2a, a space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a. The electrode 3 includes a positive electrode 3a, a separator 3c, and a negative electrode 3b, which are stacked in this order, the positive electrode 3a is in contact with the inner surface of the positive electrode can 2a, and the negative electrode 3b is interposed through a wave washer 4. The case 2 is accommodated so as to be in contact with the inner surface of the negative electrode can 2b.

なお、ケース2は、図1に示すように、ガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が電気的に絶縁状態を維持するように固定される。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封して、ケース2内と外部との間を気密液密に遮断する機能も有している。   As shown in FIG. 1, the case 2 includes a gasket 2c, and the gasket 2c is fixed so that the positive electrode can 2a and the negative electrode can 2b are electrically insulated. Further, the gasket 2c also has a function of sealing a gap between the positive electrode can 2a and the negative electrode can 2b and blocking between the inside of the case 2 and the outside in an airtight and liquid tight manner.

次に、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法のフローについて、図面を使用しながら説明する。図2は、本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法の概略を示すフロー図である。   Next, the flow of the resistance evaluation method for the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a flowchart showing an outline of a resistance evaluation method for a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法は、リチウムイオン二次電池等の非水系電解質二次電池の開発評価や、生産品の出荷前検査における正極材料の抵抗評価を行う際に適用される。本発明の一実施形態に係る非水系電解質二次電池用正極活物質の抵抗評価方法は、図2に示すように、評価用電池作製工程S11、静置工程S12、定電流充電工程S13、休止工程S14、定電流放電工程S15、休止工程S16、定電流定電圧充電工程S17、及び交流インピーダンス測定工程S18を含む。   The method for evaluating the resistance of a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes a development evaluation of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and a positive electrode in a pre-shipment inspection of a product. This is applied when evaluating the resistance of materials. As shown in FIG. 2, the resistance evaluation method for the positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes an evaluation battery preparation step S11, a stationary step S12, a constant current charging step S13, and a pause. The process S14, the constant current discharge process S15, the rest process S16, the constant current constant voltage charge process S17, and the alternating current impedance measurement process S18 are included.

評価用電池作製工程S11では、非水系電解質二次電池の評価用電池を作製する。本実施形態では、前述した図1(A)及び(B)に示すようなリチウムイオン二次電池として2032型コイン電池を評価用電池として、露点−30℃未満のグローブボックス又はドライルームの中で作成する。具体的には、リチウムを含む遷移金属酸化物の正極と、金属リチウム又はリチウムを主成分とする金属からなる負極とがセパレータを挟んで向かい合うように配置されたリチウムイオン二次電池を評価用電池として作製する。   In the evaluation battery preparation step S11, a non-aqueous electrolyte secondary battery evaluation battery is prepared. In this embodiment, as a lithium ion secondary battery as shown in FIGS. 1A and 1B described above, a 2032 type coin battery is used as an evaluation battery in a glove box or dry room having a dew point of less than −30 ° C. create. Specifically, a lithium ion secondary battery in which a positive electrode of a transition metal oxide containing lithium and a negative electrode made of metal lithium or a metal containing lithium as a main component face each other with a separator interposed therebetween is an evaluation battery. To make.

本実施形態では、負極を構成する負極板は、例えば、金属リチウム又はリチウムを主成分とする合金からなる直径14mm、厚み1.0mmのものを打ち抜いて作製される。正極を構成する正極膜は、正極活物質、導電材、及び粉末バインダーを任意の割合で均一に混合し、秤量した後に金型へ流し込み加圧成型することで作製される。具体的には、例えば、リチウムニッケル複合酸化物の粉末75wt%と、導電材となるカーボン粉末と結着剤となる例えばポリテトラフルオロエチレンを2対1で混ぜ合わせたものを25wt%とを混ぜ合わせた物からなる直径11mm、厚さ0.5mm前後、重さ10mg前後の多孔質の正極膜を効率的に作製する。なお、多孔質な正極膜は、スラリー混合し集電体に塗布する湿式混合によっても効率的に形成できる。   In the present embodiment, the negative electrode plate constituting the negative electrode is produced by punching out a metal having a diameter of 14 mm and a thickness of 1.0 mm made of metal lithium or an alloy containing lithium as a main component. The positive electrode film constituting the positive electrode is produced by uniformly mixing a positive electrode active material, a conductive material, and a powder binder at an arbitrary ratio, weighing them, pouring them into a mold, and pressure molding. Specifically, for example, 75 wt% of lithium nickel composite oxide powder and 25 wt% of a mixture of carbon powder as a conductive material and polytetrafluoroethylene as a binder, for example, 2 to 1 are mixed. A porous positive electrode film having a diameter of 11 mm, a thickness of about 0.5 mm, and a weight of about 10 mg is efficiently produced. The porous positive electrode film can also be efficiently formed by wet mixing in which slurry is mixed and applied to a current collector.

セパレータは、電解液の吸液性が高いガラス繊維を用いることで、短時間に電極内部または電極間に十分な電解質の供給が可能となり、安定した電池評価をすることができるため好ましい。また、セパレータの厚みが厚くなると、正極と負極の間の距離が広くなるため、20〜1000μmであることが好ましく、50〜800μmであることがより好ましい。さらに、ガラス繊維の主成分をSiOとするものが好ましい。アルカリ成分が含まれると、条件によっては、電解液中に溶け出して電池の耐久性に影響する可能性があるために、出来れば含まれないことが好ましい。 The separator is preferably made of glass fiber having a high liquid-absorbing property of the electrolytic solution because a sufficient amount of electrolyte can be supplied inside or between the electrodes in a short time and stable battery evaluation can be performed. Moreover, since the distance between a positive electrode and a negative electrode will become large when the thickness of a separator becomes thick, it is preferable that it is 20-1000 micrometers, and it is more preferable that it is 50-800 micrometers. Further, preferably one that the main component of glass fibers and SiO 2. If an alkali component is contained, it may be dissolved in the electrolytic solution depending on conditions, which may affect the durability of the battery.

非水系電解液としては、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いることが好ましい。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独であるいは2種以上を混合して用いることができる。支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、及びそれらの複合塩を用いることができる。さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。 As the nonaqueous electrolytic solution, it is preferable to use a solution obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. may be used alone or in admixture of two or more. Can do. As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used. Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.

評価用電池を作製したら、当該評価用電池を所定時間静置する(静置工程S12)。本実施形態では、評価用電池を作製後に静置する所定時間として、評価用電池の正極膜に電解液が完全に浸透させることによって、交流インピーダンス法による正極材料の抵抗評価値の精度を向上させるために、少なくとも4時間以上静置することを特徴とする。   After the evaluation battery is produced, the evaluation battery is allowed to stand for a predetermined time (stationary step S12). In the present embodiment, the accuracy of the resistance evaluation value of the positive electrode material by the AC impedance method is improved by allowing the electrolyte solution to completely penetrate into the positive electrode film of the evaluation battery as a predetermined time for standing after the evaluation battery is manufactured. Therefore, it is characterized by standing for at least 4 hours.

前述したように、正極膜は、多孔質であることから、正極膜への浸透具合がばらつくと正極材料のインピーダンス測定結果もばらつくため、電解液が完全に孔部へ入り込む浸透が必要となる。また、静置工程S12における静置時間が4時間未満では、電解液の正極膜への浸透が安定せず、一方、18時間以上とすると操業効率の観点から問題がある。静置時間は長い方が電解液を確実に浸透させることができるので、8時間以上がより好ましく、12時間以上が更に好ましい。このため、本実施形態では、交流インピーダンス法による正極材料の抵抗評価値の精度を高めるために、より確実に正極膜に電解液を完全に浸透させた上で評価方法の操業効率を鑑みて、評価用電池作製工程S11が終了した後の静置工程S12の静置時間を少なくとも4時間以上としている。   As described above, since the positive electrode film is porous, if the degree of penetration into the positive electrode film varies, the impedance measurement result of the positive electrode material also varies, so that it is necessary for the electrolyte to completely enter the pores. Further, when the standing time in the standing step S12 is less than 4 hours, the penetration of the electrolyte into the positive electrode film is not stable. On the other hand, when the standing time is 18 hours or more, there is a problem from the viewpoint of operation efficiency. The longer the standing time, the more reliably the electrolyte can permeate, so that it is more preferably 8 hours or longer, and still more preferably 12 hours or longer. For this reason, in this embodiment, in order to increase the accuracy of the resistance evaluation value of the positive electrode material by the AC impedance method, in view of the operation efficiency of the evaluation method after more completely infiltrating the electrolyte into the positive electrode film, The standing time in the standing step S12 after completion of the evaluation battery production step S11 is at least 4 hours.

作製した評価用電池を4時間静置した後に、評価用電池の定電流充電を行う(定電流充電工程S13)。本実施形態では、0.4mAで4.3Vまで定電流充電を行う。その後、評価用電池を1時間の休止の後(休止工程S14)、定電流放電を行う(定電流放電工程S15)。本実施形態では、3.0Vまで定電流放電を行う。このようにして、本実施形態では、定電流充電工程S13、休止工程S14,及び定電流放電工程S15のサイクルを1サイクル行う。   After the produced evaluation battery is allowed to stand for 4 hours, the evaluation battery is charged with a constant current (constant current charging step S13). In this embodiment, constant current charging is performed up to 4.3 V at 0.4 mA. Thereafter, the evaluation battery is subjected to a constant current discharge after a one-hour pause (pause step S14) (constant current discharge step S15). In this embodiment, constant current discharge is performed up to 3.0V. In this way, in the present embodiment, one cycle of the constant current charging step S13, the pause step S14, and the constant current discharging step S15 is performed.

その後、評価用電池を1時間休止後(工程S16)、定電流定電圧充電を行う(定電流定電圧充電工程S17)。本実施形態では、4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電を行う。そして、定電流定電圧充電工程S17で4.0Vに充電された評価用電池の正極材料の抵抗測定を交流インピーダンス法にて行う(交流インピーダンス測定工程S18)。   Thereafter, the evaluation battery is paused for 1 hour (step S16), and then constant current and constant voltage charging is performed (constant current and constant voltage charging step S17). In the present embodiment, constant current and constant voltage charging is performed at a current of 1.6 mA to 0.2 mA up to 4.0 V. Then, the resistance measurement of the positive electrode material of the evaluation battery charged to 4.0 V in the constant current constant voltage charging step S17 is performed by the AC impedance method (AC impedance measuring step S18).

このように本実施形態では、まず、評価用電池の組み立て後に4時間以上静置することにより、電解液を多孔質状である正極の電極膜に浸透させる。その後にインピーダンス測定を行う充電状態まで充電してからインピーダンス測定をする場合、正極活物質LiNiOからLiが負極のLi金属表面に到達するようになる。このとき、負極の表面にLiデンドライトが斑状に形成されるが、この形成量には、ばらつきがあるため、負極表面の状態が安定しない状態となる。 Thus, in this embodiment, first, after assembling the evaluation battery, the electrolyte solution is allowed to permeate into the electrode film of the positive electrode that is porous by allowing it to stand for 4 hours or more. Thereafter, when impedance measurement is performed after charging to a state where impedance measurement is performed, Li reaches the Li metal surface of the negative electrode from the positive electrode active material LiNi 2 O. At this time, Li dendrite is formed in spots on the surface of the negative electrode, but since the amount of formation varies, the state of the negative electrode surface becomes unstable.

このため、本実施形態では、正極材料の初期評価として、充放電容量とインピーダンスを測定するが、充放電を1サイクル実施した後、インピーダンスを測定する充電状態まで充電すると、正極からLiを引き出して負極のLi金属表面にLiが到達する量が2度の充電をすることによって、前述の2倍以上になり、Li金属の表面に形成されるLiデンドライトを一様にしている。充放電のサイクル数を1回増やして2回にすると、時間、コストがかかる上に、負極のLi金属表面にLiが到達する量が更に増えて、Liデンドライトの結晶が成長して、セパレータを突き抜けることによるショートの危険性が高まる。   For this reason, in this embodiment, as an initial evaluation of the positive electrode material, the charge / discharge capacity and impedance are measured, but after charging / discharging is performed for one cycle, when charging is performed until the impedance is measured, Li is extracted from the positive electrode. When the amount of Li reaching the Li metal surface of the negative electrode is charged twice, the amount becomes twice or more as described above, and the Li dendrite formed on the surface of the Li metal is made uniform. If the number of charge / discharge cycles is increased once to 2 times, it takes time and cost, and the amount of Li reaching the Li metal surface of the negative electrode further increases, Li dendrite crystals grow, and the separator is removed. Increased risk of short-circuit due to penetration.

通常は、1サイクルすることで評価結果の精度を向上させることができるが、最適なサイクル数は、充放電条件や負極板の大きさも考慮して、実験等で適宜最適な回数を決めることができる。この結果、インピーダンスが安定して測定できるようになる。このようにして、本実施形態では、負極表面に形成されるデンドライトの形成量のばらつきが低減されて負極表面が安定するようになるので、交流インピーダンス法で正極材料の抵抗評価値の精度が向上するようになる。   Usually, the accuracy of the evaluation results can be improved by performing one cycle, but the optimum number of cycles can be appropriately determined by experiments or the like in consideration of the charge / discharge conditions and the size of the negative electrode plate. it can. As a result, the impedance can be stably measured. In this way, in this embodiment, variation in the amount of dendrite formed on the negative electrode surface is reduced and the negative electrode surface becomes stable, so the accuracy of the resistance evaluation value of the positive electrode material is improved by the AC impedance method. To come.

次に、本発明の一実施形態に係るリチウムイオン二次電池用正極材料の抵抗評価方法について実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。   Next, the resistance evaluation method for the positive electrode material for a lithium ion secondary battery according to an embodiment of the present invention will be described in detail with reference to examples. The present invention is not limited to these examples.

(実施例1)
電池評価に使用する負極板として厚み1.0mmの金属リチウムを直径14mmに打ち抜いた物を用い、正極材としては、ニッケル酸リチウムの粉末75wt%と、導電材となるカーボン粉末としてアセチレンブラック粉末を、結着剤であるポリテトラフルオロエチレンとで2対1で混ぜ合わせたもの25wt%とを混ぜ合わせた直径11mm重さ75mgを用いる。この正極膜の活物質重量物は、52.5mg相当である。セパレータは、JIS P 3801の保留粒子系0.3mであり、厚さ0.20mmであるガラス繊維製のフィルタを直径16mmに切り取ったものを用いた。
Example 1
As a negative electrode plate used for battery evaluation, a metal plate having a thickness of 1.0 mm punched out to a diameter of 14 mm was used. As the positive electrode material, 75 wt% lithium nickelate powder and acetylene black powder as a carbon powder serving as a conductive material were used. In addition, 75 mg of 11 mm in diameter, which is a mixture of 25 wt% of 2: 1 mixed with polytetrafluoroethylene as a binder, is used. The active material weight of this positive electrode film is equivalent to 52.5 mg. The separator used was a JIS P 3801 retained particle system of 0.3 m and a glass fiber filter having a thickness of 0.20 mm cut to a diameter of 16 mm.

電解液は、電解質LiClO、1モル/Lを含有するエチレンカーボネート(EC)とジエチルメチルカーボネート(DEC)の等量混合液を用いた。これらの材料を用いて露点−30℃未満のグローブボックス又はドライルームの中で2032型コイン電池を2個作製した。 As the electrolytic solution, an equivalent mixed solution of ethylene carbonate (EC) and diethyl methyl carbonate (DEC) containing 1 mol / L of electrolyte LiClO 4 was used. Using these materials, two 2032 type coin batteries were produced in a glove box or a dry room having a dew point of less than −30 ° C.

抵抗評価は、作製した電池を4時間静置し、0.4mAで4.3Vまで定電流充電を行い、1時間の休止の後、3.0Vまで放電するサイクルを1サイクル行い、1時間休止後に4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電を行った。4.0Vに充電された電池を交流インピーダンス法にて測定を行い、コールコールプロットにて得られた曲線に対し、等価回路を用いて正極の界面抵抗を計算した。   For resistance evaluation, the produced battery was left to stand for 4 hours, charged at a constant current to 4.3 V at 0.4 mA, and after one hour of rest, one cycle of discharging to 3.0 V was performed, followed by one hour of rest. Later, constant current and constant voltage charging was performed at a current of 1.6 mA to 0.2 mA up to 4.0 V. The battery charged to 4.0 V was measured by the AC impedance method, and the interface resistance of the positive electrode was calculated using an equivalent circuit for the curve obtained by the Cole-Cole plot.

(比較例1)
実施例1と同等の電池構成で作製した電池を1時間静置した後に、4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電をおこなった。4.0Vに充電された電池を交流インピーダンス法にて測定を行ったことを除いて実施例1と同様に実施した。
(Comparative Example 1)
A battery produced with a battery configuration equivalent to that of Example 1 was allowed to stand for 1 hour, and then charged with constant current and constant voltage up to 4.0 V at a current of 1.6 mA to 0.2 mA. The same operation as in Example 1 was performed except that the battery charged at 4.0 V was measured by the AC impedance method.

(比較例2)
実施例1と同等の電池構成で作製した電池を12時間静置した後に、4.0Vまで1.6mA―0.2mAの電流で定電流定電圧充電を行った。4.0Vに充電された電池を交流インピーダンス法にて測定を行ったことを除いて実施例1と同様に実施した。
(Comparative Example 2)
A battery produced with a battery configuration equivalent to that of Example 1 was allowed to stand for 12 hours, and then charged with constant current and constant voltage up to 4.0 V at a current of 1.6 mA to 0.2 mA. The same operation as in Example 1 was performed except that the battery charged at 4.0 V was measured by the AC impedance method.

これら実施例1、比較例1、及び比較例2の抵抗評価結果を以下の表1に示す。   The resistance evaluation results of Example 1, Comparative Example 1, and Comparative Example 2 are shown in Table 1 below.

実施例1の抵抗評価結果では、電池2個の正極界面抵抗の値のばらつき(2個の電池の正極界面抵抗値の差異)が1個目の測定値の約2.0%であり、ばらつきの小さな、安定した抵抗評価結果が得られることが分かった。一方、比較例1では、電池2個の正極界面抵抗のばらつきが1個目の測定値の約40%であり、比較例2では、電池2個の正極界面抵抗のばらつきが1個目の測定値の25%であった。以上の結果から、本発明の一実施形態に係るリチウムイオン二次電池用正極材料の抵抗評価方法を用いることによって、リチウムイオン二次電池の抵抗評価結果のばらつきを小さくして、精度を向上させることができることが分かった。   In the resistance evaluation result of Example 1, the variation in the value of the positive electrode interface resistance of the two batteries (the difference in the positive electrode interface resistance value of the two cells) is about 2.0% of the first measured value, and the variation It was found that a small and stable resistance evaluation result can be obtained. On the other hand, in Comparative Example 1, the variation in the positive electrode interface resistance of the two batteries is about 40% of the first measured value. In Comparative Example 2, the variation in the positive electrode interface resistance of the two batteries is the first measurement. 25% of the value. From the above results, by using the resistance evaluation method for the positive electrode material for a lithium ion secondary battery according to one embodiment of the present invention, the variation in the resistance evaluation results of the lithium ion secondary battery is reduced and the accuracy is improved. I found out that I could do it.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although the embodiments and examples of the present invention have been described in detail as described above, it will be understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、非水系電解質二次電池の構成、非水系電解質二次電池用正極材料の抵抗評価方法の動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the configuration of the non-aqueous electrolyte secondary battery and the operation of the resistance evaluation method of the positive electrode material for the non-aqueous electrolyte secondary battery are not limited to those described in each embodiment and each example of the present invention, and various modifications are made. Is possible.

1 非水系電解質二次電池(リチウムイオン二次電池)、2 ケース、2a 正極缶、2b 負極缶、2c ガスケット、3 電極、3a 正極(正極膜)、3b 負極、3c セパレータ、4 ウェーブワッシャー、S11 評価用電池作製工程、S12 静置工程、S13 定電流充電工程、S14 休止工程、S15 定電流放電工程、S16休止工程、S17 定電流定電圧充電工程、S18 交流インピーダンス測定工程 1 Nonaqueous electrolyte secondary battery (lithium ion secondary battery), 2 case, 2a positive electrode can, 2b negative electrode can, 2c gasket, 3 electrode, 3a positive electrode (positive electrode film), 3b negative electrode, 3c separator, 4 wave washer, S11 Battery production process for evaluation, S12 stationary process, S13 constant current charging process, S14 pause process, S15 constant current discharge process, S16 pause process, S17 constant current constant voltage charging process, S18 AC impedance measurement process

Claims (6)

非水系電解質二次電池の正極材料の抵抗評価を行う非水系電解質二次電池用正極材料の抵抗評価方法であって、
前記非水系電解質二次電池の評価用電池を作製後に該評価用電池を所定時間静置する工程と、
前記所定時間を静置後に定電流充電する工程と、
前記定電流充電後に前記評価用電池を休止してから定電流放電をする工程と、
前記定電流放電後に前記評価用電池を休止してから定電流定電圧充電を行う工程と、
前記定電流定電圧充電後に交流インピーダンス法により前記正極材料の抵抗測定を行う工程と、を含むことを特徴とする非水系電解質二次電池用正極材料の抵抗評価方法。
A method for evaluating the resistance of a positive electrode material for a non-aqueous electrolyte secondary battery, wherein the resistance of the positive electrode material for the non-aqueous electrolyte secondary battery is evaluated.
A step of standing the evaluation battery for a predetermined time after producing the evaluation battery of the non-aqueous electrolyte secondary battery;
Charging with a constant current after standing the predetermined time;
A step of suspending the evaluation battery after the constant current charge and then performing a constant current discharge;
Performing constant current constant voltage charging after suspending the evaluation battery after the constant current discharge;
And a step of measuring resistance of the positive electrode material by an AC impedance method after the constant current and constant voltage charging, and a resistance evaluation method for the positive electrode material for a non-aqueous electrolyte secondary battery.
前記評価用電池を作製後に静置する前記所定時間は、少なくとも4時間以上であることを特徴とする請求項1に記載の非水系電解質二次電池用正極材料の抵抗評価方法。   2. The method for evaluating resistance of a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the predetermined time of standing after the battery for evaluation is at least 4 hours or longer. 前記非水系電解質二次電池は、リチウムを含む遷移金属酸化物の正極と、金属リチウム又はリチウムを主成分とする金属からなる負極とがセパレータを挟んで向かい合うように配置されたリチウムイオン二次電池であることを特徴とする請求項1又は2に記載の非水系電解質二次電池用正極材料の抵抗評価方法。   The non-aqueous electrolyte secondary battery is a lithium ion secondary battery in which a positive electrode of a transition metal oxide containing lithium and a negative electrode made of metal lithium or a metal containing lithium as a main component face each other with a separator interposed therebetween. The resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein: 前記セパレータは、主成分をSiOとするガラス繊維からなることを特徴とする請求項3に記載の非水系電解質二次電池用正極材料の抵抗評価方法。 The separator resistance evaluation method of the non-aqueous electrolyte secondary battery positive electrode material according to claim 3, characterized in that it consists of glass fibers the major component and SiO 2. 前記正極は、多孔質の正極膜から構成されることを特徴とする請求項3又は4に記載の非水系電解質二次電池用正極材料の抵抗評価方法。   The method for evaluating resistance of a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 3 or 4, wherein the positive electrode is composed of a porous positive electrode film. 前記正極膜は、乾式混合又は湿式混合で形成されることを特徴とする請求項5に記載の非水系電解質二次電池用正極材料の抵抗評価方法。   The resistance evaluation method for a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the positive electrode film is formed by dry mixing or wet mixing.
JP2016106490A 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries Active JP7064821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016106490A JP7064821B2 (en) 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016106490A JP7064821B2 (en) 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JP2017212175A true JP2017212175A (en) 2017-11-30
JP7064821B2 JP7064821B2 (en) 2022-05-11

Family

ID=60475611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106490A Active JP7064821B2 (en) 2016-05-27 2016-05-27 Resistance evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
JP (1) JP7064821B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002660A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2011034861A (en) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2012221756A (en) * 2011-04-08 2012-11-12 Nippon Sheet Glass Co Ltd Separator for nonaqueous secondary battery and battery including the same
JP2014078360A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Nonaqueous electrolyte secondary battery, and manufacturing method thereof
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
JP2015138617A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002660A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2011034861A (en) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2012221756A (en) * 2011-04-08 2012-11-12 Nippon Sheet Glass Co Ltd Separator for nonaqueous secondary battery and battery including the same
JP2014078360A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Nonaqueous electrolyte secondary battery, and manufacturing method thereof
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
JP2015138617A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7064821B2 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2017190572A1 (en) Secondary battery and preparation method therefor
JP7284194B2 (en) Metal oxide-based electrode composition
CN110400932B (en) Electrochemical cell and preparation method thereof
US20190363344A1 (en) Negative electrode plate, testing method of active specific surface area of electrode plate, battery
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6541035B2 (en) Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery
KR101799669B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
CN111699585A (en) Stack-folding type electrode assembly and lithium metal battery including the same
KR20140132791A (en) Anode active material for lithium secondary battery and lithium secondary battery comprising the same
JP6627621B2 (en) Output evaluation method of lithium ion secondary battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
KR20190032096A (en) Designing method for electrode for lithium secondary battery and method for preparing electrode for lithium secondary battery comprising the same
KR20190039075A (en) High-temperature aging process of lithium-ion battery
KR101750478B1 (en) Method for Setting Capacity Grade of Battery Cell
KR20170112345A (en) Method for preparing electrode for lithium secondary battery
JP2018185974A (en) Lithium ion secondary battery and output characteristic evaluation method thereof
JP6988084B2 (en) Capacity evaluation method for positive electrode materials for non-aqueous electrolyte secondary batteries
JP2014232578A (en) Method for manufacturing sealed battery
TWI620370B (en) Lithium battery, solid electrolyte membrane and their manufacturing methods thereof
JP5708510B2 (en) Non-aqueous electrolyte secondary battery
JP2017212175A (en) Method for resistance evaluation of positive electrode material for nonaqueous electrolyte secondary battery
KR20220127154A (en) Method of producing non-aqueous electrolyte secondary battery, and negative electrode active material
CN117203821A (en) Method for manufacturing secondary battery
JP2003100351A (en) Method of measuring self-discharge amount of lithium ion secondary cell and method of manufacturing lithium ion secondary cell
JP2017117541A (en) Nonaqueous electrolyte secondary battery for positive electrode active material evaluation, and method for measuring positive electrode resistance

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201020

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201218

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210616

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220301

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220329

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7064821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150