JP2017211293A - Image acquisition device and film thickness measurement method - Google Patents

Image acquisition device and film thickness measurement method Download PDF

Info

Publication number
JP2017211293A
JP2017211293A JP2016105070A JP2016105070A JP2017211293A JP 2017211293 A JP2017211293 A JP 2017211293A JP 2016105070 A JP2016105070 A JP 2016105070A JP 2016105070 A JP2016105070 A JP 2016105070A JP 2017211293 A JP2017211293 A JP 2017211293A
Authority
JP
Japan
Prior art keywords
film thickness
measured
image acquisition
measurement
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016105070A
Other languages
Japanese (ja)
Inventor
石 勉
Tsutomu Ishi
勉 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2016105070A priority Critical patent/JP2017211293A/en
Publication of JP2017211293A publication Critical patent/JP2017211293A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image acquisition device which is of a simple construction, less affected by a variation in the refractive index of a substrate and small in measurement error, and a film thickness measurement method.SOLUTION: An image acquisition device of the present invention performs film thickness measurement utilizing optical interference, the image acquisition device comprising: a light source for radiating a measurement light; a sample stage on which a sample having a measurement object arranged on a substrate is placed; a low reflection body arranged between the bottom of the substrate and the sample stage, for reducing the measurement light reflected in the direction of the measurement object from the bottom of the substrate and the sample stage; a camera for receiving the measurement light reflected by the measurement object and converting the same to data; and control means for measuring the film thickness of the measurement object on the basis of the data acquired by the camera.SELECTED DRAWING: Figure 1

Description

本発明は、光干渉を用いて塗装膜やコーティング等の膜厚を計測するための画像取得装置及び膜厚測定方法に関する。   The present invention relates to an image acquisition apparatus and a film thickness measurement method for measuring a film thickness of a paint film, a coating, or the like using optical interference.

周波数が0.1THz(テラヘルツ)から10THzまで(波長30μmから3mmまで)の電磁波は「テラヘルツ波」と呼ばれる。近年は、コンパクトで使いやすいテラヘルツ波の光源や受光器が開発されるとともに、これらをシステムアップした分光器や検査システムが実用化されている(例えば、特許文献1参照)。   An electromagnetic wave having a frequency of 0.1 THz (terahertz) to 10 THz (wavelength 30 μm to 3 mm) is called a “terahertz wave”. In recent years, compact and easy-to-use terahertz light sources and light receivers have been developed, and spectroscopes and inspection systems obtained by upgrading these light sources and light receivers have been put into practical use (for example, see Patent Document 1).

テラヘルツ波の特徴の1つは、紙、プラスチック等の素材に対して物質透過性を有することである。非特許文献1には、この性質を利用して、超短パルスレーザで励起されたテラヘルツ波パルスを光源に用いた、車の塗装膜厚を測定する方法が開示されている。非特許文献1では、膜厚の測定方法として、テラヘルツ波パルスを照射したときの、膜の表面と裏面からの戻り光の時間差から膜厚を同定する、いわゆる飛行時間法(Time of Flight Method、TOF法)が用いられる。   One of the characteristics of terahertz waves is that they have material permeability to materials such as paper and plastic. Non-Patent Document 1 discloses a method for measuring the coating film thickness of a vehicle using this property and using a terahertz wave pulse excited by an ultrashort pulse laser as a light source. In Non-Patent Document 1, as a method of measuring the film thickness, a so-called time-of-flight method (Time of Flight Method) that identifies the film thickness from the time difference between the return light from the front surface and the back surface when the terahertz wave pulse is irradiated. TOF method) is used.

塗装膜やコーティング等の膜厚を測定する別の方法として、光学干渉を利用する方法がある。この方法は、膜の表面で反射される反射光と膜の裏面で反射される反射光とが干渉することで、反射光強度が膜厚に応じて変化することを利用する。特許文献2には、光学干渉を利用したフォトレジストの膜厚測定方法が記載されている。可視光や赤外光は、一般的に、数μm以下の比較的薄い膜厚の測定に適している。数十μmから数mm程度の比較的厚い膜厚の測定には、これらの光よりも波長が長いテラヘルツ波の光学干渉を利用するのが好適である。さらに、特許文献3には、特定の偏光の反射率が最小になる角度に基づいて、可視光を用いて膜厚測定を行うための方法及び装置が記載されている。   As another method for measuring the film thickness of a paint film or a coating, there is a method using optical interference. This method utilizes the fact that the reflected light intensity changes according to the film thickness because the reflected light reflected on the surface of the film interferes with the reflected light reflected on the back surface of the film. Patent Document 2 describes a method for measuring a film thickness of a photoresist using optical interference. Visible light and infrared light are generally suitable for measuring a relatively thin film thickness of several μm or less. For the measurement of a relatively thick film thickness of about several tens of μm to several mm, it is preferable to use optical interference of terahertz waves having a wavelength longer than these lights. Further, Patent Document 3 describes a method and apparatus for measuring film thickness using visible light based on an angle at which the reflectance of specific polarized light is minimized.

特開2015−122354号公報Japanese Patent Laying-Open No. 2015-122354 特表2002−523763号公報JP-T-2002-523963 特開2007−078608号公報JP 2007-078608 A

T.Yasui et al., Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film, Applied Optics, Vol. 44, No. 32, pp. 6849-6856, 2005年11月10日T. Yasui et al., Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film, Applied Optics, Vol. 44, No. 32, pp. 6849-6856, November 10, 2005

テラヘルツ波を測定光として用い、基材上に堆積した塗装膜やコーティングの膜厚を測定する場合、測定光の周波数において、基材による測定光の吸収が小さい場合に、膜厚の測定値がばらつくことがある。これは、被測定物に照射されたテラヘルツ波が基材の裏面に達し、基材の裏面において新たな反射光が生成されるためである。その結果、基材の屈折率や厚みのわずかな変動により、観測されるトータルの反射光強度が変動し、膜厚の測定値にばらつきが生じる。基材による測定光の吸収が小さく、また、測定試料を設置する試料ステージの屈折率と基材の屈折率との間に大きな差がある場合(すなわち、両者が接する界面における測定光の反射が大きい場合)に、この現象は顕著に起こる。そして、特許文献1〜3及び非特許文献1は、テラヘルツ波を用いた被測定試料の膜厚測定におけるこのような課題を解決する技術を開示していない。   When terahertz waves are used as measurement light and the thickness of a coating film or coating deposited on the substrate is measured, the measured value of the film thickness is less when the measurement light is absorbed by the substrate at the frequency of the measurement light. May vary. This is because the terahertz wave irradiated to the object to be measured reaches the back surface of the base material, and new reflected light is generated on the back surface of the base material. As a result, the total reflected light intensity observed fluctuates due to slight fluctuations in the refractive index and thickness of the substrate, resulting in variations in the measured film thickness. Absorption of measurement light by the substrate is small, and there is a large difference between the refractive index of the sample stage on which the measurement sample is placed and the refractive index of the substrate (that is, the reflection of the measurement light at the interface where both are in contact) This phenomenon is noticeable in large cases. Patent Documents 1 to 3 and Non-Patent Document 1 do not disclose a technique for solving such a problem in film thickness measurement of a sample to be measured using a terahertz wave.

(発明の目的)
本発明の目的は、光学干渉を用いた膜厚の測定方法において、簡易な構成で、測定誤差が小さい画像取得装置及び膜厚測定方法を提供することにある。
(Object of invention)
An object of the present invention is to provide an image acquisition apparatus and a film thickness measuring method with a simple configuration and a small measurement error in a film thickness measuring method using optical interference.

本発明の画像取得装置は、光学干渉を利用した膜厚測定を行う画像取得装置であって、測定光を放射する光源と、基材上に被測定物が配された試料を搭載する試料ステージと、基材の底面と試料ステージとの間に配され、基材の底面及び試料ステージから被測定物の方向に反射される測定光を低減する低反射体と、被測定物で反射された測定光を受光してデータに変換するカメラと、カメラで取得されたデータに基づいて被測定物の膜厚を求める制御手段と、を備える。   An image acquisition apparatus according to the present invention is an image acquisition apparatus that performs film thickness measurement using optical interference, and includes a light source that emits measurement light and a sample stage on which a sample on which a measurement object is arranged is mounted on a substrate And a low reflector that is disposed between the bottom surface of the substrate and the sample stage and reduces the measurement light reflected from the bottom surface of the substrate and the sample stage toward the object to be measured, and is reflected by the object to be measured A camera that receives measurement light and converts it into data; and a control unit that obtains the film thickness of the object to be measured based on the data acquired by the camera.

本発明の膜厚測定方法は、光学干渉を利用した膜厚測定方法であって、光源から測定光を放射し、基材上に被測定物が配された試料を試料ステージに搭載し、基材の底面と試料ステージとの間に、基材の底面及び試料ステージから被測定物の方向に反射される測定光を低減する低反射体を配置し、被測定物で反射された測定光を受光し、受光結果に基づいて被測定物の膜厚を求める、ことを特徴とする。   The film thickness measurement method of the present invention is a film thickness measurement method using optical interference, in which measurement light is emitted from a light source, and a sample in which an object to be measured is arranged on a substrate is mounted on a sample stage. Between the bottom surface of the material and the sample stage, a low reflector that reduces the measurement light reflected from the bottom surface of the substrate and the sample stage in the direction of the object to be measured is arranged, and the measurement light reflected by the object to be measured is arranged. The method is characterized in that light is received and a film thickness of the object to be measured is obtained based on the light reception result.

本発明は、光学干渉を利用した膜厚測定において、簡単な構成で精度の高い膜厚測定が可能な画像取得装置及び膜厚測定方法を提供できる。   INDUSTRIAL APPLICABILITY The present invention can provide an image acquisition apparatus and a film thickness measuring method capable of measuring a film thickness with high accuracy with a simple configuration in film thickness measurement using optical interference.

第1の実施形態の画像取得装置100の構成例を示す図である。It is a figure which shows the structural example of the image acquisition apparatus 100 of 1st Embodiment. 画像取得装置100を用いた場合の、基材6上の被測定物5の膜厚と反射光強度との関係のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the relationship between the film thickness of the to-be-measured object 5 on the base material 6, and reflected light intensity at the time of using the image acquisition apparatus 100. FIG. 画像取得装置100と対比される、画像取得装置200の構成を示す図である。It is a figure which shows the structure of the image acquisition apparatus 200 contrasted with the image acquisition apparatus 100. FIG. 画像取得装置200を用いた場合の、基材6上の被測定物5の膜厚と反射光強度との関係のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the relationship between the film thickness of the to-be-measured object 5 on the base material 6, and reflected light intensity at the time of using the image acquisition apparatus 200. FIG. 画像取得装置100と対比される、画像取得装置300の構成を示す図である。It is a figure which shows the structure of the image acquisition apparatus 300 contrasted with the image acquisition apparatus 100. FIG. 画像取得装置300を用いた場合の、基材6上の被測定物5の膜厚と反射光強度との関係のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the relationship between the film thickness of the to-be-measured object 5 on the base material 6, and reflected light intensity at the time of using the image acquisition apparatus 300. FIG. 第2の実施形態の画像取得装置400の構成例を示す図である。It is a figure which shows the structural example of the image acquisition apparatus 400 of 2nd Embodiment. 第3の実施形態の画像取得装置500の構成例を示す図である。It is a figure which shows the structural example of the image acquisition apparatus 500 of 3rd Embodiment.

次に、本発明の実施形態について図面を参照して詳細に説明する。以下の実施形態では、特に数十μmから数mm程度の厚さを測定するのに好適な、周波数が0.1THzから10THzのテラヘルツ波の光学干渉を利用した画像取得装置について説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態の画像取得装置100の構成例を示す図である。画像取得装置100は、光学干渉を利用して被測定物の膜厚を測定するために用いられる。画像取得装置100は、テラヘルツ波光源1、テラヘルツカメラ2、テラヘルツレンズ3、試料ステージ7、低反射体8、制御部9を備える。低反射体8は、試料4と試料ステージ7との間に配置される。試料4は、基材6と、基材6上に塗布された被測定物5と、を含む。被測定物5は、画像取得装置100による膜厚の測定対象であり、例えば、基材6に施された塗装や被覆である。
Next, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, an image acquisition apparatus using optical interference of terahertz waves having a frequency of 0.1 THz to 10 THz, which is particularly suitable for measuring a thickness of about several tens of μm to several mm will be described.
(First embodiment)
FIG. 1 is a diagram illustrating a configuration example of an image acquisition apparatus 100 according to the first embodiment of the present invention. The image acquisition device 100 is used to measure the film thickness of a measurement object using optical interference. The image acquisition device 100 includes a terahertz wave light source 1, a terahertz camera 2, a terahertz lens 3, a sample stage 7, a low reflector 8, and a control unit 9. The low reflector 8 is disposed between the sample 4 and the sample stage 7. The sample 4 includes a base material 6 and an object to be measured 5 applied on the base material 6. The object to be measured 5 is a measurement target of the film thickness by the image acquisition device 100, and is, for example, a coating or coating applied to the base material 6.

テラヘルツ波光源1は、テラヘルツ波を放射する光源である。テラヘルツ波光源1として、波長帯域の狭い、概ね単一波長(すなわち、略単色光)のテラヘルツ波を放射する光源が用いられてもよい。波長帯域の狭いテラヘルツ波を用いることで、波長のばらつきに起因する、被測定物5の膜厚の測定誤差を低減することができる。   The terahertz wave light source 1 is a light source that emits terahertz waves. As the terahertz wave light source 1, a light source that emits a terahertz wave having a narrow wavelength band and a substantially single wavelength (that is, substantially monochromatic light) may be used. By using a terahertz wave having a narrow wavelength band, it is possible to reduce a measurement error of the film thickness of the DUT 5 due to wavelength variation.

低反射体8は、基材6の底面と試料ステージ7との間に密着して配置される。低反射体8は、基材6と低反射体8との境界における、テラヘルツ波の基材6の方向への反射を抑制する素材である。低反射体8は、基材6との接触面において、テラヘルツ波光源1から放射されるテラヘルツ波の反射を抑制するための反射防止膜を備えてもよい。また、低反射体8は、テラヘルツ波光源1が放射するテラヘルツ波に対する吸収性を備えてもよい。すなわち、低反射体8は、基材6から入射したテラヘルツ波及び試料ステージ7で反射されたテラヘルツ波を吸収する電波吸収体であってもよい。   The low reflector 8 is disposed in close contact between the bottom surface of the substrate 6 and the sample stage 7. The low reflector 8 is a material that suppresses reflection of terahertz waves in the direction of the substrate 6 at the boundary between the substrate 6 and the low reflector 8. The low reflector 8 may include an antireflection film for suppressing the reflection of the terahertz wave emitted from the terahertz wave light source 1 on the contact surface with the substrate 6. In addition, the low reflector 8 may have absorptivity with respect to terahertz waves emitted by the terahertz wave light source 1. That is, the low reflector 8 may be a radio wave absorber that absorbs the terahertz wave incident from the substrate 6 and the terahertz wave reflected by the sample stage 7.

テラヘルツ波光源1から放射されたテラヘルツ波の一部は、被測定物5の表面及び裏面において反射され、テラヘルツレンズ3に入射する。テラヘルツレンズ3は、テラヘルツ波を集光してテラヘルツカメラ2に入力させる。テラヘルツカメラ2に入力されるテラヘルツ波の強度を制御部9で解析することにより、被測定物5の膜厚を求めることができる。例えば、テラヘルツ波光源1は、テラヘルツ波を被測定物5に照射し、テラヘルツカメラ2は、被測定物5の表面及び裏面において反射されたテラヘルツ波を受光する。そして、テラヘルツカメラ2は、被測定物5上におけるテラヘルツ波の反射強度の2次元分布のデータを生成して、制御部9へ出力する。   A part of the terahertz wave emitted from the terahertz wave light source 1 is reflected on the front and back surfaces of the object to be measured 5 and enters the terahertz lens 3. The terahertz lens 3 collects the terahertz wave and inputs it to the terahertz camera 2. By analyzing the intensity of the terahertz wave input to the terahertz camera 2 by the control unit 9, the film thickness of the object to be measured 5 can be obtained. For example, the terahertz wave light source 1 irradiates the measurement object 5 with the terahertz wave, and the terahertz camera 2 receives the terahertz waves reflected on the front surface and the back surface of the measurement object 5. Then, the terahertz camera 2 generates data of a two-dimensional distribution of the reflection intensity of the terahertz wave on the object to be measured 5 and outputs the data to the control unit 9.

制御部9は、光学干渉を用いた膜厚の算出機能を備える。制御部9は、テラヘルツカメラ2で得られたテラヘルツ波の反射強度のデータを処理して、被測定物の膜厚の分布を求める。光学干渉を用いた膜厚の測定方法は知られているので、詳細な説明は省略する。制御部9は、CPU(central processing unit)及び半導体メモリ等の記録装置を備え、記録装置に記録されたプログラムをCPUが実行することで制御部9の機能を実現してもよい。また、制御部9の機能は、テラヘルツカメラ2に含まれてもよい。制御部9は、テラヘルツ波光源1を含む画像取得装置100の全体を制御する機能を備えていてもよい。   The controller 9 has a film thickness calculation function using optical interference. The control unit 9 processes the terahertz wave reflection intensity data obtained by the terahertz camera 2 to obtain the distribution of the film thickness of the object to be measured. Since a method for measuring a film thickness using optical interference is known, detailed description thereof is omitted. The control unit 9 may include a CPU (central processing unit) and a recording device such as a semiconductor memory, and the function of the control unit 9 may be realized by the CPU executing a program recorded in the recording device. The function of the control unit 9 may be included in the terahertz camera 2. The control unit 9 may have a function of controlling the entire image acquisition device 100 including the terahertz wave light source 1.

図2に、画像取得装置100を用いた場合の、基材6上の被測定物5の膜厚と反射光強度との関係のシミュレーション結果を示す。図2のシミュレーションにおいて、試料ステージ7は金属(アルミニウム)製である。アルミニウムの屈折率は133であり、消衰係数は209である。被測定物5の屈折率は1.49であり、わずかに吸収がある(消衰係数0.12)。また基材6の厚みは3.2mmである。基材6の屈折率は約1.6であるが、最大で1.62程度の値を示すものとする。テラヘルツ波の周波数は2THz(波長150μm)である。テラヘルツ波の入射角度(被測定物5の表面法線方向とのなす角)は20度である。偏波方向はp偏光である。図2は、基材6の底面から被測定物5の方向への反射光の発生が充分に抑制されるような低反射体8が用いられた場合のシミュレーション結果を示す。   In FIG. 2, the simulation result of the relationship between the film thickness of the to-be-measured object 5 on the base material 6 and reflected light intensity at the time of using the image acquisition apparatus 100 is shown. In the simulation of FIG. 2, the sample stage 7 is made of metal (aluminum). Aluminum has a refractive index of 133 and an extinction coefficient of 209. The measured object 5 has a refractive index of 1.49 and is slightly absorbed (extinction coefficient 0.12). Moreover, the thickness of the base material 6 is 3.2 mm. Although the refractive index of the base material 6 is about 1.6, a maximum value of about 1.62 is assumed. The frequency of the terahertz wave is 2 THz (wavelength 150 μm). The incident angle of the terahertz wave (the angle formed with the surface normal direction of the DUT 5) is 20 degrees. The polarization direction is p-polarized light. FIG. 2 shows a simulation result in the case where the low reflector 8 that sufficiently suppresses the generation of reflected light from the bottom surface of the substrate 6 toward the object to be measured 5 is used.

図1に示す構成を備える画像取得装置100では、基材の屈折率にばらつきがあっても、低反射体8によって基材6の底面から被測定物5の方向への反射光の発生が抑制される。このため、図2に示すように、基材6上の被測定物5の膜厚と被測定物5からの反射光強度との関係に差がほとんど生じないことがわかる。すなわち、画像取得装置100は、光学干渉を利用した膜厚測定において、簡単な構成で精度の高い膜厚測定が可能である。   In the image acquisition apparatus 100 having the configuration shown in FIG. 1, even when the refractive index of the base material varies, the low reflector 8 suppresses the generation of reflected light from the bottom surface of the base material 6 toward the object to be measured 5. Is done. For this reason, as shown in FIG. 2, it turns out that a difference hardly arises in the relationship between the film thickness of the to-be-measured object 5 on the base material 6, and the reflected light intensity from the to-be-measured object 5. FIG. That is, the image acquisition apparatus 100 can measure the film thickness with high accuracy with a simple configuration in the film thickness measurement using optical interference.

このように、画像取得装置100は、光学干渉を利用した膜厚測定において、低反射体8を基材6の底面と試料ステージ7との間に配置することで、簡単な構成で精度の高い膜厚測定が可能な画像取得装置を提供できる。また、画像取得装置100は、テラヘルツ波の偏波方向に依存することなく膜厚測定が可能である。   As described above, the image acquisition apparatus 100 has a simple configuration and high accuracy by disposing the low reflector 8 between the bottom surface of the substrate 6 and the sample stage 7 in film thickness measurement using optical interference. An image acquisition apparatus capable of measuring a film thickness can be provided. The image acquisition apparatus 100 can measure the film thickness without depending on the polarization direction of the terahertz wave.

なお、第1の実施形態では光源がテラヘルツ波光源である場合について説明したが、第1の実施形態の構成が適用可能な光源の周波数帯はテラヘルツ帯に限定されない。また、被測定物5は膜に限定されず、テラヘルツ波光源1から放射される光を透過する物質であれば画像取得装置100によってその厚みを測定できる。   In the first embodiment, the case where the light source is a terahertz wave light source has been described. However, the frequency band of the light source to which the configuration of the first embodiment is applicable is not limited to the terahertz band. The object to be measured 5 is not limited to a film, and the thickness of the object to be measured 5 can be measured by the image acquisition device 100 as long as it is a substance that transmits light emitted from the terahertz wave light source 1.

(第1の実施形態の最小構成)
また、第1の実施形態の画像取得装置100の効果は、以下の最小構成によってももたらされる。第1の実施形態の構成要素の参照符号を括弧内に示す。
(Minimum configuration of the first embodiment)
The effects of the image acquisition device 100 of the first embodiment are also brought about by the following minimum configuration. Reference numerals of constituent elements of the first embodiment are shown in parentheses.

すなわち、最小構成の画像取得装置(100)は、光学干渉を利用した膜厚測定を行う。画像取得装置は、光源(1)、テラヘルツカメラ(2)と、試料ステージ(7)、低反射体(6)、制御部(9)を備える。光源(1)は、測定光を放射する。試料ステージ(7)は、試料(4)を搭載する。試料(4)は、基材(6)上に被測定物(5)が配された、測定試料である。低反射体(8)は、基材(6)の底面と試料ステージ(7)との間に配される。低反射体(8)は、基材(6)の底面及び試料ステージ(7)から被測定物(5)の方向に反射される測定光を低減する機能を備える。テラヘルツカメラ(2)は、被測定物(5)で反射された測定光を受光して、受光データを生成する。制御部(9)は、受光データを処理して、被測定物(5)の膜厚を求める。   That is, the image acquisition device (100) having the minimum configuration performs film thickness measurement using optical interference. The image acquisition device includes a light source (1), a terahertz camera (2), a sample stage (7), a low reflector (6), and a control unit (9). The light source (1) emits measurement light. The sample stage (7) carries the sample (4). The sample (4) is a measurement sample in which the object to be measured (5) is arranged on the substrate (6). The low reflector (8) is disposed between the bottom surface of the substrate (6) and the sample stage (7). The low reflector (8) has a function of reducing measurement light reflected from the bottom surface of the substrate (6) and the sample stage (7) toward the object to be measured (5). The terahertz camera (2) receives the measurement light reflected by the object to be measured (5) and generates light reception data. The control unit (9) processes the light reception data to determine the film thickness of the object to be measured (5).

このような構成を備える最小構成の画像取得装置では、基材の底面と試料ステージとの間に、低反射体が配置される。低反射体は、基材の底面から被測定物の方向に放射される光を低減する。この構成により、基材の底面における反射光や基材を透過して外部で反射されて基材に戻った光が被測定物の方向に戻ることが抑制される。その結果、被測定物からの反射光の強度に対する、それ以外の箇所で発生した反射光による影響を抑制できる。すなわち、最小構成の画像取得装置も、光学干渉を利用した膜厚測定において、簡単な構成で精度の高い膜厚測定が可能である。   In a minimum configuration image acquisition apparatus having such a configuration, a low reflector is disposed between the bottom surface of the substrate and the sample stage. The low reflector reduces light emitted from the bottom surface of the substrate toward the object to be measured. With this configuration, it is possible to suppress the reflected light on the bottom surface of the base material or the light that has been transmitted through the base material, reflected outside, and returned to the base material from returning in the direction of the object to be measured. As a result, the influence of the reflected light generated at other locations on the intensity of the reflected light from the object to be measured can be suppressed. That is, the image acquisition apparatus having the minimum configuration can measure the thickness with high accuracy with a simple configuration in the thickness measurement using optical interference.

(比較例の第1の形態)
図3は、画像取得装置100と対比される、画像取得装置200の構成を示す図である。以降の図面の説明では、既出の要素には同一の名称及び参照符号を付して、重複する説明は省略する。図3を参照すると、画像取得装置200は、テラヘルツ波光源1、テラヘルツカメラ2、テラヘルツレンズ3、制御部9を備える。画像取得装置200を用いた測定では、試料4は空中に保持された状態である。すなわち、図3において基材6の底面は空気と接している。なお、試料4を空中に保持するための構造は図3では省略されている。図4に、画像取得装置200を用いた場合の、基材6上の被測定物5の膜厚とテラヘルツ波の反射光強度との関係のシミュレーション結果を示す。図1に示した画像取得装置100と比較して、図3の画像取得装置200は試料ステージ7及び低反射体8を備えない。それ以外のシミュレーションの条件は、画像取得装置100のシミュレーションと同じ条件としている。
(First form of comparative example)
FIG. 3 is a diagram showing a configuration of the image acquisition device 200 compared with the image acquisition device 100. In the following description of the drawings, the same elements and reference numerals are assigned to the already described elements, and duplicate descriptions are omitted. Referring to FIG. 3, the image acquisition device 200 includes a terahertz wave light source 1, a terahertz camera 2, a terahertz lens 3, and a control unit 9. In the measurement using the image acquisition device 200, the sample 4 is held in the air. That is, in FIG. 3, the bottom surface of the substrate 6 is in contact with air. Note that the structure for holding the sample 4 in the air is omitted in FIG. FIG. 4 shows a simulation result of the relationship between the film thickness of the object to be measured 5 on the substrate 6 and the reflected light intensity of the terahertz wave when the image acquisition device 200 is used. Compared with the image acquisition apparatus 100 shown in FIG. 1, the image acquisition apparatus 200 of FIG. 3 does not include the sample stage 7 and the low reflector 8. The other simulation conditions are the same as the simulation of the image acquisition apparatus 100.

図4は、画像取得装置200を用いた場合の、基材6上の被測定物5の膜厚と反射光強度との関係のシミュレーション結果を示す図である。画像取得装置200は、図1に示された低反射体8を備えないため、基材6の底部と空気との屈折率差に起因する基材6の裏面からの反射光が、被測定物5の両面の反射光の強度に大きい影響を与える。その結果、被測定物5の膜厚の測定値は、基材6の屈折率のばらつきにより大きく変化する。図4は、基材の屈折率が1.6から1.62までばらつくと、被測定物5を上面から見た反射率が大きく変化することを示す。すなわち、図4は、基材6の屈折率がばらついた場合に、画像取得装置200では、基材の屈折率を正確に知らない限り被測定物5の正確な膜厚測定が困難であることを示す。   FIG. 4 is a diagram showing a simulation result of the relationship between the film thickness of the measurement object 5 on the substrate 6 and the reflected light intensity when the image acquisition device 200 is used. Since the image acquisition device 200 does not include the low reflector 8 shown in FIG. 1, the reflected light from the back surface of the base material 6 due to the difference in refractive index between the bottom of the base material 6 and air is measured. 5 has a great influence on the intensity of reflected light on both sides. As a result, the measured value of the film thickness of the object to be measured 5 varies greatly due to the variation in the refractive index of the substrate 6. FIG. 4 shows that when the refractive index of the base material varies from 1.6 to 1.62, the reflectance when the object to be measured 5 is viewed from above is greatly changed. That is, FIG. 4 shows that when the refractive index of the substrate 6 varies, it is difficult for the image acquisition device 200 to accurately measure the film thickness of the object to be measured 5 unless the refractive index of the substrate is accurately known. Indicates.

(比較例の第2の形態)
画像取得装置100と比較される他の画像取得装置の構成について説明する。図5は、画像取得装置100と対比される、画像取得装置300の構成例を示す図である。図5を参照すると、画像取得装置300は、テラヘルツ波光源1、テラヘルツカメラ2、テラヘルツレンズ3、試料ステージ7、制御部9を備える。画像取得装置300では、試料4は直接試料ステージ7上に配置される。
(Second form of comparative example)
The configuration of another image acquisition device compared to the image acquisition device 100 will be described. FIG. 5 is a diagram illustrating a configuration example of the image acquisition device 300 compared with the image acquisition device 100. Referring to FIG. 5, the image acquisition apparatus 300 includes a terahertz wave light source 1, a terahertz camera 2, a terahertz lens 3, a sample stage 7, and a control unit 9. In the image acquisition device 300, the sample 4 is directly placed on the sample stage 7.

図6は、画像取得装置300を用いた場合の、基材6上の被測定物5の膜厚とテラヘルツ波の反射光強度との関係のシミュレーション結果の例である。図1に示した画像取得装置100と比較して、図5の画像取得装置300は、試料4と試料ステージ7との間に低反射体8を備えない。それ以外のシミュレーションの条件は、画像取得装置100におけるシミュレーションと同じ条件としている。   FIG. 6 is an example of a simulation result of the relationship between the film thickness of the measurement object 5 on the substrate 6 and the reflected light intensity of the terahertz wave when the image acquisition device 300 is used. Compared to the image acquisition device 100 shown in FIG. 1, the image acquisition device 300 of FIG. 5 does not include the low reflector 8 between the sample 4 and the sample stage 7. The other simulation conditions are the same as the simulation conditions in the image acquisition apparatus 100.

画像取得装置300では、図5における基材6の底部と試料ステージ7とが接している。このため、基材6と試料ステージ7との屈折率差に起因する基材6の裏面からテラヘルツカメラ2への反射光が、被測定物5の両面の反射光の強度に大きい影響を与える。図6は、画像取得装置300を用いた場合の、基材6上の被測定物5の膜厚と反射光強度との関係のシミュレーション結果を示す図である。図6は、画像取得装置300においても、基材の屈折率が1.6から1.62までばらつくと、被測定物5の上面から見た反射率が大きく変化することを示す。このように、比較例の第2の形態の画像取得装置300においても、被測定物5の膜厚の測定値が、基材6の屈折率のばらつきにより大きく変化する。すなわち、図6は、基材の屈折率がばらついた場合には、画像取得装置300においても、基材の屈折率を正確に知らない限り、正確な膜厚測定が困難であることを示している。   In the image acquisition device 300, the bottom of the substrate 6 and the sample stage 7 in FIG. For this reason, the reflected light from the back surface of the base material 6 to the terahertz camera 2 due to the difference in refractive index between the base material 6 and the sample stage 7 greatly affects the intensity of the reflected light on both surfaces of the object to be measured 5. FIG. 6 is a diagram showing a simulation result of the relationship between the film thickness of the measurement object 5 on the substrate 6 and the reflected light intensity when the image acquisition device 300 is used. FIG. 6 shows that also in the image acquisition device 300, when the refractive index of the base material varies from 1.6 to 1.62, the reflectance viewed from the upper surface of the DUT 5 greatly changes. As described above, also in the image acquisition device 300 according to the second embodiment of the comparative example, the measured value of the film thickness of the DUT 5 greatly changes due to the variation in the refractive index of the substrate 6. That is, FIG. 6 shows that when the refractive index of the base material varies, it is difficult for the image acquisition device 300 to accurately measure the film thickness unless the refractive index of the base material is accurately known. Yes.

(第2の実施形態)
図7を参照すると、第2の実施形態の画像取得装置400は、テラヘルツ波光源1、コリメートレンズ10、テラヘルツカメラ2、テラヘルツレンズ3、試料ステージ7、制御部9を備える。画像取得装置400は、試料4と試料ステージ7との間に低反射体8を備える。コリメートレンズ10は、テラヘルツ波光源1から放射されたテラヘルツ波を略平行に伝搬するテラヘルツ波に変換する。テラヘルツ波光源1と被測定物5との間にコリメートレンズ10を配置することで、テラヘルツ波光源1から放射されたテラヘルツ波は試料に対し略平行光として照射される。その結果、画像取得装置400は、画像取得装置100の効果に加えて、テラヘルツ波の被測定物5への入射角の分散に起因する、被測定物5の膜厚の測定結果への影響を低減できるという効果を奏する。
(Second Embodiment)
Referring to FIG. 7, the image acquisition apparatus 400 according to the second embodiment includes a terahertz light source 1, a collimating lens 10, a terahertz camera 2, a terahertz lens 3, a sample stage 7, and a control unit 9. The image acquisition device 400 includes a low reflector 8 between the sample 4 and the sample stage 7. The collimating lens 10 converts the terahertz wave emitted from the terahertz wave light source 1 into a terahertz wave that propagates substantially in parallel. By disposing the collimating lens 10 between the terahertz wave light source 1 and the object 5 to be measured, the terahertz wave emitted from the terahertz wave light source 1 is irradiated to the sample as substantially parallel light. As a result, in addition to the effects of the image acquisition device 100, the image acquisition device 400 affects the measurement result of the film thickness of the measurement target 5 due to the dispersion of the incident angle of the terahertz wave on the measurement target 5. There is an effect that it can be reduced.

(第3の実施形態)
図8を参照すると、第3の実施形態の画像取得装置500は、テラヘルツ波光源1、テラヘルツカメラ2、テラヘルツレンズ3、試料ステージ7、低反射体8、制御部9を備える。試料4と試料ステージ7との間に低反射体8が配置される。画像取得装置500の試料ステージ7は、低反射体8及び試料4を乗せた状態で、被測定物5の表面と略平行な方向に移動する機能を備える。試料ステージ7の移動は、制御部9により制御されてもよい。あるいは、図示されないステージ駆動装置により制御されてもよい。このような構成を備える画像取得装置500は、試料ステージ7を移動させながら被測定物5の画像を取得することができる。その結果、画像取得装置500は、第1の実施形態の画像取得装置100の効果に加えて、大面積の試料の膜厚測定が可能になるという効果を奏する。本実施形態では、試料ステージ7を移動させる例について述べたが、テラヘルツ波光源1、テラヘルツカメラ2、テラヘルツレンズ3を一体として被測定物5に対して移動させても、同様の効果が得られることは明らかである。
(Third embodiment)
Referring to FIG. 8, an image acquisition apparatus 500 according to the third embodiment includes a terahertz light source 1, a terahertz camera 2, a terahertz lens 3, a sample stage 7, a low reflector 8, and a control unit 9. A low reflector 8 is disposed between the sample 4 and the sample stage 7. The sample stage 7 of the image acquisition device 500 has a function of moving in a direction substantially parallel to the surface of the DUT 5 with the low reflector 8 and the sample 4 placed thereon. The movement of the sample stage 7 may be controlled by the control unit 9. Or you may control by the stage drive device which is not illustrated. The image acquisition apparatus 500 having such a configuration can acquire an image of the DUT 5 while moving the sample stage 7. As a result, in addition to the effect of the image acquisition device 100 of the first embodiment, the image acquisition device 500 has an effect that it is possible to measure the film thickness of a large-area sample. In the present embodiment, an example in which the sample stage 7 is moved has been described. However, the same effect can be obtained by moving the terahertz wave light source 1, the terahertz camera 2, and the terahertz lens 3 together with the object to be measured 5. It is clear.

本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。   Embodiments of the present invention can be described as the following supplementary notes, but are not limited thereto.

(付記1)
光学干渉を利用した膜厚測定を行う画像取得装置であって、
測定光を放射する光源と、
基材上に被測定物が配された試料を搭載する試料ステージと、
前記基材の底面と前記試料ステージとの間に配され、前記基材の底面及び前記試料ステージから前記被測定物の方向に反射される前記測定光を低減する低反射体と、
前記被測定物で反射された前記測定光を受光してデータに変換するカメラと、
前記カメラで取得されたデータに基づいて前記被測定物の膜厚を測定する制御手段と、
を備える画像取得装置。
(Appendix 1)
An image acquisition device that performs film thickness measurement using optical interference,
A light source that emits measurement light;
A sample stage on which a sample in which an object to be measured is arranged on a substrate is mounted;
A low reflector that is disposed between the bottom surface of the base material and the sample stage and reduces the measurement light reflected from the bottom surface of the base material and the sample stage toward the object to be measured;
A camera that receives the measurement light reflected by the object to be measured and converts it into data;
Control means for measuring the film thickness of the object to be measured based on data acquired by the camera;
An image acquisition apparatus comprising:

(付記2)
低反射体が、前記測定光の周波数域に対して光学的な吸収性を備える吸収体を含むことを特徴とする付記1に記載の画像取得装置。
(Appendix 2)
The image acquisition apparatus according to appendix 1, wherein the low reflector includes an absorber having optical absorptivity with respect to the frequency range of the measurement light.

(付記3)
前記測定光は、周波数が0.1THzから10THzの略単色光であることを特徴とする付記1又は2に記載の画像取得装置。
(Appendix 3)
The image acquisition apparatus according to appendix 1 or 2, wherein the measurement light is substantially monochromatic light having a frequency of 0.1 THz to 10 THz.

(付記4)
前記光源は、前記被測定物に対し前記測定光を略平行光として照射するコリメートレンズを備える、ことを特徴とする付記1乃至3のいずれか1項に記載の画像取得装置。
(Appendix 4)
4. The image acquisition apparatus according to claim 1, wherein the light source includes a collimator lens that irradiates the measurement object with the measurement light as substantially parallel light. 5.

(付記5)
前記試料ステージは、前記測定光が照射される位置に対して、前記被測定物の表面に平行な方向に可動であり、前記カメラは前記試料ステージの移動中に前記被測定物で反射された前記測定光を受光してデータに変換する、ことを特徴とする付記1乃至4のいずれか1項に記載の画像取得装置。
(Appendix 5)
The sample stage is movable in a direction parallel to the surface of the object to be measured with respect to the position irradiated with the measurement light, and the camera is reflected by the object to be measured during the movement of the sample stage. The image acquisition device according to any one of appendices 1 to 4, wherein the measurement light is received and converted into data.

(付記6)
光学干渉を利用した膜厚測定方法であって、
光源から測定光を放射し、
基材上に被測定物が配された試料を試料ステージに搭載し、
前記基材の底面と前記試料ステージとの間に、前記基材の底面及び前記試料ステージから前記被測定物の方向に反射される前記測定光を低減する低反射体を配置し、
前記被測定物で反射された前記測定光を受光してデータに変換し、
前記データに基づいて前記被測定物の膜厚を求める、
膜厚測定方法。
(Appendix 6)
A film thickness measuring method using optical interference,
Radiates measurement light from the light source,
Mount the sample with the object to be measured on the substrate on the sample stage,
Between the bottom surface of the base material and the sample stage, a low reflector that reduces the measurement light reflected from the bottom surface of the base material and the sample stage toward the object to be measured is disposed,
Receiving the measurement light reflected by the object to be measured and converting it into data;
Obtain the film thickness of the object to be measured based on the data,
Film thickness measurement method.

(付記7)
低反射体が、前記測定光の周波数域に対して光学的な吸収性を備える吸収体を含むことを特徴とする付記6に記載の膜厚測定方法。
(Appendix 7)
The film thickness measuring method according to appendix 6, wherein the low reflector includes an absorber having optical absorptivity with respect to the frequency range of the measurement light.

(付記8)
前記測定光は、周波数が0.1THzから10THzの略単色光であることを特徴とする付記6又は7に記載の膜厚測定方法。
(Appendix 8)
The film thickness measuring method according to appendix 6 or 7, wherein the measuring light is substantially monochromatic light having a frequency of 0.1 THz to 10 THz.

(付記9)
前記被測定物に対し前記測定光を略平行光として照射することを特徴とする付記6乃至8のいずれか1項に記載の膜厚測定方法。
(Appendix 9)
The film thickness measuring method according to any one of appendices 6 to 8, wherein the measurement light is irradiated as substantially parallel light onto the object to be measured.

(付記10)
前記試料ステージを、前記測定光が照射される位置に対して前記被測定物の表面に平行な方向に可動させ、
前記試料ステージの移動中に前記被測定物で反射された前記測定光を受光して前記データに変換する、
ことを特徴とする付記6乃至9のいずれか1項に記載の膜厚測定方法。
(Appendix 10)
Moving the sample stage in a direction parallel to the surface of the object to be measured with respect to the position irradiated with the measurement light;
Receiving the measurement light reflected by the object to be measured during the movement of the sample stage and converting it into the data;
10. The method for measuring a film thickness according to any one of appendices 6 to 9, characterized in that:

以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。   Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。   Further, the configurations described in the respective embodiments are not necessarily mutually exclusive. The operation and effect of the present invention may be realized by a configuration in which all or part of the above-described embodiments are combined.

1 テラヘルツ波光源
2 テラヘルツカメラ
3 テラヘルツレンズ
4 試料
5 被測定物
6 基材
7 試料ステージ
8 低反射体
9 制御部
10 コリメートレンズ
100〜500 画像取得装置
DESCRIPTION OF SYMBOLS 1 Terahertz wave light source 2 Terahertz camera 3 Terahertz lens 4 Sample 5 Measured object 6 Base material 7 Sample stage 8 Low reflector 9 Control part 10 Collimating lens 100-500 Image acquisition apparatus

Claims (10)

光学干渉を利用した膜厚測定を行う画像取得装置であって、
測定光を放射する光源と、
基材上に被測定物が配された試料を搭載する試料ステージと、
前記基材の底面と前記試料ステージとの間に配され、前記基材の底面及び前記試料ステージから前記被測定物の方向に反射される前記測定光を低減する低反射体と、
前記被測定物で反射された前記測定光を受光してデータに変換するカメラと、
前記カメラで取得されたデータに基づいて前記被測定物の膜厚を測定する制御手段と、
を備える画像取得装置。
An image acquisition device that performs film thickness measurement using optical interference,
A light source that emits measurement light;
A sample stage on which a sample in which an object to be measured is arranged on a substrate is mounted;
A low reflector that is disposed between the bottom surface of the base material and the sample stage and reduces the measurement light reflected from the bottom surface of the base material and the sample stage toward the object to be measured;
A camera that receives the measurement light reflected by the object to be measured and converts it into data;
Control means for measuring the film thickness of the object to be measured based on data acquired by the camera;
An image acquisition apparatus comprising:
低反射体が、前記測定光の周波数域に対して光学的な吸収性を備える吸収体を含むことを特徴とする請求項1に記載の画像取得装置。   The image acquisition apparatus according to claim 1, wherein the low reflector includes an absorber having optical absorptivity with respect to a frequency range of the measurement light. 前記測定光は、周波数が0.1THzから10THzの略単色光であることを特徴とする請求項1又は2に記載の画像取得装置。   The image acquisition apparatus according to claim 1, wherein the measurement light is substantially monochromatic light having a frequency of 0.1 THz to 10 THz. 前記光源は、前記被測定物に対し前記測定光を略平行光として照射するコリメートレンズを備える、ことを特徴とする請求項1乃至3のいずれか1項に記載の画像取得装置。   4. The image acquisition apparatus according to claim 1, wherein the light source includes a collimator lens that irradiates the measurement object with the measurement light as substantially parallel light. 5. 前記試料ステージは、前記測定光が照射される位置に対して、前記被測定物の表面に平行な方向に可動であり、前記カメラは前記試料ステージの移動中に前記被測定物で反射された前記測定光を受光してデータに変換する、ことを特徴とする請求項1乃至4のいずれか1項に記載の画像取得装置。   The sample stage is movable in a direction parallel to the surface of the object to be measured with respect to the position irradiated with the measurement light, and the camera is reflected by the object to be measured during the movement of the sample stage. The image acquisition apparatus according to claim 1, wherein the measurement light is received and converted into data. 光学干渉を利用した膜厚測定方法であって、
光源から測定光を放射し、
基材上に被測定物が配された試料を試料ステージに搭載し、
前記基材の底面と前記試料ステージとの間に、前記基材の底面及び前記試料ステージから前記被測定物の方向に反射される前記測定光を低減する低反射体を配置し、
前記被測定物で反射された前記測定光を受光してデータに変換し、
前記データに基づいて前記被測定物の膜厚を求める、
膜厚測定方法。
A film thickness measuring method using optical interference,
Radiates measurement light from the light source,
Mount the sample with the object to be measured on the substrate on the sample stage,
Between the bottom surface of the base material and the sample stage, a low reflector that reduces the measurement light reflected from the bottom surface of the base material and the sample stage toward the object to be measured is disposed,
Receiving the measurement light reflected by the object to be measured and converting it into data;
Obtain the film thickness of the object to be measured based on the data,
Film thickness measurement method.
低反射体が、前記測定光の周波数域に対して光学的な吸収性を備える吸収体を含むことを特徴とする請求項6に記載の膜厚測定方法。   The film thickness measuring method according to claim 6, wherein the low reflector includes an absorber having optical absorptivity with respect to a frequency range of the measurement light. 前記測定光は、周波数が0.1THzから10THzの略単色光であることを特徴とする請求項6又は7に記載の膜厚測定方法。   The film thickness measurement method according to claim 6 or 7, wherein the measurement light is substantially monochromatic light having a frequency of 0.1 THz to 10 THz. 前記被測定物に対し前記測定光を略平行光として照射することを特徴とする請求項6乃至8のいずれか1項に記載の膜厚測定方法。   The film thickness measuring method according to claim 6, wherein the measurement light is irradiated as substantially parallel light onto the object to be measured. 前記試料ステージを、前記測定光が照射される位置に対して前記被測定物の表面に平行な方向に可動させ、
前記試料ステージの移動中に前記被測定物で反射された前記測定光を受光して前記データに変換する、
ことを特徴とする請求項6乃至9のいずれか1項に記載の膜厚測定方法。
Moving the sample stage in a direction parallel to the surface of the object to be measured with respect to the position irradiated with the measurement light;
Receiving the measurement light reflected by the object to be measured during the movement of the sample stage and converting it into the data;
The film thickness measuring method according to claim 6, wherein the film thickness is measured.
JP2016105070A 2016-05-26 2016-05-26 Image acquisition device and film thickness measurement method Pending JP2017211293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105070A JP2017211293A (en) 2016-05-26 2016-05-26 Image acquisition device and film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105070A JP2017211293A (en) 2016-05-26 2016-05-26 Image acquisition device and film thickness measurement method

Publications (1)

Publication Number Publication Date
JP2017211293A true JP2017211293A (en) 2017-11-30

Family

ID=60475392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105070A Pending JP2017211293A (en) 2016-05-26 2016-05-26 Image acquisition device and film thickness measurement method

Country Status (1)

Country Link
JP (1) JP2017211293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204466A1 (en) 2018-04-09 2019-10-10 Mitsubishi Electric Corporation Film thickness measuring device
JP2021093400A (en) * 2019-12-06 2021-06-17 株式会社ディスコ Gettering property evaluation device
CN116990237A (en) * 2023-09-26 2023-11-03 国网江苏省电力有限公司电力科学研究院 Enhanced terahertz transceiver with large depth of field suitable for narrow bandwidth

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204466A1 (en) 2018-04-09 2019-10-10 Mitsubishi Electric Corporation Film thickness measuring device
US10677585B2 (en) 2018-04-09 2020-06-09 Mitsubishi Electric Corporation Film thickness measuring apparatus
JP2021093400A (en) * 2019-12-06 2021-06-17 株式会社ディスコ Gettering property evaluation device
JP7345379B2 (en) 2019-12-06 2023-09-15 株式会社ディスコ Gettering property evaluation device
CN116990237A (en) * 2023-09-26 2023-11-03 国网江苏省电力有限公司电力科学研究院 Enhanced terahertz transceiver with large depth of field suitable for narrow bandwidth
CN116990237B (en) * 2023-09-26 2023-12-12 国网江苏省电力有限公司电力科学研究院 Enhanced terahertz transceiver with large depth of field suitable for narrow bandwidth

Similar Documents

Publication Publication Date Title
KR102549058B1 (en) Optical measurement apparatus and optical measurement method
KR101590389B1 (en) Rotating-element spectroscopic ellipsometer and method for measurement precision prediction of rotating-element spectroscopic ellipsometer, and recording medium storing program for executing the same, and recording medium storing program for executing the same
JP6196119B2 (en) Shape measuring apparatus and shape measuring method
CN107345904B (en) Method and device for detecting gas concentration based on optical absorption and interferometry
WO2017013759A1 (en) Far-infrared spectroscopy device
US9360434B2 (en) Optical inspection apparatus and method thereof
JP2017211293A (en) Image acquisition device and film thickness measurement method
US20170167974A1 (en) Information obtaining apparatus, information obtaining method, and recording medium
JP2014194344A (en) Method for measurement using terahertz wave
JP7012098B2 (en) Far-infrared light source, far-infrared spectroscope
Liebermeister et al. Terahertz multilayer thickness measurements: comparison of optoelectronic time and frequency domain systems
KR20130106178A (en) Apparatus for measureing thickness and shape by using optical method and method of the same
US20150146214A1 (en) Optical performance measurement apparatus of test optical element and its control unit
JP2008128942A (en) Device for measuring photothermal conversion
JP2016090314A (en) Terahertz wave measurement apparatus and terahertz wave measurement method
JP2022508388A (en) Electromagnetic field imaging
JP5733846B2 (en) Apparatus and method for measuring thickness using digital optical technology
US20160334205A1 (en) Interferometer
TW202138750A (en) Combined ocd and photoreflectance apparatus, system and method
CN108027317B (en) Measurement time distribution in reference scheme
US20130293962A1 (en) Irradiation module for a measuring apparatus
KR20130088916A (en) Thickness measuring method using laser interferometer
JP5974929B2 (en) Stray light correction method and Fourier transform type spectroscopic device using the same
JP2014081345A (en) Sensor
JP2011196766A (en) Method for measuring shape of measured object having light transmittance