JP2017211223A - Method and device for evaluating sealed inspection target - Google Patents

Method and device for evaluating sealed inspection target Download PDF

Info

Publication number
JP2017211223A
JP2017211223A JP2016103053A JP2016103053A JP2017211223A JP 2017211223 A JP2017211223 A JP 2017211223A JP 2016103053 A JP2016103053 A JP 2016103053A JP 2016103053 A JP2016103053 A JP 2016103053A JP 2017211223 A JP2017211223 A JP 2017211223A
Authority
JP
Japan
Prior art keywords
flow rate
inspection object
alteration
test
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016103053A
Other languages
Japanese (ja)
Other versions
JP6732536B2 (en
Inventor
真央 平田
Mao Hirata
真央 平田
勤 北條
Tsutomu Hojo
勤 北條
尚彦 丸野
Naohiko Maruno
尚彦 丸野
努 原
Tsutomu Hara
努 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukudakk
Fukuda Co Ltd
Original Assignee
Fukudakk
Fukuda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukudakk, Fukuda Co Ltd filed Critical Fukudakk
Priority to JP2016103053A priority Critical patent/JP6732536B2/en
Publication of JP2017211223A publication Critical patent/JP2017211223A/en
Application granted granted Critical
Publication of JP6732536B2 publication Critical patent/JP6732536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate the flow rate of intrusion of an alteration causing material to an inspection target.SOLUTION: A leakage Qis measured by applying a test pressure on an inspection target 9 including a sealed package 91. The flow rate Qof intrusion by diffusion of the alteration causing material to an inspection target 9 is evaluated on the basis of the correlation between the size of a hole through which the alteration causing material for water vapor or oxygen, for example, is diffused and the flow rate of the diffusion and on the basis of the result of measurement Q.SELECTED DRAWING: Figure 1

Description

本発明は、密封パッケージを含む検査対象を評価する方法及び評価装置に関し、例えば、密封された医薬品や食品等の検査対象における水分吸収量や酸素との反応量等を評価するのに適した評価方法及び評価装置に関する。   The present invention relates to a method and an evaluation apparatus for evaluating an inspection object including a sealed package, for example, an evaluation suitable for evaluating a water absorption amount, a reaction amount with oxygen, and the like in an inspection object such as a sealed medicine or food. The present invention relates to a method and an evaluation apparatus.

例えば、医薬品は、通常、PTP包装やピロー包装等の密封パッケージで密封されている。しかし、密封パッケージでも僅かに通気性があったり、微細な欠陥孔が形成されていたりすることがある。そうすると、長期間かけて空気によって変質し、特に空気中の水分や酸素等によって変質して、効能が衰えるおそれがある。
従来、この種医薬品を品質保証するために、任意に抜き取ったサンプルを所定の試験環境(例えば40℃、90%RH等)に所定時間置くことで、水分吸収量を実測していた。実測期間は例えば1ヶ月〜数ヶ月程度であった。
For example, pharmaceutical products are usually sealed with a hermetic package such as PTP packaging or pillow packaging. However, even a sealed package may be slightly air permeable or may have fine defect holes. If it does so, it will change with air over a long period of time, especially, it may change with the water | moisture content, oxygen, etc. in air, and there exists a possibility that an effect may decline.
Conventionally, in order to assure the quality of this kind of pharmaceutical product, the amount of water absorbed was measured by placing an arbitrarily sampled sample in a predetermined test environment (for example, 40 ° C., 90% RH, etc.) for a predetermined time. The actual measurement period was, for example, about 1 month to several months.

特許文献1には、製品に水分等の検知センサを設け、製品の水分吸収量等を実測することで、製品の有効期限を管理している。   In Patent Document 1, the product expiration date is managed by providing a detection sensor for moisture or the like in the product and measuring the moisture absorption amount or the like of the product.

特表2012−529030号公報([0040]等)Special table 2012-529030 gazette ([0040] etc.)

前記実測による水分吸収量等の評価は、長期間を要する。また、抜き取り検査においては、不良判定が出た場合、そのサンプルに対応するロットはすべて不良として扱うために無駄が多い。   It takes a long time to evaluate the amount of water absorption by the actual measurement. Further, in the sampling inspection, when a defect determination is made, all the lots corresponding to the sample are treated as defective, which is wasteful.

前記問題点を解決するために、本発明方法は、密封パッケージを含む検査対象の評価方法であって、
前記検査対象に試験圧を印加することによって前記検査対象における漏れを測定し、
変質惹起物質が孔を通して拡散する際の前記孔の大きさと拡散流量との相関関係と、前記測定結果とに基づいて、前記変質惹起物質の前記検査対象への浸入流量を評価することを特徴とする。
In order to solve the above problems, the method of the present invention is an evaluation method of an inspection object including a sealed package,
Measuring leakage in the inspection object by applying a test pressure to the inspection object;
Characterized in that, based on the correlation between the pore size and the diffusion flow rate when the alteration-inducing substance diffuses through the pores, and the measurement result, the infiltration flow rate of the alteration-inducing substance into the test object is evaluated. To do.

また、本発明方法は、密封パッケージを含む検査対象の評価方法であって、
変質惹起物質が孔を通して拡散する際の前記孔の大きさと拡散流量との相関関係と、前記検査対象に試験圧を印加して得られた漏れの測定結果とに基づいて、前記変質惹起物質の前記検査対象への浸入流量を評価することを特徴とする。
The method of the present invention is an evaluation method for an inspection object including a sealed package,
Based on the correlation between the pore size and the diffusion flow rate when the alteration-inducing substance diffuses through the pores, and the measurement result of leakage obtained by applying a test pressure to the inspection object, the alteration-inducing substance The intrusion flow rate into the inspection object is evaluated.

本発明装置は、密封パッケージを含む検査対象の評価装置であって、
前記検査対象に試験圧を印加することによって前記検査対象における漏れを測定する測定部と、
変質惹起物質が孔を通して拡散する際の前記孔の大きさと拡散流量との相関関係と、前記測定結果とに基づいて、前記変質惹起物質の前記検査対象への浸入流量を評価する評価処理部と、
を備えたことを特徴とする。
The device of the present invention is an evaluation device for an inspection object including a sealed package,
A measurement unit that measures leakage in the inspection object by applying a test pressure to the inspection object;
An evaluation processing unit that evaluates the infiltration flow rate of the alteration-inducing substance into the test object based on the correlation between the pore size and the diffusion flow rate when the alteration-inducing substance diffuses through the pores, and the measurement result; ,
It is provided with.

検査対象の密封パッケージに僅かな通気性があったり微細な欠陥孔が形成されていたりすると、試験圧の印加によって漏れが発生する。漏れの大きさは、試験圧の他、通気性の度合や欠陥孔の大きさに依存する。言い換えると、試験圧及び漏れの大きさから密封パッケージの通気性の度合や欠陥孔の大きさを推定できる。密封パッケージに仮想孔(リーク孔)が形成されているものと仮定することで、通気性の度合及び欠陥孔の大きさを仮想孔の大きさに置き換えることができる。仮想孔の断面形状は真円と仮定することが好ましい。また、仮想孔の長さは、密封パッケージの厚みと等しいとすることが好ましい。
更に、変質惹起物質が孔を通して拡散する際の拡散流量は、前記孔の大きさと一定の相関関係がある。ひいては、変質惹起物質が検査対象内に浸入する流量は、前記仮想孔の大きさ(断面積及び長さ)と一定の相関関係がある。すなわち、前記浸入流量は、前記仮想孔の断面積及び長さと前記変質惹起物質の拡散係数とに依存し、フィックの法則等の物質拡散原理に基づく相関関係の理論式(後述の式3参照)を用いて推定できる。また、孔の大きさと変質惹起物質の拡散流量との相関関係を予め実験によって取得しておき、この相関関係の実験データと、前記漏れの測定結果から推定される前記仮想孔の大きさとに基づいて、変質惹起物質の検査対象への浸入流量を推定(評価)してもよい。漏れの測定結果から仮想孔の大きさを推定する処理と、仮想孔の大きさと前記相関関係から浸入流量を推定する処理とを順次、別工程で行ってもよく、前記2つの処理をまとめることで、漏れの測定結果と前記相関関係から直接的に(仮想孔の大きさを算出することなく)浸入流量を推定する処理を行なってもよい。後者の方法においても、漏れの測定結果と浸入流量とを結び付ける限り、漏れの測定結果から仮想孔の大きさを推定する処理部分を内在しているものと言える。
If the sealed package to be inspected has a slight air permeability or has a fine defect hole, leakage occurs due to the application of the test pressure. The size of the leak depends on the degree of air permeability and the size of the defect hole in addition to the test pressure. In other words, the degree of air permeability of the sealed package and the size of the defect hole can be estimated from the test pressure and the size of the leak. By assuming that a virtual hole (leak hole) is formed in the sealed package, the degree of air permeability and the size of the defective hole can be replaced with the size of the virtual hole. It is preferable to assume that the cross-sectional shape of the virtual hole is a perfect circle. The length of the virtual hole is preferably equal to the thickness of the sealed package.
Furthermore, the diffusion flow rate when the alteration-inducing substance diffuses through the pores has a certain correlation with the pore size. As a result, the flow rate at which the alteration-inducing substance permeates into the inspection object has a certain correlation with the size (cross-sectional area and length) of the virtual hole. That is, the intrusion flow rate depends on the cross-sectional area and length of the virtual hole and the diffusion coefficient of the alteration-inducing substance, and is a theoretical formula of a correlation based on a substance diffusion principle such as Fick's law (see formula 3 described later). Can be used to estimate. Further, a correlation between the pore size and the diffusion flow rate of the alteration-inducing substance is obtained in advance by experiment, and based on the experimental data of this correlation and the size of the virtual pore estimated from the measurement result of the leak. Thus, the infiltration flow rate of the alteration-inducing substance into the test object may be estimated (evaluated). The process of estimating the size of the virtual hole from the measurement result of the leak and the process of estimating the intrusion flow rate from the size of the virtual hole and the correlation may be sequentially performed in separate steps, and the two processes are combined. Thus, the process of estimating the intrusion flow rate may be performed directly (without calculating the size of the virtual hole) from the leakage measurement result and the correlation. Even in the latter method, as long as the leakage measurement result and the intrusion flow rate are combined, it can be said that a processing portion for estimating the size of the virtual hole from the leakage measurement result is inherent.

取得した推定の浸入流量は、検査対象における変質惹起物質の吸収量ないしは変質惹起物質との反応量を評価する指標となる。或いは、推定浸入流量は、検査対象の品質評価の指標となり得る。例えば、推定浸入流量を用いて、品質保証期間の満了時(使用期限、消費期限、賞味期限含む)まで検査対象の品質が維持されることを保証したり、品質保証期間の満了時まで検査対象の品質が維持されるか否かを判定したり、判定のための閾値を設定したり、変質惹起物質の検査対象内への拡散量が許容量に達するまでの品質維持時間ないしは品質保証期間を設定したりできる。
検査対象としては、医薬品の他、食品等が挙げられる。
変質惹起物質としては、空気中の水分(水蒸気)や酸素等が挙げられる。
The obtained estimated infiltration flow rate is an index for evaluating the amount of absorption of the alteration-inducing substance or the reaction amount with the alteration-inducing substance in the test object. Alternatively, the estimated intrusion flow rate can be an index for quality evaluation of an inspection target. For example, using the estimated intrusion flow rate, it is guaranteed that the quality of the inspection object is maintained until the expiration of the quality assurance period (including the expiration date, expiration date, and expiration date), or the inspection object until the expiration of the quality assurance period The quality maintenance time or quality assurance period until the amount of diffusion of the alteration-inducing substance into the test object reaches an allowable amount is determined. Can be set.
Examples of inspection targets include foods in addition to pharmaceuticals.
Examples of alteration-inducing substances include moisture (water vapor) and oxygen in the air.

本発明によれば、変質惹起物質の検査対象への浸入流量の評価を極めて短時間で行うことができる。例えば、医薬品や食品等の検査対象における水分吸収量や酸素との反応量等の評価を短時間で行うことができる。また、検査対象を全数検査することも可能である。   According to the present invention, it is possible to evaluate the inflow rate of the alteration-inducing substance into the test object in a very short time. For example, it is possible to evaluate the amount of water absorption and the amount of reaction with oxygen in a test object such as a pharmaceutical or food in a short time. It is also possible to inspect all inspection objects.

図1は、本発明の一実施形態に係る評価装置の回路構成図である。FIG. 1 is a circuit configuration diagram of an evaluation apparatus according to an embodiment of the present invention. 図2は、前記評価装置による検査対象の評価方法を示すフローチャートである。FIG. 2 is a flowchart showing a method for evaluating an inspection object by the evaluation apparatus. 図3は、前記評価装置の測定工程における弁動作を示すタイムチャートである。FIG. 3 is a time chart showing the valve operation in the measurement process of the evaluation apparatus.

以下、本発明の一実施形態を図面にしたがって説明する。
図1に示すように、この実施形態の検査対象9は、医薬品である。検査対象9は、内容物である対象物本体90と、密封パッケージ91を含む。密封パッケージ91は、PTP包装であるが、これに限られず、ピロー包装等の他の密封包装であってもよい。密封パッケージ91内に対象物本体90が密封状態で収容されている。対象物本体90は、例えば錠剤などの医薬本体である。対象物本体90は、水分を吸収すると品質劣化等の変質を惹き起こす性質を有している。検査対象9の周りの空気すなわち雰囲気ガス中の水分(水蒸気)は、対象物本体90に対し変質惹起物質となる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the test object 9 of this embodiment is a pharmaceutical product. The inspection object 9 includes an object main body 90 that is a content and a sealed package 91. The sealed package 91 is a PTP package, but is not limited thereto, and may be another sealed package such as a pillow package. The object main body 90 is accommodated in the sealed package 91 in a sealed state. The object main body 90 is a medical main body such as a tablet. The object main body 90 has a property of causing alteration such as quality deterioration when moisture is absorbed. Air around the inspection object 9, that is, moisture (water vapor) in the atmospheric gas becomes a substance that induces alteration to the object main body 90.

図1に示すように、評価装置1によって、検査対象9の評価が行われる。ここで、評価内容には、検査対象9内への変質惹起物質の推定浸入流量の算出が含まれる。更に、評価内容として、前記推定浸入流量を用いた検査対象9の品質判定、検査対象9の品質維持期間の推定、検査対象9の品質保証期間の決定、検査対象9の品質判定のための閾値設定等が含まれていてもよい。   As shown in FIG. 1, the evaluation device 1 evaluates the inspection object 9. Here, the evaluation contents include calculation of the estimated intrusion flow rate of the alteration-inducing substance into the inspection object 9. Furthermore, as evaluation contents, the quality determination of the inspection object 9 using the estimated intrusion flow rate, the estimation of the quality maintenance period of the inspection object 9, the determination of the quality assurance period of the inspection object 9, the threshold for determining the quality of the inspection object 9 Settings and the like may be included.

図1に示すように、評価装置1は、測定部2と、評価処理部3を備えている。測定部2は、測定回路10と、検査容器20(検査対象収納部)を含む。測定回路10は、試験圧路11と、タンク12と、差圧路14と、差圧計15を有している。   As shown in FIG. 1, the evaluation device 1 includes a measurement unit 2 and an evaluation processing unit 3. The measurement unit 2 includes a measurement circuit 10 and a test container 20 (a test target storage unit). The measurement circuit 10 includes a test pressure path 11, a tank 12, a differential pressure path 14, and a differential pressure gauge 15.

試験圧路11の上流端に圧力供給路17を介して圧力源4が接続されている。圧力供給路17にはレギュレータ31及び圧力供給路開閉弁37が設けられている。圧力源4は、コンプレッサ等の正圧源でもよく、真空ポンプ等の負圧源でもよい。圧力源4の圧力媒体は、通常、乾燥空気である。密封パッケージ91に応じて、正圧源にするか負圧源にするかを選択してもよい。例えば、PTP包装等の場合、負圧にすることで膨張して封止部が剥がれるおそれがあるときは、正圧源を選択することが好ましい。   A pressure source 4 is connected to the upstream end of the test pressure path 11 via a pressure supply path 17. The pressure supply path 17 is provided with a regulator 31 and a pressure supply path opening / closing valve 37. The pressure source 4 may be a positive pressure source such as a compressor or a negative pressure source such as a vacuum pump. The pressure medium of the pressure source 4 is usually dry air. Depending on the sealed package 91, it may be selected whether to use a positive pressure source or a negative pressure source. For example, in the case of PTP packaging or the like, it is preferable to select a positive pressure source when there is a possibility that the sealing portion may be peeled off due to a negative pressure.

試験圧路11によってタンク12と検査容器20とが接続されている。タンク12には、直圧計からなる試験圧計13が設けられている。試験圧路11には試験圧路開閉弁32が設けられている。レギュレータ31によって試験圧Pが設定される。 The tank 12 and the cuvette 20 are connected by the test pressure path 11. The tank 12 is provided with a test pressure gauge 13 composed of a direct pressure gauge. A test pressure path opening / closing valve 32 is provided in the test pressure path 11. The test pressure P 1 is set by the regulator 31.

試験圧路11に差圧路14が接続されている。差圧路14に差圧計15及び差圧路開閉弁34が設けられている。差圧路14から大気解放路16が分岐されている。大気解放路16に大気解放路開閉弁36が設けられている。   A differential pressure path 14 is connected to the test pressure path 11. A differential pressure gauge 15 and a differential pressure path opening / closing valve 34 are provided in the differential pressure path 14. An air release path 16 is branched from the differential pressure path 14. An atmosphere release path opening / closing valve 36 is provided in the atmosphere release path 16.

検査容器20は、開閉可能かつ検査対象9を収容して密閉可能になっている。検査容器20の内部空間(検査対象9が占める空間を除く)と、測定回路10における後記圧力変化Δpの測定時に前記内部空間に連なる部分とによって、検査空間19が構成されている。   The cuvette 20 is openable and closable and accommodates the test object 9 and can be sealed. An inspection space 19 is configured by the internal space of the inspection container 20 (excluding the space occupied by the inspection object 9) and the portion connected to the internal space when the pressure change Δp described later in the measurement circuit 10 is measured.

評価処理部3は、測定部2に付属のコントローラ内のマイクロコンピュータにて構成されていてもよく、PC(パーソナルコンピュータ)にて構成されていてもよい。評価処理部3の記憶部3mには、後記式1〜3等の演算処理ひいては検査対象9の品質評価のためのプログラム等が格納されている。評価処理部3によって、前記品質評価のための演算処理(評価処理)が実行される。
評価処理部3は、測定部2の測定結果を用いて評価処理できるものであればよく、必ずしも測定部2に付属されている必要はない。
The evaluation processing unit 3 may be configured by a microcomputer in a controller attached to the measurement unit 2 or may be configured by a PC (personal computer). The storage unit 3m of the evaluation processing unit 3 stores arithmetic processing such as equations 1 to 3 described later, and thus a program for quality evaluation of the inspection object 9 and the like. The evaluation processing unit 3 executes arithmetic processing (evaluation processing) for the quality evaluation.
The evaluation processing unit 3 only needs to be capable of performing an evaluation process using the measurement result of the measurement unit 2, and does not necessarily have to be attached to the measurement unit 2.

評価装置1を用いて検査対象9を品質評価する方法を、図2のフローチャートにしたがって説明する
<測定工程>
検査対象9を評価装置1の検査容器20に収容し、検査容器20を密閉する。
検査対象9に試験圧Pを印加することによって圧力漏れ量を測定する(ステップ101)。
詳しくは、図3のタイムチャートに示すように、常開の圧力供給路開閉弁37を通してタンク12に蓄圧する。
大気解放路開閉弁36を閉じ、更に圧力供給路開閉弁37を閉じたうえで、試験圧路開閉弁32を開き、検査容器20に試験圧Pを導入する。
ここで、試験圧計13の測定圧に基づいて大漏れの有無を判定する。検査対象9に比較的大きな欠陥孔があれば、測定圧が所定範囲から外れる。これによって、その検査対象9を大漏れ不良品と判定できる。
次に、試験圧路開閉弁32を閉じ、続いて、差圧路開閉弁34を閉じる。
そして、差圧計15によって検査空間19の圧力変化ΔPを測定する。
その後、差圧路開閉弁34、大気解放路開閉弁36、圧力供給路開閉弁37を順次開く。
A method for evaluating the quality of the inspection object 9 using the evaluation apparatus 1 will be described with reference to the flowchart of FIG.
The inspection object 9 is accommodated in the inspection container 20 of the evaluation apparatus 1 and the inspection container 20 is sealed.
Measuring the pressure leakage amount by applying a test pressure P 1 on the test object 9 (step 101).
Specifically, as shown in the time chart of FIG. 3, the pressure is accumulated in the tank 12 through the normally open pressure supply path opening / closing valve 37.
The air release path opening / closing valve 36 is closed, the pressure supply path opening / closing valve 37 is closed, the test pressure path opening / closing valve 32 is opened, and the test pressure P 1 is introduced into the cuvette 20.
Here, the presence or absence of a large leak is determined based on the measured pressure of the test pressure gauge 13. If the inspection object 9 has a relatively large defect hole, the measurement pressure is out of the predetermined range. Thereby, the inspection object 9 can be determined as a large leakage defective product.
Next, the test pressure path opening / closing valve 32 is closed, and then the differential pressure path opening / closing valve 34 is closed.
Then, the pressure change ΔP in the examination space 19 is measured by the differential pressure gauge 15.
Thereafter, the differential pressure path opening / closing valve 34, the atmosphere release path opening / closing valve 36, and the pressure supply path opening / closing valve 37 are sequentially opened.

前記測定後、評価処理部3において、下式(1)を用いて、圧力変化測定値ΔPから漏れ量Q[Pa・m/s]を算出する(ステップ102)。

Figure 2017211223
ここで、V19は、検査空間19の容積である。
Δtは、圧力変化ΔPの測定時間である。 After the measurement, the evaluation processing unit 3 calculates the leak amount Q 9 [Pa · m 3 / s] from the pressure change measurement value ΔP using the following equation (1) (step 102).
Figure 2017211223
Here, V 19 is the volume of the examination space 19.
Δt is a measurement time of the pressure change ΔP.

<仮想孔の大きさを推定>
続いて、漏れ量Q及び試験圧Pに基づいて、密封パッケージ91の仮想孔の大きさを推定する(ステップ103)。
具体的には、密封パッケージ91に直径Dの真円断面の仮想孔が形成されているものと仮定する。仮想孔の長さは、密封パッケージ91の厚みtと等しいものとすることができる。ハーゲンポアユイズの法則によれば、前記漏れ量Qは、仮想孔の大きさ(断面積ないしは直径D及び長さt)と試験圧P(絶対圧)とに依存し、その関係は例えば下式で表される。
<Estimate the size of the virtual hole>
Then, based on the amount of leakage Q 9 and the test pressure P 1, to estimate the size of the virtual hole sealed packages 91 (step 103).
Specifically, it is assumed that a virtual hole having a perfect circular cross section with a diameter D 9 is formed in the sealed package 91. The length of the virtual holes may be equal to the thickness t 9 sealed packages 91. According to Hagen Poire's law, the amount of leakage Q 9 depends on the size of the virtual hole (cross-sectional area or diameter D 9 and length t 9 ) and the test pressure P 1 (absolute pressure). The relationship is expressed by the following formula, for example.

Figure 2017211223
ここで、ηは、漏れ試験に用いた気体の粘性係数であり、試験環境温度に依存する。試験環境温度は、評価装置1の内部又は周辺に設けた温度センサ(図示省略)によって取得できる。
は、密封パッケージ91の厚みである。
は、大気圧(絶対圧)であり、試験前の密封パッケージ91の内圧である。
式2を用いて、仮想孔径Dを算出できる。
Figure 2017211223
Here, η is the viscosity coefficient of the gas used in the leak test and depends on the test environment temperature. The test environment temperature can be acquired by a temperature sensor (not shown) provided in or around the evaluation apparatus 1.
t 9 is the thickness of the sealed package 91.
P 0 is atmospheric pressure (absolute pressure), and is the internal pressure of the sealed package 91 before the test.
Using Equation 2 can be calculated virtual hole diameter D 9.

式1、式2は、漏れ量Qの単位を(Pa・m/s)としたときの理論式である。漏れ量Qの単位をモル流量(mol/s)とするときは、式1、式2の右辺を気体定数Rと絶対温度Tで除せばよい。
なお、上記式2は、仮想孔の長さtが直径Dよりもある程度ないしは十分に大きい場合、つまり仮想孔が長い管とみなせる場合に好適である。仮想孔の長さtが直径Dに対して十分に大きくない場合、つまり仮想孔がオリフィスとみなせる場合は、オリフィス対応の理論式を用いることが好ましい。
Formula 1 and Formula 2 are theoretical formulas when the unit of the leakage amount Q 9 is (Pa · m 3 / s). When the unit of the amount of leakage Q 9 and molar flow (mol / s) of formula 1, the right side of Equation 2 may be allowed divided by the gas constant R and the absolute temperature T.
The above formula 2 is suitable when the virtual hole length t 9 is somewhat or sufficiently larger than the diameter D 9 , that is, when the virtual hole can be regarded as a long tube. When the virtual hole length t 9 is not sufficiently large with respect to the diameter D 9 , that is, when the virtual hole can be regarded as an orifice, it is preferable to use a theoretical formula corresponding to the orifice.

<浸入流量QH2Oの推定>
次に、水蒸気(変質惹起物質)が孔を通して拡散する際の前記孔の大きさと拡散流量との相関関係と、前記測定結果(QひいてはD)とに基づいて、水蒸気の検査対象9内への拡散による浸入流量QH2Oを推定(評価)する(ステップ104)。すなわち、気体拡散の原理(フィックの法則)によれば、浸入流量QH2O [mol/s] は、仮想孔の大きさ(直径D及び長さt)に依存し、例えば下記の相関関係式が成り立つものと仮定できる。

Figure 2017211223
ここで、PeH2Oは、雰囲気ガス(空気)中の水蒸気分圧であり、好ましくは検査対象9の評価条件(温度及び湿度)に応じて決定される。例えば、評価条件が温度313.2K(=40℃)、相対湿度90%RHであれば、PeH2O=6639.6Paとする。
PiH2Oは、検査対象9内の水蒸気分圧である。例えば、検査対象9内は乾燥しているものとし、PiH2O=0Paとする。式3から明らかな通り、検査対象9内の水蒸気分圧PiH2Oの設定値が小さい程、評価(QH2Oの大きさ)がより厳しくなり、信頼性が高まる。
Rは、気体定数(8.314[J/(mol・K)])である。
Tは、絶対温度[K]である。
H2Oは、空気と水蒸気の相互拡散係数であり、温度Tに依存する。温度Tは、好ましくは検査対象9の評価条件に応じて決定する。例えば温度Tが、T=313.2K(=40℃)であれば、DH2O=0.0000259[m/s]となる。 <Estimation of intrusion flow rate Q H2O >
Next, based on the correlation between the pore size and the diffusion flow rate when the water vapor (the alteration-inducing substance) diffuses through the pores and the measurement result (Q 9 and thus D 9 ), Estimate (evaluate) the intrusion flow rate Q H2O due to diffusion into (step 104). That is, according to the principle of gas diffusion (Fick's law), the intrusion flow rate Q H2O [mol / s] depends on the size of the virtual hole (diameter D 9 and length t 9 ). It can be assumed that the equation holds.
Figure 2017211223
Here, Pe H 2 O is a water vapor partial pressure in the atmospheric gas (air), and is preferably determined according to the evaluation conditions (temperature and humidity) of the inspection object 9. For example, when the evaluation conditions are a temperature of 313.2 K (= 40 ° C.) and a relative humidity of 90% RH, Pe H 2 O = 6639.6 Pa.
Pi H 2 O is the water vapor partial pressure in the inspection object 9. For example, the inside of the inspection object 9 is assumed to be dry, and Pi H2O = 0 Pa. As is clear from Equation 3, the smaller the set value of the water vapor partial pressure Pi H2O in the inspection object 9, the more severe the evaluation (the magnitude of Q H2O ) and the higher the reliability.
R is a gas constant (8.314 [J / (mol · K)]).
T is the absolute temperature [K].
DH 2 O is an interdiffusion coefficient of air and water vapor, and depends on the temperature T. The temperature T is preferably determined according to the evaluation condition of the inspection object 9. For example, when the temperature T is T = 313.2 K (= 40 ° C.), D H2O = 0.0000259 [m 2 / s].

式3を用いて、推定浸入流量QH2O[mol/year]を算出できる。これによって、単位時間(例えば1年間)あたりの対象物本体90の水分吸収量[gまたはmol]を評価することができる。 Using Equation 3, the estimated infiltration flow rate Q H2O [mol / year] can be calculated. Thereby, the water absorption [g or mol] of the object main body 90 per unit time (for example, one year) can be evaluated.

更には、推定浸入流量QH2Oに基づいて、検査対象9の品質保証期間の満了時(使用期限、消費期限、賞味期限含む)までの水蒸気の検査対象9内への拡散量が許容量以下かを判定できる。或いは、検査対象9の品質保証期間の満了までの水蒸気の検査対象9内への拡散量が許容範囲内にあるための、漏れ量Q又は推定浸入流量QH2Oの閾値を設定できる。
又は、推定浸入流量QH2Oに基づいて、水蒸気の検査対象9内への拡散量が許容量に達するまでの品質維持時間を推定できる。
以上のように、本発明によれば、検査対象9を短時間で品質評価できる。
Furthermore, based on the estimated intrusion flow rate Q H2O , is the diffusion amount of water vapor into the inspection object 9 before the expiration of the quality assurance period of the inspection object 9 (including the expiration date, expiry date, and expiration date) less than the allowable amount? Can be determined. Alternatively, can be set for the amount of diffusion into the test object 9 of water vapor to the expiration of the quality assurance period of the examination object 9 is within an acceptable range, a threshold amount of leakage Q 9 or estimated penetration rate Q H2 O.
Alternatively, based on the estimated intrusion flow rate Q H2O , the quality maintenance time until the diffusion amount of the water vapor into the inspection object 9 reaches the allowable amount can be estimated.
As described above, according to the present invention, the quality of the inspection object 9 can be evaluated in a short time.

本発明は、前記実施形態に限られず、その趣旨を逸脱しない範囲内で種々の改変をなすことができる。
例えば、式2と式3を1つの式にまとめることで、漏れ量Qから仮想孔径D算出(ステップ103)を経ることなく直接推定浸入流量QH2Oを求めてもよい。その場合でも、漏れ量Qを気体拡散の理論式に組み込む限り、漏れ量Qから仮想孔の大きさ(孔径D)を推定する演算部分(ステップ103)を内在しているものと言える。
ステップ104において、式3等の理論式を用いるのに代えて、孔の大きさと水蒸気(変質惹起物質)の拡散流量との相関関係を予め実験によって取得しておき、この実験データと前記測定結果(漏れ量Qひいては仮想孔径D)とに基づいて、拡散による浸入流量QH2Oを推定(評価)してもよい。評価処理部3の記憶部3mに前記実験データをマトリックスや近似式等にして格納してもよい。
変質惹起物質は、空気中の水蒸気(水分)に限られず、酸素等であってもよい。変質惹起物質が空気そのものであってもよい。
検査対象9は、医薬品に限られず、食品(例えば煎餅等)であってもよい。
検査対象9が、密封パッケージ91だけで構成されていてもよい。つまり、検査対象9が、内容物を未収納状態の密封パッケージ91であってもよい。評価後、前記密封パッケージ91に内容物を入れて密封することにしてもよい。密封パッケージ91だけで構成される検査対象9として、内容物の収容後密栓する口付きパウチ容器、開発段階の各種容器等が挙げられる。
測定部2の回路構造は、適宜改変できる。例えば、圧力変化ΔPの測定手段として、差圧計15に代えて直圧計を用いてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the estimated intrusion flow rate Q H2O may be obtained directly from the leakage amount Q 9 without going through the virtual hole diameter D 9 calculation (step 103) by combining the equations 2 and 3 into one equation. Even in this case, we can be said that what is the leakage amount Q 9 inherent long as incorporation into the theoretical equation of gas diffusion, the size of the virtual hole from leaking amount Q 9 an operation portion for estimating a (hole diameter D 9) (step 103) .
In Step 104, instead of using a theoretical formula such as Formula 3, a correlation between the pore size and the diffusion flow rate of water vapor (altering substance) is obtained in advance by experiment, and the experimental data and the measurement result are obtained. based on the (leakage amount Q 9 turn virtual hole diameter D 9), the infiltration flow rate Q H2 O by diffusion may be estimated (evaluated). The experimental data may be stored in the storage unit 3m of the evaluation processing unit 3 as a matrix or an approximate expression.
The alteration-inducing substance is not limited to water vapor (water) in the air, but may be oxygen or the like. The alteration-inducing substance may be air itself.
The inspection object 9 is not limited to a medicine, and may be food (for example, rice cracker).
The inspection object 9 may be composed of only the sealed package 91. That is, the inspection target 9 may be the sealed package 91 in which the contents are not stored. After the evaluation, the contents may be sealed in the sealed package 91. Examples of the inspection object 9 including only the sealed package 91 include a pouch container with a mouth that is sealed after the contents are accommodated, various containers at the development stage, and the like.
The circuit structure of the measurement unit 2 can be modified as appropriate. For example, a direct pressure gauge may be used in place of the differential pressure gauge 15 as a means for measuring the pressure change ΔP.

本発明は、例えば医薬品の品質評価に適用できる。   The present invention can be applied to, for example, quality evaluation of pharmaceutical products.

試験圧
圧力漏れ量
H2O 推定浸入流量
仮想孔径
9 検査対象
90 対象物本体
91 密封パッケージ
1 評価装置
2 測定部
3 評価処理部
3m 記憶部
4 圧力源
10 測定回路
11 試験圧路
12 タンク
13 試験圧計
14 差圧路
15 差圧計
16 大気解放路
17 圧力供給路
19 検査空間
20 検査容器
31 レギュレータ(試験圧設定手段)
32 試験圧路開閉弁
34 差圧路開閉弁
36 大気解放路開閉弁
37 圧力供給路開閉弁
P 1 Test pressure Q 9 Pressure leak amount Q H2O estimated intrusion flow rate D 9 Virtual hole diameter 9 Inspection object 90 Target body 91 Sealed package 1 Evaluation device 2 Measurement unit 3 Evaluation processing unit 3m Storage unit 4 Pressure source 10 Measurement circuit 11 Test pressure Path 12 Tank 13 Test pressure gauge 14 Differential pressure path 15 Differential pressure gauge 16 Atmospheric release path 17 Pressure supply path 19 Inspection space 20 Inspection container 31 Regulator (Test pressure setting means)
32 Test pressure path on / off valve 34 Differential pressure path on / off valve 36 Air release path on / off valve 37 Pressure supply path on / off valve

Claims (3)

密封パッケージを含む検査対象の評価方法であって、
前記検査対象に試験圧を印加することによって前記検査対象における漏れを測定し、
変質惹起物質が孔を通して拡散する際の前記孔の大きさと拡散流量との相関関係と、前記測定結果とに基づいて、前記変質惹起物質の前記検査対象への浸入流量を評価することを特徴とする評価方法。
An evaluation method for an inspection object including a sealed package,
Measuring leakage in the inspection object by applying a test pressure to the inspection object;
Characterized in that, based on the correlation between the pore size and the diffusion flow rate when the alteration-inducing substance diffuses through the pores, and the measurement result, the infiltration flow rate of the alteration-inducing substance into the test object is evaluated. Evaluation method to do.
密封パッケージを含む検査対象の評価方法であって、
変質惹起物質が孔を通して拡散する際の前記孔の大きさと拡散流量との相関関係と、前記検査対象に試験圧を印加して得られた漏れの測定結果とに基づいて、前記変質惹起物質の前記検査対象への浸入流量を評価することを特徴とする評価方法。
An evaluation method for an inspection object including a sealed package,
Based on the correlation between the pore size and the diffusion flow rate when the alteration-inducing substance diffuses through the pores, and the measurement result of leakage obtained by applying a test pressure to the inspection object, the alteration-inducing substance An evaluation method comprising evaluating an intrusion flow rate into the inspection object.
密封パッケージを含む検査対象の評価装置であって、
前記検査対象に試験圧を印加することによって前記検査対象における漏れを測定する測定部と、
変質惹起物質が孔を通して拡散する際の前記孔の大きさと拡散流量との相関関係と、前記測定結果とに基づいて、前記変質惹起物質の前記検査対象への浸入流量を評価する評価処理部と、
を備えたことを特徴とする評価装置。
An evaluation device for a test object including a sealed package,
A measurement unit that measures leakage in the inspection object by applying a test pressure to the inspection object;
An evaluation processing unit that evaluates the infiltration flow rate of the alteration-inducing substance into the test object based on the correlation between the pore size and the diffusion flow rate when the alteration-inducing substance diffuses through the pores, and the measurement result; ,
An evaluation apparatus comprising:
JP2016103053A 2016-05-24 2016-05-24 Evaluation method and evaluation device for sealed inspection target Active JP6732536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016103053A JP6732536B2 (en) 2016-05-24 2016-05-24 Evaluation method and evaluation device for sealed inspection target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016103053A JP6732536B2 (en) 2016-05-24 2016-05-24 Evaluation method and evaluation device for sealed inspection target

Publications (2)

Publication Number Publication Date
JP2017211223A true JP2017211223A (en) 2017-11-30
JP6732536B2 JP6732536B2 (en) 2020-07-29

Family

ID=60475428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016103053A Active JP6732536B2 (en) 2016-05-24 2016-05-24 Evaluation method and evaluation device for sealed inspection target

Country Status (1)

Country Link
JP (1) JP6732536B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813388A (en) * 2019-01-01 2019-05-28 中国人民解放军63653部队 A kind of method and device measuring galvanized iron package container comprehensive performance
JP2020051883A (en) * 2018-09-27 2020-04-02 大日本印刷株式会社 Leak inspection device and method of pouch bag having outlet
JP2020074834A (en) * 2018-11-06 2020-05-21 株式会社フクダ Airtight test method of pre-filled syringe
JP2020122674A (en) * 2019-01-29 2020-08-13 株式会社フクダ Method for calculating diffusion flow rate or leakage hole size, reference leakage element selection method, and threshold value setting method for leakage test device
EP3985374A4 (en) * 2019-08-26 2022-10-26 Zhengzhou Tobacco Research Institute of CNTC Non-destructive testing method for sealing degree of small cigarette box packaging
JP7510791B2 (en) 2020-06-11 2024-07-04 株式会社フクダ Air Leak Testing Equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140182A (en) * 1979-03-27 1980-11-01 Du Pont Dosimeter for measuring gas state pollution material
JPH0781927B2 (en) * 1987-10-28 1995-09-06 レーマン マーチン Hollow container sealing method and device
JP2000046685A (en) * 1998-07-27 2000-02-18 Omori Mach Co Ltd Leakage detection method and device for air in packaging bag body
JP2007232666A (en) * 2006-03-03 2007-09-13 Fujikin Inc Method and device for inspecting leakage in pipe line
JP2008529034A (en) * 2005-02-02 2008-07-31 モコン・インコーポレーテッド Apparatus and method for detecting and reporting the magnitude of a leak in a hermetically sealed package
JP2016001133A (en) * 2014-06-11 2016-01-07 キヤノン株式会社 Liquid filling device, analyzer having the same, and method for filling liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140182A (en) * 1979-03-27 1980-11-01 Du Pont Dosimeter for measuring gas state pollution material
JPH0781927B2 (en) * 1987-10-28 1995-09-06 レーマン マーチン Hollow container sealing method and device
JP2000046685A (en) * 1998-07-27 2000-02-18 Omori Mach Co Ltd Leakage detection method and device for air in packaging bag body
JP2008529034A (en) * 2005-02-02 2008-07-31 モコン・インコーポレーテッド Apparatus and method for detecting and reporting the magnitude of a leak in a hermetically sealed package
JP2007232666A (en) * 2006-03-03 2007-09-13 Fujikin Inc Method and device for inspecting leakage in pipe line
JP2016001133A (en) * 2014-06-11 2016-01-07 キヤノン株式会社 Liquid filling device, analyzer having the same, and method for filling liquid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051883A (en) * 2018-09-27 2020-04-02 大日本印刷株式会社 Leak inspection device and method of pouch bag having outlet
JP2020074834A (en) * 2018-11-06 2020-05-21 株式会社フクダ Airtight test method of pre-filled syringe
JP7085459B2 (en) 2018-11-06 2022-06-16 株式会社フクダ Airtightness test method for prefilled syringe
CN109813388A (en) * 2019-01-01 2019-05-28 中国人民解放军63653部队 A kind of method and device measuring galvanized iron package container comprehensive performance
JP2020122674A (en) * 2019-01-29 2020-08-13 株式会社フクダ Method for calculating diffusion flow rate or leakage hole size, reference leakage element selection method, and threshold value setting method for leakage test device
JP7426780B2 (en) 2019-01-29 2024-02-02 株式会社フクダ Calculation method for diffusion flow rate or leakage hole size, reference leakage element selection method, threshold value setting method for leak test equipment
EP3985374A4 (en) * 2019-08-26 2022-10-26 Zhengzhou Tobacco Research Institute of CNTC Non-destructive testing method for sealing degree of small cigarette box packaging
JP7510791B2 (en) 2020-06-11 2024-07-04 株式会社フクダ Air Leak Testing Equipment

Also Published As

Publication number Publication date
JP6732536B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6732536B2 (en) Evaluation method and evaluation device for sealed inspection target
JP6556226B2 (en) Apparatus and method for calibrating a leak detection film chamber
JP4369977B2 (en) Apparatus and method for detecting leaks in hermetically sealed packages
JP6602852B2 (en) Film chamber with volumetric function for gross leak detection
BR112013023313B1 (en) LEAKAGE DETECTION FOR PACKAGING AND PACKAGING MACHINE
TW201918696A (en) Use, device and method for improved container closure integrity testing
WO2007118822A3 (en) Method and device for determining the quality of seal of a test object
CN106092826B (en) Low-intensity, low-permeability coating material gas diffusivity measurement device and method
JPH10505409A (en) Gas sensing system
JP2018501475A (en) Airtightness test using carrier gas in foil chamber
KR20190102222A (en) Dynamic Vacuum Damping Leak Detection Method and Apparatus
JP2021508372A (en) Systems and methods for determining container health by optical measurements
CN106769689A (en) The measurement apparatus and method of gas diffusion coefficient in a liquid under a kind of variable volume constant pressure
JP2016529503A5 (en)
JP6233757B2 (en) How to inspect a leak detection system
CN105628558B (en) For measuring the apparatus and method of fracturing liquid rubber-breaking viscosity
US20140247062A1 (en) Device and method to measure the permeation rate of a packaging
RU2543692C1 (en) Apparatus for inspecting air-tightness of large-size objects
CN105841881A (en) Vacuum degree detection structure and detection method of external compound packaged five-layer coextrusion infusion bag
JP2002168725A (en) Method and device for inspecting liquid container
Kossinna et al. Helium leak testing of packages for oral drug products
JP2019515248A (en) Method for detecting breast milk decay in situ
ES2315352T3 (en) METHOD AND DEVICE THAT ALLOWS TO DETERMINE THE PENETRATION OF GASEOUS SUBSTANCES THROUGH A MEMBRANE.
CN106110913B (en) Standard air flow-producing device
WO2019216243A1 (en) Sealing performance evaluation method and the like, and standard pseudo leak element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6732536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250